Properties

Label 8281.2.a.ci.1.8
Level 82818281
Weight 22
Character 8281.1
Self dual yes
Analytic conductor 66.12466.124
Analytic rank 11
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8281=72132 8281 = 7^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 66.124117913866.1241179138
Analytic rank: 11
Dimension: 88
Coefficient field: 8.8.8446345216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x88x6+19x414x2+1 x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 637)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.8
Root 1.513731.51373 of defining polynomial
Character χ\chi == 8281.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.43210q2+0.753592q3+3.91511q4+0.341537q5+1.83281q6+4.65773q82.43210q9+0.830652q102.43210q11+2.95039q12+0.257380q15+3.49784q161.94823q175.91511q186.29039q19+1.33715q205.91511q223.68948q23+3.51003q244.88335q254.09359q27+4.44135q29+0.625973q301.97532q310.808361q321.83281q334.73830q349.52192q369.62867q3715.2988q38+1.59079q40+12.5359q418.40736q439.52192q440.830652q458.97318q469.00530q47+2.63594q4811.8768q501.46817q51+1.49226q539.95601q540.830652q554.74039q57+10.8018q58+0.626991q59+1.00767q601.14319q614.80418q628.96169q644.45758q665.59199q677.62754q682.78036q69+9.49719q7111.3280q72+11.9187q7323.4179q743.68006q7524.6275q76+4.47167q79+1.19464q80+4.21140q81+30.4885q82+1.41231q830.665394q8520.4475q86+3.34697q8711.3280q88+12.4444q892.02023q9014.4447q921.48859q9321.9018q942.14840q950.609174q96+10.2770q97+5.91511q99+O(q100)q+2.43210 q^{2} +0.753592 q^{3} +3.91511 q^{4} +0.341537 q^{5} +1.83281 q^{6} +4.65773 q^{8} -2.43210 q^{9} +0.830652 q^{10} -2.43210 q^{11} +2.95039 q^{12} +0.257380 q^{15} +3.49784 q^{16} -1.94823 q^{17} -5.91511 q^{18} -6.29039 q^{19} +1.33715 q^{20} -5.91511 q^{22} -3.68948 q^{23} +3.51003 q^{24} -4.88335 q^{25} -4.09359 q^{27} +4.44135 q^{29} +0.625973 q^{30} -1.97532 q^{31} -0.808361 q^{32} -1.83281 q^{33} -4.73830 q^{34} -9.52192 q^{36} -9.62867 q^{37} -15.2988 q^{38} +1.59079 q^{40} +12.5359 q^{41} -8.40736 q^{43} -9.52192 q^{44} -0.830652 q^{45} -8.97318 q^{46} -9.00530 q^{47} +2.63594 q^{48} -11.8768 q^{50} -1.46817 q^{51} +1.49226 q^{53} -9.95601 q^{54} -0.830652 q^{55} -4.74039 q^{57} +10.8018 q^{58} +0.626991 q^{59} +1.00767 q^{60} -1.14319 q^{61} -4.80418 q^{62} -8.96169 q^{64} -4.45758 q^{66} -5.59199 q^{67} -7.62754 q^{68} -2.78036 q^{69} +9.49719 q^{71} -11.3280 q^{72} +11.9187 q^{73} -23.4179 q^{74} -3.68006 q^{75} -24.6275 q^{76} +4.47167 q^{79} +1.19464 q^{80} +4.21140 q^{81} +30.4885 q^{82} +1.41231 q^{83} -0.665394 q^{85} -20.4475 q^{86} +3.34697 q^{87} -11.3280 q^{88} +12.4444 q^{89} -2.02023 q^{90} -14.4447 q^{92} -1.48859 q^{93} -21.9018 q^{94} -2.14840 q^{95} -0.609174 q^{96} +10.2770 q^{97} +5.91511 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q2+12q4+12q8+4q9+4q11+8q15+4q1628q1828q2212q2312q258q2928q304q36+8q3732q434q44+4q46++28q99+O(q100) 8 q - 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9} + 4 q^{11} + 8 q^{15} + 4 q^{16} - 28 q^{18} - 28 q^{22} - 12 q^{23} - 12 q^{25} - 8 q^{29} - 28 q^{30} - 4 q^{36} + 8 q^{37} - 32 q^{43} - 4 q^{44} + 4 q^{46}+ \cdots + 28 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.43210 1.71975 0.859877 0.510502i 0.170540π-0.170540\pi
0.859877 + 0.510502i 0.170540π0.170540\pi
33 0.753592 0.435087 0.217543 0.976051i 0.430196π-0.430196\pi
0.217543 + 0.976051i 0.430196π0.430196\pi
44 3.91511 1.95755
55 0.341537 0.152740 0.0763700 0.997080i 0.475667π-0.475667\pi
0.0763700 + 0.997080i 0.475667π0.475667\pi
66 1.83281 0.748242
77 0 0
88 4.65773 1.64675
99 −2.43210 −0.810700
1010 0.830652 0.262675
1111 −2.43210 −0.733305 −0.366653 0.930358i 0.619496π-0.619496\pi
−0.366653 + 0.930358i 0.619496π0.619496\pi
1212 2.95039 0.851705
1313 0 0
1414 0 0
1515 0.257380 0.0664551
1616 3.49784 0.874460
1717 −1.94823 −0.472516 −0.236258 0.971690i 0.575921π-0.575921\pi
−0.236258 + 0.971690i 0.575921π0.575921\pi
1818 −5.91511 −1.39420
1919 −6.29039 −1.44311 −0.721557 0.692355i 0.756573π-0.756573\pi
−0.721557 + 0.692355i 0.756573π0.756573\pi
2020 1.33715 0.298997
2121 0 0
2222 −5.91511 −1.26110
2323 −3.68948 −0.769309 −0.384655 0.923061i 0.625679π-0.625679\pi
−0.384655 + 0.923061i 0.625679π0.625679\pi
2424 3.51003 0.716481
2525 −4.88335 −0.976670
2626 0 0
2727 −4.09359 −0.787811
2828 0 0
2929 4.44135 0.824738 0.412369 0.911017i 0.364701π-0.364701\pi
0.412369 + 0.911017i 0.364701π0.364701\pi
3030 0.625973 0.114286
3131 −1.97532 −0.354778 −0.177389 0.984141i 0.556765π-0.556765\pi
−0.177389 + 0.984141i 0.556765π0.556765\pi
3232 −0.808361 −0.142899
3333 −1.83281 −0.319051
3434 −4.73830 −0.812611
3535 0 0
3636 −9.52192 −1.58699
3737 −9.62867 −1.58294 −0.791472 0.611206i 0.790685π-0.790685\pi
−0.791472 + 0.611206i 0.790685π0.790685\pi
3838 −15.2988 −2.48180
3939 0 0
4040 1.59079 0.251525
4141 12.5359 1.95777 0.978887 0.204403i 0.0655252π-0.0655252\pi
0.978887 + 0.204403i 0.0655252π0.0655252\pi
4242 0 0
4343 −8.40736 −1.28211 −0.641055 0.767495i 0.721503π-0.721503\pi
−0.641055 + 0.767495i 0.721503π0.721503\pi
4444 −9.52192 −1.43548
4545 −0.830652 −0.123826
4646 −8.97318 −1.32302
4747 −9.00530 −1.31356 −0.656779 0.754083i 0.728081π-0.728081\pi
−0.656779 + 0.754083i 0.728081π0.728081\pi
4848 2.63594 0.380466
4949 0 0
5050 −11.8768 −1.67963
5151 −1.46817 −0.205585
5252 0 0
5353 1.49226 0.204977 0.102489 0.994734i 0.467319π-0.467319\pi
0.102489 + 0.994734i 0.467319π0.467319\pi
5454 −9.95601 −1.35484
5555 −0.830652 −0.112005
5656 0 0
5757 −4.74039 −0.627879
5858 10.8018 1.41835
5959 0.626991 0.0816273 0.0408136 0.999167i 0.487005π-0.487005\pi
0.0408136 + 0.999167i 0.487005π0.487005\pi
6060 1.00767 0.130089
6161 −1.14319 −0.146371 −0.0731855 0.997318i 0.523317π-0.523317\pi
−0.0731855 + 0.997318i 0.523317π0.523317\pi
6262 −4.80418 −0.610131
6363 0 0
6464 −8.96169 −1.12021
6565 0 0
6666 −4.45758 −0.548690
6767 −5.59199 −0.683170 −0.341585 0.939851i 0.610964π-0.610964\pi
−0.341585 + 0.939851i 0.610964π0.610964\pi
6868 −7.62754 −0.924975
6969 −2.78036 −0.334716
7070 0 0
7171 9.49719 1.12711 0.563554 0.826079i 0.309434π-0.309434\pi
0.563554 + 0.826079i 0.309434π0.309434\pi
7272 −11.3280 −1.33502
7373 11.9187 1.39498 0.697488 0.716597i 0.254301π-0.254301\pi
0.697488 + 0.716597i 0.254301π0.254301\pi
7474 −23.4179 −2.72227
7575 −3.68006 −0.424936
7676 −24.6275 −2.82497
7777 0 0
7878 0 0
7979 4.47167 0.503102 0.251551 0.967844i 0.419059π-0.419059\pi
0.251551 + 0.967844i 0.419059π0.419059\pi
8080 1.19464 0.133565
8181 4.21140 0.467934
8282 30.4885 3.36689
8383 1.41231 0.155021 0.0775104 0.996992i 0.475303π-0.475303\pi
0.0775104 + 0.996992i 0.475303π0.475303\pi
8484 0 0
8585 −0.665394 −0.0721721
8686 −20.4475 −2.20491
8787 3.34697 0.358833
8888 −11.3280 −1.20757
8989 12.4444 1.31910 0.659551 0.751660i 0.270747π-0.270747\pi
0.659551 + 0.751660i 0.270747π0.270747\pi
9090 −2.02023 −0.212951
9191 0 0
9292 −14.4447 −1.50596
9393 −1.48859 −0.154359
9494 −21.9018 −2.25900
9595 −2.14840 −0.220421
9696 −0.609174 −0.0621736
9797 10.2770 1.04347 0.521736 0.853107i 0.325285π-0.325285\pi
0.521736 + 0.853107i 0.325285π0.325285\pi
9898 0 0
9999 5.91511 0.594490
100100 −19.1188 −1.91188
101101 15.0537 1.49790 0.748948 0.662629i 0.230559π-0.230559\pi
0.748948 + 0.662629i 0.230559π0.230559\pi
102102 −3.57074 −0.353556
103103 17.6176 1.73591 0.867957 0.496639i 0.165433π-0.165433\pi
0.867957 + 0.496639i 0.165433π0.165433\pi
104104 0 0
105105 0 0
106106 3.62932 0.352511
107107 6.38454 0.617217 0.308608 0.951189i 0.400137π-0.400137\pi
0.308608 + 0.951189i 0.400137π0.400137\pi
108108 −16.0268 −1.54218
109109 −8.17472 −0.782996 −0.391498 0.920179i 0.628043π-0.628043\pi
−0.391498 + 0.920179i 0.628043π0.628043\pi
110110 −2.02023 −0.192621
111111 −7.25609 −0.688717
112112 0 0
113113 −9.62165 −0.905129 −0.452564 0.891732i 0.649491π-0.649491\pi
−0.452564 + 0.891732i 0.649491π0.649491\pi
114114 −11.5291 −1.07980
115115 −1.26009 −0.117504
116116 17.3884 1.61447
117117 0 0
118118 1.52490 0.140379
119119 0 0
120120 1.19880 0.109435
121121 −5.08489 −0.462263
122122 −2.78036 −0.251722
123123 9.44693 0.851801
124124 −7.73360 −0.694497
125125 −3.37553 −0.301917
126126 0 0
127127 9.01976 0.800375 0.400187 0.916433i 0.368945π-0.368945\pi
0.400187 + 0.916433i 0.368945π0.368945\pi
128128 −20.1790 −1.78359
129129 −6.33572 −0.557829
130130 0 0
131131 −0.192483 −0.0168173 −0.00840867 0.999965i 0.502677π-0.502677\pi
−0.00840867 + 0.999965i 0.502677π0.502677\pi
132132 −7.17565 −0.624560
133133 0 0
134134 −13.6003 −1.17488
135135 −1.39811 −0.120330
136136 −9.07434 −0.778118
137137 4.87680 0.416653 0.208326 0.978059i 0.433198π-0.433198\pi
0.208326 + 0.978059i 0.433198π0.433198\pi
138138 −6.76212 −0.575629
139139 −11.0740 −0.939286 −0.469643 0.882856i 0.655617π-0.655617\pi
−0.469643 + 0.882856i 0.655617π0.655617\pi
140140 0 0
141141 −6.78632 −0.571511
142142 23.0981 1.93835
143143 0 0
144144 −8.50709 −0.708924
145145 1.51689 0.125971
146146 28.9874 2.39901
147147 0 0
148148 −37.6973 −3.09869
149149 15.9087 1.30329 0.651646 0.758524i 0.274079π-0.274079\pi
0.651646 + 0.758524i 0.274079π0.274079\pi
150150 −8.95026 −0.730786
151151 −10.5904 −0.861831 −0.430916 0.902392i 0.641809π-0.641809\pi
−0.430916 + 0.902392i 0.641809π0.641809\pi
152152 −29.2989 −2.37645
153153 4.73830 0.383069
154154 0 0
155155 −0.674646 −0.0541889
156156 0 0
157157 9.12388 0.728165 0.364082 0.931367i 0.381383π-0.381383\pi
0.364082 + 0.931367i 0.381383π0.381383\pi
158158 10.8755 0.865211
159159 1.12455 0.0891829
160160 −0.276085 −0.0218264
161161 0 0
162162 10.2425 0.804730
163163 −10.9639 −0.858761 −0.429380 0.903124i 0.641268π-0.641268\pi
−0.429380 + 0.903124i 0.641268π0.641268\pi
164164 49.0792 3.83245
165165 −0.625973 −0.0487319
166166 3.43487 0.266598
167167 −18.2777 −1.41437 −0.707185 0.707029i 0.750035π-0.750035\pi
−0.707185 + 0.707029i 0.750035π0.750035\pi
168168 0 0
169169 0 0
170170 −1.61830 −0.124118
171171 15.2988 1.16993
172172 −32.9157 −2.50980
173173 −8.19835 −0.623309 −0.311655 0.950195i 0.600883π-0.600883\pi
−0.311655 + 0.950195i 0.600883π0.600883\pi
174174 8.14015 0.617104
175175 0 0
176176 −8.50709 −0.641246
177177 0.472495 0.0355149
178178 30.2659 2.26853
179179 −15.5537 −1.16254 −0.581268 0.813712i 0.697443π-0.697443\pi
−0.581268 + 0.813712i 0.697443π0.697443\pi
180180 −3.25209 −0.242396
181181 −6.67302 −0.496001 −0.248001 0.968760i 0.579774π-0.579774\pi
−0.248001 + 0.968760i 0.579774π0.579774\pi
182182 0 0
183183 −0.861502 −0.0636841
184184 −17.1846 −1.26686
185185 −3.28855 −0.241779
186186 −3.62039 −0.265460
187187 4.73830 0.346499
188188 −35.2567 −2.57136
189189 0 0
190190 −5.22512 −0.379070
191191 −18.7459 −1.35641 −0.678204 0.734874i 0.737241π-0.737241\pi
−0.678204 + 0.734874i 0.737241π0.737241\pi
192192 −6.75346 −0.487389
193193 −8.17309 −0.588312 −0.294156 0.955757i 0.595039π-0.595039\pi
−0.294156 + 0.955757i 0.595039π0.595039\pi
194194 24.9947 1.79451
195195 0 0
196196 0 0
197197 8.72012 0.621283 0.310641 0.950527i 0.399456π-0.399456\pi
0.310641 + 0.950527i 0.399456π0.399456\pi
198198 14.3861 1.02238
199199 −17.4666 −1.23818 −0.619089 0.785321i 0.712498π-0.712498\pi
−0.619089 + 0.785321i 0.712498π0.712498\pi
200200 −22.7453 −1.60834
201201 −4.21408 −0.297238
202202 36.6120 2.57601
203203 0 0
204204 −5.74805 −0.402444
205205 4.28146 0.299030
206206 42.8478 2.98535
207207 8.97318 0.623679
208208 0 0
209209 15.2988 1.05824
210210 0 0
211211 −23.2569 −1.60107 −0.800535 0.599286i 0.795451π-0.795451\pi
−0.800535 + 0.599286i 0.795451π0.795451\pi
212212 5.84235 0.401254
213213 7.15701 0.490390
214214 15.5278 1.06146
215215 −2.87143 −0.195830
216216 −19.0668 −1.29733
217217 0 0
218218 −19.8817 −1.34656
219219 8.98182 0.606935
220220 −3.25209 −0.219256
221221 0 0
222222 −17.6475 −1.18442
223223 −29.2729 −1.96026 −0.980128 0.198368i 0.936436π-0.936436\pi
−0.980128 + 0.198368i 0.936436π0.936436\pi
224224 0 0
225225 11.8768 0.791786
226226 −23.4008 −1.55660
227227 19.8110 1.31490 0.657452 0.753496i 0.271634π-0.271634\pi
0.657452 + 0.753496i 0.271634π0.271634\pi
228228 −18.5591 −1.22911
229229 −1.32821 −0.0877709 −0.0438855 0.999037i 0.513974π-0.513974\pi
−0.0438855 + 0.999037i 0.513974π0.513974\pi
230230 −3.06467 −0.202079
231231 0 0
232232 20.6866 1.35814
233233 1.51634 0.0993389 0.0496695 0.998766i 0.484183π-0.484183\pi
0.0496695 + 0.998766i 0.484183π0.484183\pi
234234 0 0
235235 −3.07564 −0.200633
236236 2.45474 0.159790
237237 3.36981 0.218893
238238 0 0
239239 22.4793 1.45406 0.727032 0.686603i 0.240899π-0.240899\pi
0.727032 + 0.686603i 0.240899π0.240899\pi
240240 0.900273 0.0581123
241241 13.3106 0.857409 0.428704 0.903445i 0.358970π-0.358970\pi
0.428704 + 0.903445i 0.358970π0.358970\pi
242242 −12.3670 −0.794979
243243 15.4544 0.991403
244244 −4.47573 −0.286529
245245 0 0
246246 22.9759 1.46489
247247 0 0
248248 −9.20051 −0.584233
249249 1.06430 0.0674475
250250 −8.20963 −0.519222
251251 15.9034 1.00381 0.501906 0.864922i 0.332632π-0.332632\pi
0.501906 + 0.864922i 0.332632π0.332632\pi
252252 0 0
253253 8.97318 0.564139
254254 21.9370 1.37645
255255 −0.501436 −0.0314011
256256 −31.1539 −1.94712
257257 −29.2397 −1.82392 −0.911960 0.410280i 0.865431π-0.865431\pi
−0.911960 + 0.410280i 0.865431π0.865431\pi
258258 −15.4091 −0.959329
259259 0 0
260260 0 0
261261 −10.8018 −0.668615
262262 −0.468138 −0.0289217
263263 −1.70435 −0.105095 −0.0525475 0.998618i 0.516734π-0.516734\pi
−0.0525475 + 0.998618i 0.516734π0.516734\pi
264264 −8.53673 −0.525399
265265 0.509661 0.0313083
266266 0 0
267267 9.37798 0.573923
268268 −21.8932 −1.33734
269269 8.37874 0.510861 0.255430 0.966827i 0.417783π-0.417783\pi
0.255430 + 0.966827i 0.417783π0.417783\pi
270270 −3.40035 −0.206938
271271 −12.1575 −0.738518 −0.369259 0.929327i 0.620388π-0.620388\pi
−0.369259 + 0.929327i 0.620388π0.620388\pi
272272 −6.81461 −0.413196
273273 0 0
274274 11.8609 0.716540
275275 11.8768 0.716198
276276 −10.8854 −0.655225
277277 10.3181 0.619957 0.309979 0.950744i 0.399678π-0.399678\pi
0.309979 + 0.950744i 0.399678π0.399678\pi
278278 −26.9331 −1.61534
279279 4.80418 0.287619
280280 0 0
281281 −2.59677 −0.154910 −0.0774551 0.996996i 0.524679π-0.524679\pi
−0.0774551 + 0.996996i 0.524679π0.524679\pi
282282 −16.5050 −0.982859
283283 4.60368 0.273660 0.136830 0.990595i 0.456309π-0.456309\pi
0.136830 + 0.990595i 0.456309π0.456309\pi
284284 37.1825 2.20637
285285 −1.61902 −0.0959023
286286 0 0
287287 0 0
288288 1.96601 0.115848
289289 −13.2044 −0.776729
290290 3.68922 0.216638
291291 7.74466 0.454000
292292 46.6629 2.73074
293293 −1.96119 −0.114574 −0.0572870 0.998358i 0.518245π-0.518245\pi
−0.0572870 + 0.998358i 0.518245π0.518245\pi
294294 0 0
295295 0.214141 0.0124678
296296 −44.8477 −2.60672
297297 9.95601 0.577706
298298 38.6915 2.24134
299299 0 0
300300 −14.4078 −0.831835
301301 0 0
302302 −25.7568 −1.48214
303303 11.3443 0.651714
304304 −22.0028 −1.26194
305305 −0.390443 −0.0223567
306306 11.5240 0.658784
307307 7.37658 0.421004 0.210502 0.977593i 0.432490π-0.432490\pi
0.210502 + 0.977593i 0.432490π0.432490\pi
308308 0 0
309309 13.2765 0.755273
310310 −1.64081 −0.0931915
311311 14.1618 0.803040 0.401520 0.915850i 0.368482π-0.368482\pi
0.401520 + 0.915850i 0.368482π0.368482\pi
312312 0 0
313313 −26.7152 −1.51003 −0.755017 0.655705i 0.772371π-0.772371\pi
−0.755017 + 0.655705i 0.772371π0.772371\pi
314314 22.1902 1.25226
315315 0 0
316316 17.5070 0.984848
317317 21.4362 1.20398 0.601989 0.798504i 0.294375π-0.294375\pi
0.601989 + 0.798504i 0.294375π0.294375\pi
318318 2.73503 0.153373
319319 −10.8018 −0.604785
320320 −3.06075 −0.171101
321321 4.81134 0.268543
322322 0 0
323323 12.2551 0.681895
324324 16.4881 0.916005
325325 0 0
326326 −26.6654 −1.47686
327327 −6.16040 −0.340671
328328 58.3886 3.22397
329329 0 0
330330 −1.52243 −0.0838069
331331 10.6138 0.583389 0.291695 0.956512i 0.405781π-0.405781\pi
0.291695 + 0.956512i 0.405781π0.405781\pi
332332 5.52933 0.303462
333333 23.4179 1.28329
334334 −44.4531 −2.43237
335335 −1.90987 −0.104347
336336 0 0
337337 6.75587 0.368016 0.184008 0.982925i 0.441093π-0.441093\pi
0.184008 + 0.982925i 0.441093π0.441093\pi
338338 0 0
339339 −7.25080 −0.393809
340340 −2.60509 −0.141281
341341 4.80418 0.260161
342342 37.2083 2.01199
343343 0 0
344344 −39.1592 −2.11132
345345 −0.949597 −0.0511246
346346 −19.9392 −1.07194
347347 −16.0204 −0.860021 −0.430010 0.902824i 0.641490π-0.641490\pi
−0.430010 + 0.902824i 0.641490π0.641490\pi
348348 13.1037 0.702434
349349 16.0384 0.858518 0.429259 0.903182i 0.358775π-0.358775\pi
0.429259 + 0.903182i 0.358775π0.358775\pi
350350 0 0
351351 0 0
352352 1.96601 0.104789
353353 3.84311 0.204548 0.102274 0.994756i 0.467388π-0.467388\pi
0.102274 + 0.994756i 0.467388π0.467388\pi
354354 1.14916 0.0610769
355355 3.24364 0.172155
356356 48.7210 2.58221
357357 0 0
358358 −37.8281 −1.99928
359359 −21.1335 −1.11538 −0.557692 0.830048i 0.688313π-0.688313\pi
−0.557692 + 0.830048i 0.688313π0.688313\pi
360360 −3.86895 −0.203912
361361 20.5690 1.08258
362362 −16.2294 −0.853000
363363 −3.83194 −0.201125
364364 0 0
365365 4.07067 0.213069
366366 −2.09526 −0.109521
367367 −14.7392 −0.769381 −0.384690 0.923046i 0.625692π-0.625692\pi
−0.384690 + 0.923046i 0.625692π0.625692\pi
368368 −12.9052 −0.672730
369369 −30.4885 −1.58717
370370 −7.99807 −0.415800
371371 0 0
372372 −5.82798 −0.302166
373373 12.9266 0.669314 0.334657 0.942340i 0.391380π-0.391380\pi
0.334657 + 0.942340i 0.391380π0.391380\pi
374374 11.5240 0.595892
375375 −2.54377 −0.131360
376376 −41.9442 −2.16311
377377 0 0
378378 0 0
379379 −26.8358 −1.37846 −0.689231 0.724542i 0.742051π-0.742051\pi
−0.689231 + 0.724542i 0.742051π0.742051\pi
380380 −8.41121 −0.431486
381381 6.79722 0.348232
382382 −45.5919 −2.33269
383383 −2.90782 −0.148583 −0.0742914 0.997237i 0.523669π-0.523669\pi
−0.0742914 + 0.997237i 0.523669π0.523669\pi
384384 −15.2067 −0.776015
385385 0 0
386386 −19.8778 −1.01175
387387 20.4475 1.03941
388388 40.2355 2.04265
389389 −16.7010 −0.846773 −0.423386 0.905949i 0.639159π-0.639159\pi
−0.423386 + 0.905949i 0.639159π0.639159\pi
390390 0 0
391391 7.18797 0.363511
392392 0 0
393393 −0.145054 −0.00731700
394394 21.2082 1.06845
395395 1.52724 0.0768438
396396 23.1583 1.16375
397397 −24.0984 −1.20947 −0.604733 0.796428i 0.706720π-0.706720\pi
−0.604733 + 0.796428i 0.706720π0.706720\pi
398398 −42.4806 −2.12936
399399 0 0
400400 −17.0812 −0.854059
401401 1.84490 0.0921297 0.0460649 0.998938i 0.485332π-0.485332\pi
0.0460649 + 0.998938i 0.485332π0.485332\pi
402402 −10.2491 −0.511176
403403 0 0
404404 58.9367 2.93221
405405 1.43835 0.0714722
406406 0 0
407407 23.4179 1.16078
408408 −6.83835 −0.338549
409409 −25.6703 −1.26931 −0.634657 0.772794i 0.718859π-0.718859\pi
−0.634657 + 0.772794i 0.718859π0.718859\pi
410410 10.4129 0.514259
411411 3.67512 0.181280
412412 68.9748 3.39814
413413 0 0
414414 21.8237 1.07257
415415 0.482355 0.0236779
416416 0 0
417417 −8.34529 −0.408671
418418 37.2083 1.81992
419419 −26.2398 −1.28190 −0.640950 0.767582i 0.721459π-0.721459\pi
−0.640950 + 0.767582i 0.721459π0.721459\pi
420420 0 0
421421 23.6637 1.15330 0.576650 0.816992i 0.304360π-0.304360\pi
0.576650 + 0.816992i 0.304360π0.304360\pi
422422 −56.5630 −2.75344
423423 21.9018 1.06490
424424 6.95053 0.337548
425425 9.51391 0.461493
426426 17.4065 0.843350
427427 0 0
428428 24.9961 1.20823
429429 0 0
430430 −6.98359 −0.336779
431431 −23.0177 −1.10872 −0.554361 0.832276i 0.687037π-0.687037\pi
−0.554361 + 0.832276i 0.687037π0.687037\pi
432432 −14.3187 −0.688909
433433 −25.8607 −1.24279 −0.621394 0.783498i 0.713433π-0.713433\pi
−0.621394 + 0.783498i 0.713433π0.713433\pi
434434 0 0
435435 1.14311 0.0548081
436436 −32.0049 −1.53276
437437 23.2082 1.11020
438438 21.8447 1.04378
439439 −35.6771 −1.70277 −0.851387 0.524537i 0.824238π-0.824238\pi
−0.851387 + 0.524537i 0.824238π0.824238\pi
440440 −3.86895 −0.184445
441441 0 0
442442 0 0
443443 −6.85881 −0.325872 −0.162936 0.986637i 0.552096π-0.552096\pi
−0.162936 + 0.986637i 0.552096π0.552096\pi
444444 −28.4084 −1.34820
445445 4.25022 0.201480
446446 −71.1945 −3.37116
447447 11.9887 0.567045
448448 0 0
449449 −9.98150 −0.471056 −0.235528 0.971868i 0.575682π-0.575682\pi
−0.235528 + 0.971868i 0.575682π0.575682\pi
450450 28.8855 1.36168
451451 −30.4885 −1.43565
452452 −37.6698 −1.77184
453453 −7.98081 −0.374971
454454 48.1824 2.26131
455455 0 0
456456 −22.0794 −1.03396
457457 −8.77311 −0.410389 −0.205194 0.978721i 0.565783π-0.565783\pi
−0.205194 + 0.978721i 0.565783π0.565783\pi
458458 −3.23035 −0.150944
459459 7.97526 0.372253
460460 −4.93340 −0.230021
461461 6.88543 0.320687 0.160343 0.987061i 0.448740π-0.448740\pi
0.160343 + 0.987061i 0.448740π0.448740\pi
462462 0 0
463463 −13.9526 −0.648432 −0.324216 0.945983i 0.605100π-0.605100\pi
−0.324216 + 0.945983i 0.605100π0.605100\pi
464464 15.5351 0.721200
465465 −0.508408 −0.0235768
466466 3.68790 0.170838
467467 −28.8113 −1.33323 −0.666613 0.745404i 0.732257π-0.732257\pi
−0.666613 + 0.745404i 0.732257π0.732257\pi
468468 0 0
469469 0 0
470470 −7.48027 −0.345039
471471 6.87568 0.316815
472472 2.92035 0.134420
473473 20.4475 0.940179
474474 8.19572 0.376442
475475 30.7182 1.40945
476476 0 0
477477 −3.62932 −0.166175
478478 54.6719 2.50063
479479 −24.5871 −1.12341 −0.561707 0.827336i 0.689855π-0.689855\pi
−0.561707 + 0.827336i 0.689855π0.689855\pi
480480 −0.208056 −0.00949639
481481 0 0
482482 32.3726 1.47453
483483 0 0
484484 −19.9079 −0.904904
485485 3.50998 0.159380
486486 37.5867 1.70497
487487 −2.57316 −0.116601 −0.0583004 0.998299i 0.518568π-0.518568\pi
−0.0583004 + 0.998299i 0.518568π0.518568\pi
488488 −5.32469 −0.241037
489489 −8.26233 −0.373635
490490 0 0
491491 14.0379 0.633523 0.316762 0.948505i 0.397404π-0.397404\pi
0.316762 + 0.948505i 0.397404π0.397404\pi
492492 36.9857 1.66745
493493 −8.65279 −0.389702
494494 0 0
495495 2.02023 0.0908025
496496 −6.90936 −0.310239
497497 0 0
498498 2.58849 0.115993
499499 13.5345 0.605888 0.302944 0.953008i 0.402030π-0.402030\pi
0.302944 + 0.953008i 0.402030π0.402030\pi
500500 −13.2156 −0.591018
501501 −13.7739 −0.615373
502502 38.6786 1.72631
503503 −8.27754 −0.369077 −0.184539 0.982825i 0.559079π-0.559079\pi
−0.184539 + 0.982825i 0.559079π0.559079\pi
504504 0 0
505505 5.14138 0.228789
506506 21.8237 0.970180
507507 0 0
508508 35.3133 1.56678
509509 −0.166218 −0.00736750 −0.00368375 0.999993i 0.501173π-0.501173\pi
−0.00368375 + 0.999993i 0.501173π0.501173\pi
510510 −1.21954 −0.0540022
511511 0 0
512512 −35.4115 −1.56498
513513 25.7502 1.13690
514514 −71.1137 −3.13669
515515 6.01707 0.265144
516516 −24.8050 −1.09198
517517 21.9018 0.963239
518518 0 0
519519 −6.17821 −0.271193
520520 0 0
521521 −7.06180 −0.309383 −0.154691 0.987963i 0.549438π-0.549438\pi
−0.154691 + 0.987963i 0.549438π0.549438\pi
522522 −26.2711 −1.14985
523523 23.3912 1.02283 0.511414 0.859335i 0.329122π-0.329122\pi
0.511414 + 0.859335i 0.329122π0.329122\pi
524524 −0.753592 −0.0329208
525525 0 0
526526 −4.14516 −0.180737
527527 3.84839 0.167639
528528 −6.41088 −0.278998
529529 −9.38775 −0.408163
530530 1.23955 0.0538425
531531 −1.52490 −0.0661752
532532 0 0
533533 0 0
534534 22.8082 0.987006
535535 2.18056 0.0942737
536536 −26.0459 −1.12501
537537 −11.7211 −0.505804
538538 20.3779 0.878554
539539 0 0
540540 −5.47375 −0.235553
541541 26.3079 1.13107 0.565533 0.824726i 0.308671π-0.308671\pi
0.565533 + 0.824726i 0.308671π0.308671\pi
542542 −29.5683 −1.27007
543543 −5.02873 −0.215804
544544 1.57488 0.0675222
545545 −2.79197 −0.119595
546546 0 0
547547 41.7636 1.78568 0.892841 0.450371i 0.148708π-0.148708\pi
0.892841 + 0.450371i 0.148708π0.148708\pi
548548 19.0932 0.815620
549549 2.78036 0.118663
550550 28.8855 1.23168
551551 −27.9378 −1.19019
552552 −12.9502 −0.551196
553553 0 0
554554 25.0948 1.06617
555555 −2.47822 −0.105195
556556 −43.3560 −1.83870
557557 7.30987 0.309729 0.154865 0.987936i 0.450506π-0.450506\pi
0.154865 + 0.987936i 0.450506π0.450506\pi
558558 11.6842 0.494633
559559 0 0
560560 0 0
561561 3.57074 0.150757
562562 −6.31560 −0.266407
563563 44.7737 1.88699 0.943493 0.331393i 0.107519π-0.107519\pi
0.943493 + 0.331393i 0.107519π0.107519\pi
564564 −26.5692 −1.11876
565565 −3.28615 −0.138249
566566 11.1966 0.470628
567567 0 0
568568 44.2353 1.85607
569569 −42.5127 −1.78222 −0.891112 0.453784i 0.850074π-0.850074\pi
−0.891112 + 0.453784i 0.850074π0.850074\pi
570570 −3.93761 −0.164928
571571 −40.8648 −1.71014 −0.855069 0.518515i 0.826485π-0.826485\pi
−0.855069 + 0.518515i 0.826485π0.826485\pi
572572 0 0
573573 −14.1268 −0.590155
574574 0 0
575575 18.0170 0.751362
576576 21.7957 0.908155
577577 −21.7280 −0.904550 −0.452275 0.891879i 0.649387π-0.649387\pi
−0.452275 + 0.891879i 0.649387π0.649387\pi
578578 −32.1144 −1.33578
579579 −6.15918 −0.255967
580580 5.93877 0.246594
581581 0 0
582582 18.8358 0.780769
583583 −3.62932 −0.150311
584584 55.5139 2.29718
585585 0 0
586586 −4.76981 −0.197039
587587 20.4816 0.845365 0.422683 0.906278i 0.361089π-0.361089\pi
0.422683 + 0.906278i 0.361089π0.361089\pi
588588 0 0
589589 12.4255 0.511986
590590 0.520811 0.0214415
591591 6.57141 0.270312
592592 −33.6795 −1.38422
593593 −5.63861 −0.231550 −0.115775 0.993275i 0.536935π-0.536935\pi
−0.115775 + 0.993275i 0.536935π0.536935\pi
594594 24.2140 0.993512
595595 0 0
596596 62.2842 2.55126
597597 −13.1627 −0.538715
598598 0 0
599599 39.6719 1.62095 0.810474 0.585774i 0.199209π-0.199209\pi
0.810474 + 0.585774i 0.199209π0.199209\pi
600600 −17.1407 −0.699766
601601 16.8267 0.686374 0.343187 0.939267i 0.388493π-0.388493\pi
0.343187 + 0.939267i 0.388493π0.388493\pi
602602 0 0
603603 13.6003 0.553845
604604 −41.4624 −1.68708
605605 −1.73668 −0.0706061
606606 27.5905 1.12079
607607 22.4980 0.913164 0.456582 0.889681i 0.349073π-0.349073\pi
0.456582 + 0.889681i 0.349073π0.349073\pi
608608 5.08490 0.206220
609609 0 0
610610 −0.949597 −0.0384480
611611 0 0
612612 18.5509 0.749877
613613 27.4269 1.10776 0.553882 0.832595i 0.313146π-0.313146\pi
0.553882 + 0.832595i 0.313146π0.313146\pi
614614 17.9406 0.724022
615615 3.22648 0.130104
616616 0 0
617617 10.6379 0.428267 0.214133 0.976804i 0.431307π-0.431307\pi
0.214133 + 0.976804i 0.431307π0.431307\pi
618618 32.2897 1.29888
619619 −45.4677 −1.82750 −0.913751 0.406274i 0.866828π-0.866828\pi
−0.913751 + 0.406274i 0.866828π0.866828\pi
620620 −2.64131 −0.106078
621621 15.1032 0.606071
622622 34.4428 1.38103
623623 0 0
624624 0 0
625625 23.2639 0.930556
626626 −64.9741 −2.59689
627627 11.5291 0.460427
628628 35.7210 1.42542
629629 18.7589 0.747966
630630 0 0
631631 29.5984 1.17829 0.589146 0.808027i 0.299464π-0.299464\pi
0.589146 + 0.808027i 0.299464π0.299464\pi
632632 20.8278 0.828485
633633 −17.5262 −0.696604
634634 52.1350 2.07055
635635 3.08058 0.122249
636636 4.40275 0.174580
637637 0 0
638638 −26.2711 −1.04008
639639 −23.0981 −0.913747
640640 −6.89188 −0.272425
641641 −42.5646 −1.68120 −0.840601 0.541654i 0.817798π-0.817798\pi
−0.840601 + 0.541654i 0.817798π0.817798\pi
642642 11.7016 0.461827
643643 21.9961 0.867441 0.433721 0.901047i 0.357200π-0.357200\pi
0.433721 + 0.901047i 0.357200π0.357200\pi
644644 0 0
645645 −2.16388 −0.0852029
646646 29.8057 1.17269
647647 34.8051 1.36833 0.684166 0.729327i 0.260167π-0.260167\pi
0.684166 + 0.729327i 0.260167π0.260167\pi
648648 19.6156 0.770572
649649 −1.52490 −0.0598577
650650 0 0
651651 0 0
652652 −42.9249 −1.68107
653653 −50.8167 −1.98861 −0.994306 0.106559i 0.966017π-0.966017\pi
−0.994306 + 0.106559i 0.966017π0.966017\pi
654654 −14.9827 −0.585870
655655 −0.0657402 −0.00256868
656656 43.8485 1.71199
657657 −28.9874 −1.13091
658658 0 0
659659 −14.7441 −0.574347 −0.287173 0.957879i 0.592716π-0.592716\pi
−0.287173 + 0.957879i 0.592716π0.592716\pi
660660 −2.45075 −0.0953953
661661 −18.1245 −0.704963 −0.352481 0.935819i 0.614662π-0.614662\pi
−0.352481 + 0.935819i 0.614662π0.614662\pi
662662 25.8139 1.00329
663663 0 0
664664 6.57814 0.255281
665665 0 0
666666 56.9546 2.20695
667667 −16.3863 −0.634479
668668 −71.5590 −2.76870
669669 −22.0598 −0.852881
670670 −4.64499 −0.179452
671671 2.78036 0.107335
672672 0 0
673673 20.9147 0.806204 0.403102 0.915155i 0.367932π-0.367932\pi
0.403102 + 0.915155i 0.367932π0.367932\pi
674674 16.4309 0.632896
675675 19.9904 0.769432
676676 0 0
677677 −38.2179 −1.46883 −0.734416 0.678700i 0.762544π-0.762544\pi
−0.734416 + 0.678700i 0.762544π0.762544\pi
678678 −17.6347 −0.677255
679679 0 0
680680 −3.09922 −0.118850
681681 14.9294 0.572097
682682 11.6842 0.447413
683683 −23.8253 −0.911649 −0.455825 0.890070i 0.650656π-0.650656\pi
−0.455825 + 0.890070i 0.650656π0.650656\pi
684684 59.8966 2.29020
685685 1.66561 0.0636396
686686 0 0
687687 −1.00093 −0.0381879
688688 −29.4076 −1.12115
689689 0 0
690690 −2.30951 −0.0879217
691691 −19.1413 −0.728168 −0.364084 0.931366i 0.618618π-0.618618\pi
−0.364084 + 0.931366i 0.618618π0.618618\pi
692692 −32.0974 −1.22016
693693 0 0
694694 −38.9632 −1.47902
695695 −3.78219 −0.143467
696696 15.5893 0.590909
697697 −24.4228 −0.925080
698698 39.0071 1.47644
699699 1.14270 0.0432210
700700 0 0
701701 −27.2956 −1.03094 −0.515471 0.856907i 0.672383π-0.672383\pi
−0.515471 + 0.856907i 0.672383π0.672383\pi
702702 0 0
703703 60.5681 2.28437
704704 21.7957 0.821457
705705 −2.31778 −0.0872927
706706 9.34683 0.351773
707707 0 0
708708 1.84987 0.0695223
709709 6.17166 0.231781 0.115891 0.993262i 0.463028π-0.463028\pi
0.115891 + 0.993262i 0.463028π0.463028\pi
710710 7.88886 0.296064
711711 −10.8755 −0.407865
712712 57.9625 2.17224
713713 7.28791 0.272934
714714 0 0
715715 0 0
716716 −60.8943 −2.27573
717717 16.9402 0.632644
718718 −51.3988 −1.91819
719719 2.72133 0.101488 0.0507442 0.998712i 0.483841π-0.483841\pi
0.0507442 + 0.998712i 0.483841π0.483841\pi
720720 −2.90549 −0.108281
721721 0 0
722722 50.0258 1.86177
723723 10.0307 0.373047
724724 −26.1256 −0.970949
725725 −21.6887 −0.805497
726726 −9.31965 −0.345885
727727 −9.47153 −0.351280 −0.175640 0.984455i 0.556199π-0.556199\pi
−0.175640 + 0.984455i 0.556199π0.556199\pi
728728 0 0
729729 −0.987863 −0.0365875
730730 9.90027 0.366426
731731 16.3795 0.605818
732732 −3.37287 −0.124665
733733 3.49707 0.129167 0.0645836 0.997912i 0.479428π-0.479428\pi
0.0645836 + 0.997912i 0.479428π0.479428\pi
734734 −35.8472 −1.32315
735735 0 0
736736 2.98243 0.109934
737737 13.6003 0.500972
738738 −74.1510 −2.72954
739739 32.0303 1.17825 0.589126 0.808041i 0.299472π-0.299472\pi
0.589126 + 0.808041i 0.299472π0.299472\pi
740740 −12.8750 −0.473295
741741 0 0
742742 0 0
743743 34.9186 1.28104 0.640519 0.767942i 0.278719π-0.278719\pi
0.640519 + 0.767942i 0.278719π0.278719\pi
744744 −6.93343 −0.254192
745745 5.43341 0.199065
746746 31.4387 1.15105
747747 −3.43487 −0.125675
748748 18.5509 0.678289
749749 0 0
750750 −6.18671 −0.225907
751751 26.9972 0.985143 0.492571 0.870272i 0.336057π-0.336057\pi
0.492571 + 0.870272i 0.336057π0.336057\pi
752752 −31.4991 −1.14865
753753 11.9847 0.436745
754754 0 0
755755 −3.61700 −0.131636
756756 0 0
757757 −52.5899 −1.91141 −0.955707 0.294319i 0.904907π-0.904907\pi
−0.955707 + 0.294319i 0.904907π0.904907\pi
758758 −65.2673 −2.37062
759759 6.76212 0.245449
760760 −10.0067 −0.362980
761761 13.9286 0.504912 0.252456 0.967608i 0.418762π-0.418762\pi
0.252456 + 0.967608i 0.418762π0.418762\pi
762762 16.5315 0.598874
763763 0 0
764764 −73.3923 −2.65524
765765 1.61830 0.0585099
766766 −7.07211 −0.255526
767767 0 0
768768 −23.4774 −0.847166
769769 13.7909 0.497312 0.248656 0.968592i 0.420011π-0.420011\pi
0.248656 + 0.968592i 0.420011π0.420011\pi
770770 0 0
771771 −22.0348 −0.793563
772772 −31.9985 −1.15165
773773 50.4870 1.81589 0.907946 0.419087i 0.137650π-0.137650\pi
0.907946 + 0.419087i 0.137650π0.137650\pi
774774 49.7304 1.78752
775775 9.64620 0.346502
776776 47.8674 1.71834
777777 0 0
778778 −40.6184 −1.45624
779779 −78.8555 −2.82529
780780 0 0
781781 −23.0981 −0.826515
782782 17.4818 0.625150
783783 −18.1811 −0.649738
784784 0 0
785785 3.11614 0.111220
786786 −0.352785 −0.0125834
787787 10.8638 0.387252 0.193626 0.981075i 0.437975π-0.437975\pi
0.193626 + 0.981075i 0.437975π0.437975\pi
788788 34.1402 1.21619
789789 −1.28439 −0.0457254
790790 3.71440 0.132152
791791 0 0
792792 27.5509 0.978980
793793 0 0
794794 −58.6098 −2.07998
795795 0.384077 0.0136218
796796 −68.3838 −2.42380
797797 −7.91681 −0.280428 −0.140214 0.990121i 0.544779π-0.544779\pi
−0.140214 + 0.990121i 0.544779π0.544779\pi
798798 0 0
799799 17.5444 0.620677
800800 3.94751 0.139566
801801 −30.2659 −1.06939
802802 4.48697 0.158440
803803 −28.9874 −1.02294
804804 −16.4986 −0.581859
805805 0 0
806806 0 0
807807 6.31415 0.222269
808808 70.1158 2.46667
809809 −29.6389 −1.04205 −0.521023 0.853542i 0.674450π-0.674450\pi
−0.521023 + 0.853542i 0.674450π0.674450\pi
810810 3.49821 0.122915
811811 15.8344 0.556022 0.278011 0.960578i 0.410325π-0.410325\pi
0.278011 + 0.960578i 0.410325π0.410325\pi
812812 0 0
813813 −9.16183 −0.321319
814814 56.9546 1.99626
815815 −3.74459 −0.131167
816816 −5.13544 −0.179776
817817 52.8856 1.85023
818818 −62.4327 −2.18291
819819 0 0
820820 16.7624 0.585368
821821 17.7394 0.619110 0.309555 0.950882i 0.399820π-0.399820\pi
0.309555 + 0.950882i 0.399820π0.399820\pi
822822 8.93824 0.311757
823823 −8.68200 −0.302635 −0.151318 0.988485i 0.548352π-0.548352\pi
−0.151318 + 0.988485i 0.548352π0.548352\pi
824824 82.0580 2.85863
825825 8.95026 0.311608
826826 0 0
827827 14.3121 0.497681 0.248840 0.968545i 0.419951π-0.419951\pi
0.248840 + 0.968545i 0.419951π0.419951\pi
828828 35.1309 1.22088
829829 25.3066 0.878933 0.439467 0.898259i 0.355167π-0.355167\pi
0.439467 + 0.898259i 0.355167π0.355167\pi
830830 1.17314 0.0407201
831831 7.77567 0.269735
832832 0 0
833833 0 0
834834 −20.2966 −0.702813
835835 −6.24250 −0.216031
836836 59.8966 2.07157
837837 8.08615 0.279498
838838 −63.8179 −2.20455
839839 13.0426 0.450280 0.225140 0.974326i 0.427716π-0.427716\pi
0.225140 + 0.974326i 0.427716π0.427716\pi
840840 0 0
841841 −9.27440 −0.319807
842842 57.5525 1.98339
843843 −1.95690 −0.0673994
844844 −91.0531 −3.13418
845845 0 0
846846 53.2673 1.83137
847847 0 0
848848 5.21968 0.179245
849849 3.46930 0.119066
850850 23.1388 0.793653
851851 35.5248 1.21777
852852 28.0204 0.959964
853853 18.8926 0.646869 0.323435 0.946251i 0.395162π-0.395162\pi
0.323435 + 0.946251i 0.395162π0.395162\pi
854854 0 0
855855 5.22512 0.178695
856856 29.7374 1.01640
857857 24.6439 0.841819 0.420909 0.907103i 0.361711π-0.361711\pi
0.420909 + 0.907103i 0.361711π0.361711\pi
858858 0 0
859859 2.57141 0.0877355 0.0438677 0.999037i 0.486032π-0.486032\pi
0.0438677 + 0.999037i 0.486032π0.486032\pi
860860 −11.2419 −0.383347
861861 0 0
862862 −55.9813 −1.90673
863863 39.5407 1.34598 0.672991 0.739651i 0.265009π-0.265009\pi
0.672991 + 0.739651i 0.265009π0.265009\pi
864864 3.30909 0.112578
865865 −2.80004 −0.0952043
866866 −62.8959 −2.13729
867867 −9.95072 −0.337944
868868 0 0
869869 −10.8755 −0.368927
870870 2.78016 0.0942564
871871 0 0
872872 −38.0756 −1.28940
873873 −24.9947 −0.845942
874874 56.4448 1.90927
875875 0 0
876876 35.1648 1.18811
877877 21.0455 0.710655 0.355328 0.934742i 0.384369π-0.384369\pi
0.355328 + 0.934742i 0.384369π0.384369\pi
878878 −86.7702 −2.92835
879879 −1.47794 −0.0498497
880880 −2.90549 −0.0979439
881881 −5.01184 −0.168853 −0.0844266 0.996430i 0.526906π-0.526906\pi
−0.0844266 + 0.996430i 0.526906π0.526906\pi
882882 0 0
883883 −7.13079 −0.239970 −0.119985 0.992776i 0.538285π-0.538285\pi
−0.119985 + 0.992776i 0.538285π0.538285\pi
884884 0 0
885885 0.161375 0.00542455
886886 −16.6813 −0.560419
887887 6.72602 0.225838 0.112919 0.993604i 0.463980π-0.463980\pi
0.112919 + 0.993604i 0.463980π0.463980\pi
888888 −33.7969 −1.13415
889889 0 0
890890 10.3369 0.346495
891891 −10.2425 −0.343138
892892 −114.606 −3.83730
893893 56.6468 1.89561
894894 29.1576 0.975177
895895 −5.31216 −0.177566
896896 0 0
897897 0 0
898898 −24.2760 −0.810100
899899 −8.77310 −0.292599
900900 46.4989 1.54996
901901 −2.90727 −0.0968551
902902 −74.1510 −2.46896
903903 0 0
904904 −44.8150 −1.49053
905905 −2.27908 −0.0757593
906906 −19.4101 −0.644858
907907 29.5725 0.981938 0.490969 0.871177i 0.336643π-0.336643\pi
0.490969 + 0.871177i 0.336643π0.336643\pi
908908 77.5623 2.57399
909909 −36.6120 −1.21434
910910 0 0
911911 −20.6132 −0.682947 −0.341473 0.939891i 0.610926π-0.610926\pi
−0.341473 + 0.939891i 0.610926π0.610926\pi
912912 −16.5811 −0.549055
913913 −3.43487 −0.113678
914914 −21.3371 −0.705768
915915 −0.294235 −0.00972711
916916 −5.20010 −0.171816
917917 0 0
918918 19.3966 0.640184
919919 −4.17904 −0.137854 −0.0689269 0.997622i 0.521958π-0.521958\pi
−0.0689269 + 0.997622i 0.521958π0.521958\pi
920920 −5.86917 −0.193501
921921 5.55893 0.183173
922922 16.7461 0.551502
923923 0 0
924924 0 0
925925 47.0202 1.54601
926926 −33.9341 −1.11514
927927 −42.8478 −1.40731
928928 −3.59021 −0.117855
929929 −48.0912 −1.57782 −0.788910 0.614509i 0.789354π-0.789354\pi
−0.788910 + 0.614509i 0.789354π0.789354\pi
930930 −1.23650 −0.0405464
931931 0 0
932932 5.93664 0.194461
933933 10.6722 0.349392
934934 −70.0718 −2.29282
935935 1.61830 0.0529242
936936 0 0
937937 12.5441 0.409798 0.204899 0.978783i 0.434313π-0.434313\pi
0.204899 + 0.978783i 0.434313π0.434313\pi
938938 0 0
939939 −20.1324 −0.656995
940940 −12.0415 −0.392749
941941 −30.5888 −0.997167 −0.498583 0.866842i 0.666146π-0.666146\pi
−0.498583 + 0.866842i 0.666146π0.666146\pi
942942 16.7223 0.544843
943943 −46.2508 −1.50613
944944 2.19311 0.0713798
945945 0 0
946946 49.7304 1.61688
947947 −7.78348 −0.252929 −0.126465 0.991971i 0.540363π-0.540363\pi
−0.126465 + 0.991971i 0.540363π0.540363\pi
948948 13.1932 0.428494
949949 0 0
950950 74.7096 2.42390
951951 16.1542 0.523835
952952 0 0
953953 −38.4304 −1.24488 −0.622442 0.782666i 0.713859π-0.713859\pi
−0.622442 + 0.782666i 0.713859π0.713859\pi
954954 −8.82686 −0.285780
955955 −6.40243 −0.207178
956956 88.0088 2.84641
957957 −8.14015 −0.263134
958958 −59.7983 −1.93200
959959 0 0
960960 −2.30656 −0.0744438
961961 −27.0981 −0.874132
962962 0 0
963963 −15.5278 −0.500377
964964 52.1123 1.67842
965965 −2.79141 −0.0898588
966966 0 0
967967 7.80008 0.250834 0.125417 0.992104i 0.459973π-0.459973\pi
0.125417 + 0.992104i 0.459973π0.459973\pi
968968 −23.6840 −0.761234
969969 9.23538 0.296683
970970 8.53661 0.274094
971971 57.7914 1.85462 0.927308 0.374300i 0.122117π-0.122117\pi
0.927308 + 0.374300i 0.122117π0.122117\pi
972972 60.5058 1.94072
973973 0 0
974974 −6.25817 −0.200525
975975 0 0
976976 −3.99871 −0.127996
977977 8.67414 0.277510 0.138755 0.990327i 0.455690π-0.455690\pi
0.138755 + 0.990327i 0.455690π0.455690\pi
978978 −20.0948 −0.642561
979979 −30.2659 −0.967304
980980 0 0
981981 19.8817 0.634775
982982 34.1417 1.08950
983983 37.1121 1.18369 0.591846 0.806051i 0.298399π-0.298399\pi
0.591846 + 0.806051i 0.298399π0.298399\pi
984984 44.0012 1.40271
985985 2.97824 0.0948947
986986 −21.0444 −0.670192
987987 0 0
988988 0 0
989989 31.0188 0.986340
990990 4.91339 0.156158
991991 −45.2637 −1.43785 −0.718924 0.695089i 0.755365π-0.755365\pi
−0.718924 + 0.695089i 0.755365π0.755365\pi
992992 1.59677 0.0506976
993993 7.99850 0.253825
994994 0 0
995995 −5.96551 −0.189119
996996 4.16686 0.132032
997997 −44.2554 −1.40158 −0.700791 0.713367i 0.747169π-0.747169\pi
−0.700791 + 0.713367i 0.747169π0.747169\pi
998998 32.9173 1.04198
999999 39.4158 1.24706
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ci.1.8 8
7.6 odd 2 inner 8281.2.a.ci.1.7 8
13.3 even 3 637.2.f.l.295.1 16
13.9 even 3 637.2.f.l.393.1 yes 16
13.12 even 2 8281.2.a.cl.1.2 8
91.3 odd 6 637.2.g.m.373.1 16
91.9 even 3 637.2.g.m.263.2 16
91.16 even 3 637.2.h.m.165.7 16
91.48 odd 6 637.2.f.l.393.2 yes 16
91.55 odd 6 637.2.f.l.295.2 yes 16
91.61 odd 6 637.2.g.m.263.1 16
91.68 odd 6 637.2.h.m.165.8 16
91.74 even 3 637.2.h.m.471.7 16
91.81 even 3 637.2.g.m.373.2 16
91.87 odd 6 637.2.h.m.471.8 16
91.90 odd 2 8281.2.a.cl.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.f.l.295.1 16 13.3 even 3
637.2.f.l.295.2 yes 16 91.55 odd 6
637.2.f.l.393.1 yes 16 13.9 even 3
637.2.f.l.393.2 yes 16 91.48 odd 6
637.2.g.m.263.1 16 91.61 odd 6
637.2.g.m.263.2 16 91.9 even 3
637.2.g.m.373.1 16 91.3 odd 6
637.2.g.m.373.2 16 91.81 even 3
637.2.h.m.165.7 16 91.16 even 3
637.2.h.m.165.8 16 91.68 odd 6
637.2.h.m.471.7 16 91.74 even 3
637.2.h.m.471.8 16 91.87 odd 6
8281.2.a.ci.1.7 8 7.6 odd 2 inner
8281.2.a.ci.1.8 8 1.1 even 1 trivial
8281.2.a.cl.1.1 8 91.90 odd 2
8281.2.a.cl.1.2 8 13.12 even 2