Properties

Label 832.2.ba.f.225.2
Level $832$
Weight $2$
Character 832.225
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.225
Dual form 832.2.ba.f.673.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.36603 + 1.36603i) q^{3} -1.73205 q^{5} +(-1.73205 + 1.00000i) q^{7} +(2.23205 + 3.86603i) q^{9} +(-1.73205 + 3.00000i) q^{11} +(3.59808 - 0.232051i) q^{13} +(-4.09808 - 2.36603i) q^{15} +(0.232051 + 0.401924i) q^{17} +(2.36603 + 4.09808i) q^{19} -5.46410 q^{21} +(-2.36603 + 4.09808i) q^{23} -2.00000 q^{25} +4.00000i q^{27} +(0.401924 + 0.232051i) q^{29} +0.196152i q^{31} +(-8.19615 + 4.73205i) q^{33} +(3.00000 - 1.73205i) q^{35} +(-4.59808 + 7.96410i) q^{37} +(8.83013 + 4.36603i) q^{39} +(-4.50000 - 2.59808i) q^{41} +(10.7321 - 6.19615i) q^{43} +(-3.86603 - 6.69615i) q^{45} +11.6603i q^{47} +(-1.50000 + 2.59808i) q^{49} +1.26795i q^{51} -12.4641i q^{53} +(3.00000 - 5.19615i) q^{55} +12.9282i q^{57} +(-0.464102 - 0.803848i) q^{59} +(11.5981 - 6.69615i) q^{61} +(-7.73205 - 4.46410i) q^{63} +(-6.23205 + 0.401924i) q^{65} +(4.09808 - 7.09808i) q^{67} +(-11.1962 + 6.46410i) q^{69} +(10.0981 - 5.83013i) q^{71} -5.19615i q^{73} +(-4.73205 - 2.73205i) q^{75} -6.92820i q^{77} -6.00000 q^{79} +(1.23205 - 2.13397i) q^{81} +2.53590 q^{83} +(-0.401924 - 0.696152i) q^{85} +(0.633975 + 1.09808i) q^{87} +(-13.3923 - 7.73205i) q^{89} +(-6.00000 + 4.00000i) q^{91} +(-0.267949 + 0.464102i) q^{93} +(-4.09808 - 7.09808i) q^{95} +(5.19615 - 3.00000i) q^{97} -15.4641 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 2 q^{9} + 4 q^{13} - 6 q^{15} - 6 q^{17} + 6 q^{19} - 8 q^{21} - 6 q^{23} - 8 q^{25} + 12 q^{29} - 12 q^{33} + 12 q^{35} - 8 q^{37} + 18 q^{39} - 18 q^{41} + 36 q^{43} - 12 q^{45} - 6 q^{49}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.36603 + 1.36603i 1.36603 + 0.788675i 0.990418 0.138104i \(-0.0441007\pi\)
0.375608 + 0.926779i \(0.377434\pi\)
\(4\) 0 0
\(5\) −1.73205 −0.774597 −0.387298 0.921954i \(-0.626592\pi\)
−0.387298 + 0.921954i \(0.626592\pi\)
\(6\) 0 0
\(7\) −1.73205 + 1.00000i −0.654654 + 0.377964i −0.790237 0.612801i \(-0.790043\pi\)
0.135583 + 0.990766i \(0.456709\pi\)
\(8\) 0 0
\(9\) 2.23205 + 3.86603i 0.744017 + 1.28868i
\(10\) 0 0
\(11\) −1.73205 + 3.00000i −0.522233 + 0.904534i 0.477432 + 0.878668i \(0.341568\pi\)
−0.999665 + 0.0258656i \(0.991766\pi\)
\(12\) 0 0
\(13\) 3.59808 0.232051i 0.997927 0.0643593i
\(14\) 0 0
\(15\) −4.09808 2.36603i −1.05812 0.610905i
\(16\) 0 0
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) 0 0
\(19\) 2.36603 + 4.09808i 0.542803 + 0.940163i 0.998742 + 0.0501517i \(0.0159705\pi\)
−0.455938 + 0.890011i \(0.650696\pi\)
\(20\) 0 0
\(21\) −5.46410 −1.19236
\(22\) 0 0
\(23\) −2.36603 + 4.09808i −0.493350 + 0.854508i −0.999971 0.00766135i \(-0.997561\pi\)
0.506620 + 0.862169i \(0.330895\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 0.401924 + 0.232051i 0.0746354 + 0.0430908i 0.536853 0.843676i \(-0.319613\pi\)
−0.462218 + 0.886766i \(0.652946\pi\)
\(30\) 0 0
\(31\) 0.196152i 0.0352300i 0.999845 + 0.0176150i \(0.00560732\pi\)
−0.999845 + 0.0176150i \(0.994393\pi\)
\(32\) 0 0
\(33\) −8.19615 + 4.73205i −1.42677 + 0.823744i
\(34\) 0 0
\(35\) 3.00000 1.73205i 0.507093 0.292770i
\(36\) 0 0
\(37\) −4.59808 + 7.96410i −0.755919 + 1.30929i 0.188997 + 0.981978i \(0.439476\pi\)
−0.944916 + 0.327313i \(0.893857\pi\)
\(38\) 0 0
\(39\) 8.83013 + 4.36603i 1.41395 + 0.699124i
\(40\) 0 0
\(41\) −4.50000 2.59808i −0.702782 0.405751i 0.105601 0.994409i \(-0.466323\pi\)
−0.808383 + 0.588657i \(0.799657\pi\)
\(42\) 0 0
\(43\) 10.7321 6.19615i 1.63662 0.944904i 0.654638 0.755943i \(-0.272821\pi\)
0.981984 0.188962i \(-0.0605123\pi\)
\(44\) 0 0
\(45\) −3.86603 6.69615i −0.576313 0.998203i
\(46\) 0 0
\(47\) 11.6603i 1.70082i 0.526118 + 0.850411i \(0.323647\pi\)
−0.526118 + 0.850411i \(0.676353\pi\)
\(48\) 0 0
\(49\) −1.50000 + 2.59808i −0.214286 + 0.371154i
\(50\) 0 0
\(51\) 1.26795i 0.177548i
\(52\) 0 0
\(53\) 12.4641i 1.71208i −0.516913 0.856038i \(-0.672919\pi\)
0.516913 0.856038i \(-0.327081\pi\)
\(54\) 0 0
\(55\) 3.00000 5.19615i 0.404520 0.700649i
\(56\) 0 0
\(57\) 12.9282i 1.71238i
\(58\) 0 0
\(59\) −0.464102 0.803848i −0.0604209 0.104652i 0.834233 0.551413i \(-0.185911\pi\)
−0.894654 + 0.446760i \(0.852578\pi\)
\(60\) 0 0
\(61\) 11.5981 6.69615i 1.48498 0.857354i 0.485128 0.874443i \(-0.338773\pi\)
0.999854 + 0.0170890i \(0.00543985\pi\)
\(62\) 0 0
\(63\) −7.73205 4.46410i −0.974147 0.562424i
\(64\) 0 0
\(65\) −6.23205 + 0.401924i −0.772991 + 0.0498525i
\(66\) 0 0
\(67\) 4.09808 7.09808i 0.500660 0.867168i −0.499340 0.866406i \(-0.666424\pi\)
1.00000 0.000761916i \(-0.000242525\pi\)
\(68\) 0 0
\(69\) −11.1962 + 6.46410i −1.34786 + 0.778186i
\(70\) 0 0
\(71\) 10.0981 5.83013i 1.19842 0.691909i 0.238218 0.971212i \(-0.423437\pi\)
0.960203 + 0.279303i \(0.0901034\pi\)
\(72\) 0 0
\(73\) 5.19615i 0.608164i −0.952646 0.304082i \(-0.901650\pi\)
0.952646 0.304082i \(-0.0983496\pi\)
\(74\) 0 0
\(75\) −4.73205 2.73205i −0.546410 0.315470i
\(76\) 0 0
\(77\) 6.92820i 0.789542i
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) 1.23205 2.13397i 0.136895 0.237108i
\(82\) 0 0
\(83\) 2.53590 0.278351 0.139176 0.990268i \(-0.455555\pi\)
0.139176 + 0.990268i \(0.455555\pi\)
\(84\) 0 0
\(85\) −0.401924 0.696152i −0.0435948 0.0755083i
\(86\) 0 0
\(87\) 0.633975 + 1.09808i 0.0679692 + 0.117726i
\(88\) 0 0
\(89\) −13.3923 7.73205i −1.41958 0.819596i −0.423320 0.905980i \(-0.639135\pi\)
−0.996262 + 0.0863847i \(0.972469\pi\)
\(90\) 0 0
\(91\) −6.00000 + 4.00000i −0.628971 + 0.419314i
\(92\) 0 0
\(93\) −0.267949 + 0.464102i −0.0277850 + 0.0481251i
\(94\) 0 0
\(95\) −4.09808 7.09808i −0.420454 0.728247i
\(96\) 0 0
\(97\) 5.19615 3.00000i 0.527589 0.304604i −0.212445 0.977173i \(-0.568143\pi\)
0.740034 + 0.672569i \(0.234809\pi\)
\(98\) 0 0
\(99\) −15.4641 −1.55420
\(100\) 0 0
\(101\) 8.59808 + 4.96410i 0.855541 + 0.493947i 0.862516 0.506029i \(-0.168887\pi\)
−0.00697585 + 0.999976i \(0.502220\pi\)
\(102\) 0 0
\(103\) 13.2679 1.30733 0.653665 0.756784i \(-0.273231\pi\)
0.653665 + 0.756784i \(0.273231\pi\)
\(104\) 0 0
\(105\) 9.46410 0.923602
\(106\) 0 0
\(107\) 12.2942 + 7.09808i 1.18853 + 0.686197i 0.957972 0.286862i \(-0.0926122\pi\)
0.230556 + 0.973059i \(0.425945\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −21.7583 + 12.5622i −2.06521 + 1.19235i
\(112\) 0 0
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 0 0
\(115\) 4.09808 7.09808i 0.382148 0.661899i
\(116\) 0 0
\(117\) 8.92820 + 13.3923i 0.825413 + 1.23812i
\(118\) 0 0
\(119\) −0.803848 0.464102i −0.0736886 0.0425441i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) −7.09808 12.2942i −0.640012 1.10853i
\(124\) 0 0
\(125\) 12.1244 1.08444
\(126\) 0 0
\(127\) 2.83013 4.90192i 0.251133 0.434975i −0.712705 0.701464i \(-0.752530\pi\)
0.963838 + 0.266489i \(0.0858635\pi\)
\(128\) 0 0
\(129\) 33.8564 2.98089
\(130\) 0 0
\(131\) 21.1244i 1.84564i 0.385227 + 0.922822i \(0.374123\pi\)
−0.385227 + 0.922822i \(0.625877\pi\)
\(132\) 0 0
\(133\) −8.19615 4.73205i −0.710697 0.410321i
\(134\) 0 0
\(135\) 6.92820i 0.596285i
\(136\) 0 0
\(137\) 5.30385 3.06218i 0.453138 0.261620i −0.256016 0.966672i \(-0.582410\pi\)
0.709155 + 0.705053i \(0.249077\pi\)
\(138\) 0 0
\(139\) −0.339746 + 0.196152i −0.0288169 + 0.0166374i −0.514339 0.857587i \(-0.671963\pi\)
0.485522 + 0.874224i \(0.338629\pi\)
\(140\) 0 0
\(141\) −15.9282 + 27.5885i −1.34140 + 2.32337i
\(142\) 0 0
\(143\) −5.53590 + 11.1962i −0.462935 + 0.936269i
\(144\) 0 0
\(145\) −0.696152 0.401924i −0.0578123 0.0333780i
\(146\) 0 0
\(147\) −7.09808 + 4.09808i −0.585439 + 0.338004i
\(148\) 0 0
\(149\) −2.59808 4.50000i −0.212843 0.368654i 0.739760 0.672870i \(-0.234939\pi\)
−0.952603 + 0.304216i \(0.901606\pi\)
\(150\) 0 0
\(151\) 11.8038i 0.960583i 0.877109 + 0.480292i \(0.159469\pi\)
−0.877109 + 0.480292i \(0.840531\pi\)
\(152\) 0 0
\(153\) −1.03590 + 1.79423i −0.0837474 + 0.145055i
\(154\) 0 0
\(155\) 0.339746i 0.0272891i
\(156\) 0 0
\(157\) 14.3205i 1.14290i 0.820637 + 0.571450i \(0.193619\pi\)
−0.820637 + 0.571450i \(0.806381\pi\)
\(158\) 0 0
\(159\) 17.0263 29.4904i 1.35027 2.33874i
\(160\) 0 0
\(161\) 9.46410i 0.745876i
\(162\) 0 0
\(163\) −4.73205 8.19615i −0.370643 0.641972i 0.619022 0.785374i \(-0.287529\pi\)
−0.989665 + 0.143402i \(0.954196\pi\)
\(164\) 0 0
\(165\) 14.1962 8.19615i 1.10517 0.638070i
\(166\) 0 0
\(167\) −9.00000 5.19615i −0.696441 0.402090i 0.109580 0.993978i \(-0.465050\pi\)
−0.806020 + 0.591888i \(0.798383\pi\)
\(168\) 0 0
\(169\) 12.8923 1.66987i 0.991716 0.128452i
\(170\) 0 0
\(171\) −10.5622 + 18.2942i −0.807710 + 1.39899i
\(172\) 0 0
\(173\) −10.3923 + 6.00000i −0.790112 + 0.456172i −0.840002 0.542583i \(-0.817446\pi\)
0.0498898 + 0.998755i \(0.484113\pi\)
\(174\) 0 0
\(175\) 3.46410 2.00000i 0.261861 0.151186i
\(176\) 0 0
\(177\) 2.53590i 0.190610i
\(178\) 0 0
\(179\) −12.0000 6.92820i −0.896922 0.517838i −0.0207218 0.999785i \(-0.506596\pi\)
−0.876200 + 0.481947i \(0.839930\pi\)
\(180\) 0 0
\(181\) 9.92820i 0.737958i −0.929438 0.368979i \(-0.879708\pi\)
0.929438 0.368979i \(-0.120292\pi\)
\(182\) 0 0
\(183\) 36.5885 2.70470
\(184\) 0 0
\(185\) 7.96410 13.7942i 0.585532 1.01417i
\(186\) 0 0
\(187\) −1.60770 −0.117566
\(188\) 0 0
\(189\) −4.00000 6.92820i −0.290957 0.503953i
\(190\) 0 0
\(191\) −8.02628 13.9019i −0.580761 1.00591i −0.995389 0.0959170i \(-0.969422\pi\)
0.414628 0.909991i \(-0.363912\pi\)
\(192\) 0 0
\(193\) −12.6962 7.33013i −0.913889 0.527634i −0.0322086 0.999481i \(-0.510254\pi\)
−0.881680 + 0.471847i \(0.843587\pi\)
\(194\) 0 0
\(195\) −15.2942 7.56218i −1.09524 0.541539i
\(196\) 0 0
\(197\) −1.73205 + 3.00000i −0.123404 + 0.213741i −0.921108 0.389308i \(-0.872714\pi\)
0.797704 + 0.603049i \(0.206048\pi\)
\(198\) 0 0
\(199\) 3.29423 + 5.70577i 0.233522 + 0.404471i 0.958842 0.283940i \(-0.0916417\pi\)
−0.725320 + 0.688412i \(0.758308\pi\)
\(200\) 0 0
\(201\) 19.3923 11.1962i 1.36783 0.789716i
\(202\) 0 0
\(203\) −0.928203 −0.0651471
\(204\) 0 0
\(205\) 7.79423 + 4.50000i 0.544373 + 0.314294i
\(206\) 0 0
\(207\) −21.1244 −1.46824
\(208\) 0 0
\(209\) −16.3923 −1.13388
\(210\) 0 0
\(211\) −5.36603 3.09808i −0.369412 0.213280i 0.303789 0.952739i \(-0.401748\pi\)
−0.673202 + 0.739459i \(0.735081\pi\)
\(212\) 0 0
\(213\) 31.8564 2.18277
\(214\) 0 0
\(215\) −18.5885 + 10.7321i −1.26772 + 0.731920i
\(216\) 0 0
\(217\) −0.196152 0.339746i −0.0133157 0.0230635i
\(218\) 0 0
\(219\) 7.09808 12.2942i 0.479644 0.830767i
\(220\) 0 0
\(221\) 0.928203 + 1.39230i 0.0624377 + 0.0936566i
\(222\) 0 0
\(223\) 10.5622 + 6.09808i 0.707296 + 0.408357i 0.810059 0.586348i \(-0.199435\pi\)
−0.102763 + 0.994706i \(0.532768\pi\)
\(224\) 0 0
\(225\) −4.46410 7.73205i −0.297607 0.515470i
\(226\) 0 0
\(227\) 4.90192 + 8.49038i 0.325352 + 0.563526i 0.981584 0.191033i \(-0.0611838\pi\)
−0.656231 + 0.754560i \(0.727851\pi\)
\(228\) 0 0
\(229\) 22.7846 1.50565 0.752825 0.658221i \(-0.228691\pi\)
0.752825 + 0.658221i \(0.228691\pi\)
\(230\) 0 0
\(231\) 9.46410 16.3923i 0.622692 1.07853i
\(232\) 0 0
\(233\) −25.8564 −1.69391 −0.846955 0.531665i \(-0.821567\pi\)
−0.846955 + 0.531665i \(0.821567\pi\)
\(234\) 0 0
\(235\) 20.1962i 1.31745i
\(236\) 0 0
\(237\) −14.1962 8.19615i −0.922139 0.532397i
\(238\) 0 0
\(239\) 0.928203i 0.0600405i 0.999549 + 0.0300202i \(0.00955717\pi\)
−0.999549 + 0.0300202i \(0.990443\pi\)
\(240\) 0 0
\(241\) 15.6962 9.06218i 1.01108 0.583746i 0.0995709 0.995030i \(-0.468253\pi\)
0.911507 + 0.411284i \(0.134920\pi\)
\(242\) 0 0
\(243\) 16.2224 9.36603i 1.04067 0.600831i
\(244\) 0 0
\(245\) 2.59808 4.50000i 0.165985 0.287494i
\(246\) 0 0
\(247\) 9.46410 + 14.1962i 0.602186 + 0.903280i
\(248\) 0 0
\(249\) 6.00000 + 3.46410i 0.380235 + 0.219529i
\(250\) 0 0
\(251\) 1.90192 1.09808i 0.120048 0.0693100i −0.438773 0.898598i \(-0.644587\pi\)
0.558822 + 0.829288i \(0.311254\pi\)
\(252\) 0 0
\(253\) −8.19615 14.1962i −0.515288 0.892504i
\(254\) 0 0
\(255\) 2.19615i 0.137528i
\(256\) 0 0
\(257\) −5.42820 + 9.40192i −0.338602 + 0.586476i −0.984170 0.177227i \(-0.943287\pi\)
0.645568 + 0.763703i \(0.276621\pi\)
\(258\) 0 0
\(259\) 18.3923i 1.14284i
\(260\) 0 0
\(261\) 2.07180i 0.128241i
\(262\) 0 0
\(263\) 9.12436 15.8038i 0.562632 0.974507i −0.434634 0.900607i \(-0.643122\pi\)
0.997266 0.0738997i \(-0.0235445\pi\)
\(264\) 0 0
\(265\) 21.5885i 1.32617i
\(266\) 0 0
\(267\) −21.1244 36.5885i −1.29279 2.23918i
\(268\) 0 0
\(269\) −2.19615 + 1.26795i −0.133902 + 0.0773082i −0.565455 0.824779i \(-0.691299\pi\)
0.431553 + 0.902088i \(0.357966\pi\)
\(270\) 0 0
\(271\) −16.2679 9.39230i −0.988208 0.570542i −0.0834695 0.996510i \(-0.526600\pi\)
−0.904738 + 0.425968i \(0.859933\pi\)
\(272\) 0 0
\(273\) −19.6603 + 1.26795i −1.18989 + 0.0767398i
\(274\) 0 0
\(275\) 3.46410 6.00000i 0.208893 0.361814i
\(276\) 0 0
\(277\) −15.4019 + 8.89230i −0.925412 + 0.534287i −0.885358 0.464911i \(-0.846086\pi\)
−0.0400543 + 0.999198i \(0.512753\pi\)
\(278\) 0 0
\(279\) −0.758330 + 0.437822i −0.0454000 + 0.0262117i
\(280\) 0 0
\(281\) 16.2679i 0.970464i 0.874385 + 0.485232i \(0.161265\pi\)
−0.874385 + 0.485232i \(0.838735\pi\)
\(282\) 0 0
\(283\) 12.4641 + 7.19615i 0.740914 + 0.427767i 0.822402 0.568907i \(-0.192634\pi\)
−0.0814876 + 0.996674i \(0.525967\pi\)
\(284\) 0 0
\(285\) 22.3923i 1.32641i
\(286\) 0 0
\(287\) 10.3923 0.613438
\(288\) 0 0
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) 0 0
\(291\) 16.3923 0.960934
\(292\) 0 0
\(293\) −15.8660 27.4808i −0.926903 1.60544i −0.788472 0.615071i \(-0.789127\pi\)
−0.138432 0.990372i \(-0.544206\pi\)
\(294\) 0 0
\(295\) 0.803848 + 1.39230i 0.0468018 + 0.0810631i
\(296\) 0 0
\(297\) −12.0000 6.92820i −0.696311 0.402015i
\(298\) 0 0
\(299\) −7.56218 + 15.2942i −0.437332 + 0.884488i
\(300\) 0 0
\(301\) −12.3923 + 21.4641i −0.714281 + 1.23717i
\(302\) 0 0
\(303\) 13.5622 + 23.4904i 0.779127 + 1.34949i
\(304\) 0 0
\(305\) −20.0885 + 11.5981i −1.15026 + 0.664104i
\(306\) 0 0
\(307\) −5.66025 −0.323048 −0.161524 0.986869i \(-0.551641\pi\)
−0.161524 + 0.986869i \(0.551641\pi\)
\(308\) 0 0
\(309\) 31.3923 + 18.1244i 1.78585 + 1.03106i
\(310\) 0 0
\(311\) −10.7321 −0.608559 −0.304279 0.952583i \(-0.598416\pi\)
−0.304279 + 0.952583i \(0.598416\pi\)
\(312\) 0 0
\(313\) −11.6077 −0.656106 −0.328053 0.944659i \(-0.606392\pi\)
−0.328053 + 0.944659i \(0.606392\pi\)
\(314\) 0 0
\(315\) 13.3923 + 7.73205i 0.754571 + 0.435652i
\(316\) 0 0
\(317\) 24.8038 1.39312 0.696561 0.717497i \(-0.254712\pi\)
0.696561 + 0.717497i \(0.254712\pi\)
\(318\) 0 0
\(319\) −1.39230 + 0.803848i −0.0779541 + 0.0450068i
\(320\) 0 0
\(321\) 19.3923 + 33.5885i 1.08237 + 1.87472i
\(322\) 0 0
\(323\) −1.09808 + 1.90192i −0.0610986 + 0.105826i
\(324\) 0 0
\(325\) −7.19615 + 0.464102i −0.399171 + 0.0257437i
\(326\) 0 0
\(327\) 4.73205 + 2.73205i 0.261683 + 0.151083i
\(328\) 0 0
\(329\) −11.6603 20.1962i −0.642851 1.11345i
\(330\) 0 0
\(331\) 10.3923 + 18.0000i 0.571213 + 0.989369i 0.996442 + 0.0842837i \(0.0268602\pi\)
−0.425229 + 0.905086i \(0.639806\pi\)
\(332\) 0 0
\(333\) −41.0526 −2.24967
\(334\) 0 0
\(335\) −7.09808 + 12.2942i −0.387809 + 0.671705i
\(336\) 0 0
\(337\) 21.3923 1.16531 0.582657 0.812718i \(-0.302013\pi\)
0.582657 + 0.812718i \(0.302013\pi\)
\(338\) 0 0
\(339\) 8.19615i 0.445154i
\(340\) 0 0
\(341\) −0.588457 0.339746i −0.0318667 0.0183983i
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 19.3923 11.1962i 1.04405 0.602781i
\(346\) 0 0
\(347\) −24.8827 + 14.3660i −1.33577 + 0.771209i −0.986178 0.165692i \(-0.947014\pi\)
−0.349595 + 0.936901i \(0.613681\pi\)
\(348\) 0 0
\(349\) −4.80385 + 8.32051i −0.257144 + 0.445387i −0.965476 0.260493i \(-0.916115\pi\)
0.708332 + 0.705880i \(0.249448\pi\)
\(350\) 0 0
\(351\) 0.928203 + 14.3923i 0.0495438 + 0.768204i
\(352\) 0 0
\(353\) −26.8923 15.5263i −1.43133 0.826380i −0.434110 0.900860i \(-0.642937\pi\)
−0.997223 + 0.0744792i \(0.976271\pi\)
\(354\) 0 0
\(355\) −17.4904 + 10.0981i −0.928293 + 0.535950i
\(356\) 0 0
\(357\) −1.26795 2.19615i −0.0671070 0.116233i
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −1.69615 + 2.93782i −0.0892712 + 0.154622i
\(362\) 0 0
\(363\) 2.73205i 0.143395i
\(364\) 0 0
\(365\) 9.00000i 0.471082i
\(366\) 0 0
\(367\) −1.09808 + 1.90192i −0.0573191 + 0.0992796i −0.893261 0.449538i \(-0.851589\pi\)
0.835942 + 0.548818i \(0.184922\pi\)
\(368\) 0 0
\(369\) 23.1962i 1.20754i
\(370\) 0 0
\(371\) 12.4641 + 21.5885i 0.647104 + 1.12082i
\(372\) 0 0
\(373\) 7.20577 4.16025i 0.373101 0.215410i −0.301712 0.953399i \(-0.597558\pi\)
0.674812 + 0.737989i \(0.264225\pi\)
\(374\) 0 0
\(375\) 28.6865 + 16.5622i 1.48137 + 0.855267i
\(376\) 0 0
\(377\) 1.50000 + 0.741670i 0.0772539 + 0.0381979i
\(378\) 0 0
\(379\) −3.29423 + 5.70577i −0.169213 + 0.293086i −0.938143 0.346247i \(-0.887456\pi\)
0.768930 + 0.639333i \(0.220789\pi\)
\(380\) 0 0
\(381\) 13.3923 7.73205i 0.686109 0.396125i
\(382\) 0 0
\(383\) −22.3923 + 12.9282i −1.14419 + 0.660600i −0.947466 0.319858i \(-0.896365\pi\)
−0.196728 + 0.980458i \(0.563032\pi\)
\(384\) 0 0
\(385\) 12.0000i 0.611577i
\(386\) 0 0
\(387\) 47.9090 + 27.6603i 2.43535 + 1.40605i
\(388\) 0 0
\(389\) 19.3923i 0.983229i −0.870813 0.491614i \(-0.836407\pi\)
0.870813 0.491614i \(-0.163593\pi\)
\(390\) 0 0
\(391\) −2.19615 −0.111064
\(392\) 0 0
\(393\) −28.8564 + 49.9808i −1.45561 + 2.52120i
\(394\) 0 0
\(395\) 10.3923 0.522894
\(396\) 0 0
\(397\) −2.80385 4.85641i −0.140721 0.243736i 0.787047 0.616893i \(-0.211609\pi\)
−0.927768 + 0.373157i \(0.878275\pi\)
\(398\) 0 0
\(399\) −12.9282 22.3923i −0.647220 1.12102i
\(400\) 0 0
\(401\) 32.6769 + 18.8660i 1.63181 + 0.942124i 0.983535 + 0.180715i \(0.0578413\pi\)
0.648272 + 0.761409i \(0.275492\pi\)
\(402\) 0 0
\(403\) 0.0455173 + 0.705771i 0.00226738 + 0.0351570i
\(404\) 0 0
\(405\) −2.13397 + 3.69615i −0.106038 + 0.183663i
\(406\) 0 0
\(407\) −15.9282 27.5885i −0.789532 1.36751i
\(408\) 0 0
\(409\) 24.6962 14.2583i 1.22115 0.705029i 0.255984 0.966681i \(-0.417601\pi\)
0.965162 + 0.261652i \(0.0842673\pi\)
\(410\) 0 0
\(411\) 16.7321 0.825331
\(412\) 0 0
\(413\) 1.60770 + 0.928203i 0.0791095 + 0.0456739i
\(414\) 0 0
\(415\) −4.39230 −0.215610
\(416\) 0 0
\(417\) −1.07180 −0.0524861
\(418\) 0 0
\(419\) 10.0981 + 5.83013i 0.493323 + 0.284820i 0.725952 0.687745i \(-0.241399\pi\)
−0.232629 + 0.972566i \(0.574733\pi\)
\(420\) 0 0
\(421\) −23.5885 −1.14963 −0.574816 0.818283i \(-0.694926\pi\)
−0.574816 + 0.818283i \(0.694926\pi\)
\(422\) 0 0
\(423\) −45.0788 + 26.0263i −2.19181 + 1.26544i
\(424\) 0 0
\(425\) −0.464102 0.803848i −0.0225122 0.0389923i
\(426\) 0 0
\(427\) −13.3923 + 23.1962i −0.648099 + 1.12254i
\(428\) 0 0
\(429\) −28.3923 + 18.9282i −1.37079 + 0.913862i
\(430\) 0 0
\(431\) 1.60770 + 0.928203i 0.0774400 + 0.0447100i 0.538220 0.842804i \(-0.319097\pi\)
−0.460780 + 0.887514i \(0.652430\pi\)
\(432\) 0 0
\(433\) 7.89230 + 13.6699i 0.379280 + 0.656932i 0.990958 0.134175i \(-0.0428384\pi\)
−0.611678 + 0.791107i \(0.709505\pi\)
\(434\) 0 0
\(435\) −1.09808 1.90192i −0.0526487 0.0911903i
\(436\) 0 0
\(437\) −22.3923 −1.07117
\(438\) 0 0
\(439\) −7.26795 + 12.5885i −0.346880 + 0.600814i −0.985694 0.168548i \(-0.946092\pi\)
0.638813 + 0.769362i \(0.279426\pi\)
\(440\) 0 0
\(441\) −13.3923 −0.637729
\(442\) 0 0
\(443\) 5.07180i 0.240968i 0.992715 + 0.120484i \(0.0384447\pi\)
−0.992715 + 0.120484i \(0.961555\pi\)
\(444\) 0 0
\(445\) 23.1962 + 13.3923i 1.09960 + 0.634856i
\(446\) 0 0
\(447\) 14.1962i 0.671455i
\(448\) 0 0
\(449\) −1.39230 + 0.803848i −0.0657069 + 0.0379359i −0.532494 0.846434i \(-0.678745\pi\)
0.466787 + 0.884370i \(0.345412\pi\)
\(450\) 0 0
\(451\) 15.5885 9.00000i 0.734032 0.423793i
\(452\) 0 0
\(453\) −16.1244 + 27.9282i −0.757588 + 1.31218i
\(454\) 0 0
\(455\) 10.3923 6.92820i 0.487199 0.324799i
\(456\) 0 0
\(457\) 27.4808 + 15.8660i 1.28550 + 0.742181i 0.977847 0.209319i \(-0.0671246\pi\)
0.307648 + 0.951500i \(0.400458\pi\)
\(458\) 0 0
\(459\) −1.60770 + 0.928203i −0.0750408 + 0.0433248i
\(460\) 0 0
\(461\) 1.33013 + 2.30385i 0.0619502 + 0.107301i 0.895337 0.445389i \(-0.146935\pi\)
−0.833387 + 0.552690i \(0.813601\pi\)
\(462\) 0 0
\(463\) 20.3923i 0.947711i 0.880603 + 0.473855i \(0.157138\pi\)
−0.880603 + 0.473855i \(0.842862\pi\)
\(464\) 0 0
\(465\) 0.464102 0.803848i 0.0215222 0.0372775i
\(466\) 0 0
\(467\) 26.7846i 1.23944i 0.784821 + 0.619722i \(0.212755\pi\)
−0.784821 + 0.619722i \(0.787245\pi\)
\(468\) 0 0
\(469\) 16.3923i 0.756926i
\(470\) 0 0
\(471\) −19.5622 + 33.8827i −0.901378 + 1.56123i
\(472\) 0 0
\(473\) 42.9282i 1.97384i
\(474\) 0 0
\(475\) −4.73205 8.19615i −0.217121 0.376065i
\(476\) 0 0
\(477\) 48.1865 27.8205i 2.20631 1.27381i
\(478\) 0 0
\(479\) 24.2942 + 14.0263i 1.11003 + 0.640877i 0.938838 0.344360i \(-0.111904\pi\)
0.171194 + 0.985237i \(0.445237\pi\)
\(480\) 0 0
\(481\) −14.6962 + 29.7224i −0.670087 + 1.35523i
\(482\) 0 0
\(483\) 12.9282 22.3923i 0.588254 1.01889i
\(484\) 0 0
\(485\) −9.00000 + 5.19615i −0.408669 + 0.235945i
\(486\) 0 0
\(487\) −7.26795 + 4.19615i −0.329342 + 0.190146i −0.655549 0.755153i \(-0.727563\pi\)
0.326207 + 0.945298i \(0.394229\pi\)
\(488\) 0 0
\(489\) 25.8564i 1.16927i
\(490\) 0 0
\(491\) −0.588457 0.339746i −0.0265567 0.0153325i 0.486663 0.873590i \(-0.338214\pi\)
−0.513220 + 0.858257i \(0.671547\pi\)
\(492\) 0 0
\(493\) 0.215390i 0.00970069i
\(494\) 0 0
\(495\) 26.7846 1.20388
\(496\) 0 0
\(497\) −11.6603 + 20.1962i −0.523034 + 0.905921i
\(498\) 0 0
\(499\) −9.80385 −0.438880 −0.219440 0.975626i \(-0.570423\pi\)
−0.219440 + 0.975626i \(0.570423\pi\)
\(500\) 0 0
\(501\) −14.1962 24.5885i −0.634237 1.09853i
\(502\) 0 0
\(503\) −13.8564 24.0000i −0.617827 1.07011i −0.989882 0.141896i \(-0.954680\pi\)
0.372055 0.928211i \(-0.378653\pi\)
\(504\) 0 0
\(505\) −14.8923 8.59808i −0.662699 0.382609i
\(506\) 0 0
\(507\) 32.7846 + 13.6603i 1.45602 + 0.606673i
\(508\) 0 0
\(509\) 9.99038 17.3038i 0.442816 0.766980i −0.555081 0.831796i \(-0.687313\pi\)
0.997897 + 0.0648165i \(0.0206462\pi\)
\(510\) 0 0
\(511\) 5.19615 + 9.00000i 0.229864 + 0.398137i
\(512\) 0 0
\(513\) −16.3923 + 9.46410i −0.723738 + 0.417850i
\(514\) 0 0
\(515\) −22.9808 −1.01265
\(516\) 0 0
\(517\) −34.9808 20.1962i −1.53845 0.888226i
\(518\) 0 0
\(519\) −32.7846 −1.43908
\(520\) 0 0
\(521\) 5.53590 0.242532 0.121266 0.992620i \(-0.461305\pi\)
0.121266 + 0.992620i \(0.461305\pi\)
\(522\) 0 0
\(523\) 2.07180 + 1.19615i 0.0905933 + 0.0523041i 0.544612 0.838688i \(-0.316677\pi\)
−0.454019 + 0.890992i \(0.650010\pi\)
\(524\) 0 0
\(525\) 10.9282 0.476946
\(526\) 0 0
\(527\) −0.0788383 + 0.0455173i −0.00343425 + 0.00198277i
\(528\) 0 0
\(529\) 0.303848 + 0.526279i 0.0132108 + 0.0228817i
\(530\) 0 0
\(531\) 2.07180 3.58846i 0.0899083 0.155726i
\(532\) 0 0
\(533\) −16.7942 8.30385i −0.727439 0.359680i
\(534\) 0 0
\(535\) −21.2942 12.2942i −0.920630 0.531526i
\(536\) 0 0
\(537\) −18.9282 32.7846i −0.816812 1.41476i
\(538\) 0 0
\(539\) −5.19615 9.00000i −0.223814 0.387657i
\(540\) 0 0
\(541\) −2.80385 −0.120547 −0.0602734 0.998182i \(-0.519197\pi\)
−0.0602734 + 0.998182i \(0.519197\pi\)
\(542\) 0 0
\(543\) 13.5622 23.4904i 0.582009 1.00807i
\(544\) 0 0
\(545\) −3.46410 −0.148386
\(546\) 0 0
\(547\) 12.9808i 0.555017i −0.960723 0.277509i \(-0.910491\pi\)
0.960723 0.277509i \(-0.0895087\pi\)
\(548\) 0 0
\(549\) 51.7750 + 29.8923i 2.20970 + 1.27577i
\(550\) 0 0
\(551\) 2.19615i 0.0935592i
\(552\) 0 0
\(553\) 10.3923 6.00000i 0.441926 0.255146i
\(554\) 0 0
\(555\) 37.6865 21.7583i 1.59970 0.923590i
\(556\) 0 0
\(557\) 18.8660 32.6769i 0.799379 1.38457i −0.120642 0.992696i \(-0.538495\pi\)
0.920021 0.391869i \(-0.128171\pi\)
\(558\) 0 0
\(559\) 37.1769 24.7846i 1.57242 1.04828i
\(560\) 0 0
\(561\) −3.80385 2.19615i −0.160599 0.0927216i
\(562\) 0 0
\(563\) −13.3923 + 7.73205i −0.564418 + 0.325867i −0.754917 0.655820i \(-0.772323\pi\)
0.190499 + 0.981687i \(0.438990\pi\)
\(564\) 0 0
\(565\) −2.59808 4.50000i −0.109302 0.189316i
\(566\) 0 0
\(567\) 4.92820i 0.206965i
\(568\) 0 0
\(569\) 0.928203 1.60770i 0.0389123 0.0673981i −0.845913 0.533320i \(-0.820944\pi\)
0.884826 + 0.465922i \(0.154277\pi\)
\(570\) 0 0
\(571\) 22.0000i 0.920671i −0.887745 0.460336i \(-0.847729\pi\)
0.887745 0.460336i \(-0.152271\pi\)
\(572\) 0 0
\(573\) 43.8564i 1.83213i
\(574\) 0 0
\(575\) 4.73205 8.19615i 0.197340 0.341803i
\(576\) 0 0
\(577\) 44.6603i 1.85923i −0.368531 0.929615i \(-0.620139\pi\)
0.368531 0.929615i \(-0.379861\pi\)
\(578\) 0 0
\(579\) −20.0263 34.6865i −0.832264 1.44152i
\(580\) 0 0
\(581\) −4.39230 + 2.53590i −0.182224 + 0.105207i
\(582\) 0 0
\(583\) 37.3923 + 21.5885i 1.54863 + 0.894103i
\(584\) 0 0
\(585\) −15.4641 23.1962i −0.639362 0.959043i
\(586\) 0 0
\(587\) −5.66025 + 9.80385i −0.233624 + 0.404648i −0.958872 0.283839i \(-0.908392\pi\)
0.725248 + 0.688488i \(0.241725\pi\)
\(588\) 0 0
\(589\) −0.803848 + 0.464102i −0.0331220 + 0.0191230i
\(590\) 0 0
\(591\) −8.19615 + 4.73205i −0.337145 + 0.194651i
\(592\) 0 0
\(593\) 28.5167i 1.17104i −0.810658 0.585519i \(-0.800891\pi\)
0.810658 0.585519i \(-0.199109\pi\)
\(594\) 0 0
\(595\) 1.39230 + 0.803848i 0.0570789 + 0.0329545i
\(596\) 0 0
\(597\) 18.0000i 0.736691i
\(598\) 0 0
\(599\) −33.8038 −1.38119 −0.690594 0.723243i \(-0.742651\pi\)
−0.690594 + 0.723243i \(0.742651\pi\)
\(600\) 0 0
\(601\) −16.8923 + 29.2583i −0.689051 + 1.19347i 0.283094 + 0.959092i \(0.408639\pi\)
−0.972145 + 0.234380i \(0.924694\pi\)
\(602\) 0 0
\(603\) 36.5885 1.49000
\(604\) 0 0
\(605\) 0.866025 + 1.50000i 0.0352089 + 0.0609837i
\(606\) 0 0
\(607\) −14.8301 25.6865i −0.601936 1.04258i −0.992528 0.122020i \(-0.961063\pi\)
0.390591 0.920564i \(-0.372271\pi\)
\(608\) 0 0
\(609\) −2.19615 1.26795i −0.0889926 0.0513799i
\(610\) 0 0
\(611\) 2.70577 + 41.9545i 0.109464 + 1.69730i
\(612\) 0 0
\(613\) 0.598076 1.03590i 0.0241561 0.0418395i −0.853695 0.520774i \(-0.825643\pi\)
0.877851 + 0.478934i \(0.158977\pi\)
\(614\) 0 0
\(615\) 12.2942 + 21.2942i 0.495751 + 0.858666i
\(616\) 0 0
\(617\) −22.5000 + 12.9904i −0.905816 + 0.522973i −0.879083 0.476670i \(-0.841844\pi\)
−0.0267333 + 0.999643i \(0.508510\pi\)
\(618\) 0 0
\(619\) −16.1436 −0.648866 −0.324433 0.945909i \(-0.605173\pi\)
−0.324433 + 0.945909i \(0.605173\pi\)
\(620\) 0 0
\(621\) −16.3923 9.46410i −0.657801 0.379781i
\(622\) 0 0
\(623\) 30.9282 1.23911
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) −38.7846 22.3923i −1.54891 0.894263i
\(628\) 0 0
\(629\) −4.26795 −0.170174
\(630\) 0 0
\(631\) 24.9282 14.3923i 0.992376 0.572949i 0.0863924 0.996261i \(-0.472466\pi\)
0.905984 + 0.423313i \(0.139133\pi\)
\(632\) 0 0
\(633\) −8.46410 14.6603i −0.336418 0.582693i
\(634\) 0 0
\(635\) −4.90192 + 8.49038i −0.194527 + 0.336930i
\(636\) 0 0
\(637\) −4.79423 + 9.69615i −0.189954 + 0.384176i
\(638\) 0 0
\(639\) 45.0788 + 26.0263i 1.78329 + 1.02958i
\(640\) 0 0
\(641\) 10.5000 + 18.1865i 0.414725 + 0.718325i 0.995400 0.0958109i \(-0.0305444\pi\)
−0.580674 + 0.814136i \(0.697211\pi\)
\(642\) 0 0
\(643\) −18.1244 31.3923i −0.714755 1.23799i −0.963054 0.269308i \(-0.913205\pi\)
0.248299 0.968683i \(-0.420128\pi\)
\(644\) 0 0
\(645\) −58.6410 −2.30899
\(646\) 0 0
\(647\) 6.75833 11.7058i 0.265697 0.460201i −0.702049 0.712129i \(-0.747731\pi\)
0.967746 + 0.251928i \(0.0810645\pi\)
\(648\) 0 0
\(649\) 3.21539 0.126215
\(650\) 0 0
\(651\) 1.07180i 0.0420070i
\(652\) 0 0
\(653\) 28.3923 + 16.3923i 1.11108 + 0.641480i 0.939108 0.343622i \(-0.111654\pi\)
0.171969 + 0.985102i \(0.444987\pi\)
\(654\) 0 0
\(655\) 36.5885i 1.42963i
\(656\) 0 0
\(657\) 20.0885 11.5981i 0.783725 0.452484i
\(658\) 0 0
\(659\) 2.78461 1.60770i 0.108473 0.0626269i −0.444782 0.895639i \(-0.646719\pi\)
0.553255 + 0.833012i \(0.313386\pi\)
\(660\) 0 0
\(661\) 11.1865 19.3756i 0.435106 0.753625i −0.562199 0.827002i \(-0.690044\pi\)
0.997304 + 0.0733771i \(0.0233777\pi\)
\(662\) 0 0
\(663\) 0.294229 + 4.56218i 0.0114269 + 0.177180i
\(664\) 0 0
\(665\) 14.1962 + 8.19615i 0.550503 + 0.317833i
\(666\) 0 0
\(667\) −1.90192 + 1.09808i −0.0736428 + 0.0425177i
\(668\) 0 0
\(669\) 16.6603 + 28.8564i 0.644123 + 1.11565i
\(670\) 0 0
\(671\) 46.3923i 1.79096i
\(672\) 0 0
\(673\) −22.8923 + 39.6506i −0.882434 + 1.52842i −0.0338062 + 0.999428i \(0.510763\pi\)
−0.848627 + 0.528991i \(0.822570\pi\)
\(674\) 0 0
\(675\) 8.00000i 0.307920i
\(676\) 0 0
\(677\) 47.5692i 1.82823i 0.405451 + 0.914117i \(0.367115\pi\)
−0.405451 + 0.914117i \(0.632885\pi\)
\(678\) 0 0
\(679\) −6.00000 + 10.3923i −0.230259 + 0.398820i
\(680\) 0 0
\(681\) 26.7846i 1.02639i
\(682\) 0 0
\(683\) −3.75833 6.50962i −0.143809 0.249084i 0.785119 0.619345i \(-0.212602\pi\)
−0.928928 + 0.370261i \(0.879268\pi\)
\(684\) 0 0
\(685\) −9.18653 + 5.30385i −0.350999 + 0.202650i
\(686\) 0 0
\(687\) 53.9090 + 31.1244i 2.05676 + 1.18747i
\(688\) 0 0
\(689\) −2.89230 44.8468i −0.110188 1.70853i
\(690\) 0 0
\(691\) 12.1244 21.0000i 0.461232 0.798878i −0.537790 0.843079i \(-0.680741\pi\)
0.999023 + 0.0442009i \(0.0140742\pi\)
\(692\) 0 0
\(693\) 26.7846 15.4641i 1.01746 0.587433i
\(694\) 0 0
\(695\) 0.588457 0.339746i 0.0223215 0.0128873i
\(696\) 0 0
\(697\) 2.41154i 0.0913437i
\(698\) 0 0
\(699\) −61.1769 35.3205i −2.31392 1.33594i
\(700\) 0 0
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) −43.5167 −1.64126
\(704\) 0 0
\(705\) 27.5885 47.7846i 1.03904 1.79967i
\(706\) 0 0
\(707\) −19.8564 −0.746777
\(708\) 0 0
\(709\) −3.20577 5.55256i −0.120395 0.208531i 0.799528 0.600628i \(-0.205083\pi\)
−0.919924 + 0.392098i \(0.871750\pi\)
\(710\) 0 0
\(711\) −13.3923 23.1962i −0.502251 0.869924i
\(712\) 0 0
\(713\) −0.803848 0.464102i −0.0301043 0.0173807i
\(714\) 0 0
\(715\) 9.58846 19.3923i 0.358588 0.725231i
\(716\) 0 0
\(717\) −1.26795 + 2.19615i −0.0473524 + 0.0820168i
\(718\) 0 0
\(719\) 1.73205 + 3.00000i 0.0645946 + 0.111881i 0.896514 0.443015i \(-0.146091\pi\)
−0.831919 + 0.554896i \(0.812758\pi\)
\(720\) 0 0
\(721\) −22.9808 + 13.2679i −0.855848 + 0.494124i
\(722\) 0 0
\(723\) 49.5167 1.84154
\(724\) 0 0
\(725\) −0.803848 0.464102i −0.0298541 0.0172363i
\(726\) 0 0
\(727\) −40.6410 −1.50729 −0.753646 0.657281i \(-0.771707\pi\)
−0.753646 + 0.657281i \(0.771707\pi\)
\(728\) 0 0
\(729\) 43.7846 1.62165
\(730\) 0 0
\(731\) 4.98076 + 2.87564i 0.184220 + 0.106360i
\(732\) 0 0
\(733\) 35.9808 1.32898 0.664490 0.747297i \(-0.268649\pi\)
0.664490 + 0.747297i \(0.268649\pi\)
\(734\) 0 0
\(735\) 12.2942 7.09808i 0.453479 0.261816i
\(736\) 0 0
\(737\) 14.1962 + 24.5885i 0.522922 + 0.905727i
\(738\) 0 0
\(739\) −24.0000 + 41.5692i −0.882854 + 1.52915i −0.0347009 + 0.999398i \(0.511048\pi\)
−0.848153 + 0.529751i \(0.822285\pi\)
\(740\) 0 0
\(741\) 3.00000 + 46.5167i 0.110208 + 1.70883i
\(742\) 0 0
\(743\) −44.1962 25.5167i −1.62140 0.936115i −0.986546 0.163483i \(-0.947727\pi\)
−0.634853 0.772633i \(-0.718940\pi\)
\(744\) 0 0
\(745\) 4.50000 + 7.79423i 0.164867 + 0.285558i
\(746\) 0 0
\(747\) 5.66025 + 9.80385i 0.207098 + 0.358704i
\(748\) 0 0
\(749\) −28.3923 −1.03743
\(750\) 0 0
\(751\) 17.6603 30.5885i 0.644432 1.11619i −0.340001 0.940425i \(-0.610427\pi\)
0.984432 0.175763i \(-0.0562394\pi\)
\(752\) 0 0
\(753\) 6.00000 0.218652
\(754\) 0 0
\(755\) 20.4449i 0.744065i
\(756\) 0 0
\(757\) 2.19615 + 1.26795i 0.0798205 + 0.0460844i 0.539379 0.842063i \(-0.318659\pi\)
−0.459559 + 0.888147i \(0.651992\pi\)
\(758\) 0 0
\(759\) 44.7846i 1.62558i
\(760\) 0 0
\(761\) 21.0000 12.1244i 0.761249 0.439508i −0.0684947 0.997651i \(-0.521820\pi\)
0.829744 + 0.558144i \(0.188486\pi\)
\(762\) 0 0
\(763\) −3.46410 + 2.00000i −0.125409 + 0.0724049i
\(764\) 0 0
\(765\) 1.79423 3.10770i 0.0648705 0.112359i
\(766\) 0 0
\(767\) −1.85641 2.78461i −0.0670310 0.100546i
\(768\) 0 0
\(769\) −7.39230 4.26795i −0.266573 0.153906i 0.360756 0.932660i \(-0.382519\pi\)
−0.627329 + 0.778754i \(0.715852\pi\)
\(770\) 0 0
\(771\) −25.6865 + 14.8301i −0.925078 + 0.534094i
\(772\) 0 0
\(773\) 6.92820 + 12.0000i 0.249190 + 0.431610i 0.963301 0.268422i \(-0.0865023\pi\)
−0.714111 + 0.700032i \(0.753169\pi\)
\(774\) 0 0
\(775\) 0.392305i 0.0140920i
\(776\) 0 0
\(777\) 25.1244 43.5167i 0.901331 1.56115i
\(778\) 0 0
\(779\) 24.5885i 0.880973i
\(780\) 0 0
\(781\) 40.3923i 1.44535i
\(782\) 0 0
\(783\) −0.928203 + 1.60770i −0.0331713 + 0.0574543i
\(784\) 0 0
\(785\) 24.8038i 0.885287i
\(786\) 0 0
\(787\) 16.0981 + 27.8827i 0.573834 + 0.993910i 0.996167 + 0.0874695i \(0.0278780\pi\)
−0.422333 + 0.906441i \(0.638789\pi\)
\(788\) 0 0
\(789\) 43.1769 24.9282i 1.53714 0.887468i
\(790\) 0 0
\(791\) −5.19615 3.00000i −0.184754 0.106668i
\(792\) 0 0
\(793\) 40.1769 26.7846i 1.42672 0.951149i
\(794\) 0 0
\(795\) −29.4904 + 51.0788i −1.04592 + 1.81158i
\(796\) 0 0
\(797\) 22.9808 13.2679i 0.814020 0.469975i −0.0343297 0.999411i \(-0.510930\pi\)
0.848350 + 0.529436i \(0.177596\pi\)
\(798\) 0 0
\(799\) −4.68653 + 2.70577i −0.165798 + 0.0957233i
\(800\) 0 0
\(801\) 69.0333i 2.43917i
\(802\) 0 0
\(803\) 15.5885 + 9.00000i 0.550105 + 0.317603i
\(804\) 0 0
\(805\) 16.3923i 0.577753i
\(806\) 0 0
\(807\) −6.92820 −0.243884
\(808\) 0 0
\(809\) −4.03590 + 6.99038i −0.141895 + 0.245769i −0.928210 0.372057i \(-0.878653\pi\)
0.786315 + 0.617825i \(0.211986\pi\)
\(810\) 0 0
\(811\) −1.26795 −0.0445237 −0.0222619 0.999752i \(-0.507087\pi\)
−0.0222619 + 0.999752i \(0.507087\pi\)
\(812\) 0 0
\(813\) −25.6603 44.4449i −0.899944 1.55875i
\(814\) 0 0
\(815\) 8.19615 + 14.1962i 0.287099 + 0.497270i
\(816\) 0 0
\(817\) 50.7846 + 29.3205i 1.77673 + 1.02579i
\(818\) 0 0
\(819\) −28.8564 14.2679i −1.00832 0.498562i
\(820\) 0 0
\(821\) 2.07180 3.58846i 0.0723062 0.125238i −0.827605 0.561310i \(-0.810297\pi\)
0.899912 + 0.436072i \(0.143631\pi\)
\(822\) 0 0
\(823\) 7.73205 + 13.3923i 0.269522 + 0.466826i 0.968739 0.248084i \(-0.0798009\pi\)
−0.699216 + 0.714910i \(0.746468\pi\)
\(824\) 0 0
\(825\) 16.3923 9.46410i 0.570707 0.329498i
\(826\) 0 0
\(827\) −29.3205 −1.01957 −0.509787 0.860301i \(-0.670276\pi\)
−0.509787 + 0.860301i \(0.670276\pi\)
\(828\) 0 0
\(829\) 34.7942 + 20.0885i 1.20845 + 0.697701i 0.962421 0.271561i \(-0.0875398\pi\)
0.246032 + 0.969262i \(0.420873\pi\)
\(830\) 0 0
\(831\) −48.5885 −1.68551
\(832\) 0 0
\(833\) −1.39230 −0.0482405
\(834\) 0 0
\(835\) 15.5885 + 9.00000i 0.539461 + 0.311458i
\(836\) 0 0
\(837\) −0.784610 −0.0271201
\(838\) 0 0
\(839\) −1.90192 + 1.09808i −0.0656617 + 0.0379098i −0.532471 0.846448i \(-0.678737\pi\)
0.466810 + 0.884358i \(0.345403\pi\)
\(840\) 0 0
\(841\) −14.3923 24.9282i −0.496286 0.859593i
\(842\) 0 0
\(843\) −22.2224 + 38.4904i −0.765381 + 1.32568i
\(844\) 0 0
\(845\) −22.3301 + 2.89230i −0.768180 + 0.0994983i
\(846\) 0 0
\(847\) 1.73205 + 1.00000i 0.0595140 + 0.0343604i
\(848\) 0 0
\(849\) 19.6603 + 34.0526i 0.674738 + 1.16868i
\(850\) 0 0
\(851\) −21.7583 37.6865i −0.745866 1.29188i
\(852\) 0 0
\(853\) 25.1962 0.862700 0.431350 0.902185i \(-0.358037\pi\)
0.431350 + 0.902185i \(0.358037\pi\)
\(854\) 0 0
\(855\) 18.2942 31.6865i 0.625649 1.08366i
\(856\) 0 0
\(857\) −1.39230 −0.0475602 −0.0237801 0.999717i \(-0.507570\pi\)
−0.0237801 + 0.999717i \(0.507570\pi\)
\(858\) 0 0
\(859\) 17.8038i 0.607459i −0.952758 0.303730i \(-0.901768\pi\)
0.952758 0.303730i \(-0.0982320\pi\)
\(860\) 0 0
\(861\) 24.5885 + 14.1962i 0.837972 + 0.483804i
\(862\) 0 0
\(863\) 31.8564i 1.08440i 0.840248 + 0.542202i \(0.182409\pi\)
−0.840248 + 0.542202i \(0.817591\pi\)
\(864\) 0 0
\(865\) 18.0000 10.3923i 0.612018 0.353349i
\(866\) 0 0
\(867\) 39.7128 22.9282i 1.34872 0.778683i
\(868\) 0 0
\(869\) 10.3923 18.0000i 0.352535 0.610608i
\(870\) 0 0
\(871\) 13.0981 26.4904i 0.443811 0.897592i
\(872\) 0 0
\(873\) 23.1962 + 13.3923i 0.785071 + 0.453261i
\(874\) 0 0
\(875\) −21.0000 + 12.1244i −0.709930 + 0.409878i
\(876\) 0 0
\(877\) 2.79423 + 4.83975i 0.0943544 + 0.163427i 0.909339 0.416056i \(-0.136588\pi\)
−0.814985 + 0.579483i \(0.803255\pi\)
\(878\) 0 0
\(879\) 86.6936i 2.92410i
\(880\) 0 0
\(881\) 1.16025 2.00962i 0.0390900 0.0677058i −0.845819 0.533471i \(-0.820887\pi\)
0.884908 + 0.465765i \(0.154221\pi\)
\(882\) 0 0
\(883\) 40.1962i 1.35271i 0.736577 + 0.676354i \(0.236441\pi\)
−0.736577 + 0.676354i \(0.763559\pi\)
\(884\) 0 0
\(885\) 4.39230i 0.147646i
\(886\) 0 0
\(887\) 4.85641 8.41154i 0.163062 0.282432i −0.772903 0.634524i \(-0.781196\pi\)
0.935965 + 0.352092i \(0.114530\pi\)
\(888\) 0 0
\(889\) 11.3205i 0.379678i
\(890\) 0 0
\(891\) 4.26795 + 7.39230i 0.142982 + 0.247652i
\(892\) 0 0
\(893\) −47.7846 + 27.5885i −1.59905 + 0.923213i
\(894\) 0 0
\(895\) 20.7846 + 12.0000i 0.694753 + 0.401116i
\(896\) 0 0
\(897\) −38.7846 + 25.8564i −1.29498 + 0.863320i
\(898\) 0 0
\(899\) −0.0455173 + 0.0788383i −0.00151809 + 0.00262941i
\(900\) 0 0
\(901\) 5.00962 2.89230i 0.166895 0.0963566i
\(902\) 0 0
\(903\) −58.6410 + 33.8564i −1.95145 + 1.12667i
\(904\) 0 0
\(905\) 17.1962i 0.571619i
\(906\) 0 0
\(907\) 0.339746 + 0.196152i 0.0112811 + 0.00651313i 0.505630 0.862750i \(-0.331260\pi\)
−0.494349 + 0.869264i \(0.664593\pi\)
\(908\) 0 0
\(909\) 44.3205i 1.47002i
\(910\) 0 0
\(911\) 8.53590 0.282807 0.141403 0.989952i \(-0.454839\pi\)
0.141403 + 0.989952i \(0.454839\pi\)
\(912\) 0 0
\(913\) −4.39230 + 7.60770i −0.145364 + 0.251778i
\(914\) 0 0
\(915\) −63.3731 −2.09505
\(916\) 0 0
\(917\) −21.1244 36.5885i −0.697588 1.20826i
\(918\) 0 0
\(919\) −10.0981 17.4904i −0.333105 0.576954i 0.650014 0.759922i \(-0.274763\pi\)
−0.983119 + 0.182968i \(0.941430\pi\)
\(920\) 0 0
\(921\) −13.3923 7.73205i −0.441291 0.254780i
\(922\) 0 0
\(923\) 34.9808 23.3205i 1.15141 0.767604i
\(924\) 0 0
\(925\) 9.19615 15.9282i 0.302368 0.523716i
\(926\) 0 0
\(927\) 29.6147 + 51.2942i 0.972676 + 1.68472i
\(928\) 0 0
\(929\) 32.6769 18.8660i 1.07209 0.618974i 0.143342 0.989673i \(-0.454215\pi\)
0.928753 + 0.370699i \(0.120882\pi\)
\(930\) 0 0
\(931\) −14.1962 −0.465260
\(932\) 0 0
\(933\) −25.3923 14.6603i −0.831307 0.479955i
\(934\) 0 0
\(935\) 2.78461 0.0910665
\(936\) 0 0
\(937\) −9.78461 −0.319649 −0.159825 0.987145i \(-0.551093\pi\)
−0.159825 + 0.987145i \(0.551093\pi\)
\(938\) 0 0
\(939\) −27.4641 15.8564i −0.896257 0.517454i
\(940\) 0 0
\(941\) −27.7128 −0.903412 −0.451706 0.892167i \(-0.649184\pi\)
−0.451706 + 0.892167i \(0.649184\pi\)
\(942\) 0 0
\(943\) 21.2942 12.2942i 0.693435 0.400355i
\(944\) 0 0
\(945\) 6.92820 + 12.0000i 0.225374 + 0.390360i
\(946\) 0 0
\(947\) 18.7583 32.4904i 0.609564 1.05580i −0.381748 0.924266i \(-0.624678\pi\)
0.991312 0.131529i \(-0.0419887\pi\)
\(948\) 0 0
\(949\) −1.20577 18.6962i −0.0391410 0.606903i
\(950\) 0 0
\(951\) 58.6865 + 33.8827i 1.90304 + 1.09872i
\(952\) 0 0
\(953\) −5.53590 9.58846i −0.179325 0.310601i 0.762324 0.647195i \(-0.224058\pi\)
−0.941650 + 0.336595i \(0.890725\pi\)
\(954\) 0 0
\(955\) 13.9019 + 24.0788i 0.449856 + 0.779173i
\(956\) 0 0
\(957\) −4.39230 −0.141983
\(958\) 0 0
\(959\) −6.12436 + 10.6077i −0.197766 + 0.342540i
\(960\) 0 0
\(961\) 30.9615 0.998759
\(962\) 0 0
\(963\) 63.3731i 2.04217i
\(964\) 0 0
\(965\) 21.9904 + 12.6962i 0.707895 + 0.408704i
\(966\) 0 0
\(967\) 26.9808i 0.867643i 0.900999 + 0.433821i \(0.142835\pi\)
−0.900999 + 0.433821i \(0.857165\pi\)
\(968\) 0 0
\(969\) −5.19615 + 3.00000i −0.166924 + 0.0963739i
\(970\) 0 0
\(971\) 16.9019 9.75833i 0.542409 0.313160i −0.203646 0.979045i \(-0.565279\pi\)
0.746055 + 0.665885i \(0.231946\pi\)
\(972\) 0 0
\(973\) 0.392305 0.679492i 0.0125767 0.0217835i
\(974\) 0 0
\(975\) −17.6603 8.73205i −0.565581 0.279649i
\(976\) 0 0
\(977\) −36.4808 21.0622i −1.16712 0.673839i −0.214122 0.976807i \(-0.568689\pi\)
−0.953001 + 0.302968i \(0.902022\pi\)
\(978\) 0 0
\(979\) 46.3923 26.7846i 1.48270 0.856040i
\(980\) 0 0
\(981\) 4.46410 + 7.73205i 0.142528 + 0.246865i
\(982\) 0 0
\(983\) 17.6603i 0.563275i −0.959521 0.281637i \(-0.909123\pi\)
0.959521 0.281637i \(-0.0908775\pi\)
\(984\) 0 0
\(985\) 3.00000 5.19615i 0.0955879 0.165563i
\(986\) 0 0
\(987\) 63.7128i 2.02800i
\(988\) 0 0
\(989\) 58.6410i 1.86468i
\(990\) 0 0
\(991\) −6.97372 + 12.0788i −0.221528 + 0.383697i −0.955272 0.295729i \(-0.904438\pi\)
0.733744 + 0.679426i \(0.237771\pi\)
\(992\) 0 0
\(993\) 56.7846i 1.80201i
\(994\) 0 0
\(995\) −5.70577 9.88269i −0.180885 0.313302i
\(996\) 0 0
\(997\) −1.79423 + 1.03590i −0.0568238 + 0.0328072i −0.528143 0.849156i \(-0.677111\pi\)
0.471319 + 0.881963i \(0.343778\pi\)
\(998\) 0 0
\(999\) −31.8564 18.3923i −1.00789 0.581907i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.ba.f.225.2 yes 4
4.3 odd 2 832.2.ba.b.225.1 yes 4
8.3 odd 2 832.2.ba.e.225.2 yes 4
8.5 even 2 832.2.ba.a.225.1 4
13.10 even 6 832.2.ba.a.673.1 yes 4
52.23 odd 6 832.2.ba.e.673.2 yes 4
104.75 odd 6 832.2.ba.b.673.1 yes 4
104.101 even 6 inner 832.2.ba.f.673.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
832.2.ba.a.225.1 4 8.5 even 2
832.2.ba.a.673.1 yes 4 13.10 even 6
832.2.ba.b.225.1 yes 4 4.3 odd 2
832.2.ba.b.673.1 yes 4 104.75 odd 6
832.2.ba.e.225.2 yes 4 8.3 odd 2
832.2.ba.e.673.2 yes 4 52.23 odd 6
832.2.ba.f.225.2 yes 4 1.1 even 1 trivial
832.2.ba.f.673.2 yes 4 104.101 even 6 inner