Properties

Label 8281.2.a.cw.1.5
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1183)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.76732 q^{2} +2.32802 q^{3} +1.12344 q^{4} +4.06760 q^{5} -4.11437 q^{6} +1.54917 q^{8} +2.41970 q^{9} -7.18877 q^{10} -2.90676 q^{11} +2.61538 q^{12} +9.46947 q^{15} -4.98476 q^{16} +3.37669 q^{17} -4.27639 q^{18} -1.18631 q^{19} +4.56969 q^{20} +5.13720 q^{22} -0.00746406 q^{23} +3.60651 q^{24} +11.5454 q^{25} -1.35096 q^{27} -8.00705 q^{29} -16.7356 q^{30} -0.679440 q^{31} +5.71135 q^{32} -6.76702 q^{33} -5.96771 q^{34} +2.71837 q^{36} -2.58986 q^{37} +2.09659 q^{38} +6.30142 q^{40} +10.5725 q^{41} +4.33374 q^{43} -3.26556 q^{44} +9.84236 q^{45} +0.0131914 q^{46} +11.4149 q^{47} -11.6047 q^{48} -20.4044 q^{50} +7.86103 q^{51} -6.09729 q^{53} +2.38759 q^{54} -11.8236 q^{55} -2.76175 q^{57} +14.1511 q^{58} +3.95630 q^{59} +10.6383 q^{60} -3.60341 q^{61} +1.20079 q^{62} -0.124274 q^{64} +11.9595 q^{66} +1.67759 q^{67} +3.79350 q^{68} -0.0173765 q^{69} +7.13225 q^{71} +3.74853 q^{72} +10.4944 q^{73} +4.57712 q^{74} +26.8779 q^{75} -1.33274 q^{76} +11.4421 q^{79} -20.2760 q^{80} -10.4042 q^{81} -18.6850 q^{82} +1.82071 q^{83} +13.7350 q^{85} -7.65912 q^{86} -18.6406 q^{87} -4.50308 q^{88} -3.60636 q^{89} -17.3946 q^{90} -0.00838539 q^{92} -1.58175 q^{93} -20.1738 q^{94} -4.82543 q^{95} +13.2962 q^{96} +10.1115 q^{97} -7.03349 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + 23 q^{4} + 13 q^{5} + 14 q^{6} + 26 q^{9} - 5 q^{10} + q^{11} - 5 q^{12} - 5 q^{15} + 17 q^{16} + 5 q^{17} + 24 q^{19} + 34 q^{20} - 14 q^{22} + 11 q^{23} + 32 q^{24} + 33 q^{25} + 21 q^{27}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.76732 −1.24969 −0.624844 0.780750i \(-0.714837\pi\)
−0.624844 + 0.780750i \(0.714837\pi\)
\(3\) 2.32802 1.34409 0.672043 0.740512i \(-0.265417\pi\)
0.672043 + 0.740512i \(0.265417\pi\)
\(4\) 1.12344 0.561718
\(5\) 4.06760 1.81909 0.909543 0.415610i \(-0.136432\pi\)
0.909543 + 0.415610i \(0.136432\pi\)
\(6\) −4.11437 −1.67969
\(7\) 0 0
\(8\) 1.54917 0.547716
\(9\) 2.41970 0.806565
\(10\) −7.18877 −2.27329
\(11\) −2.90676 −0.876423 −0.438211 0.898872i \(-0.644388\pi\)
−0.438211 + 0.898872i \(0.644388\pi\)
\(12\) 2.61538 0.754997
\(13\) 0 0
\(14\) 0 0
\(15\) 9.46947 2.44501
\(16\) −4.98476 −1.24619
\(17\) 3.37669 0.818969 0.409484 0.912317i \(-0.365709\pi\)
0.409484 + 0.912317i \(0.365709\pi\)
\(18\) −4.27639 −1.00795
\(19\) −1.18631 −0.272158 −0.136079 0.990698i \(-0.543450\pi\)
−0.136079 + 0.990698i \(0.543450\pi\)
\(20\) 4.56969 1.02181
\(21\) 0 0
\(22\) 5.13720 1.09525
\(23\) −0.00746406 −0.00155636 −0.000778182 1.00000i \(-0.500248\pi\)
−0.000778182 1.00000i \(0.500248\pi\)
\(24\) 3.60651 0.736177
\(25\) 11.5454 2.30907
\(26\) 0 0
\(27\) −1.35096 −0.259993
\(28\) 0 0
\(29\) −8.00705 −1.48687 −0.743436 0.668807i \(-0.766805\pi\)
−0.743436 + 0.668807i \(0.766805\pi\)
\(30\) −16.7356 −3.05549
\(31\) −0.679440 −0.122031 −0.0610155 0.998137i \(-0.519434\pi\)
−0.0610155 + 0.998137i \(0.519434\pi\)
\(32\) 5.71135 1.00963
\(33\) −6.76702 −1.17799
\(34\) −5.96771 −1.02345
\(35\) 0 0
\(36\) 2.71837 0.453062
\(37\) −2.58986 −0.425770 −0.212885 0.977077i \(-0.568286\pi\)
−0.212885 + 0.977077i \(0.568286\pi\)
\(38\) 2.09659 0.340112
\(39\) 0 0
\(40\) 6.30142 0.996342
\(41\) 10.5725 1.65115 0.825573 0.564295i \(-0.190852\pi\)
0.825573 + 0.564295i \(0.190852\pi\)
\(42\) 0 0
\(43\) 4.33374 0.660888 0.330444 0.943826i \(-0.392801\pi\)
0.330444 + 0.943826i \(0.392801\pi\)
\(44\) −3.26556 −0.492302
\(45\) 9.84236 1.46721
\(46\) 0.0131914 0.00194497
\(47\) 11.4149 1.66503 0.832517 0.553999i \(-0.186899\pi\)
0.832517 + 0.553999i \(0.186899\pi\)
\(48\) −11.6047 −1.67499
\(49\) 0 0
\(50\) −20.4044 −2.88562
\(51\) 7.86103 1.10076
\(52\) 0 0
\(53\) −6.09729 −0.837527 −0.418763 0.908095i \(-0.637536\pi\)
−0.418763 + 0.908095i \(0.637536\pi\)
\(54\) 2.38759 0.324909
\(55\) −11.8236 −1.59429
\(56\) 0 0
\(57\) −2.76175 −0.365803
\(58\) 14.1511 1.85812
\(59\) 3.95630 0.515067 0.257533 0.966269i \(-0.417090\pi\)
0.257533 + 0.966269i \(0.417090\pi\)
\(60\) 10.6383 1.37340
\(61\) −3.60341 −0.461370 −0.230685 0.973029i \(-0.574097\pi\)
−0.230685 + 0.973029i \(0.574097\pi\)
\(62\) 1.20079 0.152501
\(63\) 0 0
\(64\) −0.124274 −0.0155343
\(65\) 0 0
\(66\) 11.9595 1.47211
\(67\) 1.67759 0.204951 0.102475 0.994736i \(-0.467324\pi\)
0.102475 + 0.994736i \(0.467324\pi\)
\(68\) 3.79350 0.460029
\(69\) −0.0173765 −0.00209189
\(70\) 0 0
\(71\) 7.13225 0.846442 0.423221 0.906026i \(-0.360899\pi\)
0.423221 + 0.906026i \(0.360899\pi\)
\(72\) 3.74853 0.441769
\(73\) 10.4944 1.22828 0.614139 0.789198i \(-0.289503\pi\)
0.614139 + 0.789198i \(0.289503\pi\)
\(74\) 4.57712 0.532079
\(75\) 26.8779 3.10359
\(76\) −1.33274 −0.152876
\(77\) 0 0
\(78\) 0 0
\(79\) 11.4421 1.28733 0.643667 0.765306i \(-0.277412\pi\)
0.643667 + 0.765306i \(0.277412\pi\)
\(80\) −20.2760 −2.26693
\(81\) −10.4042 −1.15602
\(82\) −18.6850 −2.06342
\(83\) 1.82071 0.199849 0.0999246 0.994995i \(-0.468140\pi\)
0.0999246 + 0.994995i \(0.468140\pi\)
\(84\) 0 0
\(85\) 13.7350 1.48977
\(86\) −7.65912 −0.825904
\(87\) −18.6406 −1.99848
\(88\) −4.50308 −0.480030
\(89\) −3.60636 −0.382273 −0.191137 0.981563i \(-0.561217\pi\)
−0.191137 + 0.981563i \(0.561217\pi\)
\(90\) −17.3946 −1.83356
\(91\) 0 0
\(92\) −0.00838539 −0.000874237 0
\(93\) −1.58175 −0.164020
\(94\) −20.1738 −2.08077
\(95\) −4.82543 −0.495078
\(96\) 13.2962 1.35703
\(97\) 10.1115 1.02667 0.513333 0.858189i \(-0.328411\pi\)
0.513333 + 0.858189i \(0.328411\pi\)
\(98\) 0 0
\(99\) −7.03349 −0.706892
\(100\) 12.9705 1.29705
\(101\) −5.16963 −0.514398 −0.257199 0.966359i \(-0.582800\pi\)
−0.257199 + 0.966359i \(0.582800\pi\)
\(102\) −13.8930 −1.37561
\(103\) 3.80467 0.374886 0.187443 0.982276i \(-0.439980\pi\)
0.187443 + 0.982276i \(0.439980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 10.7759 1.04665
\(107\) 7.91981 0.765637 0.382818 0.923824i \(-0.374954\pi\)
0.382818 + 0.923824i \(0.374954\pi\)
\(108\) −1.51772 −0.146042
\(109\) 2.33496 0.223648 0.111824 0.993728i \(-0.464331\pi\)
0.111824 + 0.993728i \(0.464331\pi\)
\(110\) 20.8961 1.99236
\(111\) −6.02925 −0.572271
\(112\) 0 0
\(113\) 7.22596 0.679761 0.339880 0.940469i \(-0.389613\pi\)
0.339880 + 0.940469i \(0.389613\pi\)
\(114\) 4.88092 0.457140
\(115\) −0.0303608 −0.00283116
\(116\) −8.99541 −0.835202
\(117\) 0 0
\(118\) −6.99207 −0.643672
\(119\) 0 0
\(120\) 14.6699 1.33917
\(121\) −2.55072 −0.231883
\(122\) 6.36840 0.576568
\(123\) 24.6130 2.21928
\(124\) −0.763307 −0.0685470
\(125\) 26.6240 2.38132
\(126\) 0 0
\(127\) 3.31802 0.294427 0.147213 0.989105i \(-0.452970\pi\)
0.147213 + 0.989105i \(0.452970\pi\)
\(128\) −11.2031 −0.990220
\(129\) 10.0890 0.888291
\(130\) 0 0
\(131\) −19.5592 −1.70889 −0.854446 0.519540i \(-0.826103\pi\)
−0.854446 + 0.519540i \(0.826103\pi\)
\(132\) −7.60231 −0.661696
\(133\) 0 0
\(134\) −2.96485 −0.256124
\(135\) −5.49517 −0.472949
\(136\) 5.23109 0.448562
\(137\) −8.19509 −0.700154 −0.350077 0.936721i \(-0.613845\pi\)
−0.350077 + 0.936721i \(0.613845\pi\)
\(138\) 0.0307099 0.00261420
\(139\) 3.12762 0.265282 0.132641 0.991164i \(-0.457654\pi\)
0.132641 + 0.991164i \(0.457654\pi\)
\(140\) 0 0
\(141\) 26.5742 2.23795
\(142\) −12.6050 −1.05779
\(143\) 0 0
\(144\) −12.0616 −1.00513
\(145\) −32.5695 −2.70475
\(146\) −18.5470 −1.53496
\(147\) 0 0
\(148\) −2.90954 −0.239163
\(149\) 17.7943 1.45777 0.728884 0.684637i \(-0.240039\pi\)
0.728884 + 0.684637i \(0.240039\pi\)
\(150\) −47.5020 −3.87852
\(151\) −3.50944 −0.285594 −0.142797 0.989752i \(-0.545610\pi\)
−0.142797 + 0.989752i \(0.545610\pi\)
\(152\) −1.83780 −0.149065
\(153\) 8.17058 0.660552
\(154\) 0 0
\(155\) −2.76369 −0.221985
\(156\) 0 0
\(157\) −2.12637 −0.169703 −0.0848515 0.996394i \(-0.527042\pi\)
−0.0848515 + 0.996394i \(0.527042\pi\)
\(158\) −20.2218 −1.60876
\(159\) −14.1946 −1.12571
\(160\) 23.2315 1.83661
\(161\) 0 0
\(162\) 18.3875 1.44466
\(163\) 19.0172 1.48955 0.744773 0.667318i \(-0.232558\pi\)
0.744773 + 0.667318i \(0.232558\pi\)
\(164\) 11.8775 0.927478
\(165\) −27.5255 −2.14286
\(166\) −3.21779 −0.249749
\(167\) 20.5398 1.58942 0.794711 0.606988i \(-0.207623\pi\)
0.794711 + 0.606988i \(0.207623\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −24.2743 −1.86175
\(171\) −2.87051 −0.219513
\(172\) 4.86867 0.371233
\(173\) 5.26797 0.400516 0.200258 0.979743i \(-0.435822\pi\)
0.200258 + 0.979743i \(0.435822\pi\)
\(174\) 32.9440 2.49748
\(175\) 0 0
\(176\) 14.4895 1.09219
\(177\) 9.21037 0.692294
\(178\) 6.37360 0.477722
\(179\) 8.76221 0.654918 0.327459 0.944865i \(-0.393808\pi\)
0.327459 + 0.944865i \(0.393808\pi\)
\(180\) 11.0573 0.824159
\(181\) 16.9098 1.25690 0.628449 0.777851i \(-0.283690\pi\)
0.628449 + 0.777851i \(0.283690\pi\)
\(182\) 0 0
\(183\) −8.38883 −0.620120
\(184\) −0.0115631 −0.000852445 0
\(185\) −10.5345 −0.774513
\(186\) 2.79547 0.204974
\(187\) −9.81526 −0.717763
\(188\) 12.8239 0.935279
\(189\) 0 0
\(190\) 8.52810 0.618693
\(191\) −6.49288 −0.469809 −0.234904 0.972018i \(-0.575478\pi\)
−0.234904 + 0.972018i \(0.575478\pi\)
\(192\) −0.289314 −0.0208794
\(193\) 7.52381 0.541576 0.270788 0.962639i \(-0.412716\pi\)
0.270788 + 0.962639i \(0.412716\pi\)
\(194\) −17.8703 −1.28301
\(195\) 0 0
\(196\) 0 0
\(197\) 21.4727 1.52987 0.764933 0.644109i \(-0.222772\pi\)
0.764933 + 0.644109i \(0.222772\pi\)
\(198\) 12.4305 0.883394
\(199\) −1.21021 −0.0857894 −0.0428947 0.999080i \(-0.513658\pi\)
−0.0428947 + 0.999080i \(0.513658\pi\)
\(200\) 17.8858 1.26472
\(201\) 3.90548 0.275471
\(202\) 9.13641 0.642836
\(203\) 0 0
\(204\) 8.83136 0.618319
\(205\) 43.0047 3.00358
\(206\) −6.72409 −0.468490
\(207\) −0.0180608 −0.00125531
\(208\) 0 0
\(209\) 3.44832 0.238525
\(210\) 0 0
\(211\) 17.4646 1.20232 0.601158 0.799130i \(-0.294706\pi\)
0.601158 + 0.799130i \(0.294706\pi\)
\(212\) −6.84991 −0.470454
\(213\) 16.6040 1.13769
\(214\) −13.9969 −0.956806
\(215\) 17.6279 1.20221
\(216\) −2.09287 −0.142402
\(217\) 0 0
\(218\) −4.12663 −0.279490
\(219\) 24.4313 1.65091
\(220\) −13.2830 −0.895540
\(221\) 0 0
\(222\) 10.6556 0.715160
\(223\) 12.5328 0.839258 0.419629 0.907696i \(-0.362160\pi\)
0.419629 + 0.907696i \(0.362160\pi\)
\(224\) 0 0
\(225\) 27.9363 1.86242
\(226\) −12.7706 −0.849488
\(227\) −23.1920 −1.53931 −0.769653 0.638463i \(-0.779571\pi\)
−0.769653 + 0.638463i \(0.779571\pi\)
\(228\) −3.10265 −0.205478
\(229\) 7.61349 0.503113 0.251557 0.967843i \(-0.419057\pi\)
0.251557 + 0.967843i \(0.419057\pi\)
\(230\) 0.0536574 0.00353806
\(231\) 0 0
\(232\) −12.4043 −0.814383
\(233\) 23.9588 1.56959 0.784797 0.619753i \(-0.212767\pi\)
0.784797 + 0.619753i \(0.212767\pi\)
\(234\) 0 0
\(235\) 46.4313 3.02884
\(236\) 4.44465 0.289322
\(237\) 26.6374 1.73029
\(238\) 0 0
\(239\) 15.2589 0.987015 0.493508 0.869741i \(-0.335715\pi\)
0.493508 + 0.869741i \(0.335715\pi\)
\(240\) −47.2031 −3.04695
\(241\) −10.2271 −0.658786 −0.329393 0.944193i \(-0.606844\pi\)
−0.329393 + 0.944193i \(0.606844\pi\)
\(242\) 4.50795 0.289782
\(243\) −20.1682 −1.29379
\(244\) −4.04820 −0.259160
\(245\) 0 0
\(246\) −43.4992 −2.77341
\(247\) 0 0
\(248\) −1.05257 −0.0668383
\(249\) 4.23866 0.268614
\(250\) −47.0532 −2.97590
\(251\) −13.0463 −0.823473 −0.411737 0.911303i \(-0.635078\pi\)
−0.411737 + 0.911303i \(0.635078\pi\)
\(252\) 0 0
\(253\) 0.0216963 0.00136403
\(254\) −5.86402 −0.367941
\(255\) 31.9755 2.00238
\(256\) 20.0480 1.25300
\(257\) −15.1619 −0.945776 −0.472888 0.881123i \(-0.656789\pi\)
−0.472888 + 0.881123i \(0.656789\pi\)
\(258\) −17.8306 −1.11009
\(259\) 0 0
\(260\) 0 0
\(261\) −19.3746 −1.19926
\(262\) 34.5674 2.13558
\(263\) 0.671716 0.0414198 0.0207099 0.999786i \(-0.493407\pi\)
0.0207099 + 0.999786i \(0.493407\pi\)
\(264\) −10.4833 −0.645202
\(265\) −24.8013 −1.52353
\(266\) 0 0
\(267\) −8.39569 −0.513808
\(268\) 1.88467 0.115124
\(269\) −18.0372 −1.09975 −0.549874 0.835248i \(-0.685324\pi\)
−0.549874 + 0.835248i \(0.685324\pi\)
\(270\) 9.71175 0.591038
\(271\) 9.51258 0.577848 0.288924 0.957352i \(-0.406703\pi\)
0.288924 + 0.957352i \(0.406703\pi\)
\(272\) −16.8320 −1.02059
\(273\) 0 0
\(274\) 14.4834 0.874974
\(275\) −33.5597 −2.02372
\(276\) −0.0195214 −0.00117505
\(277\) 3.48620 0.209466 0.104733 0.994500i \(-0.466601\pi\)
0.104733 + 0.994500i \(0.466601\pi\)
\(278\) −5.52753 −0.331519
\(279\) −1.64404 −0.0984260
\(280\) 0 0
\(281\) −13.0611 −0.779160 −0.389580 0.920993i \(-0.627380\pi\)
−0.389580 + 0.920993i \(0.627380\pi\)
\(282\) −46.9652 −2.79674
\(283\) −7.36674 −0.437907 −0.218954 0.975735i \(-0.570264\pi\)
−0.218954 + 0.975735i \(0.570264\pi\)
\(284\) 8.01262 0.475462
\(285\) −11.2337 −0.665428
\(286\) 0 0
\(287\) 0 0
\(288\) 13.8197 0.814335
\(289\) −5.59793 −0.329290
\(290\) 57.5608 3.38009
\(291\) 23.5398 1.37993
\(292\) 11.7898 0.689946
\(293\) −23.9996 −1.40207 −0.701035 0.713127i \(-0.747278\pi\)
−0.701035 + 0.713127i \(0.747278\pi\)
\(294\) 0 0
\(295\) 16.0927 0.936951
\(296\) −4.01214 −0.233201
\(297\) 3.92693 0.227863
\(298\) −31.4484 −1.82175
\(299\) 0 0
\(300\) 30.1956 1.74334
\(301\) 0 0
\(302\) 6.20232 0.356903
\(303\) −12.0350 −0.691394
\(304\) 5.91347 0.339161
\(305\) −14.6572 −0.839271
\(306\) −14.4401 −0.825483
\(307\) −0.871450 −0.0497363 −0.0248681 0.999691i \(-0.507917\pi\)
−0.0248681 + 0.999691i \(0.507917\pi\)
\(308\) 0 0
\(309\) 8.85737 0.503878
\(310\) 4.88434 0.277412
\(311\) −16.3842 −0.929061 −0.464530 0.885557i \(-0.653777\pi\)
−0.464530 + 0.885557i \(0.653777\pi\)
\(312\) 0 0
\(313\) −17.2300 −0.973898 −0.486949 0.873430i \(-0.661890\pi\)
−0.486949 + 0.873430i \(0.661890\pi\)
\(314\) 3.75799 0.212076
\(315\) 0 0
\(316\) 12.8544 0.723118
\(317\) 9.03976 0.507724 0.253862 0.967240i \(-0.418299\pi\)
0.253862 + 0.967240i \(0.418299\pi\)
\(318\) 25.0865 1.40678
\(319\) 23.2746 1.30313
\(320\) −0.505498 −0.0282582
\(321\) 18.4375 1.02908
\(322\) 0 0
\(323\) −4.00580 −0.222889
\(324\) −11.6884 −0.649356
\(325\) 0 0
\(326\) −33.6096 −1.86147
\(327\) 5.43584 0.300603
\(328\) 16.3786 0.904358
\(329\) 0 0
\(330\) 48.6465 2.67790
\(331\) −35.8880 −1.97258 −0.986291 0.165014i \(-0.947233\pi\)
−0.986291 + 0.165014i \(0.947233\pi\)
\(332\) 2.04545 0.112259
\(333\) −6.26667 −0.343412
\(334\) −36.3006 −1.98628
\(335\) 6.82378 0.372823
\(336\) 0 0
\(337\) 17.5864 0.957992 0.478996 0.877817i \(-0.341001\pi\)
0.478996 + 0.877817i \(0.341001\pi\)
\(338\) 0 0
\(339\) 16.8222 0.913656
\(340\) 15.4304 0.836833
\(341\) 1.97497 0.106951
\(342\) 5.07312 0.274323
\(343\) 0 0
\(344\) 6.71371 0.361979
\(345\) −0.0706807 −0.00380532
\(346\) −9.31022 −0.500520
\(347\) 20.0826 1.07809 0.539045 0.842277i \(-0.318785\pi\)
0.539045 + 0.842277i \(0.318785\pi\)
\(348\) −20.9415 −1.12258
\(349\) −27.3383 −1.46339 −0.731693 0.681635i \(-0.761269\pi\)
−0.731693 + 0.681635i \(0.761269\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −16.6015 −0.884865
\(353\) −16.4540 −0.875759 −0.437879 0.899034i \(-0.644270\pi\)
−0.437879 + 0.899034i \(0.644270\pi\)
\(354\) −16.2777 −0.865150
\(355\) 29.0111 1.53975
\(356\) −4.05151 −0.214730
\(357\) 0 0
\(358\) −15.4857 −0.818443
\(359\) −22.1418 −1.16860 −0.584299 0.811539i \(-0.698630\pi\)
−0.584299 + 0.811539i \(0.698630\pi\)
\(360\) 15.2475 0.803615
\(361\) −17.5927 −0.925930
\(362\) −29.8851 −1.57073
\(363\) −5.93813 −0.311671
\(364\) 0 0
\(365\) 42.6871 2.23434
\(366\) 14.8258 0.774956
\(367\) 10.5997 0.553300 0.276650 0.960971i \(-0.410776\pi\)
0.276650 + 0.960971i \(0.410776\pi\)
\(368\) 0.0372066 0.00193953
\(369\) 25.5822 1.33176
\(370\) 18.6179 0.967898
\(371\) 0 0
\(372\) −1.77700 −0.0921330
\(373\) 15.7596 0.816003 0.408002 0.912981i \(-0.366226\pi\)
0.408002 + 0.912981i \(0.366226\pi\)
\(374\) 17.3467 0.896979
\(375\) 61.9812 3.20070
\(376\) 17.6837 0.911966
\(377\) 0 0
\(378\) 0 0
\(379\) 22.6327 1.16257 0.581283 0.813702i \(-0.302551\pi\)
0.581283 + 0.813702i \(0.302551\pi\)
\(380\) −5.42106 −0.278094
\(381\) 7.72443 0.395735
\(382\) 11.4750 0.587114
\(383\) −0.278328 −0.0142219 −0.00711095 0.999975i \(-0.502264\pi\)
−0.00711095 + 0.999975i \(0.502264\pi\)
\(384\) −26.0810 −1.33094
\(385\) 0 0
\(386\) −13.2970 −0.676800
\(387\) 10.4863 0.533050
\(388\) 11.3596 0.576697
\(389\) −31.9693 −1.62091 −0.810453 0.585804i \(-0.800779\pi\)
−0.810453 + 0.585804i \(0.800779\pi\)
\(390\) 0 0
\(391\) −0.0252038 −0.00127461
\(392\) 0 0
\(393\) −45.5342 −2.29690
\(394\) −37.9492 −1.91185
\(395\) 46.5418 2.34177
\(396\) −7.90167 −0.397074
\(397\) −18.2200 −0.914438 −0.457219 0.889354i \(-0.651154\pi\)
−0.457219 + 0.889354i \(0.651154\pi\)
\(398\) 2.13883 0.107210
\(399\) 0 0
\(400\) −57.5510 −2.87755
\(401\) −20.7625 −1.03683 −0.518414 0.855130i \(-0.673477\pi\)
−0.518414 + 0.855130i \(0.673477\pi\)
\(402\) −6.90225 −0.344253
\(403\) 0 0
\(404\) −5.80775 −0.288946
\(405\) −42.3200 −2.10290
\(406\) 0 0
\(407\) 7.52811 0.373155
\(408\) 12.1781 0.602906
\(409\) 16.5799 0.819822 0.409911 0.912126i \(-0.365560\pi\)
0.409911 + 0.912126i \(0.365560\pi\)
\(410\) −76.0032 −3.75353
\(411\) −19.0784 −0.941067
\(412\) 4.27430 0.210580
\(413\) 0 0
\(414\) 0.0319192 0.00156874
\(415\) 7.40593 0.363543
\(416\) 0 0
\(417\) 7.28118 0.356561
\(418\) −6.09430 −0.298082
\(419\) 4.21062 0.205702 0.102851 0.994697i \(-0.467203\pi\)
0.102851 + 0.994697i \(0.467203\pi\)
\(420\) 0 0
\(421\) −33.9650 −1.65535 −0.827677 0.561205i \(-0.810338\pi\)
−0.827677 + 0.561205i \(0.810338\pi\)
\(422\) −30.8657 −1.50252
\(423\) 27.6206 1.34296
\(424\) −9.44576 −0.458727
\(425\) 38.9852 1.89106
\(426\) −29.3447 −1.42176
\(427\) 0 0
\(428\) 8.89739 0.430072
\(429\) 0 0
\(430\) −31.1542 −1.50239
\(431\) −25.3140 −1.21933 −0.609667 0.792657i \(-0.708697\pi\)
−0.609667 + 0.792657i \(0.708697\pi\)
\(432\) 6.73422 0.324000
\(433\) 2.37946 0.114350 0.0571749 0.998364i \(-0.481791\pi\)
0.0571749 + 0.998364i \(0.481791\pi\)
\(434\) 0 0
\(435\) −75.8226 −3.63541
\(436\) 2.62317 0.125627
\(437\) 0.00885467 0.000423577 0
\(438\) −43.1780 −2.06312
\(439\) −16.8172 −0.802642 −0.401321 0.915938i \(-0.631449\pi\)
−0.401321 + 0.915938i \(0.631449\pi\)
\(440\) −18.3167 −0.873217
\(441\) 0 0
\(442\) 0 0
\(443\) −16.1250 −0.766123 −0.383061 0.923723i \(-0.625130\pi\)
−0.383061 + 0.923723i \(0.625130\pi\)
\(444\) −6.77348 −0.321455
\(445\) −14.6692 −0.695388
\(446\) −22.1495 −1.04881
\(447\) 41.4256 1.95936
\(448\) 0 0
\(449\) −40.5289 −1.91268 −0.956339 0.292261i \(-0.905592\pi\)
−0.956339 + 0.292261i \(0.905592\pi\)
\(450\) −49.3725 −2.32744
\(451\) −30.7317 −1.44710
\(452\) 8.11789 0.381834
\(453\) −8.17006 −0.383863
\(454\) 40.9877 1.92365
\(455\) 0 0
\(456\) −4.27844 −0.200356
\(457\) 11.6091 0.543051 0.271526 0.962431i \(-0.412472\pi\)
0.271526 + 0.962431i \(0.412472\pi\)
\(458\) −13.4555 −0.628734
\(459\) −4.56178 −0.212926
\(460\) −0.0341084 −0.00159031
\(461\) 26.4282 1.23088 0.615441 0.788183i \(-0.288978\pi\)
0.615441 + 0.788183i \(0.288978\pi\)
\(462\) 0 0
\(463\) 15.7251 0.730810 0.365405 0.930849i \(-0.380931\pi\)
0.365405 + 0.930849i \(0.380931\pi\)
\(464\) 39.9133 1.85293
\(465\) −6.43394 −0.298367
\(466\) −42.3430 −1.96150
\(467\) 27.4256 1.26911 0.634553 0.772879i \(-0.281184\pi\)
0.634553 + 0.772879i \(0.281184\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −82.0591 −3.78510
\(471\) −4.95025 −0.228095
\(472\) 6.12900 0.282110
\(473\) −12.5971 −0.579218
\(474\) −47.0769 −2.16232
\(475\) −13.6964 −0.628433
\(476\) 0 0
\(477\) −14.7536 −0.675520
\(478\) −26.9674 −1.23346
\(479\) −17.8460 −0.815406 −0.407703 0.913115i \(-0.633670\pi\)
−0.407703 + 0.913115i \(0.633670\pi\)
\(480\) 54.0834 2.46856
\(481\) 0 0
\(482\) 18.0746 0.823277
\(483\) 0 0
\(484\) −2.86557 −0.130253
\(485\) 41.1295 1.86759
\(486\) 35.6438 1.61684
\(487\) −5.66101 −0.256525 −0.128262 0.991740i \(-0.540940\pi\)
−0.128262 + 0.991740i \(0.540940\pi\)
\(488\) −5.58231 −0.252699
\(489\) 44.2726 2.00208
\(490\) 0 0
\(491\) 40.2435 1.81616 0.908081 0.418795i \(-0.137547\pi\)
0.908081 + 0.418795i \(0.137547\pi\)
\(492\) 27.6511 1.24661
\(493\) −27.0374 −1.21770
\(494\) 0 0
\(495\) −28.6094 −1.28590
\(496\) 3.38685 0.152074
\(497\) 0 0
\(498\) −7.49109 −0.335684
\(499\) −14.0573 −0.629293 −0.314647 0.949209i \(-0.601886\pi\)
−0.314647 + 0.949209i \(0.601886\pi\)
\(500\) 29.9103 1.33763
\(501\) 47.8173 2.13632
\(502\) 23.0570 1.02908
\(503\) −7.72836 −0.344591 −0.172295 0.985045i \(-0.555118\pi\)
−0.172295 + 0.985045i \(0.555118\pi\)
\(504\) 0 0
\(505\) −21.0280 −0.935733
\(506\) −0.0383443 −0.00170461
\(507\) 0 0
\(508\) 3.72758 0.165385
\(509\) 6.08600 0.269757 0.134879 0.990862i \(-0.456936\pi\)
0.134879 + 0.990862i \(0.456936\pi\)
\(510\) −56.5111 −2.50235
\(511\) 0 0
\(512\) −13.0252 −0.575637
\(513\) 1.60266 0.0707590
\(514\) 26.7961 1.18192
\(515\) 15.4759 0.681949
\(516\) 11.3344 0.498969
\(517\) −33.1804 −1.45927
\(518\) 0 0
\(519\) 12.2640 0.538328
\(520\) 0 0
\(521\) 0.0347104 0.00152069 0.000760344 1.00000i \(-0.499758\pi\)
0.000760344 1.00000i \(0.499758\pi\)
\(522\) 34.2413 1.49870
\(523\) 17.5984 0.769523 0.384762 0.923016i \(-0.374284\pi\)
0.384762 + 0.923016i \(0.374284\pi\)
\(524\) −21.9735 −0.959915
\(525\) 0 0
\(526\) −1.18714 −0.0517618
\(527\) −2.29426 −0.0999395
\(528\) 33.7320 1.46800
\(529\) −22.9999 −0.999998
\(530\) 43.8320 1.90394
\(531\) 9.57305 0.415435
\(532\) 0 0
\(533\) 0 0
\(534\) 14.8379 0.642099
\(535\) 32.2146 1.39276
\(536\) 2.59888 0.112255
\(537\) 20.3986 0.880266
\(538\) 31.8776 1.37434
\(539\) 0 0
\(540\) −6.17347 −0.265664
\(541\) 0.578216 0.0248595 0.0124297 0.999923i \(-0.496043\pi\)
0.0124297 + 0.999923i \(0.496043\pi\)
\(542\) −16.8118 −0.722129
\(543\) 39.3665 1.68938
\(544\) 19.2855 0.826858
\(545\) 9.49767 0.406836
\(546\) 0 0
\(547\) −13.6270 −0.582650 −0.291325 0.956624i \(-0.594096\pi\)
−0.291325 + 0.956624i \(0.594096\pi\)
\(548\) −9.20666 −0.393289
\(549\) −8.71916 −0.372125
\(550\) 59.3108 2.52902
\(551\) 9.49883 0.404664
\(552\) −0.0269192 −0.00114576
\(553\) 0 0
\(554\) −6.16125 −0.261766
\(555\) −24.5246 −1.04101
\(556\) 3.51368 0.149013
\(557\) −6.46311 −0.273851 −0.136925 0.990581i \(-0.543722\pi\)
−0.136925 + 0.990581i \(0.543722\pi\)
\(558\) 2.90555 0.123002
\(559\) 0 0
\(560\) 0 0
\(561\) −22.8502 −0.964734
\(562\) 23.0832 0.973706
\(563\) −33.1023 −1.39509 −0.697547 0.716539i \(-0.745725\pi\)
−0.697547 + 0.716539i \(0.745725\pi\)
\(564\) 29.8544 1.25710
\(565\) 29.3923 1.23654
\(566\) 13.0194 0.547247
\(567\) 0 0
\(568\) 11.0491 0.463610
\(569\) −44.1263 −1.84987 −0.924936 0.380123i \(-0.875882\pi\)
−0.924936 + 0.380123i \(0.875882\pi\)
\(570\) 19.8536 0.831576
\(571\) −12.1407 −0.508074 −0.254037 0.967195i \(-0.581758\pi\)
−0.254037 + 0.967195i \(0.581758\pi\)
\(572\) 0 0
\(573\) −15.1156 −0.631463
\(574\) 0 0
\(575\) −0.0861753 −0.00359376
\(576\) −0.300706 −0.0125294
\(577\) −42.2854 −1.76036 −0.880181 0.474637i \(-0.842579\pi\)
−0.880181 + 0.474637i \(0.842579\pi\)
\(578\) 9.89337 0.411510
\(579\) 17.5156 0.727924
\(580\) −36.5897 −1.51931
\(581\) 0 0
\(582\) −41.6025 −1.72448
\(583\) 17.7234 0.734027
\(584\) 16.2577 0.672748
\(585\) 0 0
\(586\) 42.4150 1.75215
\(587\) 34.0219 1.40424 0.702118 0.712061i \(-0.252238\pi\)
0.702118 + 0.712061i \(0.252238\pi\)
\(588\) 0 0
\(589\) 0.806025 0.0332117
\(590\) −28.4409 −1.17090
\(591\) 49.9890 2.05627
\(592\) 12.9098 0.530591
\(593\) −9.28987 −0.381489 −0.190745 0.981640i \(-0.561090\pi\)
−0.190745 + 0.981640i \(0.561090\pi\)
\(594\) −6.94015 −0.284758
\(595\) 0 0
\(596\) 19.9908 0.818854
\(597\) −2.81739 −0.115308
\(598\) 0 0
\(599\) 14.5963 0.596389 0.298195 0.954505i \(-0.403616\pi\)
0.298195 + 0.954505i \(0.403616\pi\)
\(600\) 41.6386 1.69989
\(601\) −4.28534 −0.174803 −0.0874013 0.996173i \(-0.527856\pi\)
−0.0874013 + 0.996173i \(0.527856\pi\)
\(602\) 0 0
\(603\) 4.05927 0.165306
\(604\) −3.94263 −0.160423
\(605\) −10.3753 −0.421816
\(606\) 21.2698 0.864026
\(607\) −36.6206 −1.48638 −0.743192 0.669078i \(-0.766689\pi\)
−0.743192 + 0.669078i \(0.766689\pi\)
\(608\) −6.77542 −0.274779
\(609\) 0 0
\(610\) 25.9041 1.04883
\(611\) 0 0
\(612\) 9.17911 0.371044
\(613\) 43.0967 1.74066 0.870329 0.492471i \(-0.163906\pi\)
0.870329 + 0.492471i \(0.163906\pi\)
\(614\) 1.54013 0.0621548
\(615\) 100.116 4.03706
\(616\) 0 0
\(617\) 29.5143 1.18820 0.594101 0.804390i \(-0.297508\pi\)
0.594101 + 0.804390i \(0.297508\pi\)
\(618\) −15.6538 −0.629690
\(619\) −27.8765 −1.12045 −0.560225 0.828340i \(-0.689286\pi\)
−0.560225 + 0.828340i \(0.689286\pi\)
\(620\) −3.10483 −0.124693
\(621\) 0.0100836 0.000404643 0
\(622\) 28.9561 1.16103
\(623\) 0 0
\(624\) 0 0
\(625\) 50.5688 2.02275
\(626\) 30.4510 1.21707
\(627\) 8.02777 0.320598
\(628\) −2.38884 −0.0953252
\(629\) −8.74516 −0.348692
\(630\) 0 0
\(631\) −30.0124 −1.19477 −0.597387 0.801953i \(-0.703794\pi\)
−0.597387 + 0.801953i \(0.703794\pi\)
\(632\) 17.7258 0.705093
\(633\) 40.6581 1.61602
\(634\) −15.9762 −0.634496
\(635\) 13.4964 0.535587
\(636\) −15.9467 −0.632330
\(637\) 0 0
\(638\) −41.1338 −1.62850
\(639\) 17.2579 0.682711
\(640\) −45.5696 −1.80130
\(641\) −9.37664 −0.370355 −0.185177 0.982705i \(-0.559286\pi\)
−0.185177 + 0.982705i \(0.559286\pi\)
\(642\) −32.5850 −1.28603
\(643\) −1.78629 −0.0704444 −0.0352222 0.999380i \(-0.511214\pi\)
−0.0352222 + 0.999380i \(0.511214\pi\)
\(644\) 0 0
\(645\) 41.0382 1.61588
\(646\) 7.07955 0.278541
\(647\) 31.6251 1.24331 0.621656 0.783290i \(-0.286460\pi\)
0.621656 + 0.783290i \(0.286460\pi\)
\(648\) −16.1179 −0.633169
\(649\) −11.5000 −0.451416
\(650\) 0 0
\(651\) 0 0
\(652\) 21.3646 0.836704
\(653\) −10.8423 −0.424291 −0.212145 0.977238i \(-0.568045\pi\)
−0.212145 + 0.977238i \(0.568045\pi\)
\(654\) −9.60689 −0.375659
\(655\) −79.5588 −3.10862
\(656\) −52.7014 −2.05764
\(657\) 25.3933 0.990687
\(658\) 0 0
\(659\) −29.4418 −1.14689 −0.573446 0.819244i \(-0.694394\pi\)
−0.573446 + 0.819244i \(0.694394\pi\)
\(660\) −30.9232 −1.20368
\(661\) −18.7726 −0.730170 −0.365085 0.930974i \(-0.618960\pi\)
−0.365085 + 0.930974i \(0.618960\pi\)
\(662\) 63.4257 2.46511
\(663\) 0 0
\(664\) 2.82060 0.109461
\(665\) 0 0
\(666\) 11.0752 0.429157
\(667\) 0.0597651 0.00231411
\(668\) 23.0752 0.892806
\(669\) 29.1767 1.12803
\(670\) −12.0598 −0.465912
\(671\) 10.4743 0.404355
\(672\) 0 0
\(673\) −6.72821 −0.259353 −0.129677 0.991556i \(-0.541394\pi\)
−0.129677 + 0.991556i \(0.541394\pi\)
\(674\) −31.0809 −1.19719
\(675\) −15.5973 −0.600342
\(676\) 0 0
\(677\) 27.7129 1.06509 0.532547 0.846400i \(-0.321235\pi\)
0.532547 + 0.846400i \(0.321235\pi\)
\(678\) −29.7303 −1.14178
\(679\) 0 0
\(680\) 21.2780 0.815973
\(681\) −53.9915 −2.06896
\(682\) −3.49042 −0.133655
\(683\) 4.60138 0.176067 0.0880335 0.996118i \(-0.471942\pi\)
0.0880335 + 0.996118i \(0.471942\pi\)
\(684\) −3.22483 −0.123304
\(685\) −33.3344 −1.27364
\(686\) 0 0
\(687\) 17.7244 0.676227
\(688\) −21.6026 −0.823593
\(689\) 0 0
\(690\) 0.124916 0.00475546
\(691\) −29.3380 −1.11607 −0.558036 0.829817i \(-0.688445\pi\)
−0.558036 + 0.829817i \(0.688445\pi\)
\(692\) 5.91823 0.224977
\(693\) 0 0
\(694\) −35.4924 −1.34727
\(695\) 12.7219 0.482570
\(696\) −28.8775 −1.09460
\(697\) 35.7001 1.35224
\(698\) 48.3156 1.82877
\(699\) 55.7767 2.10967
\(700\) 0 0
\(701\) 15.1336 0.571588 0.285794 0.958291i \(-0.407743\pi\)
0.285794 + 0.958291i \(0.407743\pi\)
\(702\) 0 0
\(703\) 3.07237 0.115877
\(704\) 0.361236 0.0136146
\(705\) 108.093 4.07102
\(706\) 29.0796 1.09442
\(707\) 0 0
\(708\) 10.3473 0.388874
\(709\) −21.7826 −0.818062 −0.409031 0.912521i \(-0.634133\pi\)
−0.409031 + 0.912521i \(0.634133\pi\)
\(710\) −51.2721 −1.92421
\(711\) 27.6863 1.03832
\(712\) −5.58688 −0.209377
\(713\) 0.00507138 0.000189925 0
\(714\) 0 0
\(715\) 0 0
\(716\) 9.84377 0.367879
\(717\) 35.5231 1.32663
\(718\) 39.1317 1.46038
\(719\) 37.6514 1.40416 0.702079 0.712099i \(-0.252255\pi\)
0.702079 + 0.712099i \(0.252255\pi\)
\(720\) −49.0618 −1.82843
\(721\) 0 0
\(722\) 31.0920 1.15712
\(723\) −23.8090 −0.885465
\(724\) 18.9971 0.706021
\(725\) −92.4444 −3.43330
\(726\) 10.4946 0.389491
\(727\) −34.5858 −1.28272 −0.641358 0.767242i \(-0.721629\pi\)
−0.641358 + 0.767242i \(0.721629\pi\)
\(728\) 0 0
\(729\) −15.7397 −0.582952
\(730\) −75.4419 −2.79223
\(731\) 14.6337 0.541247
\(732\) −9.42431 −0.348333
\(733\) 1.17210 0.0432924 0.0216462 0.999766i \(-0.493109\pi\)
0.0216462 + 0.999766i \(0.493109\pi\)
\(734\) −18.7331 −0.691452
\(735\) 0 0
\(736\) −0.0426298 −0.00157136
\(737\) −4.87637 −0.179623
\(738\) −45.2121 −1.66428
\(739\) −25.4831 −0.937412 −0.468706 0.883354i \(-0.655280\pi\)
−0.468706 + 0.883354i \(0.655280\pi\)
\(740\) −11.8348 −0.435057
\(741\) 0 0
\(742\) 0 0
\(743\) −18.0403 −0.661835 −0.330918 0.943660i \(-0.607358\pi\)
−0.330918 + 0.943660i \(0.607358\pi\)
\(744\) −2.45041 −0.0898364
\(745\) 72.3802 2.65181
\(746\) −27.8524 −1.01975
\(747\) 4.40557 0.161191
\(748\) −11.0268 −0.403180
\(749\) 0 0
\(750\) −109.541 −3.99987
\(751\) −0.738214 −0.0269378 −0.0134689 0.999909i \(-0.504287\pi\)
−0.0134689 + 0.999909i \(0.504287\pi\)
\(752\) −56.9006 −2.07495
\(753\) −30.3720 −1.10682
\(754\) 0 0
\(755\) −14.2750 −0.519521
\(756\) 0 0
\(757\) −15.5551 −0.565359 −0.282680 0.959214i \(-0.591223\pi\)
−0.282680 + 0.959214i \(0.591223\pi\)
\(758\) −39.9994 −1.45284
\(759\) 0.0505094 0.00183338
\(760\) −7.47543 −0.271162
\(761\) −35.6931 −1.29388 −0.646938 0.762543i \(-0.723951\pi\)
−0.646938 + 0.762543i \(0.723951\pi\)
\(762\) −13.6516 −0.494544
\(763\) 0 0
\(764\) −7.29434 −0.263900
\(765\) 33.2346 1.20160
\(766\) 0.491896 0.0177729
\(767\) 0 0
\(768\) 46.6722 1.68414
\(769\) 30.8652 1.11303 0.556514 0.830838i \(-0.312139\pi\)
0.556514 + 0.830838i \(0.312139\pi\)
\(770\) 0 0
\(771\) −35.2974 −1.27120
\(772\) 8.45252 0.304213
\(773\) −26.7279 −0.961337 −0.480669 0.876902i \(-0.659606\pi\)
−0.480669 + 0.876902i \(0.659606\pi\)
\(774\) −18.5327 −0.666145
\(775\) −7.84438 −0.281779
\(776\) 15.6645 0.562321
\(777\) 0 0
\(778\) 56.5001 2.02563
\(779\) −12.5422 −0.449372
\(780\) 0 0
\(781\) −20.7318 −0.741841
\(782\) 0.0445434 0.00159287
\(783\) 10.8172 0.386576
\(784\) 0 0
\(785\) −8.64924 −0.308704
\(786\) 80.4737 2.87040
\(787\) 23.9432 0.853485 0.426742 0.904373i \(-0.359661\pi\)
0.426742 + 0.904373i \(0.359661\pi\)
\(788\) 24.1232 0.859353
\(789\) 1.56377 0.0556717
\(790\) −82.2544 −2.92648
\(791\) 0 0
\(792\) −10.8961 −0.387176
\(793\) 0 0
\(794\) 32.2007 1.14276
\(795\) −57.7381 −2.04776
\(796\) −1.35959 −0.0481894
\(797\) −41.3242 −1.46378 −0.731889 0.681424i \(-0.761361\pi\)
−0.731889 + 0.681424i \(0.761361\pi\)
\(798\) 0 0
\(799\) 38.5446 1.36361
\(800\) 65.9396 2.33132
\(801\) −8.72629 −0.308328
\(802\) 36.6940 1.29571
\(803\) −30.5048 −1.07649
\(804\) 4.38755 0.154737
\(805\) 0 0
\(806\) 0 0
\(807\) −41.9910 −1.47815
\(808\) −8.00866 −0.281744
\(809\) −43.8260 −1.54084 −0.770421 0.637536i \(-0.779954\pi\)
−0.770421 + 0.637536i \(0.779954\pi\)
\(810\) 74.7931 2.62796
\(811\) −37.9985 −1.33431 −0.667154 0.744920i \(-0.732488\pi\)
−0.667154 + 0.744920i \(0.732488\pi\)
\(812\) 0 0
\(813\) 22.1455 0.776677
\(814\) −13.3046 −0.466326
\(815\) 77.3545 2.70961
\(816\) −39.1854 −1.37176
\(817\) −5.14115 −0.179866
\(818\) −29.3020 −1.02452
\(819\) 0 0
\(820\) 48.3130 1.68716
\(821\) −20.6672 −0.721291 −0.360645 0.932703i \(-0.617444\pi\)
−0.360645 + 0.932703i \(0.617444\pi\)
\(822\) 33.7177 1.17604
\(823\) 7.02888 0.245011 0.122506 0.992468i \(-0.460907\pi\)
0.122506 + 0.992468i \(0.460907\pi\)
\(824\) 5.89410 0.205331
\(825\) −78.1277 −2.72006
\(826\) 0 0
\(827\) 47.5367 1.65301 0.826506 0.562928i \(-0.190325\pi\)
0.826506 + 0.562928i \(0.190325\pi\)
\(828\) −0.0202901 −0.000705129 0
\(829\) −37.0237 −1.28589 −0.642944 0.765913i \(-0.722287\pi\)
−0.642944 + 0.765913i \(0.722287\pi\)
\(830\) −13.0887 −0.454315
\(831\) 8.11596 0.281540
\(832\) 0 0
\(833\) 0 0
\(834\) −12.8682 −0.445590
\(835\) 83.5479 2.89129
\(836\) 3.87396 0.133984
\(837\) 0.917896 0.0317271
\(838\) −7.44154 −0.257064
\(839\) −3.89858 −0.134594 −0.0672970 0.997733i \(-0.521437\pi\)
−0.0672970 + 0.997733i \(0.521437\pi\)
\(840\) 0 0
\(841\) 35.1129 1.21079
\(842\) 60.0272 2.06867
\(843\) −30.4065 −1.04726
\(844\) 19.6204 0.675362
\(845\) 0 0
\(846\) −48.8146 −1.67828
\(847\) 0 0
\(848\) 30.3935 1.04372
\(849\) −17.1500 −0.588585
\(850\) −68.8995 −2.36323
\(851\) 0.0193309 0.000662653 0
\(852\) 18.6536 0.639061
\(853\) −12.3795 −0.423868 −0.211934 0.977284i \(-0.567976\pi\)
−0.211934 + 0.977284i \(0.567976\pi\)
\(854\) 0 0
\(855\) −11.6761 −0.399313
\(856\) 12.2692 0.419351
\(857\) 9.39835 0.321041 0.160521 0.987032i \(-0.448683\pi\)
0.160521 + 0.987032i \(0.448683\pi\)
\(858\) 0 0
\(859\) −23.7071 −0.808875 −0.404438 0.914566i \(-0.632533\pi\)
−0.404438 + 0.914566i \(0.632533\pi\)
\(860\) 19.8038 0.675304
\(861\) 0 0
\(862\) 44.7381 1.52379
\(863\) −18.5288 −0.630726 −0.315363 0.948971i \(-0.602126\pi\)
−0.315363 + 0.948971i \(0.602126\pi\)
\(864\) −7.71580 −0.262497
\(865\) 21.4280 0.728574
\(866\) −4.20528 −0.142901
\(867\) −13.0321 −0.442594
\(868\) 0 0
\(869\) −33.2594 −1.12825
\(870\) 134.003 4.54313
\(871\) 0 0
\(872\) 3.61726 0.122496
\(873\) 24.4667 0.828074
\(874\) −0.0156491 −0.000529338 0
\(875\) 0 0
\(876\) 27.4469 0.927346
\(877\) −7.19084 −0.242817 −0.121409 0.992603i \(-0.538741\pi\)
−0.121409 + 0.992603i \(0.538741\pi\)
\(878\) 29.7215 1.00305
\(879\) −55.8716 −1.88450
\(880\) 58.9376 1.98679
\(881\) 32.4334 1.09271 0.546355 0.837554i \(-0.316015\pi\)
0.546355 + 0.837554i \(0.316015\pi\)
\(882\) 0 0
\(883\) −37.8020 −1.27214 −0.636069 0.771632i \(-0.719441\pi\)
−0.636069 + 0.771632i \(0.719441\pi\)
\(884\) 0 0
\(885\) 37.4641 1.25934
\(886\) 28.4981 0.957414
\(887\) 44.9619 1.50967 0.754836 0.655913i \(-0.227716\pi\)
0.754836 + 0.655913i \(0.227716\pi\)
\(888\) −9.34036 −0.313442
\(889\) 0 0
\(890\) 25.9253 0.869017
\(891\) 30.2424 1.01316
\(892\) 14.0798 0.471426
\(893\) −13.5416 −0.453152
\(894\) −73.2125 −2.44859
\(895\) 35.6412 1.19135
\(896\) 0 0
\(897\) 0 0
\(898\) 71.6277 2.39025
\(899\) 5.44031 0.181444
\(900\) 31.3846 1.04615
\(901\) −20.5887 −0.685908
\(902\) 54.3130 1.80842
\(903\) 0 0
\(904\) 11.1943 0.372316
\(905\) 68.7824 2.28640
\(906\) 14.4392 0.479709
\(907\) 34.3089 1.13921 0.569604 0.821919i \(-0.307097\pi\)
0.569604 + 0.821919i \(0.307097\pi\)
\(908\) −26.0547 −0.864655
\(909\) −12.5089 −0.414895
\(910\) 0 0
\(911\) 59.7775 1.98052 0.990258 0.139242i \(-0.0444666\pi\)
0.990258 + 0.139242i \(0.0444666\pi\)
\(912\) 13.7667 0.455861
\(913\) −5.29239 −0.175152
\(914\) −20.5171 −0.678644
\(915\) −34.1224 −1.12805
\(916\) 8.55326 0.282608
\(917\) 0 0
\(918\) 8.06215 0.266091
\(919\) 23.4747 0.774359 0.387180 0.922004i \(-0.373449\pi\)
0.387180 + 0.922004i \(0.373449\pi\)
\(920\) −0.0470342 −0.00155067
\(921\) −2.02876 −0.0668498
\(922\) −46.7071 −1.53822
\(923\) 0 0
\(924\) 0 0
\(925\) −29.9009 −0.983135
\(926\) −27.7914 −0.913283
\(927\) 9.20615 0.302370
\(928\) −45.7310 −1.50120
\(929\) 4.96893 0.163025 0.0815127 0.996672i \(-0.474025\pi\)
0.0815127 + 0.996672i \(0.474025\pi\)
\(930\) 11.3709 0.372865
\(931\) 0 0
\(932\) 26.9162 0.881669
\(933\) −38.1427 −1.24874
\(934\) −48.4700 −1.58599
\(935\) −39.9245 −1.30567
\(936\) 0 0
\(937\) 22.1788 0.724550 0.362275 0.932071i \(-0.382000\pi\)
0.362275 + 0.932071i \(0.382000\pi\)
\(938\) 0 0
\(939\) −40.1119 −1.30900
\(940\) 52.1625 1.70135
\(941\) −15.1828 −0.494946 −0.247473 0.968895i \(-0.579600\pi\)
−0.247473 + 0.968895i \(0.579600\pi\)
\(942\) 8.74869 0.285048
\(943\) −0.0789137 −0.00256978
\(944\) −19.7212 −0.641872
\(945\) 0 0
\(946\) 22.2632 0.723841
\(947\) −42.8921 −1.39380 −0.696902 0.717166i \(-0.745439\pi\)
−0.696902 + 0.717166i \(0.745439\pi\)
\(948\) 29.9254 0.971932
\(949\) 0 0
\(950\) 24.2059 0.785344
\(951\) 21.0448 0.682424
\(952\) 0 0
\(953\) −8.91446 −0.288768 −0.144384 0.989522i \(-0.546120\pi\)
−0.144384 + 0.989522i \(0.546120\pi\)
\(954\) 26.0744 0.844189
\(955\) −26.4105 −0.854622
\(956\) 17.1424 0.554424
\(957\) 54.1839 1.75152
\(958\) 31.5397 1.01900
\(959\) 0 0
\(960\) −1.17681 −0.0379814
\(961\) −30.5384 −0.985108
\(962\) 0 0
\(963\) 19.1635 0.617536
\(964\) −11.4895 −0.370052
\(965\) 30.6039 0.985173
\(966\) 0 0
\(967\) 13.8676 0.445952 0.222976 0.974824i \(-0.428423\pi\)
0.222976 + 0.974824i \(0.428423\pi\)
\(968\) −3.95151 −0.127006
\(969\) −9.32560 −0.299581
\(970\) −72.6892 −2.33391
\(971\) 49.9947 1.60441 0.802203 0.597051i \(-0.203661\pi\)
0.802203 + 0.597051i \(0.203661\pi\)
\(972\) −22.6577 −0.726747
\(973\) 0 0
\(974\) 10.0048 0.320576
\(975\) 0 0
\(976\) 17.9622 0.574955
\(977\) 19.5969 0.626960 0.313480 0.949595i \(-0.398505\pi\)
0.313480 + 0.949595i \(0.398505\pi\)
\(978\) −78.2440 −2.50197
\(979\) 10.4828 0.335033
\(980\) 0 0
\(981\) 5.64989 0.180387
\(982\) −71.1232 −2.26963
\(983\) 43.2093 1.37816 0.689081 0.724684i \(-0.258014\pi\)
0.689081 + 0.724684i \(0.258014\pi\)
\(984\) 38.1298 1.21554
\(985\) 87.3424 2.78296
\(986\) 47.7838 1.52175
\(987\) 0 0
\(988\) 0 0
\(989\) −0.0323473 −0.00102858
\(990\) 50.5621 1.60697
\(991\) 29.9101 0.950126 0.475063 0.879952i \(-0.342425\pi\)
0.475063 + 0.879952i \(0.342425\pi\)
\(992\) −3.88052 −0.123206
\(993\) −83.5481 −2.65132
\(994\) 0 0
\(995\) −4.92264 −0.156058
\(996\) 4.76187 0.150885
\(997\) −9.36306 −0.296531 −0.148266 0.988948i \(-0.547369\pi\)
−0.148266 + 0.988948i \(0.547369\pi\)
\(998\) 24.8439 0.786420
\(999\) 3.49880 0.110697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cw.1.5 24
7.3 odd 6 1183.2.e.k.170.20 48
7.5 odd 6 1183.2.e.k.508.20 yes 48
7.6 odd 2 8281.2.a.cv.1.5 24
13.12 even 2 8281.2.a.ct.1.20 24
91.12 odd 6 1183.2.e.l.508.5 yes 48
91.38 odd 6 1183.2.e.l.170.5 yes 48
91.90 odd 2 8281.2.a.cu.1.20 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1183.2.e.k.170.20 48 7.3 odd 6
1183.2.e.k.508.20 yes 48 7.5 odd 6
1183.2.e.l.170.5 yes 48 91.38 odd 6
1183.2.e.l.508.5 yes 48 91.12 odd 6
8281.2.a.ct.1.20 24 13.12 even 2
8281.2.a.cu.1.20 24 91.90 odd 2
8281.2.a.cv.1.5 24 7.6 odd 2
8281.2.a.cw.1.5 24 1.1 even 1 trivial