Properties

Label 8281.2.a.ci.1.8
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.8446345216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(1.51373\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.43210 q^{2} +0.753592 q^{3} +3.91511 q^{4} +0.341537 q^{5} +1.83281 q^{6} +4.65773 q^{8} -2.43210 q^{9} +0.830652 q^{10} -2.43210 q^{11} +2.95039 q^{12} +0.257380 q^{15} +3.49784 q^{16} -1.94823 q^{17} -5.91511 q^{18} -6.29039 q^{19} +1.33715 q^{20} -5.91511 q^{22} -3.68948 q^{23} +3.51003 q^{24} -4.88335 q^{25} -4.09359 q^{27} +4.44135 q^{29} +0.625973 q^{30} -1.97532 q^{31} -0.808361 q^{32} -1.83281 q^{33} -4.73830 q^{34} -9.52192 q^{36} -9.62867 q^{37} -15.2988 q^{38} +1.59079 q^{40} +12.5359 q^{41} -8.40736 q^{43} -9.52192 q^{44} -0.830652 q^{45} -8.97318 q^{46} -9.00530 q^{47} +2.63594 q^{48} -11.8768 q^{50} -1.46817 q^{51} +1.49226 q^{53} -9.95601 q^{54} -0.830652 q^{55} -4.74039 q^{57} +10.8018 q^{58} +0.626991 q^{59} +1.00767 q^{60} -1.14319 q^{61} -4.80418 q^{62} -8.96169 q^{64} -4.45758 q^{66} -5.59199 q^{67} -7.62754 q^{68} -2.78036 q^{69} +9.49719 q^{71} -11.3280 q^{72} +11.9187 q^{73} -23.4179 q^{74} -3.68006 q^{75} -24.6275 q^{76} +4.47167 q^{79} +1.19464 q^{80} +4.21140 q^{81} +30.4885 q^{82} +1.41231 q^{83} -0.665394 q^{85} -20.4475 q^{86} +3.34697 q^{87} -11.3280 q^{88} +12.4444 q^{89} -2.02023 q^{90} -14.4447 q^{92} -1.48859 q^{93} -21.9018 q^{94} -2.14840 q^{95} -0.609174 q^{96} +10.2770 q^{97} +5.91511 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9} + 4 q^{11} + 8 q^{15} + 4 q^{16} - 28 q^{18} - 28 q^{22} - 12 q^{23} - 12 q^{25} - 8 q^{29} - 28 q^{30} - 4 q^{36} + 8 q^{37} - 32 q^{43} - 4 q^{44} + 4 q^{46}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.43210 1.71975 0.859877 0.510502i \(-0.170540\pi\)
0.859877 + 0.510502i \(0.170540\pi\)
\(3\) 0.753592 0.435087 0.217543 0.976051i \(-0.430196\pi\)
0.217543 + 0.976051i \(0.430196\pi\)
\(4\) 3.91511 1.95755
\(5\) 0.341537 0.152740 0.0763700 0.997080i \(-0.475667\pi\)
0.0763700 + 0.997080i \(0.475667\pi\)
\(6\) 1.83281 0.748242
\(7\) 0 0
\(8\) 4.65773 1.64675
\(9\) −2.43210 −0.810700
\(10\) 0.830652 0.262675
\(11\) −2.43210 −0.733305 −0.366653 0.930358i \(-0.619496\pi\)
−0.366653 + 0.930358i \(0.619496\pi\)
\(12\) 2.95039 0.851705
\(13\) 0 0
\(14\) 0 0
\(15\) 0.257380 0.0664551
\(16\) 3.49784 0.874460
\(17\) −1.94823 −0.472516 −0.236258 0.971690i \(-0.575921\pi\)
−0.236258 + 0.971690i \(0.575921\pi\)
\(18\) −5.91511 −1.39420
\(19\) −6.29039 −1.44311 −0.721557 0.692355i \(-0.756573\pi\)
−0.721557 + 0.692355i \(0.756573\pi\)
\(20\) 1.33715 0.298997
\(21\) 0 0
\(22\) −5.91511 −1.26110
\(23\) −3.68948 −0.769309 −0.384655 0.923061i \(-0.625679\pi\)
−0.384655 + 0.923061i \(0.625679\pi\)
\(24\) 3.51003 0.716481
\(25\) −4.88335 −0.976670
\(26\) 0 0
\(27\) −4.09359 −0.787811
\(28\) 0 0
\(29\) 4.44135 0.824738 0.412369 0.911017i \(-0.364701\pi\)
0.412369 + 0.911017i \(0.364701\pi\)
\(30\) 0.625973 0.114286
\(31\) −1.97532 −0.354778 −0.177389 0.984141i \(-0.556765\pi\)
−0.177389 + 0.984141i \(0.556765\pi\)
\(32\) −0.808361 −0.142899
\(33\) −1.83281 −0.319051
\(34\) −4.73830 −0.812611
\(35\) 0 0
\(36\) −9.52192 −1.58699
\(37\) −9.62867 −1.58294 −0.791472 0.611206i \(-0.790685\pi\)
−0.791472 + 0.611206i \(0.790685\pi\)
\(38\) −15.2988 −2.48180
\(39\) 0 0
\(40\) 1.59079 0.251525
\(41\) 12.5359 1.95777 0.978887 0.204403i \(-0.0655252\pi\)
0.978887 + 0.204403i \(0.0655252\pi\)
\(42\) 0 0
\(43\) −8.40736 −1.28211 −0.641055 0.767495i \(-0.721503\pi\)
−0.641055 + 0.767495i \(0.721503\pi\)
\(44\) −9.52192 −1.43548
\(45\) −0.830652 −0.123826
\(46\) −8.97318 −1.32302
\(47\) −9.00530 −1.31356 −0.656779 0.754083i \(-0.728081\pi\)
−0.656779 + 0.754083i \(0.728081\pi\)
\(48\) 2.63594 0.380466
\(49\) 0 0
\(50\) −11.8768 −1.67963
\(51\) −1.46817 −0.205585
\(52\) 0 0
\(53\) 1.49226 0.204977 0.102489 0.994734i \(-0.467319\pi\)
0.102489 + 0.994734i \(0.467319\pi\)
\(54\) −9.95601 −1.35484
\(55\) −0.830652 −0.112005
\(56\) 0 0
\(57\) −4.74039 −0.627879
\(58\) 10.8018 1.41835
\(59\) 0.626991 0.0816273 0.0408136 0.999167i \(-0.487005\pi\)
0.0408136 + 0.999167i \(0.487005\pi\)
\(60\) 1.00767 0.130089
\(61\) −1.14319 −0.146371 −0.0731855 0.997318i \(-0.523317\pi\)
−0.0731855 + 0.997318i \(0.523317\pi\)
\(62\) −4.80418 −0.610131
\(63\) 0 0
\(64\) −8.96169 −1.12021
\(65\) 0 0
\(66\) −4.45758 −0.548690
\(67\) −5.59199 −0.683170 −0.341585 0.939851i \(-0.610964\pi\)
−0.341585 + 0.939851i \(0.610964\pi\)
\(68\) −7.62754 −0.924975
\(69\) −2.78036 −0.334716
\(70\) 0 0
\(71\) 9.49719 1.12711 0.563554 0.826079i \(-0.309434\pi\)
0.563554 + 0.826079i \(0.309434\pi\)
\(72\) −11.3280 −1.33502
\(73\) 11.9187 1.39498 0.697488 0.716597i \(-0.254301\pi\)
0.697488 + 0.716597i \(0.254301\pi\)
\(74\) −23.4179 −2.72227
\(75\) −3.68006 −0.424936
\(76\) −24.6275 −2.82497
\(77\) 0 0
\(78\) 0 0
\(79\) 4.47167 0.503102 0.251551 0.967844i \(-0.419059\pi\)
0.251551 + 0.967844i \(0.419059\pi\)
\(80\) 1.19464 0.133565
\(81\) 4.21140 0.467934
\(82\) 30.4885 3.36689
\(83\) 1.41231 0.155021 0.0775104 0.996992i \(-0.475303\pi\)
0.0775104 + 0.996992i \(0.475303\pi\)
\(84\) 0 0
\(85\) −0.665394 −0.0721721
\(86\) −20.4475 −2.20491
\(87\) 3.34697 0.358833
\(88\) −11.3280 −1.20757
\(89\) 12.4444 1.31910 0.659551 0.751660i \(-0.270747\pi\)
0.659551 + 0.751660i \(0.270747\pi\)
\(90\) −2.02023 −0.212951
\(91\) 0 0
\(92\) −14.4447 −1.50596
\(93\) −1.48859 −0.154359
\(94\) −21.9018 −2.25900
\(95\) −2.14840 −0.220421
\(96\) −0.609174 −0.0621736
\(97\) 10.2770 1.04347 0.521736 0.853107i \(-0.325285\pi\)
0.521736 + 0.853107i \(0.325285\pi\)
\(98\) 0 0
\(99\) 5.91511 0.594490
\(100\) −19.1188 −1.91188
\(101\) 15.0537 1.49790 0.748948 0.662629i \(-0.230559\pi\)
0.748948 + 0.662629i \(0.230559\pi\)
\(102\) −3.57074 −0.353556
\(103\) 17.6176 1.73591 0.867957 0.496639i \(-0.165433\pi\)
0.867957 + 0.496639i \(0.165433\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.62932 0.352511
\(107\) 6.38454 0.617217 0.308608 0.951189i \(-0.400137\pi\)
0.308608 + 0.951189i \(0.400137\pi\)
\(108\) −16.0268 −1.54218
\(109\) −8.17472 −0.782996 −0.391498 0.920179i \(-0.628043\pi\)
−0.391498 + 0.920179i \(0.628043\pi\)
\(110\) −2.02023 −0.192621
\(111\) −7.25609 −0.688717
\(112\) 0 0
\(113\) −9.62165 −0.905129 −0.452564 0.891732i \(-0.649491\pi\)
−0.452564 + 0.891732i \(0.649491\pi\)
\(114\) −11.5291 −1.07980
\(115\) −1.26009 −0.117504
\(116\) 17.3884 1.61447
\(117\) 0 0
\(118\) 1.52490 0.140379
\(119\) 0 0
\(120\) 1.19880 0.109435
\(121\) −5.08489 −0.462263
\(122\) −2.78036 −0.251722
\(123\) 9.44693 0.851801
\(124\) −7.73360 −0.694497
\(125\) −3.37553 −0.301917
\(126\) 0 0
\(127\) 9.01976 0.800375 0.400187 0.916433i \(-0.368945\pi\)
0.400187 + 0.916433i \(0.368945\pi\)
\(128\) −20.1790 −1.78359
\(129\) −6.33572 −0.557829
\(130\) 0 0
\(131\) −0.192483 −0.0168173 −0.00840867 0.999965i \(-0.502677\pi\)
−0.00840867 + 0.999965i \(0.502677\pi\)
\(132\) −7.17565 −0.624560
\(133\) 0 0
\(134\) −13.6003 −1.17488
\(135\) −1.39811 −0.120330
\(136\) −9.07434 −0.778118
\(137\) 4.87680 0.416653 0.208326 0.978059i \(-0.433198\pi\)
0.208326 + 0.978059i \(0.433198\pi\)
\(138\) −6.76212 −0.575629
\(139\) −11.0740 −0.939286 −0.469643 0.882856i \(-0.655617\pi\)
−0.469643 + 0.882856i \(0.655617\pi\)
\(140\) 0 0
\(141\) −6.78632 −0.571511
\(142\) 23.0981 1.93835
\(143\) 0 0
\(144\) −8.50709 −0.708924
\(145\) 1.51689 0.125971
\(146\) 28.9874 2.39901
\(147\) 0 0
\(148\) −37.6973 −3.09869
\(149\) 15.9087 1.30329 0.651646 0.758524i \(-0.274079\pi\)
0.651646 + 0.758524i \(0.274079\pi\)
\(150\) −8.95026 −0.730786
\(151\) −10.5904 −0.861831 −0.430916 0.902392i \(-0.641809\pi\)
−0.430916 + 0.902392i \(0.641809\pi\)
\(152\) −29.2989 −2.37645
\(153\) 4.73830 0.383069
\(154\) 0 0
\(155\) −0.674646 −0.0541889
\(156\) 0 0
\(157\) 9.12388 0.728165 0.364082 0.931367i \(-0.381383\pi\)
0.364082 + 0.931367i \(0.381383\pi\)
\(158\) 10.8755 0.865211
\(159\) 1.12455 0.0891829
\(160\) −0.276085 −0.0218264
\(161\) 0 0
\(162\) 10.2425 0.804730
\(163\) −10.9639 −0.858761 −0.429380 0.903124i \(-0.641268\pi\)
−0.429380 + 0.903124i \(0.641268\pi\)
\(164\) 49.0792 3.83245
\(165\) −0.625973 −0.0487319
\(166\) 3.43487 0.266598
\(167\) −18.2777 −1.41437 −0.707185 0.707029i \(-0.750035\pi\)
−0.707185 + 0.707029i \(0.750035\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −1.61830 −0.124118
\(171\) 15.2988 1.16993
\(172\) −32.9157 −2.50980
\(173\) −8.19835 −0.623309 −0.311655 0.950195i \(-0.600883\pi\)
−0.311655 + 0.950195i \(0.600883\pi\)
\(174\) 8.14015 0.617104
\(175\) 0 0
\(176\) −8.50709 −0.641246
\(177\) 0.472495 0.0355149
\(178\) 30.2659 2.26853
\(179\) −15.5537 −1.16254 −0.581268 0.813712i \(-0.697443\pi\)
−0.581268 + 0.813712i \(0.697443\pi\)
\(180\) −3.25209 −0.242396
\(181\) −6.67302 −0.496001 −0.248001 0.968760i \(-0.579774\pi\)
−0.248001 + 0.968760i \(0.579774\pi\)
\(182\) 0 0
\(183\) −0.861502 −0.0636841
\(184\) −17.1846 −1.26686
\(185\) −3.28855 −0.241779
\(186\) −3.62039 −0.265460
\(187\) 4.73830 0.346499
\(188\) −35.2567 −2.57136
\(189\) 0 0
\(190\) −5.22512 −0.379070
\(191\) −18.7459 −1.35641 −0.678204 0.734874i \(-0.737241\pi\)
−0.678204 + 0.734874i \(0.737241\pi\)
\(192\) −6.75346 −0.487389
\(193\) −8.17309 −0.588312 −0.294156 0.955757i \(-0.595039\pi\)
−0.294156 + 0.955757i \(0.595039\pi\)
\(194\) 24.9947 1.79451
\(195\) 0 0
\(196\) 0 0
\(197\) 8.72012 0.621283 0.310641 0.950527i \(-0.399456\pi\)
0.310641 + 0.950527i \(0.399456\pi\)
\(198\) 14.3861 1.02238
\(199\) −17.4666 −1.23818 −0.619089 0.785321i \(-0.712498\pi\)
−0.619089 + 0.785321i \(0.712498\pi\)
\(200\) −22.7453 −1.60834
\(201\) −4.21408 −0.297238
\(202\) 36.6120 2.57601
\(203\) 0 0
\(204\) −5.74805 −0.402444
\(205\) 4.28146 0.299030
\(206\) 42.8478 2.98535
\(207\) 8.97318 0.623679
\(208\) 0 0
\(209\) 15.2988 1.05824
\(210\) 0 0
\(211\) −23.2569 −1.60107 −0.800535 0.599286i \(-0.795451\pi\)
−0.800535 + 0.599286i \(0.795451\pi\)
\(212\) 5.84235 0.401254
\(213\) 7.15701 0.490390
\(214\) 15.5278 1.06146
\(215\) −2.87143 −0.195830
\(216\) −19.0668 −1.29733
\(217\) 0 0
\(218\) −19.8817 −1.34656
\(219\) 8.98182 0.606935
\(220\) −3.25209 −0.219256
\(221\) 0 0
\(222\) −17.6475 −1.18442
\(223\) −29.2729 −1.96026 −0.980128 0.198368i \(-0.936436\pi\)
−0.980128 + 0.198368i \(0.936436\pi\)
\(224\) 0 0
\(225\) 11.8768 0.791786
\(226\) −23.4008 −1.55660
\(227\) 19.8110 1.31490 0.657452 0.753496i \(-0.271634\pi\)
0.657452 + 0.753496i \(0.271634\pi\)
\(228\) −18.5591 −1.22911
\(229\) −1.32821 −0.0877709 −0.0438855 0.999037i \(-0.513974\pi\)
−0.0438855 + 0.999037i \(0.513974\pi\)
\(230\) −3.06467 −0.202079
\(231\) 0 0
\(232\) 20.6866 1.35814
\(233\) 1.51634 0.0993389 0.0496695 0.998766i \(-0.484183\pi\)
0.0496695 + 0.998766i \(0.484183\pi\)
\(234\) 0 0
\(235\) −3.07564 −0.200633
\(236\) 2.45474 0.159790
\(237\) 3.36981 0.218893
\(238\) 0 0
\(239\) 22.4793 1.45406 0.727032 0.686603i \(-0.240899\pi\)
0.727032 + 0.686603i \(0.240899\pi\)
\(240\) 0.900273 0.0581123
\(241\) 13.3106 0.857409 0.428704 0.903445i \(-0.358970\pi\)
0.428704 + 0.903445i \(0.358970\pi\)
\(242\) −12.3670 −0.794979
\(243\) 15.4544 0.991403
\(244\) −4.47573 −0.286529
\(245\) 0 0
\(246\) 22.9759 1.46489
\(247\) 0 0
\(248\) −9.20051 −0.584233
\(249\) 1.06430 0.0674475
\(250\) −8.20963 −0.519222
\(251\) 15.9034 1.00381 0.501906 0.864922i \(-0.332632\pi\)
0.501906 + 0.864922i \(0.332632\pi\)
\(252\) 0 0
\(253\) 8.97318 0.564139
\(254\) 21.9370 1.37645
\(255\) −0.501436 −0.0314011
\(256\) −31.1539 −1.94712
\(257\) −29.2397 −1.82392 −0.911960 0.410280i \(-0.865431\pi\)
−0.911960 + 0.410280i \(0.865431\pi\)
\(258\) −15.4091 −0.959329
\(259\) 0 0
\(260\) 0 0
\(261\) −10.8018 −0.668615
\(262\) −0.468138 −0.0289217
\(263\) −1.70435 −0.105095 −0.0525475 0.998618i \(-0.516734\pi\)
−0.0525475 + 0.998618i \(0.516734\pi\)
\(264\) −8.53673 −0.525399
\(265\) 0.509661 0.0313083
\(266\) 0 0
\(267\) 9.37798 0.573923
\(268\) −21.8932 −1.33734
\(269\) 8.37874 0.510861 0.255430 0.966827i \(-0.417783\pi\)
0.255430 + 0.966827i \(0.417783\pi\)
\(270\) −3.40035 −0.206938
\(271\) −12.1575 −0.738518 −0.369259 0.929327i \(-0.620388\pi\)
−0.369259 + 0.929327i \(0.620388\pi\)
\(272\) −6.81461 −0.413196
\(273\) 0 0
\(274\) 11.8609 0.716540
\(275\) 11.8768 0.716198
\(276\) −10.8854 −0.655225
\(277\) 10.3181 0.619957 0.309979 0.950744i \(-0.399678\pi\)
0.309979 + 0.950744i \(0.399678\pi\)
\(278\) −26.9331 −1.61534
\(279\) 4.80418 0.287619
\(280\) 0 0
\(281\) −2.59677 −0.154910 −0.0774551 0.996996i \(-0.524679\pi\)
−0.0774551 + 0.996996i \(0.524679\pi\)
\(282\) −16.5050 −0.982859
\(283\) 4.60368 0.273660 0.136830 0.990595i \(-0.456309\pi\)
0.136830 + 0.990595i \(0.456309\pi\)
\(284\) 37.1825 2.20637
\(285\) −1.61902 −0.0959023
\(286\) 0 0
\(287\) 0 0
\(288\) 1.96601 0.115848
\(289\) −13.2044 −0.776729
\(290\) 3.68922 0.216638
\(291\) 7.74466 0.454000
\(292\) 46.6629 2.73074
\(293\) −1.96119 −0.114574 −0.0572870 0.998358i \(-0.518245\pi\)
−0.0572870 + 0.998358i \(0.518245\pi\)
\(294\) 0 0
\(295\) 0.214141 0.0124678
\(296\) −44.8477 −2.60672
\(297\) 9.95601 0.577706
\(298\) 38.6915 2.24134
\(299\) 0 0
\(300\) −14.4078 −0.831835
\(301\) 0 0
\(302\) −25.7568 −1.48214
\(303\) 11.3443 0.651714
\(304\) −22.0028 −1.26194
\(305\) −0.390443 −0.0223567
\(306\) 11.5240 0.658784
\(307\) 7.37658 0.421004 0.210502 0.977593i \(-0.432490\pi\)
0.210502 + 0.977593i \(0.432490\pi\)
\(308\) 0 0
\(309\) 13.2765 0.755273
\(310\) −1.64081 −0.0931915
\(311\) 14.1618 0.803040 0.401520 0.915850i \(-0.368482\pi\)
0.401520 + 0.915850i \(0.368482\pi\)
\(312\) 0 0
\(313\) −26.7152 −1.51003 −0.755017 0.655705i \(-0.772371\pi\)
−0.755017 + 0.655705i \(0.772371\pi\)
\(314\) 22.1902 1.25226
\(315\) 0 0
\(316\) 17.5070 0.984848
\(317\) 21.4362 1.20398 0.601989 0.798504i \(-0.294375\pi\)
0.601989 + 0.798504i \(0.294375\pi\)
\(318\) 2.73503 0.153373
\(319\) −10.8018 −0.604785
\(320\) −3.06075 −0.171101
\(321\) 4.81134 0.268543
\(322\) 0 0
\(323\) 12.2551 0.681895
\(324\) 16.4881 0.916005
\(325\) 0 0
\(326\) −26.6654 −1.47686
\(327\) −6.16040 −0.340671
\(328\) 58.3886 3.22397
\(329\) 0 0
\(330\) −1.52243 −0.0838069
\(331\) 10.6138 0.583389 0.291695 0.956512i \(-0.405781\pi\)
0.291695 + 0.956512i \(0.405781\pi\)
\(332\) 5.52933 0.303462
\(333\) 23.4179 1.28329
\(334\) −44.4531 −2.43237
\(335\) −1.90987 −0.104347
\(336\) 0 0
\(337\) 6.75587 0.368016 0.184008 0.982925i \(-0.441093\pi\)
0.184008 + 0.982925i \(0.441093\pi\)
\(338\) 0 0
\(339\) −7.25080 −0.393809
\(340\) −2.60509 −0.141281
\(341\) 4.80418 0.260161
\(342\) 37.2083 2.01199
\(343\) 0 0
\(344\) −39.1592 −2.11132
\(345\) −0.949597 −0.0511246
\(346\) −19.9392 −1.07194
\(347\) −16.0204 −0.860021 −0.430010 0.902824i \(-0.641490\pi\)
−0.430010 + 0.902824i \(0.641490\pi\)
\(348\) 13.1037 0.702434
\(349\) 16.0384 0.858518 0.429259 0.903182i \(-0.358775\pi\)
0.429259 + 0.903182i \(0.358775\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.96601 0.104789
\(353\) 3.84311 0.204548 0.102274 0.994756i \(-0.467388\pi\)
0.102274 + 0.994756i \(0.467388\pi\)
\(354\) 1.14916 0.0610769
\(355\) 3.24364 0.172155
\(356\) 48.7210 2.58221
\(357\) 0 0
\(358\) −37.8281 −1.99928
\(359\) −21.1335 −1.11538 −0.557692 0.830048i \(-0.688313\pi\)
−0.557692 + 0.830048i \(0.688313\pi\)
\(360\) −3.86895 −0.203912
\(361\) 20.5690 1.08258
\(362\) −16.2294 −0.853000
\(363\) −3.83194 −0.201125
\(364\) 0 0
\(365\) 4.07067 0.213069
\(366\) −2.09526 −0.109521
\(367\) −14.7392 −0.769381 −0.384690 0.923046i \(-0.625692\pi\)
−0.384690 + 0.923046i \(0.625692\pi\)
\(368\) −12.9052 −0.672730
\(369\) −30.4885 −1.58717
\(370\) −7.99807 −0.415800
\(371\) 0 0
\(372\) −5.82798 −0.302166
\(373\) 12.9266 0.669314 0.334657 0.942340i \(-0.391380\pi\)
0.334657 + 0.942340i \(0.391380\pi\)
\(374\) 11.5240 0.595892
\(375\) −2.54377 −0.131360
\(376\) −41.9442 −2.16311
\(377\) 0 0
\(378\) 0 0
\(379\) −26.8358 −1.37846 −0.689231 0.724542i \(-0.742051\pi\)
−0.689231 + 0.724542i \(0.742051\pi\)
\(380\) −8.41121 −0.431486
\(381\) 6.79722 0.348232
\(382\) −45.5919 −2.33269
\(383\) −2.90782 −0.148583 −0.0742914 0.997237i \(-0.523669\pi\)
−0.0742914 + 0.997237i \(0.523669\pi\)
\(384\) −15.2067 −0.776015
\(385\) 0 0
\(386\) −19.8778 −1.01175
\(387\) 20.4475 1.03941
\(388\) 40.2355 2.04265
\(389\) −16.7010 −0.846773 −0.423386 0.905949i \(-0.639159\pi\)
−0.423386 + 0.905949i \(0.639159\pi\)
\(390\) 0 0
\(391\) 7.18797 0.363511
\(392\) 0 0
\(393\) −0.145054 −0.00731700
\(394\) 21.2082 1.06845
\(395\) 1.52724 0.0768438
\(396\) 23.1583 1.16375
\(397\) −24.0984 −1.20947 −0.604733 0.796428i \(-0.706720\pi\)
−0.604733 + 0.796428i \(0.706720\pi\)
\(398\) −42.4806 −2.12936
\(399\) 0 0
\(400\) −17.0812 −0.854059
\(401\) 1.84490 0.0921297 0.0460649 0.998938i \(-0.485332\pi\)
0.0460649 + 0.998938i \(0.485332\pi\)
\(402\) −10.2491 −0.511176
\(403\) 0 0
\(404\) 58.9367 2.93221
\(405\) 1.43835 0.0714722
\(406\) 0 0
\(407\) 23.4179 1.16078
\(408\) −6.83835 −0.338549
\(409\) −25.6703 −1.26931 −0.634657 0.772794i \(-0.718859\pi\)
−0.634657 + 0.772794i \(0.718859\pi\)
\(410\) 10.4129 0.514259
\(411\) 3.67512 0.181280
\(412\) 68.9748 3.39814
\(413\) 0 0
\(414\) 21.8237 1.07257
\(415\) 0.482355 0.0236779
\(416\) 0 0
\(417\) −8.34529 −0.408671
\(418\) 37.2083 1.81992
\(419\) −26.2398 −1.28190 −0.640950 0.767582i \(-0.721459\pi\)
−0.640950 + 0.767582i \(0.721459\pi\)
\(420\) 0 0
\(421\) 23.6637 1.15330 0.576650 0.816992i \(-0.304360\pi\)
0.576650 + 0.816992i \(0.304360\pi\)
\(422\) −56.5630 −2.75344
\(423\) 21.9018 1.06490
\(424\) 6.95053 0.337548
\(425\) 9.51391 0.461493
\(426\) 17.4065 0.843350
\(427\) 0 0
\(428\) 24.9961 1.20823
\(429\) 0 0
\(430\) −6.98359 −0.336779
\(431\) −23.0177 −1.10872 −0.554361 0.832276i \(-0.687037\pi\)
−0.554361 + 0.832276i \(0.687037\pi\)
\(432\) −14.3187 −0.688909
\(433\) −25.8607 −1.24279 −0.621394 0.783498i \(-0.713433\pi\)
−0.621394 + 0.783498i \(0.713433\pi\)
\(434\) 0 0
\(435\) 1.14311 0.0548081
\(436\) −32.0049 −1.53276
\(437\) 23.2082 1.11020
\(438\) 21.8447 1.04378
\(439\) −35.6771 −1.70277 −0.851387 0.524537i \(-0.824238\pi\)
−0.851387 + 0.524537i \(0.824238\pi\)
\(440\) −3.86895 −0.184445
\(441\) 0 0
\(442\) 0 0
\(443\) −6.85881 −0.325872 −0.162936 0.986637i \(-0.552096\pi\)
−0.162936 + 0.986637i \(0.552096\pi\)
\(444\) −28.4084 −1.34820
\(445\) 4.25022 0.201480
\(446\) −71.1945 −3.37116
\(447\) 11.9887 0.567045
\(448\) 0 0
\(449\) −9.98150 −0.471056 −0.235528 0.971868i \(-0.575682\pi\)
−0.235528 + 0.971868i \(0.575682\pi\)
\(450\) 28.8855 1.36168
\(451\) −30.4885 −1.43565
\(452\) −37.6698 −1.77184
\(453\) −7.98081 −0.374971
\(454\) 48.1824 2.26131
\(455\) 0 0
\(456\) −22.0794 −1.03396
\(457\) −8.77311 −0.410389 −0.205194 0.978721i \(-0.565783\pi\)
−0.205194 + 0.978721i \(0.565783\pi\)
\(458\) −3.23035 −0.150944
\(459\) 7.97526 0.372253
\(460\) −4.93340 −0.230021
\(461\) 6.88543 0.320687 0.160343 0.987061i \(-0.448740\pi\)
0.160343 + 0.987061i \(0.448740\pi\)
\(462\) 0 0
\(463\) −13.9526 −0.648432 −0.324216 0.945983i \(-0.605100\pi\)
−0.324216 + 0.945983i \(0.605100\pi\)
\(464\) 15.5351 0.721200
\(465\) −0.508408 −0.0235768
\(466\) 3.68790 0.170838
\(467\) −28.8113 −1.33323 −0.666613 0.745404i \(-0.732257\pi\)
−0.666613 + 0.745404i \(0.732257\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −7.48027 −0.345039
\(471\) 6.87568 0.316815
\(472\) 2.92035 0.134420
\(473\) 20.4475 0.940179
\(474\) 8.19572 0.376442
\(475\) 30.7182 1.40945
\(476\) 0 0
\(477\) −3.62932 −0.166175
\(478\) 54.6719 2.50063
\(479\) −24.5871 −1.12341 −0.561707 0.827336i \(-0.689855\pi\)
−0.561707 + 0.827336i \(0.689855\pi\)
\(480\) −0.208056 −0.00949639
\(481\) 0 0
\(482\) 32.3726 1.47453
\(483\) 0 0
\(484\) −19.9079 −0.904904
\(485\) 3.50998 0.159380
\(486\) 37.5867 1.70497
\(487\) −2.57316 −0.116601 −0.0583004 0.998299i \(-0.518568\pi\)
−0.0583004 + 0.998299i \(0.518568\pi\)
\(488\) −5.32469 −0.241037
\(489\) −8.26233 −0.373635
\(490\) 0 0
\(491\) 14.0379 0.633523 0.316762 0.948505i \(-0.397404\pi\)
0.316762 + 0.948505i \(0.397404\pi\)
\(492\) 36.9857 1.66745
\(493\) −8.65279 −0.389702
\(494\) 0 0
\(495\) 2.02023 0.0908025
\(496\) −6.90936 −0.310239
\(497\) 0 0
\(498\) 2.58849 0.115993
\(499\) 13.5345 0.605888 0.302944 0.953008i \(-0.402030\pi\)
0.302944 + 0.953008i \(0.402030\pi\)
\(500\) −13.2156 −0.591018
\(501\) −13.7739 −0.615373
\(502\) 38.6786 1.72631
\(503\) −8.27754 −0.369077 −0.184539 0.982825i \(-0.559079\pi\)
−0.184539 + 0.982825i \(0.559079\pi\)
\(504\) 0 0
\(505\) 5.14138 0.228789
\(506\) 21.8237 0.970180
\(507\) 0 0
\(508\) 35.3133 1.56678
\(509\) −0.166218 −0.00736750 −0.00368375 0.999993i \(-0.501173\pi\)
−0.00368375 + 0.999993i \(0.501173\pi\)
\(510\) −1.21954 −0.0540022
\(511\) 0 0
\(512\) −35.4115 −1.56498
\(513\) 25.7502 1.13690
\(514\) −71.1137 −3.13669
\(515\) 6.01707 0.265144
\(516\) −24.8050 −1.09198
\(517\) 21.9018 0.963239
\(518\) 0 0
\(519\) −6.17821 −0.271193
\(520\) 0 0
\(521\) −7.06180 −0.309383 −0.154691 0.987963i \(-0.549438\pi\)
−0.154691 + 0.987963i \(0.549438\pi\)
\(522\) −26.2711 −1.14985
\(523\) 23.3912 1.02283 0.511414 0.859335i \(-0.329122\pi\)
0.511414 + 0.859335i \(0.329122\pi\)
\(524\) −0.753592 −0.0329208
\(525\) 0 0
\(526\) −4.14516 −0.180737
\(527\) 3.84839 0.167639
\(528\) −6.41088 −0.278998
\(529\) −9.38775 −0.408163
\(530\) 1.23955 0.0538425
\(531\) −1.52490 −0.0661752
\(532\) 0 0
\(533\) 0 0
\(534\) 22.8082 0.987006
\(535\) 2.18056 0.0942737
\(536\) −26.0459 −1.12501
\(537\) −11.7211 −0.505804
\(538\) 20.3779 0.878554
\(539\) 0 0
\(540\) −5.47375 −0.235553
\(541\) 26.3079 1.13107 0.565533 0.824726i \(-0.308671\pi\)
0.565533 + 0.824726i \(0.308671\pi\)
\(542\) −29.5683 −1.27007
\(543\) −5.02873 −0.215804
\(544\) 1.57488 0.0675222
\(545\) −2.79197 −0.119595
\(546\) 0 0
\(547\) 41.7636 1.78568 0.892841 0.450371i \(-0.148708\pi\)
0.892841 + 0.450371i \(0.148708\pi\)
\(548\) 19.0932 0.815620
\(549\) 2.78036 0.118663
\(550\) 28.8855 1.23168
\(551\) −27.9378 −1.19019
\(552\) −12.9502 −0.551196
\(553\) 0 0
\(554\) 25.0948 1.06617
\(555\) −2.47822 −0.105195
\(556\) −43.3560 −1.83870
\(557\) 7.30987 0.309729 0.154865 0.987936i \(-0.450506\pi\)
0.154865 + 0.987936i \(0.450506\pi\)
\(558\) 11.6842 0.494633
\(559\) 0 0
\(560\) 0 0
\(561\) 3.57074 0.150757
\(562\) −6.31560 −0.266407
\(563\) 44.7737 1.88699 0.943493 0.331393i \(-0.107519\pi\)
0.943493 + 0.331393i \(0.107519\pi\)
\(564\) −26.5692 −1.11876
\(565\) −3.28615 −0.138249
\(566\) 11.1966 0.470628
\(567\) 0 0
\(568\) 44.2353 1.85607
\(569\) −42.5127 −1.78222 −0.891112 0.453784i \(-0.850074\pi\)
−0.891112 + 0.453784i \(0.850074\pi\)
\(570\) −3.93761 −0.164928
\(571\) −40.8648 −1.71014 −0.855069 0.518515i \(-0.826485\pi\)
−0.855069 + 0.518515i \(0.826485\pi\)
\(572\) 0 0
\(573\) −14.1268 −0.590155
\(574\) 0 0
\(575\) 18.0170 0.751362
\(576\) 21.7957 0.908155
\(577\) −21.7280 −0.904550 −0.452275 0.891879i \(-0.649387\pi\)
−0.452275 + 0.891879i \(0.649387\pi\)
\(578\) −32.1144 −1.33578
\(579\) −6.15918 −0.255967
\(580\) 5.93877 0.246594
\(581\) 0 0
\(582\) 18.8358 0.780769
\(583\) −3.62932 −0.150311
\(584\) 55.5139 2.29718
\(585\) 0 0
\(586\) −4.76981 −0.197039
\(587\) 20.4816 0.845365 0.422683 0.906278i \(-0.361089\pi\)
0.422683 + 0.906278i \(0.361089\pi\)
\(588\) 0 0
\(589\) 12.4255 0.511986
\(590\) 0.520811 0.0214415
\(591\) 6.57141 0.270312
\(592\) −33.6795 −1.38422
\(593\) −5.63861 −0.231550 −0.115775 0.993275i \(-0.536935\pi\)
−0.115775 + 0.993275i \(0.536935\pi\)
\(594\) 24.2140 0.993512
\(595\) 0 0
\(596\) 62.2842 2.55126
\(597\) −13.1627 −0.538715
\(598\) 0 0
\(599\) 39.6719 1.62095 0.810474 0.585774i \(-0.199209\pi\)
0.810474 + 0.585774i \(0.199209\pi\)
\(600\) −17.1407 −0.699766
\(601\) 16.8267 0.686374 0.343187 0.939267i \(-0.388493\pi\)
0.343187 + 0.939267i \(0.388493\pi\)
\(602\) 0 0
\(603\) 13.6003 0.553845
\(604\) −41.4624 −1.68708
\(605\) −1.73668 −0.0706061
\(606\) 27.5905 1.12079
\(607\) 22.4980 0.913164 0.456582 0.889681i \(-0.349073\pi\)
0.456582 + 0.889681i \(0.349073\pi\)
\(608\) 5.08490 0.206220
\(609\) 0 0
\(610\) −0.949597 −0.0384480
\(611\) 0 0
\(612\) 18.5509 0.749877
\(613\) 27.4269 1.10776 0.553882 0.832595i \(-0.313146\pi\)
0.553882 + 0.832595i \(0.313146\pi\)
\(614\) 17.9406 0.724022
\(615\) 3.22648 0.130104
\(616\) 0 0
\(617\) 10.6379 0.428267 0.214133 0.976804i \(-0.431307\pi\)
0.214133 + 0.976804i \(0.431307\pi\)
\(618\) 32.2897 1.29888
\(619\) −45.4677 −1.82750 −0.913751 0.406274i \(-0.866828\pi\)
−0.913751 + 0.406274i \(0.866828\pi\)
\(620\) −2.64131 −0.106078
\(621\) 15.1032 0.606071
\(622\) 34.4428 1.38103
\(623\) 0 0
\(624\) 0 0
\(625\) 23.2639 0.930556
\(626\) −64.9741 −2.59689
\(627\) 11.5291 0.460427
\(628\) 35.7210 1.42542
\(629\) 18.7589 0.747966
\(630\) 0 0
\(631\) 29.5984 1.17829 0.589146 0.808027i \(-0.299464\pi\)
0.589146 + 0.808027i \(0.299464\pi\)
\(632\) 20.8278 0.828485
\(633\) −17.5262 −0.696604
\(634\) 52.1350 2.07055
\(635\) 3.08058 0.122249
\(636\) 4.40275 0.174580
\(637\) 0 0
\(638\) −26.2711 −1.04008
\(639\) −23.0981 −0.913747
\(640\) −6.89188 −0.272425
\(641\) −42.5646 −1.68120 −0.840601 0.541654i \(-0.817798\pi\)
−0.840601 + 0.541654i \(0.817798\pi\)
\(642\) 11.7016 0.461827
\(643\) 21.9961 0.867441 0.433721 0.901047i \(-0.357200\pi\)
0.433721 + 0.901047i \(0.357200\pi\)
\(644\) 0 0
\(645\) −2.16388 −0.0852029
\(646\) 29.8057 1.17269
\(647\) 34.8051 1.36833 0.684166 0.729327i \(-0.260167\pi\)
0.684166 + 0.729327i \(0.260167\pi\)
\(648\) 19.6156 0.770572
\(649\) −1.52490 −0.0598577
\(650\) 0 0
\(651\) 0 0
\(652\) −42.9249 −1.68107
\(653\) −50.8167 −1.98861 −0.994306 0.106559i \(-0.966017\pi\)
−0.994306 + 0.106559i \(0.966017\pi\)
\(654\) −14.9827 −0.585870
\(655\) −0.0657402 −0.00256868
\(656\) 43.8485 1.71199
\(657\) −28.9874 −1.13091
\(658\) 0 0
\(659\) −14.7441 −0.574347 −0.287173 0.957879i \(-0.592716\pi\)
−0.287173 + 0.957879i \(0.592716\pi\)
\(660\) −2.45075 −0.0953953
\(661\) −18.1245 −0.704963 −0.352481 0.935819i \(-0.614662\pi\)
−0.352481 + 0.935819i \(0.614662\pi\)
\(662\) 25.8139 1.00329
\(663\) 0 0
\(664\) 6.57814 0.255281
\(665\) 0 0
\(666\) 56.9546 2.20695
\(667\) −16.3863 −0.634479
\(668\) −71.5590 −2.76870
\(669\) −22.0598 −0.852881
\(670\) −4.64499 −0.179452
\(671\) 2.78036 0.107335
\(672\) 0 0
\(673\) 20.9147 0.806204 0.403102 0.915155i \(-0.367932\pi\)
0.403102 + 0.915155i \(0.367932\pi\)
\(674\) 16.4309 0.632896
\(675\) 19.9904 0.769432
\(676\) 0 0
\(677\) −38.2179 −1.46883 −0.734416 0.678700i \(-0.762544\pi\)
−0.734416 + 0.678700i \(0.762544\pi\)
\(678\) −17.6347 −0.677255
\(679\) 0 0
\(680\) −3.09922 −0.118850
\(681\) 14.9294 0.572097
\(682\) 11.6842 0.447413
\(683\) −23.8253 −0.911649 −0.455825 0.890070i \(-0.650656\pi\)
−0.455825 + 0.890070i \(0.650656\pi\)
\(684\) 59.8966 2.29020
\(685\) 1.66561 0.0636396
\(686\) 0 0
\(687\) −1.00093 −0.0381879
\(688\) −29.4076 −1.12115
\(689\) 0 0
\(690\) −2.30951 −0.0879217
\(691\) −19.1413 −0.728168 −0.364084 0.931366i \(-0.618618\pi\)
−0.364084 + 0.931366i \(0.618618\pi\)
\(692\) −32.0974 −1.22016
\(693\) 0 0
\(694\) −38.9632 −1.47902
\(695\) −3.78219 −0.143467
\(696\) 15.5893 0.590909
\(697\) −24.4228 −0.925080
\(698\) 39.0071 1.47644
\(699\) 1.14270 0.0432210
\(700\) 0 0
\(701\) −27.2956 −1.03094 −0.515471 0.856907i \(-0.672383\pi\)
−0.515471 + 0.856907i \(0.672383\pi\)
\(702\) 0 0
\(703\) 60.5681 2.28437
\(704\) 21.7957 0.821457
\(705\) −2.31778 −0.0872927
\(706\) 9.34683 0.351773
\(707\) 0 0
\(708\) 1.84987 0.0695223
\(709\) 6.17166 0.231781 0.115891 0.993262i \(-0.463028\pi\)
0.115891 + 0.993262i \(0.463028\pi\)
\(710\) 7.88886 0.296064
\(711\) −10.8755 −0.407865
\(712\) 57.9625 2.17224
\(713\) 7.28791 0.272934
\(714\) 0 0
\(715\) 0 0
\(716\) −60.8943 −2.27573
\(717\) 16.9402 0.632644
\(718\) −51.3988 −1.91819
\(719\) 2.72133 0.101488 0.0507442 0.998712i \(-0.483841\pi\)
0.0507442 + 0.998712i \(0.483841\pi\)
\(720\) −2.90549 −0.108281
\(721\) 0 0
\(722\) 50.0258 1.86177
\(723\) 10.0307 0.373047
\(724\) −26.1256 −0.970949
\(725\) −21.6887 −0.805497
\(726\) −9.31965 −0.345885
\(727\) −9.47153 −0.351280 −0.175640 0.984455i \(-0.556199\pi\)
−0.175640 + 0.984455i \(0.556199\pi\)
\(728\) 0 0
\(729\) −0.987863 −0.0365875
\(730\) 9.90027 0.366426
\(731\) 16.3795 0.605818
\(732\) −3.37287 −0.124665
\(733\) 3.49707 0.129167 0.0645836 0.997912i \(-0.479428\pi\)
0.0645836 + 0.997912i \(0.479428\pi\)
\(734\) −35.8472 −1.32315
\(735\) 0 0
\(736\) 2.98243 0.109934
\(737\) 13.6003 0.500972
\(738\) −74.1510 −2.72954
\(739\) 32.0303 1.17825 0.589126 0.808041i \(-0.299472\pi\)
0.589126 + 0.808041i \(0.299472\pi\)
\(740\) −12.8750 −0.473295
\(741\) 0 0
\(742\) 0 0
\(743\) 34.9186 1.28104 0.640519 0.767942i \(-0.278719\pi\)
0.640519 + 0.767942i \(0.278719\pi\)
\(744\) −6.93343 −0.254192
\(745\) 5.43341 0.199065
\(746\) 31.4387 1.15105
\(747\) −3.43487 −0.125675
\(748\) 18.5509 0.678289
\(749\) 0 0
\(750\) −6.18671 −0.225907
\(751\) 26.9972 0.985143 0.492571 0.870272i \(-0.336057\pi\)
0.492571 + 0.870272i \(0.336057\pi\)
\(752\) −31.4991 −1.14865
\(753\) 11.9847 0.436745
\(754\) 0 0
\(755\) −3.61700 −0.131636
\(756\) 0 0
\(757\) −52.5899 −1.91141 −0.955707 0.294319i \(-0.904907\pi\)
−0.955707 + 0.294319i \(0.904907\pi\)
\(758\) −65.2673 −2.37062
\(759\) 6.76212 0.245449
\(760\) −10.0067 −0.362980
\(761\) 13.9286 0.504912 0.252456 0.967608i \(-0.418762\pi\)
0.252456 + 0.967608i \(0.418762\pi\)
\(762\) 16.5315 0.598874
\(763\) 0 0
\(764\) −73.3923 −2.65524
\(765\) 1.61830 0.0585099
\(766\) −7.07211 −0.255526
\(767\) 0 0
\(768\) −23.4774 −0.847166
\(769\) 13.7909 0.497312 0.248656 0.968592i \(-0.420011\pi\)
0.248656 + 0.968592i \(0.420011\pi\)
\(770\) 0 0
\(771\) −22.0348 −0.793563
\(772\) −31.9985 −1.15165
\(773\) 50.4870 1.81589 0.907946 0.419087i \(-0.137650\pi\)
0.907946 + 0.419087i \(0.137650\pi\)
\(774\) 49.7304 1.78752
\(775\) 9.64620 0.346502
\(776\) 47.8674 1.71834
\(777\) 0 0
\(778\) −40.6184 −1.45624
\(779\) −78.8555 −2.82529
\(780\) 0 0
\(781\) −23.0981 −0.826515
\(782\) 17.4818 0.625150
\(783\) −18.1811 −0.649738
\(784\) 0 0
\(785\) 3.11614 0.111220
\(786\) −0.352785 −0.0125834
\(787\) 10.8638 0.387252 0.193626 0.981075i \(-0.437975\pi\)
0.193626 + 0.981075i \(0.437975\pi\)
\(788\) 34.1402 1.21619
\(789\) −1.28439 −0.0457254
\(790\) 3.71440 0.132152
\(791\) 0 0
\(792\) 27.5509 0.978980
\(793\) 0 0
\(794\) −58.6098 −2.07998
\(795\) 0.384077 0.0136218
\(796\) −68.3838 −2.42380
\(797\) −7.91681 −0.280428 −0.140214 0.990121i \(-0.544779\pi\)
−0.140214 + 0.990121i \(0.544779\pi\)
\(798\) 0 0
\(799\) 17.5444 0.620677
\(800\) 3.94751 0.139566
\(801\) −30.2659 −1.06939
\(802\) 4.48697 0.158440
\(803\) −28.9874 −1.02294
\(804\) −16.4986 −0.581859
\(805\) 0 0
\(806\) 0 0
\(807\) 6.31415 0.222269
\(808\) 70.1158 2.46667
\(809\) −29.6389 −1.04205 −0.521023 0.853542i \(-0.674450\pi\)
−0.521023 + 0.853542i \(0.674450\pi\)
\(810\) 3.49821 0.122915
\(811\) 15.8344 0.556022 0.278011 0.960578i \(-0.410325\pi\)
0.278011 + 0.960578i \(0.410325\pi\)
\(812\) 0 0
\(813\) −9.16183 −0.321319
\(814\) 56.9546 1.99626
\(815\) −3.74459 −0.131167
\(816\) −5.13544 −0.179776
\(817\) 52.8856 1.85023
\(818\) −62.4327 −2.18291
\(819\) 0 0
\(820\) 16.7624 0.585368
\(821\) 17.7394 0.619110 0.309555 0.950882i \(-0.399820\pi\)
0.309555 + 0.950882i \(0.399820\pi\)
\(822\) 8.93824 0.311757
\(823\) −8.68200 −0.302635 −0.151318 0.988485i \(-0.548352\pi\)
−0.151318 + 0.988485i \(0.548352\pi\)
\(824\) 82.0580 2.85863
\(825\) 8.95026 0.311608
\(826\) 0 0
\(827\) 14.3121 0.497681 0.248840 0.968545i \(-0.419951\pi\)
0.248840 + 0.968545i \(0.419951\pi\)
\(828\) 35.1309 1.22088
\(829\) 25.3066 0.878933 0.439467 0.898259i \(-0.355167\pi\)
0.439467 + 0.898259i \(0.355167\pi\)
\(830\) 1.17314 0.0407201
\(831\) 7.77567 0.269735
\(832\) 0 0
\(833\) 0 0
\(834\) −20.2966 −0.702813
\(835\) −6.24250 −0.216031
\(836\) 59.8966 2.07157
\(837\) 8.08615 0.279498
\(838\) −63.8179 −2.20455
\(839\) 13.0426 0.450280 0.225140 0.974326i \(-0.427716\pi\)
0.225140 + 0.974326i \(0.427716\pi\)
\(840\) 0 0
\(841\) −9.27440 −0.319807
\(842\) 57.5525 1.98339
\(843\) −1.95690 −0.0673994
\(844\) −91.0531 −3.13418
\(845\) 0 0
\(846\) 53.2673 1.83137
\(847\) 0 0
\(848\) 5.21968 0.179245
\(849\) 3.46930 0.119066
\(850\) 23.1388 0.793653
\(851\) 35.5248 1.21777
\(852\) 28.0204 0.959964
\(853\) 18.8926 0.646869 0.323435 0.946251i \(-0.395162\pi\)
0.323435 + 0.946251i \(0.395162\pi\)
\(854\) 0 0
\(855\) 5.22512 0.178695
\(856\) 29.7374 1.01640
\(857\) 24.6439 0.841819 0.420909 0.907103i \(-0.361711\pi\)
0.420909 + 0.907103i \(0.361711\pi\)
\(858\) 0 0
\(859\) 2.57141 0.0877355 0.0438677 0.999037i \(-0.486032\pi\)
0.0438677 + 0.999037i \(0.486032\pi\)
\(860\) −11.2419 −0.383347
\(861\) 0 0
\(862\) −55.9813 −1.90673
\(863\) 39.5407 1.34598 0.672991 0.739651i \(-0.265009\pi\)
0.672991 + 0.739651i \(0.265009\pi\)
\(864\) 3.30909 0.112578
\(865\) −2.80004 −0.0952043
\(866\) −62.8959 −2.13729
\(867\) −9.95072 −0.337944
\(868\) 0 0
\(869\) −10.8755 −0.368927
\(870\) 2.78016 0.0942564
\(871\) 0 0
\(872\) −38.0756 −1.28940
\(873\) −24.9947 −0.845942
\(874\) 56.4448 1.90927
\(875\) 0 0
\(876\) 35.1648 1.18811
\(877\) 21.0455 0.710655 0.355328 0.934742i \(-0.384369\pi\)
0.355328 + 0.934742i \(0.384369\pi\)
\(878\) −86.7702 −2.92835
\(879\) −1.47794 −0.0498497
\(880\) −2.90549 −0.0979439
\(881\) −5.01184 −0.168853 −0.0844266 0.996430i \(-0.526906\pi\)
−0.0844266 + 0.996430i \(0.526906\pi\)
\(882\) 0 0
\(883\) −7.13079 −0.239970 −0.119985 0.992776i \(-0.538285\pi\)
−0.119985 + 0.992776i \(0.538285\pi\)
\(884\) 0 0
\(885\) 0.161375 0.00542455
\(886\) −16.6813 −0.560419
\(887\) 6.72602 0.225838 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(888\) −33.7969 −1.13415
\(889\) 0 0
\(890\) 10.3369 0.346495
\(891\) −10.2425 −0.343138
\(892\) −114.606 −3.83730
\(893\) 56.6468 1.89561
\(894\) 29.1576 0.975177
\(895\) −5.31216 −0.177566
\(896\) 0 0
\(897\) 0 0
\(898\) −24.2760 −0.810100
\(899\) −8.77310 −0.292599
\(900\) 46.4989 1.54996
\(901\) −2.90727 −0.0968551
\(902\) −74.1510 −2.46896
\(903\) 0 0
\(904\) −44.8150 −1.49053
\(905\) −2.27908 −0.0757593
\(906\) −19.4101 −0.644858
\(907\) 29.5725 0.981938 0.490969 0.871177i \(-0.336643\pi\)
0.490969 + 0.871177i \(0.336643\pi\)
\(908\) 77.5623 2.57399
\(909\) −36.6120 −1.21434
\(910\) 0 0
\(911\) −20.6132 −0.682947 −0.341473 0.939891i \(-0.610926\pi\)
−0.341473 + 0.939891i \(0.610926\pi\)
\(912\) −16.5811 −0.549055
\(913\) −3.43487 −0.113678
\(914\) −21.3371 −0.705768
\(915\) −0.294235 −0.00972711
\(916\) −5.20010 −0.171816
\(917\) 0 0
\(918\) 19.3966 0.640184
\(919\) −4.17904 −0.137854 −0.0689269 0.997622i \(-0.521958\pi\)
−0.0689269 + 0.997622i \(0.521958\pi\)
\(920\) −5.86917 −0.193501
\(921\) 5.55893 0.183173
\(922\) 16.7461 0.551502
\(923\) 0 0
\(924\) 0 0
\(925\) 47.0202 1.54601
\(926\) −33.9341 −1.11514
\(927\) −42.8478 −1.40731
\(928\) −3.59021 −0.117855
\(929\) −48.0912 −1.57782 −0.788910 0.614509i \(-0.789354\pi\)
−0.788910 + 0.614509i \(0.789354\pi\)
\(930\) −1.23650 −0.0405464
\(931\) 0 0
\(932\) 5.93664 0.194461
\(933\) 10.6722 0.349392
\(934\) −70.0718 −2.29282
\(935\) 1.61830 0.0529242
\(936\) 0 0
\(937\) 12.5441 0.409798 0.204899 0.978783i \(-0.434313\pi\)
0.204899 + 0.978783i \(0.434313\pi\)
\(938\) 0 0
\(939\) −20.1324 −0.656995
\(940\) −12.0415 −0.392749
\(941\) −30.5888 −0.997167 −0.498583 0.866842i \(-0.666146\pi\)
−0.498583 + 0.866842i \(0.666146\pi\)
\(942\) 16.7223 0.544843
\(943\) −46.2508 −1.50613
\(944\) 2.19311 0.0713798
\(945\) 0 0
\(946\) 49.7304 1.61688
\(947\) −7.78348 −0.252929 −0.126465 0.991971i \(-0.540363\pi\)
−0.126465 + 0.991971i \(0.540363\pi\)
\(948\) 13.1932 0.428494
\(949\) 0 0
\(950\) 74.7096 2.42390
\(951\) 16.1542 0.523835
\(952\) 0 0
\(953\) −38.4304 −1.24488 −0.622442 0.782666i \(-0.713859\pi\)
−0.622442 + 0.782666i \(0.713859\pi\)
\(954\) −8.82686 −0.285780
\(955\) −6.40243 −0.207178
\(956\) 88.0088 2.84641
\(957\) −8.14015 −0.263134
\(958\) −59.7983 −1.93200
\(959\) 0 0
\(960\) −2.30656 −0.0744438
\(961\) −27.0981 −0.874132
\(962\) 0 0
\(963\) −15.5278 −0.500377
\(964\) 52.1123 1.67842
\(965\) −2.79141 −0.0898588
\(966\) 0 0
\(967\) 7.80008 0.250834 0.125417 0.992104i \(-0.459973\pi\)
0.125417 + 0.992104i \(0.459973\pi\)
\(968\) −23.6840 −0.761234
\(969\) 9.23538 0.296683
\(970\) 8.53661 0.274094
\(971\) 57.7914 1.85462 0.927308 0.374300i \(-0.122117\pi\)
0.927308 + 0.374300i \(0.122117\pi\)
\(972\) 60.5058 1.94072
\(973\) 0 0
\(974\) −6.25817 −0.200525
\(975\) 0 0
\(976\) −3.99871 −0.127996
\(977\) 8.67414 0.277510 0.138755 0.990327i \(-0.455690\pi\)
0.138755 + 0.990327i \(0.455690\pi\)
\(978\) −20.0948 −0.642561
\(979\) −30.2659 −0.967304
\(980\) 0 0
\(981\) 19.8817 0.634775
\(982\) 34.1417 1.08950
\(983\) 37.1121 1.18369 0.591846 0.806051i \(-0.298399\pi\)
0.591846 + 0.806051i \(0.298399\pi\)
\(984\) 44.0012 1.40271
\(985\) 2.97824 0.0948947
\(986\) −21.0444 −0.670192
\(987\) 0 0
\(988\) 0 0
\(989\) 31.0188 0.986340
\(990\) 4.91339 0.156158
\(991\) −45.2637 −1.43785 −0.718924 0.695089i \(-0.755365\pi\)
−0.718924 + 0.695089i \(0.755365\pi\)
\(992\) 1.59677 0.0506976
\(993\) 7.99850 0.253825
\(994\) 0 0
\(995\) −5.96551 −0.189119
\(996\) 4.16686 0.132032
\(997\) −44.2554 −1.40158 −0.700791 0.713367i \(-0.747169\pi\)
−0.700791 + 0.713367i \(0.747169\pi\)
\(998\) 32.9173 1.04198
\(999\) 39.4158 1.24706
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ci.1.8 8
7.6 odd 2 inner 8281.2.a.ci.1.7 8
13.3 even 3 637.2.f.l.295.1 16
13.9 even 3 637.2.f.l.393.1 yes 16
13.12 even 2 8281.2.a.cl.1.2 8
91.3 odd 6 637.2.g.m.373.1 16
91.9 even 3 637.2.g.m.263.2 16
91.16 even 3 637.2.h.m.165.7 16
91.48 odd 6 637.2.f.l.393.2 yes 16
91.55 odd 6 637.2.f.l.295.2 yes 16
91.61 odd 6 637.2.g.m.263.1 16
91.68 odd 6 637.2.h.m.165.8 16
91.74 even 3 637.2.h.m.471.7 16
91.81 even 3 637.2.g.m.373.2 16
91.87 odd 6 637.2.h.m.471.8 16
91.90 odd 2 8281.2.a.cl.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.f.l.295.1 16 13.3 even 3
637.2.f.l.295.2 yes 16 91.55 odd 6
637.2.f.l.393.1 yes 16 13.9 even 3
637.2.f.l.393.2 yes 16 91.48 odd 6
637.2.g.m.263.1 16 91.61 odd 6
637.2.g.m.263.2 16 91.9 even 3
637.2.g.m.373.1 16 91.3 odd 6
637.2.g.m.373.2 16 91.81 even 3
637.2.h.m.165.7 16 91.16 even 3
637.2.h.m.165.8 16 91.68 odd 6
637.2.h.m.471.7 16 91.74 even 3
637.2.h.m.471.8 16 91.87 odd 6
8281.2.a.ci.1.7 8 7.6 odd 2 inner
8281.2.a.ci.1.8 8 1.1 even 1 trivial
8281.2.a.cl.1.1 8 91.90 odd 2
8281.2.a.cl.1.2 8 13.12 even 2