Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1183,2,Mod(170,1183)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1183.170");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
170.1 | −1.37124 | + | 2.37506i | −1.20676 | − | 2.09017i | −2.76062 | − | 4.78154i | −0.312210 | + | 0.540764i | 6.61904 | 1.27237 | − | 2.31971i | 9.65697 | −1.41253 | + | 2.44657i | −0.856233 | − | 1.48304i | ||||
170.2 | −1.21736 | + | 2.10853i | −0.979025 | − | 1.69572i | −1.96394 | − | 3.40165i | −2.07488 | + | 3.59380i | 4.76731 | −2.28564 | − | 1.33262i | 4.69388 | −0.416980 | + | 0.722230i | −5.05176 | − | 8.74991i | ||||
170.3 | −1.19245 | + | 2.06538i | −0.352721 | − | 0.610931i | −1.84386 | − | 3.19366i | 0.384905 | − | 0.666675i | 1.68241 | −2.49409 | + | 0.882891i | 4.02505 | 1.25118 | − | 2.16710i | 0.917958 | + | 1.58995i | ||||
170.4 | −1.03405 | + | 1.79102i | 1.27200 | + | 2.20318i | −1.13851 | − | 1.97195i | −0.427895 | + | 0.741135i | −5.26125 | 0.562037 | + | 2.58537i | 0.572885 | −1.73599 | + | 3.00682i | −0.884926 | − | 1.53274i | ||||
170.5 | −0.883662 | + | 1.53055i | 1.16401 | + | 2.01613i | −0.561718 | − | 0.972924i | −2.03380 | + | 3.52265i | −4.11437 | 1.79914 | + | 1.93987i | −1.54917 | −1.20985 | + | 2.09552i | −3.59438 | − | 6.22566i | ||||
170.6 | −0.787207 | + | 1.36348i | −1.10111 | − | 1.90717i | −0.239388 | − | 0.414633i | 1.88030 | − | 3.25678i | 3.46719 | −0.609781 | + | 2.57452i | −2.39503 | −0.924870 | + | 1.60192i | 2.96037 | + | 5.12751i | ||||
170.7 | −0.771913 | + | 1.33699i | 0.676597 | + | 1.17190i | −0.191698 | − | 0.332031i | −0.170982 | + | 0.296150i | −2.08910 | 2.12749 | − | 1.57282i | −2.49575 | 0.584432 | − | 1.01227i | −0.263967 | − | 0.457204i | ||||
170.8 | −0.603060 | + | 1.04453i | −0.516035 | − | 0.893798i | 0.272638 | + | 0.472223i | −1.51464 | + | 2.62344i | 1.24480 | −1.04407 | + | 2.43103i | −3.06991 | 0.967416 | − | 1.67561i | −1.82684 | − | 3.16418i | ||||
170.9 | −0.545983 | + | 0.945670i | −0.697705 | − | 1.20846i | 0.403806 | + | 0.699412i | 0.813252 | − | 1.40859i | 1.52374 | 2.51623 | − | 0.817685i | −3.06581 | 0.526415 | − | 0.911778i | 0.888042 | + | 1.53813i | ||||
170.10 | −0.438601 | + | 0.759680i | 0.377512 | + | 0.653870i | 0.615258 | + | 1.06566i | 0.132920 | − | 0.230223i | −0.662309 | 0.588870 | − | 2.57939i | −2.83382 | 1.21497 | − | 2.10439i | 0.116597 | + | 0.201953i | ||||
170.11 | −0.00118363 | + | 0.00205011i | 1.54914 | + | 2.68320i | 0.999997 | + | 1.73205i | 0.565709 | − | 0.979836i | −0.00733446 | −2.64547 | + | 0.0383280i | −0.00946903 | −3.29970 | + | 5.71524i | 0.00133918 | + | 0.00231953i | ||||
170.12 | 0.0682269 | − | 0.118172i | −1.48341 | − | 2.56934i | 0.990690 | + | 1.71593i | −1.64515 | + | 2.84948i | −0.404833 | −1.56259 | + | 2.13502i | 0.543274 | −2.90099 | + | 5.02467i | 0.224487 | + | 0.388822i | ||||
170.13 | 0.127376 | − | 0.220623i | 0.787620 | + | 1.36420i | 0.967550 | + | 1.67585i | −0.259002 | + | 0.448605i | 0.401297 | −1.92441 | − | 1.81567i | 1.00248 | 0.259311 | − | 0.449140i | 0.0659816 | + | 0.114283i | ||||
170.14 | 0.294236 | − | 0.509631i | −0.386839 | − | 0.670024i | 0.826851 | + | 1.43215i | 1.34801 | − | 2.33482i | −0.455287 | 2.52472 | + | 0.791073i | 2.15010 | 1.20071 | − | 2.07969i | −0.793264 | − | 1.37397i | ||||
170.15 | 0.308759 | − | 0.534786i | −1.53664 | − | 2.66155i | 0.809336 | + | 1.40181i | −0.698024 | + | 1.20901i | −1.89781 | 2.36540 | − | 1.18527i | 2.23459 | −3.22255 | + | 5.58162i | 0.431043 | + | 0.746588i | ||||
170.16 | 0.514418 | − | 0.890998i | −1.33163 | − | 2.30645i | 0.470749 | + | 0.815361i | −0.745563 | + | 1.29135i | −2.74006 | −1.93668 | − | 1.80257i | 3.02632 | −2.04647 | + | 3.54460i | 0.767061 | + | 1.32859i | ||||
170.17 | 0.593734 | − | 1.02838i | 1.46725 | + | 2.54136i | 0.294961 | + | 0.510887i | −1.70195 | + | 2.94787i | 3.48463 | −2.56390 | − | 0.653016i | 3.07545 | −2.80567 | + | 4.85955i | 2.02101 | + | 3.50050i | ||||
170.18 | 0.680712 | − | 1.17903i | 0.656465 | + | 1.13703i | 0.0732621 | + | 0.126894i | 1.52933 | − | 2.64889i | 1.78745 | 2.33513 | + | 1.24384i | 2.92233 | 0.638108 | − | 1.10524i | −2.08207 | − | 3.60626i | ||||
170.19 | 0.875911 | − | 1.51712i | −0.335909 | − | 0.581811i | −0.534440 | − | 0.925678i | 1.33875 | − | 2.31878i | −1.17690 | −1.17520 | + | 2.37042i | 1.63116 | 1.27433 | − | 2.20721i | −2.34525 | − | 4.06209i | ||||
170.20 | 0.973551 | − | 1.68624i | 0.867274 | + | 1.50216i | −0.895604 | − | 1.55123i | −1.85966 | + | 3.22103i | 3.37734 | 1.95410 | − | 1.78368i | 0.406541 | −0.00432987 | + | 0.00749956i | 3.62095 | + | 6.27168i | ||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.e.l | yes | 48 |
7.c | even | 3 | 1 | inner | 1183.2.e.l | yes | 48 |
7.c | even | 3 | 1 | 8281.2.a.cu | 24 | ||
7.d | odd | 6 | 1 | 8281.2.a.ct | 24 | ||
13.b | even | 2 | 1 | 1183.2.e.k | ✓ | 48 | |
91.r | even | 6 | 1 | 1183.2.e.k | ✓ | 48 | |
91.r | even | 6 | 1 | 8281.2.a.cv | 24 | ||
91.s | odd | 6 | 1 | 8281.2.a.cw | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1183.2.e.k | ✓ | 48 | 13.b | even | 2 | 1 | |
1183.2.e.k | ✓ | 48 | 91.r | even | 6 | 1 | |
1183.2.e.l | yes | 48 | 1.a | even | 1 | 1 | trivial |
1183.2.e.l | yes | 48 | 7.c | even | 3 | 1 | inner |
8281.2.a.ct | 24 | 7.d | odd | 6 | 1 | ||
8281.2.a.cu | 24 | 7.c | even | 3 | 1 | ||
8281.2.a.cv | 24 | 91.r | even | 6 | 1 | ||
8281.2.a.cw | 24 | 91.s | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\):
\( T_{2}^{48} - T_{2}^{47} + 36 T_{2}^{46} - 33 T_{2}^{45} + 732 T_{2}^{44} - 632 T_{2}^{43} + 10151 T_{2}^{42} + \cdots + 1 \) |
\( T_{3}^{48} + 49 T_{3}^{46} + 14 T_{3}^{45} + 1371 T_{3}^{44} + 625 T_{3}^{43} + 26183 T_{3}^{42} + \cdots + 810483961 \) |