Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8281,2,Mod(1,8281)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8281.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8281 = 7^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8281.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(66.1241179138\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 1183) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.74249 | −2.41352 | 5.52124 | 0.624420 | 6.61904 | 0 | −9.65697 | 2.82506 | −1.71247 | ||||||||||||||||||
1.2 | −2.43473 | −1.95805 | 3.92789 | 4.14976 | 4.76731 | 0 | −4.69388 | 0.833959 | −10.1035 | ||||||||||||||||||
1.3 | −2.38490 | −0.705442 | 3.68772 | −0.769810 | 1.68241 | 0 | −4.02505 | −2.50235 | 1.83592 | ||||||||||||||||||
1.4 | −2.06809 | 2.54401 | 2.27701 | 0.855789 | −5.26125 | 0 | −0.572885 | 3.47198 | −1.76985 | ||||||||||||||||||
1.5 | −1.76732 | 2.32802 | 1.12344 | 4.06760 | −4.11437 | 0 | 1.54917 | 2.41970 | −7.18877 | ||||||||||||||||||
1.6 | −1.57441 | −2.20221 | 0.478777 | −3.76060 | 3.46719 | 0 | 2.39503 | 1.84974 | 5.92074 | ||||||||||||||||||
1.7 | −1.54383 | 1.35319 | 0.383396 | 0.341965 | −2.08910 | 0 | 2.49575 | −1.16886 | −0.527934 | ||||||||||||||||||
1.8 | −1.20612 | −1.03207 | −0.545276 | 3.02929 | 1.24480 | 0 | 3.06991 | −1.93483 | −3.65368 | ||||||||||||||||||
1.9 | −1.09197 | −1.39541 | −0.807612 | −1.62650 | 1.52374 | 0 | 3.06581 | −1.05283 | 1.77608 | ||||||||||||||||||
1.10 | −0.877203 | 0.755024 | −1.23052 | −0.265839 | −0.662309 | 0 | 2.83382 | −2.42994 | 0.233195 | ||||||||||||||||||
1.11 | −0.00236726 | 3.09829 | −1.99999 | −1.13142 | −0.00733446 | 0 | 0.00946903 | 6.59939 | 0.00267836 | ||||||||||||||||||
1.12 | 0.136454 | −2.96681 | −1.98138 | 3.29030 | −0.404833 | 0 | −0.543274 | 5.80198 | 0.448974 | ||||||||||||||||||
1.13 | 0.254753 | 1.57524 | −1.93510 | 0.518004 | 0.401297 | 0 | −1.00248 | −0.518622 | 0.131963 | ||||||||||||||||||
1.14 | 0.588471 | −0.773677 | −1.65370 | −2.69602 | −0.455287 | 0 | −2.15010 | −2.40142 | −1.58653 | ||||||||||||||||||
1.15 | 0.617518 | −3.07329 | −1.61867 | 1.39605 | −1.89781 | 0 | −2.23459 | 6.44510 | 0.862085 | ||||||||||||||||||
1.16 | 1.02884 | −2.66326 | −0.941498 | 1.49113 | −2.74006 | 0 | −3.02632 | 4.09295 | 1.53412 | ||||||||||||||||||
1.17 | 1.18747 | 2.93451 | −0.589922 | 3.40390 | 3.48463 | 0 | −3.07545 | 5.61133 | 4.04203 | ||||||||||||||||||
1.18 | 1.36142 | 1.31293 | −0.146524 | −3.05867 | 1.78745 | 0 | −2.92233 | −1.27622 | −4.16415 | ||||||||||||||||||
1.19 | 1.75182 | −0.671818 | 1.06888 | −2.67750 | −1.17690 | 0 | −1.63116 | −2.54866 | −4.69050 | ||||||||||||||||||
1.20 | 1.94710 | 1.73455 | 1.79121 | 3.71933 | 3.37734 | 0 | −0.406541 | 0.00865975 | 7.24191 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(7\) | \( -1 \) |
\(13\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 8281.2.a.cw | 24 | |
7.b | odd | 2 | 1 | 8281.2.a.cv | 24 | ||
7.d | odd | 6 | 2 | 1183.2.e.k | ✓ | 48 | |
13.b | even | 2 | 1 | 8281.2.a.ct | 24 | ||
91.b | odd | 2 | 1 | 8281.2.a.cu | 24 | ||
91.s | odd | 6 | 2 | 1183.2.e.l | yes | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1183.2.e.k | ✓ | 48 | 7.d | odd | 6 | 2 | |
1183.2.e.l | yes | 48 | 91.s | odd | 6 | 2 | |
8281.2.a.ct | 24 | 13.b | even | 2 | 1 | ||
8281.2.a.cu | 24 | 91.b | odd | 2 | 1 | ||
8281.2.a.cv | 24 | 7.b | odd | 2 | 1 | ||
8281.2.a.cw | 24 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8281))\):
\( T_{2}^{24} - T_{2}^{23} - 35 T_{2}^{22} + 34 T_{2}^{21} + 527 T_{2}^{20} - 496 T_{2}^{19} - 4477 T_{2}^{18} + \cdots - 1 \) |
\( T_{3}^{24} - 49 T_{3}^{22} - 7 T_{3}^{21} + 1030 T_{3}^{20} + 282 T_{3}^{19} - 12168 T_{3}^{18} + \cdots - 28469 \) |
\( T_{5}^{24} - 13 T_{5}^{23} + 8 T_{5}^{22} + 560 T_{5}^{21} - 1887 T_{5}^{20} - 8750 T_{5}^{19} + \cdots + 346087 \) |
\( T_{11}^{24} - T_{11}^{23} - 124 T_{11}^{22} + 117 T_{11}^{21} + 6433 T_{11}^{20} - 5835 T_{11}^{19} + \cdots + 64936579 \) |
\( T_{17}^{24} - 5 T_{17}^{23} - 178 T_{17}^{22} + 992 T_{17}^{21} + 12871 T_{17}^{20} - 81819 T_{17}^{19} + \cdots - 85617259 \) |