Properties

Label 8281.2.a.cw.1.4
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1183)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.06809 q^{2} +2.54401 q^{3} +2.27701 q^{4} +0.855789 q^{5} -5.26125 q^{6} -0.572885 q^{8} +3.47198 q^{9} -1.76985 q^{10} +6.04521 q^{11} +5.79274 q^{12} +2.17714 q^{15} -3.36924 q^{16} -4.70145 q^{17} -7.18038 q^{18} +2.96859 q^{19} +1.94864 q^{20} -12.5021 q^{22} +3.25452 q^{23} -1.45742 q^{24} -4.26762 q^{25} +1.20072 q^{27} +4.50008 q^{29} -4.50252 q^{30} +1.94060 q^{31} +8.11368 q^{32} +15.3791 q^{33} +9.72304 q^{34} +7.90574 q^{36} +8.47961 q^{37} -6.13933 q^{38} -0.490269 q^{40} -8.47502 q^{41} +3.13983 q^{43} +13.7650 q^{44} +2.97128 q^{45} -6.73066 q^{46} -3.04442 q^{47} -8.57138 q^{48} +8.82585 q^{50} -11.9605 q^{51} -7.96541 q^{53} -2.48321 q^{54} +5.17343 q^{55} +7.55212 q^{57} -9.30658 q^{58} +6.65182 q^{59} +4.95736 q^{60} +11.2195 q^{61} -4.01334 q^{62} -10.0414 q^{64} -31.8054 q^{66} -9.74400 q^{67} -10.7053 q^{68} +8.27953 q^{69} -5.35491 q^{71} -1.98905 q^{72} +3.57019 q^{73} -17.5366 q^{74} -10.8569 q^{75} +6.75952 q^{76} -0.811080 q^{79} -2.88336 q^{80} -7.36129 q^{81} +17.5271 q^{82} +17.0860 q^{83} -4.02345 q^{85} -6.49346 q^{86} +11.4482 q^{87} -3.46321 q^{88} +15.2000 q^{89} -6.14489 q^{90} +7.41058 q^{92} +4.93690 q^{93} +6.29614 q^{94} +2.54049 q^{95} +20.6413 q^{96} +15.2597 q^{97} +20.9889 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + 23 q^{4} + 13 q^{5} + 14 q^{6} + 26 q^{9} - 5 q^{10} + q^{11} - 5 q^{12} - 5 q^{15} + 17 q^{16} + 5 q^{17} + 24 q^{19} + 34 q^{20} - 14 q^{22} + 11 q^{23} + 32 q^{24} + 33 q^{25} + 21 q^{27}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.06809 −1.46236 −0.731182 0.682183i \(-0.761031\pi\)
−0.731182 + 0.682183i \(0.761031\pi\)
\(3\) 2.54401 1.46878 0.734392 0.678725i \(-0.237467\pi\)
0.734392 + 0.678725i \(0.237467\pi\)
\(4\) 2.27701 1.13851
\(5\) 0.855789 0.382721 0.191360 0.981520i \(-0.438710\pi\)
0.191360 + 0.981520i \(0.438710\pi\)
\(6\) −5.26125 −2.14790
\(7\) 0 0
\(8\) −0.572885 −0.202546
\(9\) 3.47198 1.15733
\(10\) −1.76985 −0.559677
\(11\) 6.04521 1.82270 0.911350 0.411631i \(-0.135041\pi\)
0.911350 + 0.411631i \(0.135041\pi\)
\(12\) 5.79274 1.67222
\(13\) 0 0
\(14\) 0 0
\(15\) 2.17714 0.562134
\(16\) −3.36924 −0.842311
\(17\) −4.70145 −1.14027 −0.570135 0.821551i \(-0.693109\pi\)
−0.570135 + 0.821551i \(0.693109\pi\)
\(18\) −7.18038 −1.69243
\(19\) 2.96859 0.681042 0.340521 0.940237i \(-0.389397\pi\)
0.340521 + 0.940237i \(0.389397\pi\)
\(20\) 1.94864 0.435730
\(21\) 0 0
\(22\) −12.5021 −2.66545
\(23\) 3.25452 0.678615 0.339307 0.940676i \(-0.389807\pi\)
0.339307 + 0.940676i \(0.389807\pi\)
\(24\) −1.45742 −0.297496
\(25\) −4.26762 −0.853525
\(26\) 0 0
\(27\) 1.20072 0.231079
\(28\) 0 0
\(29\) 4.50008 0.835644 0.417822 0.908529i \(-0.362794\pi\)
0.417822 + 0.908529i \(0.362794\pi\)
\(30\) −4.50252 −0.822044
\(31\) 1.94060 0.348542 0.174271 0.984698i \(-0.444243\pi\)
0.174271 + 0.984698i \(0.444243\pi\)
\(32\) 8.11368 1.43431
\(33\) 15.3791 2.67715
\(34\) 9.72304 1.66749
\(35\) 0 0
\(36\) 7.90574 1.31762
\(37\) 8.47961 1.39404 0.697020 0.717052i \(-0.254509\pi\)
0.697020 + 0.717052i \(0.254509\pi\)
\(38\) −6.13933 −0.995930
\(39\) 0 0
\(40\) −0.490269 −0.0775184
\(41\) −8.47502 −1.32358 −0.661788 0.749691i \(-0.730202\pi\)
−0.661788 + 0.749691i \(0.730202\pi\)
\(42\) 0 0
\(43\) 3.13983 0.478819 0.239410 0.970919i \(-0.423046\pi\)
0.239410 + 0.970919i \(0.423046\pi\)
\(44\) 13.7650 2.07516
\(45\) 2.97128 0.442933
\(46\) −6.73066 −0.992381
\(47\) −3.04442 −0.444074 −0.222037 0.975038i \(-0.571271\pi\)
−0.222037 + 0.975038i \(0.571271\pi\)
\(48\) −8.57138 −1.23717
\(49\) 0 0
\(50\) 8.82585 1.24816
\(51\) −11.9605 −1.67481
\(52\) 0 0
\(53\) −7.96541 −1.09413 −0.547067 0.837089i \(-0.684256\pi\)
−0.547067 + 0.837089i \(0.684256\pi\)
\(54\) −2.48321 −0.337922
\(55\) 5.17343 0.697585
\(56\) 0 0
\(57\) 7.55212 1.00030
\(58\) −9.30658 −1.22201
\(59\) 6.65182 0.865993 0.432996 0.901396i \(-0.357456\pi\)
0.432996 + 0.901396i \(0.357456\pi\)
\(60\) 4.95736 0.639993
\(61\) 11.2195 1.43651 0.718256 0.695779i \(-0.244941\pi\)
0.718256 + 0.695779i \(0.244941\pi\)
\(62\) −4.01334 −0.509695
\(63\) 0 0
\(64\) −10.0414 −1.25517
\(65\) 0 0
\(66\) −31.8054 −3.91497
\(67\) −9.74400 −1.19042 −0.595209 0.803571i \(-0.702931\pi\)
−0.595209 + 0.803571i \(0.702931\pi\)
\(68\) −10.7053 −1.29820
\(69\) 8.27953 0.996739
\(70\) 0 0
\(71\) −5.35491 −0.635510 −0.317755 0.948173i \(-0.602929\pi\)
−0.317755 + 0.948173i \(0.602929\pi\)
\(72\) −1.98905 −0.234411
\(73\) 3.57019 0.417860 0.208930 0.977931i \(-0.433002\pi\)
0.208930 + 0.977931i \(0.433002\pi\)
\(74\) −17.5366 −2.03859
\(75\) −10.8569 −1.25364
\(76\) 6.75952 0.775370
\(77\) 0 0
\(78\) 0 0
\(79\) −0.811080 −0.0912536 −0.0456268 0.998959i \(-0.514529\pi\)
−0.0456268 + 0.998959i \(0.514529\pi\)
\(80\) −2.88336 −0.322370
\(81\) −7.36129 −0.817921
\(82\) 17.5271 1.93555
\(83\) 17.0860 1.87543 0.937717 0.347399i \(-0.112935\pi\)
0.937717 + 0.347399i \(0.112935\pi\)
\(84\) 0 0
\(85\) −4.02345 −0.436405
\(86\) −6.49346 −0.700207
\(87\) 11.4482 1.22738
\(88\) −3.46321 −0.369180
\(89\) 15.2000 1.61119 0.805597 0.592464i \(-0.201845\pi\)
0.805597 + 0.592464i \(0.201845\pi\)
\(90\) −6.14489 −0.647729
\(91\) 0 0
\(92\) 7.41058 0.772607
\(93\) 4.93690 0.511933
\(94\) 6.29614 0.649397
\(95\) 2.54049 0.260649
\(96\) 20.6413 2.10669
\(97\) 15.2597 1.54939 0.774694 0.632336i \(-0.217904\pi\)
0.774694 + 0.632336i \(0.217904\pi\)
\(98\) 0 0
\(99\) 20.9889 2.10946
\(100\) −9.71743 −0.971743
\(101\) −7.54035 −0.750293 −0.375146 0.926966i \(-0.622408\pi\)
−0.375146 + 0.926966i \(0.622408\pi\)
\(102\) 24.7355 2.44918
\(103\) 6.68286 0.658481 0.329241 0.944246i \(-0.393207\pi\)
0.329241 + 0.944246i \(0.393207\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 16.4732 1.60002
\(107\) 2.10758 0.203748 0.101874 0.994797i \(-0.467516\pi\)
0.101874 + 0.994797i \(0.467516\pi\)
\(108\) 2.73406 0.263085
\(109\) −6.77293 −0.648729 −0.324364 0.945932i \(-0.605150\pi\)
−0.324364 + 0.945932i \(0.605150\pi\)
\(110\) −10.6991 −1.02012
\(111\) 21.5722 2.04754
\(112\) 0 0
\(113\) −4.76130 −0.447905 −0.223953 0.974600i \(-0.571896\pi\)
−0.223953 + 0.974600i \(0.571896\pi\)
\(114\) −15.6185 −1.46281
\(115\) 2.78519 0.259720
\(116\) 10.2467 0.951385
\(117\) 0 0
\(118\) −13.7566 −1.26640
\(119\) 0 0
\(120\) −1.24725 −0.113858
\(121\) 25.5446 2.32224
\(122\) −23.2030 −2.10070
\(123\) −21.5605 −1.94405
\(124\) 4.41877 0.396817
\(125\) −7.93114 −0.709382
\(126\) 0 0
\(127\) 9.73157 0.863537 0.431769 0.901984i \(-0.357890\pi\)
0.431769 + 0.901984i \(0.357890\pi\)
\(128\) 4.53912 0.401205
\(129\) 7.98775 0.703282
\(130\) 0 0
\(131\) 6.87156 0.600371 0.300186 0.953881i \(-0.402951\pi\)
0.300186 + 0.953881i \(0.402951\pi\)
\(132\) 35.0183 3.04795
\(133\) 0 0
\(134\) 20.1515 1.74082
\(135\) 1.02757 0.0884388
\(136\) 2.69339 0.230956
\(137\) 8.45255 0.722150 0.361075 0.932537i \(-0.382410\pi\)
0.361075 + 0.932537i \(0.382410\pi\)
\(138\) −17.1229 −1.45759
\(139\) −3.83558 −0.325330 −0.162665 0.986681i \(-0.552009\pi\)
−0.162665 + 0.986681i \(0.552009\pi\)
\(140\) 0 0
\(141\) −7.74502 −0.652249
\(142\) 11.0744 0.929347
\(143\) 0 0
\(144\) −11.6979 −0.974829
\(145\) 3.85112 0.319818
\(146\) −7.38349 −0.611062
\(147\) 0 0
\(148\) 19.3082 1.58712
\(149\) −7.65108 −0.626801 −0.313400 0.949621i \(-0.601468\pi\)
−0.313400 + 0.949621i \(0.601468\pi\)
\(150\) 22.4530 1.83328
\(151\) −2.84108 −0.231204 −0.115602 0.993296i \(-0.536880\pi\)
−0.115602 + 0.993296i \(0.536880\pi\)
\(152\) −1.70066 −0.137942
\(153\) −16.3234 −1.31966
\(154\) 0 0
\(155\) 1.66074 0.133394
\(156\) 0 0
\(157\) −1.17859 −0.0940619 −0.0470309 0.998893i \(-0.514976\pi\)
−0.0470309 + 0.998893i \(0.514976\pi\)
\(158\) 1.67739 0.133446
\(159\) −20.2641 −1.60705
\(160\) 6.94360 0.548940
\(161\) 0 0
\(162\) 15.2238 1.19610
\(163\) −1.66795 −0.130644 −0.0653220 0.997864i \(-0.520807\pi\)
−0.0653220 + 0.997864i \(0.520807\pi\)
\(164\) −19.2977 −1.50690
\(165\) 13.1613 1.02460
\(166\) −35.3355 −2.74257
\(167\) 7.52717 0.582470 0.291235 0.956652i \(-0.405934\pi\)
0.291235 + 0.956652i \(0.405934\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 8.32088 0.638182
\(171\) 10.3069 0.788188
\(172\) 7.14942 0.545138
\(173\) −13.2390 −1.00654 −0.503271 0.864129i \(-0.667870\pi\)
−0.503271 + 0.864129i \(0.667870\pi\)
\(174\) −23.6760 −1.79488
\(175\) 0 0
\(176\) −20.3678 −1.53528
\(177\) 16.9223 1.27196
\(178\) −31.4350 −2.35615
\(179\) 2.59714 0.194119 0.0970596 0.995279i \(-0.469056\pi\)
0.0970596 + 0.995279i \(0.469056\pi\)
\(180\) 6.76565 0.504282
\(181\) −10.1531 −0.754677 −0.377338 0.926075i \(-0.623161\pi\)
−0.377338 + 0.926075i \(0.623161\pi\)
\(182\) 0 0
\(183\) 28.5425 2.10992
\(184\) −1.86447 −0.137450
\(185\) 7.25676 0.533528
\(186\) −10.2100 −0.748631
\(187\) −28.4213 −2.07837
\(188\) −6.93217 −0.505581
\(189\) 0 0
\(190\) −5.25397 −0.381163
\(191\) 14.9774 1.08373 0.541863 0.840467i \(-0.317719\pi\)
0.541863 + 0.840467i \(0.317719\pi\)
\(192\) −25.5453 −1.84357
\(193\) −19.2531 −1.38587 −0.692934 0.721001i \(-0.743682\pi\)
−0.692934 + 0.721001i \(0.743682\pi\)
\(194\) −31.5585 −2.26577
\(195\) 0 0
\(196\) 0 0
\(197\) 8.92091 0.635589 0.317794 0.948160i \(-0.397058\pi\)
0.317794 + 0.948160i \(0.397058\pi\)
\(198\) −43.4069 −3.08480
\(199\) 16.0004 1.13424 0.567118 0.823636i \(-0.308058\pi\)
0.567118 + 0.823636i \(0.308058\pi\)
\(200\) 2.44486 0.172878
\(201\) −24.7888 −1.74847
\(202\) 15.5941 1.09720
\(203\) 0 0
\(204\) −27.2343 −1.90678
\(205\) −7.25284 −0.506560
\(206\) −13.8208 −0.962939
\(207\) 11.2996 0.785379
\(208\) 0 0
\(209\) 17.9458 1.24134
\(210\) 0 0
\(211\) −6.97420 −0.480124 −0.240062 0.970758i \(-0.577168\pi\)
−0.240062 + 0.970758i \(0.577168\pi\)
\(212\) −18.1373 −1.24568
\(213\) −13.6229 −0.933428
\(214\) −4.35868 −0.297953
\(215\) 2.68703 0.183254
\(216\) −0.687876 −0.0468040
\(217\) 0 0
\(218\) 14.0070 0.948677
\(219\) 9.08260 0.613746
\(220\) 11.7800 0.794205
\(221\) 0 0
\(222\) −44.6134 −2.99425
\(223\) −2.51316 −0.168294 −0.0841470 0.996453i \(-0.526817\pi\)
−0.0841470 + 0.996453i \(0.526817\pi\)
\(224\) 0 0
\(225\) −14.8171 −0.987807
\(226\) 9.84681 0.655000
\(227\) −2.74119 −0.181939 −0.0909697 0.995854i \(-0.528997\pi\)
−0.0909697 + 0.995854i \(0.528997\pi\)
\(228\) 17.1963 1.13885
\(229\) 5.78487 0.382275 0.191137 0.981563i \(-0.438782\pi\)
0.191137 + 0.981563i \(0.438782\pi\)
\(230\) −5.76003 −0.379805
\(231\) 0 0
\(232\) −2.57803 −0.169256
\(233\) −0.569277 −0.0372946 −0.0186473 0.999826i \(-0.505936\pi\)
−0.0186473 + 0.999826i \(0.505936\pi\)
\(234\) 0 0
\(235\) −2.60538 −0.169956
\(236\) 15.1463 0.985938
\(237\) −2.06339 −0.134032
\(238\) 0 0
\(239\) −3.52059 −0.227728 −0.113864 0.993496i \(-0.536323\pi\)
−0.113864 + 0.993496i \(0.536323\pi\)
\(240\) −7.33530 −0.473491
\(241\) 22.9920 1.48104 0.740522 0.672032i \(-0.234578\pi\)
0.740522 + 0.672032i \(0.234578\pi\)
\(242\) −52.8287 −3.39596
\(243\) −22.3294 −1.43243
\(244\) 25.5469 1.63548
\(245\) 0 0
\(246\) 44.5892 2.84290
\(247\) 0 0
\(248\) −1.11174 −0.0705956
\(249\) 43.4670 2.75461
\(250\) 16.4023 1.03737
\(251\) −1.64123 −0.103594 −0.0517968 0.998658i \(-0.516495\pi\)
−0.0517968 + 0.998658i \(0.516495\pi\)
\(252\) 0 0
\(253\) 19.6743 1.23691
\(254\) −20.1258 −1.26280
\(255\) −10.2357 −0.640984
\(256\) 10.6954 0.668462
\(257\) 6.79574 0.423907 0.211953 0.977280i \(-0.432018\pi\)
0.211953 + 0.977280i \(0.432018\pi\)
\(258\) −16.5194 −1.02845
\(259\) 0 0
\(260\) 0 0
\(261\) 15.6242 0.967113
\(262\) −14.2110 −0.877961
\(263\) 3.30365 0.203712 0.101856 0.994799i \(-0.467522\pi\)
0.101856 + 0.994799i \(0.467522\pi\)
\(264\) −8.81045 −0.542246
\(265\) −6.81671 −0.418747
\(266\) 0 0
\(267\) 38.6689 2.36650
\(268\) −22.1872 −1.35530
\(269\) 28.7189 1.75102 0.875512 0.483196i \(-0.160524\pi\)
0.875512 + 0.483196i \(0.160524\pi\)
\(270\) −2.12510 −0.129330
\(271\) 18.5177 1.12487 0.562434 0.826842i \(-0.309865\pi\)
0.562434 + 0.826842i \(0.309865\pi\)
\(272\) 15.8403 0.960461
\(273\) 0 0
\(274\) −17.4807 −1.05605
\(275\) −25.7987 −1.55572
\(276\) 18.8526 1.13479
\(277\) 8.02277 0.482042 0.241021 0.970520i \(-0.422518\pi\)
0.241021 + 0.970520i \(0.422518\pi\)
\(278\) 7.93234 0.475750
\(279\) 6.73772 0.403377
\(280\) 0 0
\(281\) −3.32260 −0.198210 −0.0991049 0.995077i \(-0.531598\pi\)
−0.0991049 + 0.995077i \(0.531598\pi\)
\(282\) 16.0174 0.953824
\(283\) −14.9999 −0.891652 −0.445826 0.895120i \(-0.647090\pi\)
−0.445826 + 0.895120i \(0.647090\pi\)
\(284\) −12.1932 −0.723532
\(285\) 6.46303 0.382837
\(286\) 0 0
\(287\) 0 0
\(288\) 28.1705 1.65996
\(289\) 5.10366 0.300215
\(290\) −7.96448 −0.467690
\(291\) 38.8208 2.27572
\(292\) 8.12937 0.475735
\(293\) −18.8858 −1.10332 −0.551659 0.834070i \(-0.686005\pi\)
−0.551659 + 0.834070i \(0.686005\pi\)
\(294\) 0 0
\(295\) 5.69255 0.331433
\(296\) −4.85785 −0.282357
\(297\) 7.25863 0.421188
\(298\) 15.8231 0.916610
\(299\) 0 0
\(300\) −24.7212 −1.42728
\(301\) 0 0
\(302\) 5.87561 0.338104
\(303\) −19.1827 −1.10202
\(304\) −10.0019 −0.573649
\(305\) 9.60154 0.549782
\(306\) 33.7582 1.92983
\(307\) −2.18025 −0.124433 −0.0622166 0.998063i \(-0.519817\pi\)
−0.0622166 + 0.998063i \(0.519817\pi\)
\(308\) 0 0
\(309\) 17.0012 0.967167
\(310\) −3.43457 −0.195071
\(311\) 3.39506 0.192516 0.0962582 0.995356i \(-0.469313\pi\)
0.0962582 + 0.995356i \(0.469313\pi\)
\(312\) 0 0
\(313\) −23.4537 −1.32568 −0.662841 0.748760i \(-0.730649\pi\)
−0.662841 + 0.748760i \(0.730649\pi\)
\(314\) 2.43744 0.137553
\(315\) 0 0
\(316\) −1.84684 −0.103893
\(317\) −23.0761 −1.29608 −0.648041 0.761606i \(-0.724411\pi\)
−0.648041 + 0.761606i \(0.724411\pi\)
\(318\) 41.9080 2.35008
\(319\) 27.2039 1.52313
\(320\) −8.59329 −0.480380
\(321\) 5.36171 0.299261
\(322\) 0 0
\(323\) −13.9567 −0.776571
\(324\) −16.7617 −0.931208
\(325\) 0 0
\(326\) 3.44948 0.191049
\(327\) −17.2304 −0.952843
\(328\) 4.85522 0.268084
\(329\) 0 0
\(330\) −27.2187 −1.49834
\(331\) −16.9563 −0.932002 −0.466001 0.884784i \(-0.654306\pi\)
−0.466001 + 0.884784i \(0.654306\pi\)
\(332\) 38.9051 2.13519
\(333\) 29.4411 1.61336
\(334\) −15.5669 −0.851783
\(335\) −8.33881 −0.455598
\(336\) 0 0
\(337\) −2.51749 −0.137136 −0.0685682 0.997646i \(-0.521843\pi\)
−0.0685682 + 0.997646i \(0.521843\pi\)
\(338\) 0 0
\(339\) −12.1128 −0.657876
\(340\) −9.16145 −0.496849
\(341\) 11.7313 0.635287
\(342\) −21.3156 −1.15262
\(343\) 0 0
\(344\) −1.79876 −0.0969826
\(345\) 7.08554 0.381473
\(346\) 27.3795 1.47193
\(347\) 13.5624 0.728068 0.364034 0.931386i \(-0.381399\pi\)
0.364034 + 0.931386i \(0.381399\pi\)
\(348\) 26.0678 1.39738
\(349\) 1.15064 0.0615923 0.0307962 0.999526i \(-0.490196\pi\)
0.0307962 + 0.999526i \(0.490196\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 49.0489 2.61432
\(353\) 19.4859 1.03713 0.518565 0.855038i \(-0.326467\pi\)
0.518565 + 0.855038i \(0.326467\pi\)
\(354\) −34.9969 −1.86006
\(355\) −4.58267 −0.243223
\(356\) 34.6105 1.83435
\(357\) 0 0
\(358\) −5.37112 −0.283873
\(359\) −23.2966 −1.22955 −0.614775 0.788703i \(-0.710753\pi\)
−0.614775 + 0.788703i \(0.710753\pi\)
\(360\) −1.70220 −0.0897141
\(361\) −10.1875 −0.536182
\(362\) 20.9976 1.10361
\(363\) 64.9857 3.41087
\(364\) 0 0
\(365\) 3.05533 0.159924
\(366\) −59.0286 −3.08548
\(367\) −36.0668 −1.88267 −0.941337 0.337469i \(-0.890429\pi\)
−0.941337 + 0.337469i \(0.890429\pi\)
\(368\) −10.9653 −0.571604
\(369\) −29.4251 −1.53181
\(370\) −15.0077 −0.780212
\(371\) 0 0
\(372\) 11.2414 0.582838
\(373\) 29.5939 1.53231 0.766157 0.642653i \(-0.222166\pi\)
0.766157 + 0.642653i \(0.222166\pi\)
\(374\) 58.7779 3.03933
\(375\) −20.1769 −1.04193
\(376\) 1.74410 0.0899452
\(377\) 0 0
\(378\) 0 0
\(379\) −12.0481 −0.618869 −0.309435 0.950921i \(-0.600140\pi\)
−0.309435 + 0.950921i \(0.600140\pi\)
\(380\) 5.78472 0.296750
\(381\) 24.7572 1.26835
\(382\) −30.9746 −1.58480
\(383\) 15.7567 0.805128 0.402564 0.915392i \(-0.368119\pi\)
0.402564 + 0.915392i \(0.368119\pi\)
\(384\) 11.5476 0.589284
\(385\) 0 0
\(386\) 39.8172 2.02664
\(387\) 10.9014 0.554150
\(388\) 34.7465 1.76399
\(389\) −37.3109 −1.89174 −0.945869 0.324549i \(-0.894787\pi\)
−0.945869 + 0.324549i \(0.894787\pi\)
\(390\) 0 0
\(391\) −15.3010 −0.773804
\(392\) 0 0
\(393\) 17.4813 0.881816
\(394\) −18.4493 −0.929461
\(395\) −0.694114 −0.0349247
\(396\) 47.7919 2.40163
\(397\) −24.3492 −1.22205 −0.611027 0.791610i \(-0.709243\pi\)
−0.611027 + 0.791610i \(0.709243\pi\)
\(398\) −33.0903 −1.65867
\(399\) 0 0
\(400\) 14.3787 0.718933
\(401\) 32.4065 1.61830 0.809151 0.587600i \(-0.199927\pi\)
0.809151 + 0.587600i \(0.199927\pi\)
\(402\) 51.2656 2.55690
\(403\) 0 0
\(404\) −17.1695 −0.854212
\(405\) −6.29972 −0.313035
\(406\) 0 0
\(407\) 51.2611 2.54092
\(408\) 6.85201 0.339225
\(409\) −8.39823 −0.415266 −0.207633 0.978207i \(-0.566576\pi\)
−0.207633 + 0.978207i \(0.566576\pi\)
\(410\) 14.9995 0.740775
\(411\) 21.5034 1.06068
\(412\) 15.2169 0.749685
\(413\) 0 0
\(414\) −23.3687 −1.14851
\(415\) 14.6220 0.717768
\(416\) 0 0
\(417\) −9.75775 −0.477839
\(418\) −37.1135 −1.81528
\(419\) 13.8684 0.677518 0.338759 0.940873i \(-0.389993\pi\)
0.338759 + 0.940873i \(0.389993\pi\)
\(420\) 0 0
\(421\) 10.1628 0.495305 0.247653 0.968849i \(-0.420341\pi\)
0.247653 + 0.968849i \(0.420341\pi\)
\(422\) 14.4233 0.702115
\(423\) −10.5702 −0.513939
\(424\) 4.56327 0.221612
\(425\) 20.0640 0.973249
\(426\) 28.1735 1.36501
\(427\) 0 0
\(428\) 4.79899 0.231968
\(429\) 0 0
\(430\) −5.55703 −0.267984
\(431\) 14.8560 0.715590 0.357795 0.933800i \(-0.383529\pi\)
0.357795 + 0.933800i \(0.383529\pi\)
\(432\) −4.04553 −0.194640
\(433\) 24.5778 1.18113 0.590566 0.806989i \(-0.298904\pi\)
0.590566 + 0.806989i \(0.298904\pi\)
\(434\) 0 0
\(435\) 9.79728 0.469744
\(436\) −15.4220 −0.738581
\(437\) 9.66135 0.462165
\(438\) −18.7837 −0.897519
\(439\) −4.58169 −0.218672 −0.109336 0.994005i \(-0.534872\pi\)
−0.109336 + 0.994005i \(0.534872\pi\)
\(440\) −2.96378 −0.141293
\(441\) 0 0
\(442\) 0 0
\(443\) −19.1552 −0.910092 −0.455046 0.890468i \(-0.650377\pi\)
−0.455046 + 0.890468i \(0.650377\pi\)
\(444\) 49.1202 2.33114
\(445\) 13.0080 0.616637
\(446\) 5.19746 0.246107
\(447\) −19.4644 −0.920635
\(448\) 0 0
\(449\) 14.4360 0.681276 0.340638 0.940195i \(-0.389357\pi\)
0.340638 + 0.940195i \(0.389357\pi\)
\(450\) 30.6432 1.44453
\(451\) −51.2333 −2.41248
\(452\) −10.8415 −0.509943
\(453\) −7.22772 −0.339588
\(454\) 5.66905 0.266062
\(455\) 0 0
\(456\) −4.32650 −0.202607
\(457\) 28.9906 1.35612 0.678062 0.735005i \(-0.262820\pi\)
0.678062 + 0.735005i \(0.262820\pi\)
\(458\) −11.9636 −0.559024
\(459\) −5.64514 −0.263493
\(460\) 6.34190 0.295693
\(461\) 31.7874 1.48049 0.740243 0.672339i \(-0.234710\pi\)
0.740243 + 0.672339i \(0.234710\pi\)
\(462\) 0 0
\(463\) −35.1655 −1.63428 −0.817139 0.576441i \(-0.804441\pi\)
−0.817139 + 0.576441i \(0.804441\pi\)
\(464\) −15.1619 −0.703871
\(465\) 4.22495 0.195927
\(466\) 1.17732 0.0545382
\(467\) 27.3442 1.26534 0.632668 0.774423i \(-0.281960\pi\)
0.632668 + 0.774423i \(0.281960\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 5.38817 0.248538
\(471\) −2.99835 −0.138157
\(472\) −3.81073 −0.175403
\(473\) 18.9809 0.872744
\(474\) 4.26729 0.196003
\(475\) −12.6688 −0.581286
\(476\) 0 0
\(477\) −27.6558 −1.26627
\(478\) 7.28092 0.333021
\(479\) 9.54597 0.436166 0.218083 0.975930i \(-0.430020\pi\)
0.218083 + 0.975930i \(0.430020\pi\)
\(480\) 17.6646 0.806274
\(481\) 0 0
\(482\) −47.5496 −2.16582
\(483\) 0 0
\(484\) 58.1654 2.64388
\(485\) 13.0591 0.592983
\(486\) 46.1792 2.09473
\(487\) −16.0354 −0.726633 −0.363316 0.931666i \(-0.618356\pi\)
−0.363316 + 0.931666i \(0.618356\pi\)
\(488\) −6.42749 −0.290959
\(489\) −4.24328 −0.191888
\(490\) 0 0
\(491\) −14.4662 −0.652849 −0.326425 0.945223i \(-0.605844\pi\)
−0.326425 + 0.945223i \(0.605844\pi\)
\(492\) −49.0936 −2.21331
\(493\) −21.1569 −0.952859
\(494\) 0 0
\(495\) 17.9621 0.807334
\(496\) −6.53835 −0.293580
\(497\) 0 0
\(498\) −89.8938 −4.02824
\(499\) 10.7450 0.481014 0.240507 0.970647i \(-0.422686\pi\)
0.240507 + 0.970647i \(0.422686\pi\)
\(500\) −18.0593 −0.807636
\(501\) 19.1492 0.855523
\(502\) 3.39422 0.151492
\(503\) −37.0876 −1.65366 −0.826828 0.562455i \(-0.809857\pi\)
−0.826828 + 0.562455i \(0.809857\pi\)
\(504\) 0 0
\(505\) −6.45295 −0.287153
\(506\) −40.6883 −1.80881
\(507\) 0 0
\(508\) 22.1589 0.983142
\(509\) 22.0815 0.978747 0.489373 0.872074i \(-0.337226\pi\)
0.489373 + 0.872074i \(0.337226\pi\)
\(510\) 21.1684 0.937352
\(511\) 0 0
\(512\) −31.1973 −1.37874
\(513\) 3.56446 0.157375
\(514\) −14.0542 −0.619906
\(515\) 5.71912 0.252014
\(516\) 18.1882 0.800690
\(517\) −18.4042 −0.809414
\(518\) 0 0
\(519\) −33.6801 −1.47839
\(520\) 0 0
\(521\) −10.7999 −0.473153 −0.236576 0.971613i \(-0.576025\pi\)
−0.236576 + 0.971613i \(0.576025\pi\)
\(522\) −32.3123 −1.41427
\(523\) −9.71457 −0.424789 −0.212394 0.977184i \(-0.568126\pi\)
−0.212394 + 0.977184i \(0.568126\pi\)
\(524\) 15.6466 0.683526
\(525\) 0 0
\(526\) −6.83226 −0.297901
\(527\) −9.12363 −0.397432
\(528\) −51.8158 −2.25500
\(529\) −12.4081 −0.539482
\(530\) 14.0976 0.612361
\(531\) 23.0950 1.00224
\(532\) 0 0
\(533\) 0 0
\(534\) −79.9708 −3.46068
\(535\) 1.80365 0.0779785
\(536\) 5.58219 0.241114
\(537\) 6.60714 0.285119
\(538\) −59.3935 −2.56063
\(539\) 0 0
\(540\) 2.33978 0.100688
\(541\) 3.28022 0.141028 0.0705139 0.997511i \(-0.477536\pi\)
0.0705139 + 0.997511i \(0.477536\pi\)
\(542\) −38.2962 −1.64496
\(543\) −25.8297 −1.10846
\(544\) −38.1461 −1.63550
\(545\) −5.79620 −0.248282
\(546\) 0 0
\(547\) −24.8189 −1.06118 −0.530589 0.847629i \(-0.678029\pi\)
−0.530589 + 0.847629i \(0.678029\pi\)
\(548\) 19.2466 0.822172
\(549\) 38.9539 1.66251
\(550\) 53.3541 2.27503
\(551\) 13.3589 0.569108
\(552\) −4.74322 −0.201885
\(553\) 0 0
\(554\) −16.5918 −0.704920
\(555\) 18.4613 0.783637
\(556\) −8.73366 −0.370390
\(557\) 11.6933 0.495461 0.247730 0.968829i \(-0.420315\pi\)
0.247730 + 0.968829i \(0.420315\pi\)
\(558\) −13.9342 −0.589883
\(559\) 0 0
\(560\) 0 0
\(561\) −72.3040 −3.05268
\(562\) 6.87145 0.289855
\(563\) −28.5085 −1.20149 −0.600745 0.799441i \(-0.705129\pi\)
−0.600745 + 0.799441i \(0.705129\pi\)
\(564\) −17.6355 −0.742589
\(565\) −4.07467 −0.171423
\(566\) 31.0212 1.30392
\(567\) 0 0
\(568\) 3.06775 0.128720
\(569\) 3.73705 0.156665 0.0783326 0.996927i \(-0.475040\pi\)
0.0783326 + 0.996927i \(0.475040\pi\)
\(570\) −13.3661 −0.559846
\(571\) −34.0436 −1.42468 −0.712341 0.701833i \(-0.752365\pi\)
−0.712341 + 0.701833i \(0.752365\pi\)
\(572\) 0 0
\(573\) 38.1026 1.59176
\(574\) 0 0
\(575\) −13.8891 −0.579215
\(576\) −34.8634 −1.45264
\(577\) −17.6755 −0.735840 −0.367920 0.929857i \(-0.619930\pi\)
−0.367920 + 0.929857i \(0.619930\pi\)
\(578\) −10.5548 −0.439023
\(579\) −48.9800 −2.03554
\(580\) 8.76904 0.364115
\(581\) 0 0
\(582\) −80.2851 −3.32792
\(583\) −48.1526 −1.99428
\(584\) −2.04531 −0.0846356
\(585\) 0 0
\(586\) 39.0575 1.61345
\(587\) 24.4054 1.00732 0.503660 0.863902i \(-0.331987\pi\)
0.503660 + 0.863902i \(0.331987\pi\)
\(588\) 0 0
\(589\) 5.76085 0.237371
\(590\) −11.7727 −0.484676
\(591\) 22.6949 0.933542
\(592\) −28.5699 −1.17421
\(593\) −17.9229 −0.736004 −0.368002 0.929825i \(-0.619958\pi\)
−0.368002 + 0.929825i \(0.619958\pi\)
\(594\) −15.0115 −0.615930
\(595\) 0 0
\(596\) −17.4216 −0.713616
\(597\) 40.7051 1.66595
\(598\) 0 0
\(599\) 12.5797 0.513992 0.256996 0.966413i \(-0.417267\pi\)
0.256996 + 0.966413i \(0.417267\pi\)
\(600\) 6.21974 0.253920
\(601\) 14.3960 0.587227 0.293614 0.955924i \(-0.405142\pi\)
0.293614 + 0.955924i \(0.405142\pi\)
\(602\) 0 0
\(603\) −33.8310 −1.37770
\(604\) −6.46916 −0.263227
\(605\) 21.8608 0.888769
\(606\) 39.6716 1.61155
\(607\) 8.14443 0.330572 0.165286 0.986246i \(-0.447145\pi\)
0.165286 + 0.986246i \(0.447145\pi\)
\(608\) 24.0862 0.976824
\(609\) 0 0
\(610\) −19.8569 −0.803982
\(611\) 0 0
\(612\) −37.1685 −1.50245
\(613\) 15.6422 0.631781 0.315890 0.948796i \(-0.397697\pi\)
0.315890 + 0.948796i \(0.397697\pi\)
\(614\) 4.50895 0.181967
\(615\) −18.4513 −0.744027
\(616\) 0 0
\(617\) −31.9466 −1.28612 −0.643062 0.765814i \(-0.722336\pi\)
−0.643062 + 0.765814i \(0.722336\pi\)
\(618\) −35.1602 −1.41435
\(619\) 28.1268 1.13051 0.565255 0.824916i \(-0.308778\pi\)
0.565255 + 0.824916i \(0.308778\pi\)
\(620\) 3.78153 0.151870
\(621\) 3.90778 0.156814
\(622\) −7.02131 −0.281529
\(623\) 0 0
\(624\) 0 0
\(625\) 14.5507 0.582030
\(626\) 48.5044 1.93863
\(627\) 45.6542 1.82325
\(628\) −2.68367 −0.107090
\(629\) −39.8665 −1.58958
\(630\) 0 0
\(631\) −43.5970 −1.73557 −0.867784 0.496941i \(-0.834456\pi\)
−0.867784 + 0.496941i \(0.834456\pi\)
\(632\) 0.464656 0.0184830
\(633\) −17.7424 −0.705198
\(634\) 47.7235 1.89534
\(635\) 8.32818 0.330494
\(636\) −46.1415 −1.82963
\(637\) 0 0
\(638\) −56.2603 −2.22737
\(639\) −18.5921 −0.735493
\(640\) 3.88453 0.153550
\(641\) −14.5144 −0.573286 −0.286643 0.958037i \(-0.592539\pi\)
−0.286643 + 0.958037i \(0.592539\pi\)
\(642\) −11.0885 −0.437629
\(643\) 19.0778 0.752355 0.376177 0.926548i \(-0.377238\pi\)
0.376177 + 0.926548i \(0.377238\pi\)
\(644\) 0 0
\(645\) 6.83583 0.269161
\(646\) 28.8637 1.13563
\(647\) −15.2560 −0.599774 −0.299887 0.953975i \(-0.596949\pi\)
−0.299887 + 0.953975i \(0.596949\pi\)
\(648\) 4.21718 0.165666
\(649\) 40.2117 1.57845
\(650\) 0 0
\(651\) 0 0
\(652\) −3.79794 −0.148739
\(653\) 8.16961 0.319701 0.159851 0.987141i \(-0.448899\pi\)
0.159851 + 0.987141i \(0.448899\pi\)
\(654\) 35.6341 1.39340
\(655\) 5.88061 0.229774
\(656\) 28.5544 1.11486
\(657\) 12.3956 0.483600
\(658\) 0 0
\(659\) 1.86780 0.0727590 0.0363795 0.999338i \(-0.488417\pi\)
0.0363795 + 0.999338i \(0.488417\pi\)
\(660\) 29.9683 1.16652
\(661\) −9.73187 −0.378526 −0.189263 0.981926i \(-0.560610\pi\)
−0.189263 + 0.981926i \(0.560610\pi\)
\(662\) 35.0672 1.36292
\(663\) 0 0
\(664\) −9.78833 −0.379861
\(665\) 0 0
\(666\) −60.8869 −2.35932
\(667\) 14.6456 0.567080
\(668\) 17.1395 0.663146
\(669\) −6.39351 −0.247188
\(670\) 17.2454 0.666250
\(671\) 67.8243 2.61833
\(672\) 0 0
\(673\) −20.5640 −0.792683 −0.396341 0.918103i \(-0.629720\pi\)
−0.396341 + 0.918103i \(0.629720\pi\)
\(674\) 5.20640 0.200543
\(675\) −5.12423 −0.197232
\(676\) 0 0
\(677\) 38.9226 1.49592 0.747959 0.663745i \(-0.231034\pi\)
0.747959 + 0.663745i \(0.231034\pi\)
\(678\) 25.0504 0.962054
\(679\) 0 0
\(680\) 2.30498 0.0883918
\(681\) −6.97362 −0.267230
\(682\) −24.2615 −0.929021
\(683\) −37.2679 −1.42602 −0.713008 0.701156i \(-0.752668\pi\)
−0.713008 + 0.701156i \(0.752668\pi\)
\(684\) 23.4689 0.897356
\(685\) 7.23361 0.276382
\(686\) 0 0
\(687\) 14.7167 0.561479
\(688\) −10.5788 −0.403314
\(689\) 0 0
\(690\) −14.6536 −0.557851
\(691\) −15.0565 −0.572776 −0.286388 0.958114i \(-0.592455\pi\)
−0.286388 + 0.958114i \(0.592455\pi\)
\(692\) −30.1453 −1.14595
\(693\) 0 0
\(694\) −28.0483 −1.06470
\(695\) −3.28245 −0.124510
\(696\) −6.55853 −0.248600
\(697\) 39.8449 1.50923
\(698\) −2.37963 −0.0900704
\(699\) −1.44825 −0.0547777
\(700\) 0 0
\(701\) 27.1442 1.02522 0.512612 0.858621i \(-0.328678\pi\)
0.512612 + 0.858621i \(0.328678\pi\)
\(702\) 0 0
\(703\) 25.1725 0.949399
\(704\) −60.7022 −2.28780
\(705\) −6.62811 −0.249629
\(706\) −40.2987 −1.51666
\(707\) 0 0
\(708\) 38.5322 1.44813
\(709\) 8.79731 0.330390 0.165195 0.986261i \(-0.447175\pi\)
0.165195 + 0.986261i \(0.447175\pi\)
\(710\) 9.47740 0.355680
\(711\) −2.81605 −0.105610
\(712\) −8.70784 −0.326340
\(713\) 6.31572 0.236526
\(714\) 0 0
\(715\) 0 0
\(716\) 5.91371 0.221006
\(717\) −8.95642 −0.334484
\(718\) 48.1796 1.79805
\(719\) −22.5057 −0.839320 −0.419660 0.907681i \(-0.637851\pi\)
−0.419660 + 0.907681i \(0.637851\pi\)
\(720\) −10.0110 −0.373087
\(721\) 0 0
\(722\) 21.0686 0.784093
\(723\) 58.4918 2.17533
\(724\) −23.1188 −0.859204
\(725\) −19.2046 −0.713243
\(726\) −134.397 −4.98793
\(727\) −34.9184 −1.29505 −0.647525 0.762044i \(-0.724196\pi\)
−0.647525 + 0.762044i \(0.724196\pi\)
\(728\) 0 0
\(729\) −34.7222 −1.28601
\(730\) −6.31872 −0.233866
\(731\) −14.7617 −0.545983
\(732\) 64.9917 2.40216
\(733\) −46.9386 −1.73372 −0.866859 0.498553i \(-0.833865\pi\)
−0.866859 + 0.498553i \(0.833865\pi\)
\(734\) 74.5896 2.75315
\(735\) 0 0
\(736\) 26.4061 0.973344
\(737\) −58.9046 −2.16978
\(738\) 60.8539 2.24006
\(739\) 36.1012 1.32801 0.664003 0.747730i \(-0.268856\pi\)
0.664003 + 0.747730i \(0.268856\pi\)
\(740\) 16.5237 0.607425
\(741\) 0 0
\(742\) 0 0
\(743\) 24.6750 0.905238 0.452619 0.891704i \(-0.350490\pi\)
0.452619 + 0.891704i \(0.350490\pi\)
\(744\) −2.82828 −0.103690
\(745\) −6.54771 −0.239890
\(746\) −61.2030 −2.24080
\(747\) 59.3223 2.17049
\(748\) −64.7156 −2.36624
\(749\) 0 0
\(750\) 41.7277 1.52368
\(751\) −51.3369 −1.87331 −0.936656 0.350252i \(-0.886096\pi\)
−0.936656 + 0.350252i \(0.886096\pi\)
\(752\) 10.2574 0.374048
\(753\) −4.17531 −0.152157
\(754\) 0 0
\(755\) −2.43136 −0.0884864
\(756\) 0 0
\(757\) 43.1811 1.56944 0.784722 0.619848i \(-0.212806\pi\)
0.784722 + 0.619848i \(0.212806\pi\)
\(758\) 24.9166 0.905011
\(759\) 50.0516 1.81676
\(760\) −1.45541 −0.0527932
\(761\) 29.2586 1.06062 0.530311 0.847803i \(-0.322075\pi\)
0.530311 + 0.847803i \(0.322075\pi\)
\(762\) −51.2002 −1.85479
\(763\) 0 0
\(764\) 34.1037 1.23383
\(765\) −13.9694 −0.505063
\(766\) −32.5863 −1.17739
\(767\) 0 0
\(768\) 27.2092 0.981827
\(769\) −32.3727 −1.16739 −0.583695 0.811973i \(-0.698394\pi\)
−0.583695 + 0.811973i \(0.698394\pi\)
\(770\) 0 0
\(771\) 17.2884 0.622628
\(772\) −43.8395 −1.57782
\(773\) 7.69157 0.276647 0.138323 0.990387i \(-0.455829\pi\)
0.138323 + 0.990387i \(0.455829\pi\)
\(774\) −22.5451 −0.810369
\(775\) −8.28175 −0.297489
\(776\) −8.74206 −0.313822
\(777\) 0 0
\(778\) 77.1624 2.76641
\(779\) −25.1589 −0.901411
\(780\) 0 0
\(781\) −32.3716 −1.15835
\(782\) 31.6439 1.13158
\(783\) 5.40335 0.193100
\(784\) 0 0
\(785\) −1.00863 −0.0359994
\(786\) −36.1530 −1.28953
\(787\) −51.1838 −1.82451 −0.912253 0.409628i \(-0.865659\pi\)
−0.912253 + 0.409628i \(0.865659\pi\)
\(788\) 20.3130 0.723621
\(789\) 8.40452 0.299209
\(790\) 1.43549 0.0510725
\(791\) 0 0
\(792\) −12.0242 −0.427262
\(793\) 0 0
\(794\) 50.3565 1.78709
\(795\) −17.3418 −0.615050
\(796\) 36.4330 1.29133
\(797\) 3.10414 0.109954 0.0549771 0.998488i \(-0.482491\pi\)
0.0549771 + 0.998488i \(0.482491\pi\)
\(798\) 0 0
\(799\) 14.3132 0.506364
\(800\) −34.6261 −1.22422
\(801\) 52.7740 1.86468
\(802\) −67.0196 −2.36655
\(803\) 21.5826 0.761633
\(804\) −56.4444 −1.99064
\(805\) 0 0
\(806\) 0 0
\(807\) 73.0612 2.57188
\(808\) 4.31975 0.151968
\(809\) 37.6810 1.32479 0.662397 0.749153i \(-0.269539\pi\)
0.662397 + 0.749153i \(0.269539\pi\)
\(810\) 13.0284 0.457771
\(811\) 22.0872 0.775587 0.387793 0.921746i \(-0.373237\pi\)
0.387793 + 0.921746i \(0.373237\pi\)
\(812\) 0 0
\(813\) 47.1091 1.65219
\(814\) −106.013 −3.71574
\(815\) −1.42741 −0.0500001
\(816\) 40.2979 1.41071
\(817\) 9.32086 0.326096
\(818\) 17.3683 0.607269
\(819\) 0 0
\(820\) −16.5148 −0.576721
\(821\) 23.3585 0.815216 0.407608 0.913157i \(-0.366363\pi\)
0.407608 + 0.913157i \(0.366363\pi\)
\(822\) −44.4710 −1.55110
\(823\) −46.3395 −1.61529 −0.807647 0.589666i \(-0.799259\pi\)
−0.807647 + 0.589666i \(0.799259\pi\)
\(824\) −3.82851 −0.133372
\(825\) −65.6321 −2.28502
\(826\) 0 0
\(827\) 32.2703 1.12215 0.561074 0.827766i \(-0.310388\pi\)
0.561074 + 0.827766i \(0.310388\pi\)
\(828\) 25.7294 0.894159
\(829\) 50.1803 1.74283 0.871417 0.490543i \(-0.163202\pi\)
0.871417 + 0.490543i \(0.163202\pi\)
\(830\) −30.2398 −1.04964
\(831\) 20.4100 0.708015
\(832\) 0 0
\(833\) 0 0
\(834\) 20.1800 0.698775
\(835\) 6.44168 0.222923
\(836\) 40.8627 1.41327
\(837\) 2.33012 0.0805408
\(838\) −28.6812 −0.990777
\(839\) 33.2701 1.14861 0.574306 0.818640i \(-0.305272\pi\)
0.574306 + 0.818640i \(0.305272\pi\)
\(840\) 0 0
\(841\) −8.74929 −0.301700
\(842\) −21.0176 −0.724316
\(843\) −8.45272 −0.291127
\(844\) −15.8803 −0.546623
\(845\) 0 0
\(846\) 21.8601 0.751565
\(847\) 0 0
\(848\) 26.8374 0.921600
\(849\) −38.1599 −1.30964
\(850\) −41.4943 −1.42324
\(851\) 27.5971 0.946016
\(852\) −31.0196 −1.06271
\(853\) 50.9815 1.74557 0.872787 0.488102i \(-0.162310\pi\)
0.872787 + 0.488102i \(0.162310\pi\)
\(854\) 0 0
\(855\) 8.82053 0.301656
\(856\) −1.20740 −0.0412682
\(857\) 4.56461 0.155924 0.0779621 0.996956i \(-0.475159\pi\)
0.0779621 + 0.996956i \(0.475159\pi\)
\(858\) 0 0
\(859\) −11.2727 −0.384620 −0.192310 0.981334i \(-0.561598\pi\)
−0.192310 + 0.981334i \(0.561598\pi\)
\(860\) 6.11840 0.208636
\(861\) 0 0
\(862\) −30.7237 −1.04645
\(863\) 14.3561 0.488689 0.244344 0.969689i \(-0.421427\pi\)
0.244344 + 0.969689i \(0.421427\pi\)
\(864\) 9.74228 0.331439
\(865\) −11.3298 −0.385224
\(866\) −50.8291 −1.72724
\(867\) 12.9837 0.440951
\(868\) 0 0
\(869\) −4.90315 −0.166328
\(870\) −20.2617 −0.686936
\(871\) 0 0
\(872\) 3.88011 0.131397
\(873\) 52.9814 1.79315
\(874\) −19.9806 −0.675853
\(875\) 0 0
\(876\) 20.6812 0.698753
\(877\) 50.3066 1.69873 0.849367 0.527802i \(-0.176984\pi\)
0.849367 + 0.527802i \(0.176984\pi\)
\(878\) 9.47537 0.319778
\(879\) −48.0456 −1.62054
\(880\) −17.4305 −0.587584
\(881\) −30.3462 −1.02239 −0.511194 0.859465i \(-0.670797\pi\)
−0.511194 + 0.859465i \(0.670797\pi\)
\(882\) 0 0
\(883\) −34.6742 −1.16688 −0.583440 0.812156i \(-0.698294\pi\)
−0.583440 + 0.812156i \(0.698294\pi\)
\(884\) 0 0
\(885\) 14.4819 0.486804
\(886\) 39.6148 1.33088
\(887\) 56.7734 1.90626 0.953132 0.302555i \(-0.0978395\pi\)
0.953132 + 0.302555i \(0.0978395\pi\)
\(888\) −12.3584 −0.414721
\(889\) 0 0
\(890\) −26.9017 −0.901747
\(891\) −44.5006 −1.49083
\(892\) −5.72250 −0.191604
\(893\) −9.03763 −0.302433
\(894\) 40.2542 1.34630
\(895\) 2.22260 0.0742934
\(896\) 0 0
\(897\) 0 0
\(898\) −29.8549 −0.996273
\(899\) 8.73285 0.291257
\(900\) −33.7387 −1.12462
\(901\) 37.4490 1.24761
\(902\) 105.955 3.52793
\(903\) 0 0
\(904\) 2.72768 0.0907212
\(905\) −8.68895 −0.288830
\(906\) 14.9476 0.496601
\(907\) 9.37033 0.311137 0.155568 0.987825i \(-0.450279\pi\)
0.155568 + 0.987825i \(0.450279\pi\)
\(908\) −6.24173 −0.207139
\(909\) −26.1799 −0.868334
\(910\) 0 0
\(911\) −10.0569 −0.333200 −0.166600 0.986025i \(-0.553279\pi\)
−0.166600 + 0.986025i \(0.553279\pi\)
\(912\) −25.4449 −0.842566
\(913\) 103.289 3.41836
\(914\) −59.9553 −1.98314
\(915\) 24.4264 0.807512
\(916\) 13.1722 0.435222
\(917\) 0 0
\(918\) 11.6747 0.385322
\(919\) 38.8620 1.28194 0.640969 0.767567i \(-0.278533\pi\)
0.640969 + 0.767567i \(0.278533\pi\)
\(920\) −1.59559 −0.0526051
\(921\) −5.54657 −0.182766
\(922\) −65.7393 −2.16501
\(923\) 0 0
\(924\) 0 0
\(925\) −36.1878 −1.18985
\(926\) 72.7255 2.38991
\(927\) 23.2027 0.762078
\(928\) 36.5122 1.19857
\(929\) 35.2899 1.15782 0.578912 0.815390i \(-0.303478\pi\)
0.578912 + 0.815390i \(0.303478\pi\)
\(930\) −8.73759 −0.286517
\(931\) 0 0
\(932\) −1.29625 −0.0424601
\(933\) 8.63707 0.282765
\(934\) −56.5503 −1.85038
\(935\) −24.3226 −0.795435
\(936\) 0 0
\(937\) −12.0937 −0.395085 −0.197543 0.980294i \(-0.563296\pi\)
−0.197543 + 0.980294i \(0.563296\pi\)
\(938\) 0 0
\(939\) −59.6664 −1.94714
\(940\) −5.93248 −0.193496
\(941\) −5.71098 −0.186173 −0.0930863 0.995658i \(-0.529673\pi\)
−0.0930863 + 0.995658i \(0.529673\pi\)
\(942\) 6.20087 0.202035
\(943\) −27.5822 −0.898198
\(944\) −22.4116 −0.729435
\(945\) 0 0
\(946\) −39.2543 −1.27627
\(947\) 10.7318 0.348736 0.174368 0.984681i \(-0.444212\pi\)
0.174368 + 0.984681i \(0.444212\pi\)
\(948\) −4.69837 −0.152596
\(949\) 0 0
\(950\) 26.2003 0.850051
\(951\) −58.7057 −1.90366
\(952\) 0 0
\(953\) 39.1509 1.26822 0.634111 0.773242i \(-0.281366\pi\)
0.634111 + 0.773242i \(0.281366\pi\)
\(954\) 57.1947 1.85175
\(955\) 12.8175 0.414764
\(956\) −8.01643 −0.259270
\(957\) 69.2071 2.23715
\(958\) −19.7420 −0.637834
\(959\) 0 0
\(960\) −21.8614 −0.705574
\(961\) −27.2341 −0.878519
\(962\) 0 0
\(963\) 7.31749 0.235803
\(964\) 52.3530 1.68618
\(965\) −16.4766 −0.530400
\(966\) 0 0
\(967\) 0.254316 0.00817824 0.00408912 0.999992i \(-0.498698\pi\)
0.00408912 + 0.999992i \(0.498698\pi\)
\(968\) −14.6341 −0.470359
\(969\) −35.5059 −1.14062
\(970\) −27.0074 −0.867156
\(971\) −6.64898 −0.213376 −0.106688 0.994293i \(-0.534025\pi\)
−0.106688 + 0.994293i \(0.534025\pi\)
\(972\) −50.8442 −1.63083
\(973\) 0 0
\(974\) 33.1627 1.06260
\(975\) 0 0
\(976\) −37.8012 −1.20999
\(977\) 6.30276 0.201643 0.100822 0.994905i \(-0.467853\pi\)
0.100822 + 0.994905i \(0.467853\pi\)
\(978\) 8.77550 0.280609
\(979\) 91.8871 2.93672
\(980\) 0 0
\(981\) −23.5155 −0.750791
\(982\) 29.9174 0.954703
\(983\) −20.2273 −0.645151 −0.322575 0.946544i \(-0.604549\pi\)
−0.322575 + 0.946544i \(0.604549\pi\)
\(984\) 12.3517 0.393758
\(985\) 7.63442 0.243253
\(986\) 43.7545 1.39343
\(987\) 0 0
\(988\) 0 0
\(989\) 10.2186 0.324934
\(990\) −37.1472 −1.18062
\(991\) −48.3650 −1.53637 −0.768183 0.640230i \(-0.778839\pi\)
−0.768183 + 0.640230i \(0.778839\pi\)
\(992\) 15.7454 0.499917
\(993\) −43.1369 −1.36891
\(994\) 0 0
\(995\) 13.6930 0.434096
\(996\) 98.9748 3.13614
\(997\) −1.75489 −0.0555779 −0.0277890 0.999614i \(-0.508847\pi\)
−0.0277890 + 0.999614i \(0.508847\pi\)
\(998\) −22.2217 −0.703417
\(999\) 10.1817 0.322134
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cw.1.4 24
7.3 odd 6 1183.2.e.k.170.21 48
7.5 odd 6 1183.2.e.k.508.21 yes 48
7.6 odd 2 8281.2.a.cv.1.4 24
13.12 even 2 8281.2.a.ct.1.21 24
91.12 odd 6 1183.2.e.l.508.4 yes 48
91.38 odd 6 1183.2.e.l.170.4 yes 48
91.90 odd 2 8281.2.a.cu.1.21 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1183.2.e.k.170.21 48 7.3 odd 6
1183.2.e.k.508.21 yes 48 7.5 odd 6
1183.2.e.l.170.4 yes 48 91.38 odd 6
1183.2.e.l.508.4 yes 48 91.12 odd 6
8281.2.a.ct.1.21 24 13.12 even 2
8281.2.a.cu.1.21 24 91.90 odd 2
8281.2.a.cv.1.4 24 7.6 odd 2
8281.2.a.cw.1.4 24 1.1 even 1 trivial