Properties

Label 8281.2.a.cw
Level $8281$
Weight $2$
Character orbit 8281.a
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1183)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + q^{2} + 23 q^{4} + 13 q^{5} + 14 q^{6} + 26 q^{9} - 5 q^{10} + q^{11} - 5 q^{12} - 5 q^{15} + 17 q^{16} + 5 q^{17} + 24 q^{19} + 34 q^{20} - 14 q^{22} + 11 q^{23} + 32 q^{24} + 33 q^{25} + 21 q^{27}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.74249 −2.41352 5.52124 0.624420 6.61904 0 −9.65697 2.82506 −1.71247
1.2 −2.43473 −1.95805 3.92789 4.14976 4.76731 0 −4.69388 0.833959 −10.1035
1.3 −2.38490 −0.705442 3.68772 −0.769810 1.68241 0 −4.02505 −2.50235 1.83592
1.4 −2.06809 2.54401 2.27701 0.855789 −5.26125 0 −0.572885 3.47198 −1.76985
1.5 −1.76732 2.32802 1.12344 4.06760 −4.11437 0 1.54917 2.41970 −7.18877
1.6 −1.57441 −2.20221 0.478777 −3.76060 3.46719 0 2.39503 1.84974 5.92074
1.7 −1.54383 1.35319 0.383396 0.341965 −2.08910 0 2.49575 −1.16886 −0.527934
1.8 −1.20612 −1.03207 −0.545276 3.02929 1.24480 0 3.06991 −1.93483 −3.65368
1.9 −1.09197 −1.39541 −0.807612 −1.62650 1.52374 0 3.06581 −1.05283 1.77608
1.10 −0.877203 0.755024 −1.23052 −0.265839 −0.662309 0 2.83382 −2.42994 0.233195
1.11 −0.00236726 3.09829 −1.99999 −1.13142 −0.00733446 0 0.00946903 6.59939 0.00267836
1.12 0.136454 −2.96681 −1.98138 3.29030 −0.404833 0 −0.543274 5.80198 0.448974
1.13 0.254753 1.57524 −1.93510 0.518004 0.401297 0 −1.00248 −0.518622 0.131963
1.14 0.588471 −0.773677 −1.65370 −2.69602 −0.455287 0 −2.15010 −2.40142 −1.58653
1.15 0.617518 −3.07329 −1.61867 1.39605 −1.89781 0 −2.23459 6.44510 0.862085
1.16 1.02884 −2.66326 −0.941498 1.49113 −2.74006 0 −3.02632 4.09295 1.53412
1.17 1.18747 2.93451 −0.589922 3.40390 3.48463 0 −3.07545 5.61133 4.04203
1.18 1.36142 1.31293 −0.146524 −3.05867 1.78745 0 −2.92233 −1.27622 −4.16415
1.19 1.75182 −0.671818 1.06888 −2.67750 −1.17690 0 −1.63116 −2.54866 −4.69050
1.20 1.94710 1.73455 1.79121 3.71933 3.37734 0 −0.406541 0.00865975 7.24191
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.24
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8281.2.a.cw 24
7.b odd 2 1 8281.2.a.cv 24
7.d odd 6 2 1183.2.e.k 48
13.b even 2 1 8281.2.a.ct 24
91.b odd 2 1 8281.2.a.cu 24
91.s odd 6 2 1183.2.e.l yes 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1183.2.e.k 48 7.d odd 6 2
1183.2.e.l yes 48 91.s odd 6 2
8281.2.a.ct 24 13.b even 2 1
8281.2.a.cu 24 91.b odd 2 1
8281.2.a.cv 24 7.b odd 2 1
8281.2.a.cw 24 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8281))\):

\( T_{2}^{24} - T_{2}^{23} - 35 T_{2}^{22} + 34 T_{2}^{21} + 527 T_{2}^{20} - 496 T_{2}^{19} - 4477 T_{2}^{18} + \cdots - 1 \) Copy content Toggle raw display
\( T_{3}^{24} - 49 T_{3}^{22} - 7 T_{3}^{21} + 1030 T_{3}^{20} + 282 T_{3}^{19} - 12168 T_{3}^{18} + \cdots - 28469 \) Copy content Toggle raw display
\( T_{5}^{24} - 13 T_{5}^{23} + 8 T_{5}^{22} + 560 T_{5}^{21} - 1887 T_{5}^{20} - 8750 T_{5}^{19} + \cdots + 346087 \) Copy content Toggle raw display
\( T_{11}^{24} - T_{11}^{23} - 124 T_{11}^{22} + 117 T_{11}^{21} + 6433 T_{11}^{20} - 5835 T_{11}^{19} + \cdots + 64936579 \) Copy content Toggle raw display
\( T_{17}^{24} - 5 T_{17}^{23} - 178 T_{17}^{22} + 992 T_{17}^{21} + 12871 T_{17}^{20} - 81819 T_{17}^{19} + \cdots - 85617259 \) Copy content Toggle raw display