Properties

Label 1183.2.e.l
Level $1183$
Weight $2$
Character orbit 1183.e
Analytic conductor $9.446$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(170,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.170");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q + q^{2} - 23 q^{4} - 13 q^{5} + 28 q^{6} + 3 q^{7} - 26 q^{9} - 5 q^{10} + q^{11} - 5 q^{12} - 2 q^{14} + 10 q^{15} - 17 q^{16} + 5 q^{17} - 24 q^{19} + 68 q^{20} - q^{21} - 28 q^{22} - 11 q^{23}+ \cdots - 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
170.1 −1.37124 + 2.37506i −1.20676 2.09017i −2.76062 4.78154i −0.312210 + 0.540764i 6.61904 1.27237 2.31971i 9.65697 −1.41253 + 2.44657i −0.856233 1.48304i
170.2 −1.21736 + 2.10853i −0.979025 1.69572i −1.96394 3.40165i −2.07488 + 3.59380i 4.76731 −2.28564 1.33262i 4.69388 −0.416980 + 0.722230i −5.05176 8.74991i
170.3 −1.19245 + 2.06538i −0.352721 0.610931i −1.84386 3.19366i 0.384905 0.666675i 1.68241 −2.49409 + 0.882891i 4.02505 1.25118 2.16710i 0.917958 + 1.58995i
170.4 −1.03405 + 1.79102i 1.27200 + 2.20318i −1.13851 1.97195i −0.427895 + 0.741135i −5.26125 0.562037 + 2.58537i 0.572885 −1.73599 + 3.00682i −0.884926 1.53274i
170.5 −0.883662 + 1.53055i 1.16401 + 2.01613i −0.561718 0.972924i −2.03380 + 3.52265i −4.11437 1.79914 + 1.93987i −1.54917 −1.20985 + 2.09552i −3.59438 6.22566i
170.6 −0.787207 + 1.36348i −1.10111 1.90717i −0.239388 0.414633i 1.88030 3.25678i 3.46719 −0.609781 + 2.57452i −2.39503 −0.924870 + 1.60192i 2.96037 + 5.12751i
170.7 −0.771913 + 1.33699i 0.676597 + 1.17190i −0.191698 0.332031i −0.170982 + 0.296150i −2.08910 2.12749 1.57282i −2.49575 0.584432 1.01227i −0.263967 0.457204i
170.8 −0.603060 + 1.04453i −0.516035 0.893798i 0.272638 + 0.472223i −1.51464 + 2.62344i 1.24480 −1.04407 + 2.43103i −3.06991 0.967416 1.67561i −1.82684 3.16418i
170.9 −0.545983 + 0.945670i −0.697705 1.20846i 0.403806 + 0.699412i 0.813252 1.40859i 1.52374 2.51623 0.817685i −3.06581 0.526415 0.911778i 0.888042 + 1.53813i
170.10 −0.438601 + 0.759680i 0.377512 + 0.653870i 0.615258 + 1.06566i 0.132920 0.230223i −0.662309 0.588870 2.57939i −2.83382 1.21497 2.10439i 0.116597 + 0.201953i
170.11 −0.00118363 + 0.00205011i 1.54914 + 2.68320i 0.999997 + 1.73205i 0.565709 0.979836i −0.00733446 −2.64547 + 0.0383280i −0.00946903 −3.29970 + 5.71524i 0.00133918 + 0.00231953i
170.12 0.0682269 0.118172i −1.48341 2.56934i 0.990690 + 1.71593i −1.64515 + 2.84948i −0.404833 −1.56259 + 2.13502i 0.543274 −2.90099 + 5.02467i 0.224487 + 0.388822i
170.13 0.127376 0.220623i 0.787620 + 1.36420i 0.967550 + 1.67585i −0.259002 + 0.448605i 0.401297 −1.92441 1.81567i 1.00248 0.259311 0.449140i 0.0659816 + 0.114283i
170.14 0.294236 0.509631i −0.386839 0.670024i 0.826851 + 1.43215i 1.34801 2.33482i −0.455287 2.52472 + 0.791073i 2.15010 1.20071 2.07969i −0.793264 1.37397i
170.15 0.308759 0.534786i −1.53664 2.66155i 0.809336 + 1.40181i −0.698024 + 1.20901i −1.89781 2.36540 1.18527i 2.23459 −3.22255 + 5.58162i 0.431043 + 0.746588i
170.16 0.514418 0.890998i −1.33163 2.30645i 0.470749 + 0.815361i −0.745563 + 1.29135i −2.74006 −1.93668 1.80257i 3.02632 −2.04647 + 3.54460i 0.767061 + 1.32859i
170.17 0.593734 1.02838i 1.46725 + 2.54136i 0.294961 + 0.510887i −1.70195 + 2.94787i 3.48463 −2.56390 0.653016i 3.07545 −2.80567 + 4.85955i 2.02101 + 3.50050i
170.18 0.680712 1.17903i 0.656465 + 1.13703i 0.0732621 + 0.126894i 1.52933 2.64889i 1.78745 2.33513 + 1.24384i 2.92233 0.638108 1.10524i −2.08207 3.60626i
170.19 0.875911 1.51712i −0.335909 0.581811i −0.534440 0.925678i 1.33875 2.31878i −1.17690 −1.17520 + 2.37042i 1.63116 1.27433 2.20721i −2.34525 4.06209i
170.20 0.973551 1.68624i 0.867274 + 1.50216i −0.895604 1.55123i −1.85966 + 3.22103i 3.37734 1.95410 1.78368i 0.406541 −0.00432987 + 0.00749956i 3.62095 + 6.27168i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 170.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.e.l yes 48
7.c even 3 1 inner 1183.2.e.l yes 48
7.c even 3 1 8281.2.a.cu 24
7.d odd 6 1 8281.2.a.ct 24
13.b even 2 1 1183.2.e.k 48
91.r even 6 1 1183.2.e.k 48
91.r even 6 1 8281.2.a.cv 24
91.s odd 6 1 8281.2.a.cw 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1183.2.e.k 48 13.b even 2 1
1183.2.e.k 48 91.r even 6 1
1183.2.e.l yes 48 1.a even 1 1 trivial
1183.2.e.l yes 48 7.c even 3 1 inner
8281.2.a.ct 24 7.d odd 6 1
8281.2.a.cu 24 7.c even 3 1
8281.2.a.cv 24 91.r even 6 1
8281.2.a.cw 24 91.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\):

\( T_{2}^{48} - T_{2}^{47} + 36 T_{2}^{46} - 33 T_{2}^{45} + 732 T_{2}^{44} - 632 T_{2}^{43} + 10151 T_{2}^{42} + \cdots + 1 \) Copy content Toggle raw display
\( T_{3}^{48} + 49 T_{3}^{46} + 14 T_{3}^{45} + 1371 T_{3}^{44} + 625 T_{3}^{43} + 26183 T_{3}^{42} + \cdots + 810483961 \) Copy content Toggle raw display