Properties

Label 8325.2.a.ca.1.4
Level $8325$
Weight $2$
Character 8325.1
Self dual yes
Analytic conductor $66.475$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8325,2,Mod(1,8325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.528933.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 4x^{2} + 7x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2775)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.26942\) of defining polynomial
Character \(\chi\) \(=\) 8325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.03520 q^{2} -0.928359 q^{4} -1.11914 q^{7} -3.03144 q^{8} -4.41971 q^{11} +3.45615 q^{13} -1.15853 q^{14} -1.28143 q^{16} -1.54385 q^{17} -1.52655 q^{19} -4.57529 q^{22} -2.69819 q^{23} +3.57781 q^{26} +1.03896 q^{28} -1.31411 q^{29} -2.78632 q^{31} +4.73634 q^{32} -1.59819 q^{34} +1.00000 q^{37} -1.58029 q^{38} -4.89192 q^{41} -0.770260 q^{43} +4.10308 q^{44} -2.79317 q^{46} +3.73758 q^{47} -5.74753 q^{49} -3.20855 q^{52} -3.73758 q^{53} +3.39260 q^{56} -1.36037 q^{58} +3.42095 q^{59} +2.86481 q^{61} -2.88440 q^{62} +7.46593 q^{64} +8.50365 q^{67} +1.43325 q^{68} +13.9777 q^{71} +0.0402008 q^{73} +1.03520 q^{74} +1.41719 q^{76} +4.94626 q^{77} -6.48635 q^{79} -5.06412 q^{82} -11.6567 q^{83} -0.797374 q^{86} +13.3981 q^{88} -5.31368 q^{89} -3.86791 q^{91} +2.50489 q^{92} +3.86915 q^{94} +14.3116 q^{97} -5.94985 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 8 q^{4} - 3 q^{8} + q^{11} + 14 q^{13} + 10 q^{14} + 10 q^{16} - 11 q^{17} + 10 q^{19} - 14 q^{22} - 4 q^{23} - 13 q^{26} + 3 q^{28} - 5 q^{29} - 3 q^{31} - 23 q^{32} - 3 q^{34} + 5 q^{37}+ \cdots - 35 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03520 0.731997 0.365999 0.930615i \(-0.380727\pi\)
0.365999 + 0.930615i \(0.380727\pi\)
\(3\) 0 0
\(4\) −0.928359 −0.464180
\(5\) 0 0
\(6\) 0 0
\(7\) −1.11914 −0.422994 −0.211497 0.977379i \(-0.567834\pi\)
−0.211497 + 0.977379i \(0.567834\pi\)
\(8\) −3.03144 −1.07178
\(9\) 0 0
\(10\) 0 0
\(11\) −4.41971 −1.33259 −0.666297 0.745687i \(-0.732122\pi\)
−0.666297 + 0.745687i \(0.732122\pi\)
\(12\) 0 0
\(13\) 3.45615 0.958564 0.479282 0.877661i \(-0.340897\pi\)
0.479282 + 0.877661i \(0.340897\pi\)
\(14\) −1.15853 −0.309631
\(15\) 0 0
\(16\) −1.28143 −0.320358
\(17\) −1.54385 −0.374438 −0.187219 0.982318i \(-0.559947\pi\)
−0.187219 + 0.982318i \(0.559947\pi\)
\(18\) 0 0
\(19\) −1.52655 −0.350215 −0.175108 0.984549i \(-0.556027\pi\)
−0.175108 + 0.984549i \(0.556027\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.57529 −0.975455
\(23\) −2.69819 −0.562611 −0.281305 0.959618i \(-0.590767\pi\)
−0.281305 + 0.959618i \(0.590767\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 3.57781 0.701666
\(27\) 0 0
\(28\) 1.03896 0.196345
\(29\) −1.31411 −0.244024 −0.122012 0.992529i \(-0.538935\pi\)
−0.122012 + 0.992529i \(0.538935\pi\)
\(30\) 0 0
\(31\) −2.78632 −0.500437 −0.250219 0.968189i \(-0.580503\pi\)
−0.250219 + 0.968189i \(0.580503\pi\)
\(32\) 4.73634 0.837275
\(33\) 0 0
\(34\) −1.59819 −0.274088
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) −1.58029 −0.256357
\(39\) 0 0
\(40\) 0 0
\(41\) −4.89192 −0.763989 −0.381995 0.924164i \(-0.624763\pi\)
−0.381995 + 0.924164i \(0.624763\pi\)
\(42\) 0 0
\(43\) −0.770260 −0.117464 −0.0587318 0.998274i \(-0.518706\pi\)
−0.0587318 + 0.998274i \(0.518706\pi\)
\(44\) 4.10308 0.618563
\(45\) 0 0
\(46\) −2.79317 −0.411830
\(47\) 3.73758 0.545182 0.272591 0.962130i \(-0.412119\pi\)
0.272591 + 0.962130i \(0.412119\pi\)
\(48\) 0 0
\(49\) −5.74753 −0.821076
\(50\) 0 0
\(51\) 0 0
\(52\) −3.20855 −0.444946
\(53\) −3.73758 −0.513396 −0.256698 0.966492i \(-0.582635\pi\)
−0.256698 + 0.966492i \(0.582635\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.39260 0.453355
\(57\) 0 0
\(58\) −1.36037 −0.178625
\(59\) 3.42095 0.445370 0.222685 0.974890i \(-0.428518\pi\)
0.222685 + 0.974890i \(0.428518\pi\)
\(60\) 0 0
\(61\) 2.86481 0.366801 0.183400 0.983038i \(-0.441290\pi\)
0.183400 + 0.983038i \(0.441290\pi\)
\(62\) −2.88440 −0.366319
\(63\) 0 0
\(64\) 7.46593 0.933241
\(65\) 0 0
\(66\) 0 0
\(67\) 8.50365 1.03889 0.519443 0.854505i \(-0.326139\pi\)
0.519443 + 0.854505i \(0.326139\pi\)
\(68\) 1.43325 0.173807
\(69\) 0 0
\(70\) 0 0
\(71\) 13.9777 1.65885 0.829424 0.558619i \(-0.188669\pi\)
0.829424 + 0.558619i \(0.188669\pi\)
\(72\) 0 0
\(73\) 0.0402008 0.00470514 0.00235257 0.999997i \(-0.499251\pi\)
0.00235257 + 0.999997i \(0.499251\pi\)
\(74\) 1.03520 0.120340
\(75\) 0 0
\(76\) 1.41719 0.162563
\(77\) 4.94626 0.563679
\(78\) 0 0
\(79\) −6.48635 −0.729772 −0.364886 0.931052i \(-0.618892\pi\)
−0.364886 + 0.931052i \(0.618892\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −5.06412 −0.559238
\(83\) −11.6567 −1.27949 −0.639747 0.768585i \(-0.720961\pi\)
−0.639747 + 0.768585i \(0.720961\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.797374 −0.0859831
\(87\) 0 0
\(88\) 13.3981 1.42824
\(89\) −5.31368 −0.563249 −0.281624 0.959525i \(-0.590873\pi\)
−0.281624 + 0.959525i \(0.590873\pi\)
\(90\) 0 0
\(91\) −3.86791 −0.405467
\(92\) 2.50489 0.261153
\(93\) 0 0
\(94\) 3.86915 0.399072
\(95\) 0 0
\(96\) 0 0
\(97\) 14.3116 1.45313 0.726563 0.687100i \(-0.241117\pi\)
0.726563 + 0.687100i \(0.241117\pi\)
\(98\) −5.94985 −0.601026
\(99\) 0 0
\(100\) 0 0
\(101\) 12.2018 1.21413 0.607064 0.794653i \(-0.292347\pi\)
0.607064 + 0.794653i \(0.292347\pi\)
\(102\) 0 0
\(103\) 3.77168 0.371634 0.185817 0.982584i \(-0.440507\pi\)
0.185817 + 0.982584i \(0.440507\pi\)
\(104\) −10.4771 −1.02737
\(105\) 0 0
\(106\) −3.86915 −0.375805
\(107\) −2.70238 −0.261249 −0.130624 0.991432i \(-0.541698\pi\)
−0.130624 + 0.991432i \(0.541698\pi\)
\(108\) 0 0
\(109\) 1.25853 0.120545 0.0602724 0.998182i \(-0.480803\pi\)
0.0602724 + 0.998182i \(0.480803\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.43410 0.135509
\(113\) −14.6838 −1.38134 −0.690670 0.723170i \(-0.742684\pi\)
−0.690670 + 0.723170i \(0.742684\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.21997 0.113271
\(117\) 0 0
\(118\) 3.54137 0.326010
\(119\) 1.72778 0.158385
\(120\) 0 0
\(121\) 8.53385 0.775804
\(122\) 2.96565 0.268497
\(123\) 0 0
\(124\) 2.58670 0.232293
\(125\) 0 0
\(126\) 0 0
\(127\) 17.0214 1.51041 0.755204 0.655490i \(-0.227538\pi\)
0.755204 + 0.655490i \(0.227538\pi\)
\(128\) −1.74395 −0.154145
\(129\) 0 0
\(130\) 0 0
\(131\) −2.45572 −0.214557 −0.107279 0.994229i \(-0.534214\pi\)
−0.107279 + 0.994229i \(0.534214\pi\)
\(132\) 0 0
\(133\) 1.70842 0.148139
\(134\) 8.80298 0.760462
\(135\) 0 0
\(136\) 4.68008 0.401314
\(137\) −3.89750 −0.332986 −0.166493 0.986043i \(-0.553244\pi\)
−0.166493 + 0.986043i \(0.553244\pi\)
\(138\) 0 0
\(139\) 5.79612 0.491620 0.245810 0.969318i \(-0.420946\pi\)
0.245810 + 0.969318i \(0.420946\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 14.4697 1.21427
\(143\) −15.2752 −1.27738
\(144\) 0 0
\(145\) 0 0
\(146\) 0.0416159 0.00344415
\(147\) 0 0
\(148\) −0.928359 −0.0763107
\(149\) −2.52279 −0.206675 −0.103338 0.994646i \(-0.532952\pi\)
−0.103338 + 0.994646i \(0.532952\pi\)
\(150\) 0 0
\(151\) 2.12351 0.172809 0.0864043 0.996260i \(-0.472462\pi\)
0.0864043 + 0.996260i \(0.472462\pi\)
\(152\) 4.62765 0.375352
\(153\) 0 0
\(154\) 5.12038 0.412612
\(155\) 0 0
\(156\) 0 0
\(157\) 6.00295 0.479088 0.239544 0.970886i \(-0.423002\pi\)
0.239544 + 0.970886i \(0.423002\pi\)
\(158\) −6.71468 −0.534191
\(159\) 0 0
\(160\) 0 0
\(161\) 3.01964 0.237981
\(162\) 0 0
\(163\) 20.4393 1.60093 0.800465 0.599380i \(-0.204586\pi\)
0.800465 + 0.599380i \(0.204586\pi\)
\(164\) 4.54146 0.354628
\(165\) 0 0
\(166\) −12.0671 −0.936587
\(167\) 21.0479 1.62873 0.814367 0.580350i \(-0.197084\pi\)
0.814367 + 0.580350i \(0.197084\pi\)
\(168\) 0 0
\(169\) −1.05502 −0.0811553
\(170\) 0 0
\(171\) 0 0
\(172\) 0.715078 0.0545242
\(173\) −3.05560 −0.232313 −0.116156 0.993231i \(-0.537057\pi\)
−0.116156 + 0.993231i \(0.537057\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.66355 0.426906
\(177\) 0 0
\(178\) −5.50072 −0.412297
\(179\) 11.7380 0.877340 0.438670 0.898648i \(-0.355450\pi\)
0.438670 + 0.898648i \(0.355450\pi\)
\(180\) 0 0
\(181\) 10.2545 0.762212 0.381106 0.924531i \(-0.375543\pi\)
0.381106 + 0.924531i \(0.375543\pi\)
\(182\) −4.00406 −0.296801
\(183\) 0 0
\(184\) 8.17939 0.602993
\(185\) 0 0
\(186\) 0 0
\(187\) 6.82337 0.498974
\(188\) −3.46982 −0.253063
\(189\) 0 0
\(190\) 0 0
\(191\) 17.3820 1.25772 0.628860 0.777519i \(-0.283522\pi\)
0.628860 + 0.777519i \(0.283522\pi\)
\(192\) 0 0
\(193\) −20.9875 −1.51071 −0.755357 0.655313i \(-0.772537\pi\)
−0.755357 + 0.655313i \(0.772537\pi\)
\(194\) 14.8154 1.06368
\(195\) 0 0
\(196\) 5.33577 0.381127
\(197\) −11.3766 −0.810546 −0.405273 0.914196i \(-0.632824\pi\)
−0.405273 + 0.914196i \(0.632824\pi\)
\(198\) 0 0
\(199\) 26.6589 1.88980 0.944899 0.327361i \(-0.106159\pi\)
0.944899 + 0.327361i \(0.106159\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.6313 0.888739
\(203\) 1.47067 0.103221
\(204\) 0 0
\(205\) 0 0
\(206\) 3.90444 0.272035
\(207\) 0 0
\(208\) −4.42882 −0.307083
\(209\) 6.74692 0.466694
\(210\) 0 0
\(211\) 4.21679 0.290295 0.145148 0.989410i \(-0.453634\pi\)
0.145148 + 0.989410i \(0.453634\pi\)
\(212\) 3.46982 0.238308
\(213\) 0 0
\(214\) −2.79751 −0.191234
\(215\) 0 0
\(216\) 0 0
\(217\) 3.11827 0.211682
\(218\) 1.30283 0.0882385
\(219\) 0 0
\(220\) 0 0
\(221\) −5.33577 −0.358923
\(222\) 0 0
\(223\) −3.32515 −0.222669 −0.111334 0.993783i \(-0.535512\pi\)
−0.111334 + 0.993783i \(0.535512\pi\)
\(224\) −5.30062 −0.354162
\(225\) 0 0
\(226\) −15.2007 −1.01114
\(227\) −3.11399 −0.206683 −0.103341 0.994646i \(-0.532953\pi\)
−0.103341 + 0.994646i \(0.532953\pi\)
\(228\) 0 0
\(229\) 7.74316 0.511683 0.255841 0.966719i \(-0.417648\pi\)
0.255841 + 0.966719i \(0.417648\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.98364 0.261539
\(233\) −3.33406 −0.218421 −0.109211 0.994019i \(-0.534832\pi\)
−0.109211 + 0.994019i \(0.534832\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3.17587 −0.206732
\(237\) 0 0
\(238\) 1.78860 0.115938
\(239\) −7.91336 −0.511873 −0.255936 0.966694i \(-0.582384\pi\)
−0.255936 + 0.966694i \(0.582384\pi\)
\(240\) 0 0
\(241\) 12.4081 0.799275 0.399638 0.916673i \(-0.369136\pi\)
0.399638 + 0.916673i \(0.369136\pi\)
\(242\) 8.83425 0.567887
\(243\) 0 0
\(244\) −2.65957 −0.170261
\(245\) 0 0
\(246\) 0 0
\(247\) −5.27600 −0.335704
\(248\) 8.44655 0.536357
\(249\) 0 0
\(250\) 0 0
\(251\) −8.54489 −0.539349 −0.269674 0.962952i \(-0.586916\pi\)
−0.269674 + 0.962952i \(0.586916\pi\)
\(252\) 0 0
\(253\) 11.9252 0.749731
\(254\) 17.6206 1.10562
\(255\) 0 0
\(256\) −16.7372 −1.04607
\(257\) 15.1499 0.945028 0.472514 0.881323i \(-0.343347\pi\)
0.472514 + 0.881323i \(0.343347\pi\)
\(258\) 0 0
\(259\) −1.11914 −0.0695398
\(260\) 0 0
\(261\) 0 0
\(262\) −2.54216 −0.157055
\(263\) 23.6047 1.45553 0.727764 0.685828i \(-0.240560\pi\)
0.727764 + 0.685828i \(0.240560\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.76856 0.108437
\(267\) 0 0
\(268\) −7.89444 −0.482230
\(269\) 3.92799 0.239494 0.119747 0.992804i \(-0.461792\pi\)
0.119747 + 0.992804i \(0.461792\pi\)
\(270\) 0 0
\(271\) 8.11060 0.492684 0.246342 0.969183i \(-0.420771\pi\)
0.246342 + 0.969183i \(0.420771\pi\)
\(272\) 1.97833 0.119954
\(273\) 0 0
\(274\) −4.03469 −0.243745
\(275\) 0 0
\(276\) 0 0
\(277\) 5.48883 0.329792 0.164896 0.986311i \(-0.447271\pi\)
0.164896 + 0.986311i \(0.447271\pi\)
\(278\) 6.00015 0.359865
\(279\) 0 0
\(280\) 0 0
\(281\) −0.976662 −0.0582628 −0.0291314 0.999576i \(-0.509274\pi\)
−0.0291314 + 0.999576i \(0.509274\pi\)
\(282\) 0 0
\(283\) −18.3901 −1.09318 −0.546590 0.837401i \(-0.684074\pi\)
−0.546590 + 0.837401i \(0.684074\pi\)
\(284\) −12.9763 −0.770004
\(285\) 0 0
\(286\) −15.8129 −0.935036
\(287\) 5.47473 0.323163
\(288\) 0 0
\(289\) −14.6165 −0.859796
\(290\) 0 0
\(291\) 0 0
\(292\) −0.0373208 −0.00218403
\(293\) 14.1756 0.828150 0.414075 0.910243i \(-0.364105\pi\)
0.414075 + 0.910243i \(0.364105\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.03144 −0.176199
\(297\) 0 0
\(298\) −2.61160 −0.151286
\(299\) −9.32534 −0.539298
\(300\) 0 0
\(301\) 0.862027 0.0496864
\(302\) 2.19826 0.126495
\(303\) 0 0
\(304\) 1.95617 0.112194
\(305\) 0 0
\(306\) 0 0
\(307\) 4.23790 0.241870 0.120935 0.992660i \(-0.461411\pi\)
0.120935 + 0.992660i \(0.461411\pi\)
\(308\) −4.59191 −0.261648
\(309\) 0 0
\(310\) 0 0
\(311\) −8.80673 −0.499384 −0.249692 0.968325i \(-0.580329\pi\)
−0.249692 + 0.968325i \(0.580329\pi\)
\(312\) 0 0
\(313\) 12.8888 0.728520 0.364260 0.931297i \(-0.381322\pi\)
0.364260 + 0.931297i \(0.381322\pi\)
\(314\) 6.21426 0.350691
\(315\) 0 0
\(316\) 6.02167 0.338745
\(317\) −22.7425 −1.27735 −0.638673 0.769478i \(-0.720517\pi\)
−0.638673 + 0.769478i \(0.720517\pi\)
\(318\) 0 0
\(319\) 5.80798 0.325185
\(320\) 0 0
\(321\) 0 0
\(322\) 3.12594 0.174202
\(323\) 2.35677 0.131134
\(324\) 0 0
\(325\) 0 0
\(326\) 21.1588 1.17188
\(327\) 0 0
\(328\) 14.8296 0.818825
\(329\) −4.18287 −0.230609
\(330\) 0 0
\(331\) 32.0593 1.76214 0.881070 0.472985i \(-0.156824\pi\)
0.881070 + 0.472985i \(0.156824\pi\)
\(332\) 10.8217 0.593915
\(333\) 0 0
\(334\) 21.7888 1.19223
\(335\) 0 0
\(336\) 0 0
\(337\) 29.9910 1.63372 0.816858 0.576839i \(-0.195714\pi\)
0.816858 + 0.576839i \(0.195714\pi\)
\(338\) −1.09216 −0.0594055
\(339\) 0 0
\(340\) 0 0
\(341\) 12.3147 0.666879
\(342\) 0 0
\(343\) 14.2662 0.770304
\(344\) 2.33500 0.125895
\(345\) 0 0
\(346\) −3.16316 −0.170052
\(347\) 19.1225 1.02655 0.513276 0.858224i \(-0.328432\pi\)
0.513276 + 0.858224i \(0.328432\pi\)
\(348\) 0 0
\(349\) −1.56638 −0.0838464 −0.0419232 0.999121i \(-0.513348\pi\)
−0.0419232 + 0.999121i \(0.513348\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −20.9333 −1.11575
\(353\) −4.62110 −0.245956 −0.122978 0.992409i \(-0.539244\pi\)
−0.122978 + 0.992409i \(0.539244\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.93300 0.261449
\(357\) 0 0
\(358\) 12.1512 0.642211
\(359\) 19.9663 1.05378 0.526890 0.849934i \(-0.323358\pi\)
0.526890 + 0.849934i \(0.323358\pi\)
\(360\) 0 0
\(361\) −16.6696 −0.877349
\(362\) 10.6155 0.557937
\(363\) 0 0
\(364\) 3.59081 0.188210
\(365\) 0 0
\(366\) 0 0
\(367\) 1.70108 0.0887958 0.0443979 0.999014i \(-0.485863\pi\)
0.0443979 + 0.999014i \(0.485863\pi\)
\(368\) 3.45754 0.180237
\(369\) 0 0
\(370\) 0 0
\(371\) 4.18287 0.217164
\(372\) 0 0
\(373\) −4.60844 −0.238616 −0.119308 0.992857i \(-0.538068\pi\)
−0.119308 + 0.992857i \(0.538068\pi\)
\(374\) 7.06355 0.365248
\(375\) 0 0
\(376\) −11.3303 −0.584313
\(377\) −4.54176 −0.233913
\(378\) 0 0
\(379\) −6.09375 −0.313015 −0.156508 0.987677i \(-0.550024\pi\)
−0.156508 + 0.987677i \(0.550024\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 17.9939 0.920648
\(383\) −10.6299 −0.543164 −0.271582 0.962415i \(-0.587547\pi\)
−0.271582 + 0.962415i \(0.587547\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −21.7263 −1.10584
\(387\) 0 0
\(388\) −13.2863 −0.674512
\(389\) −31.2014 −1.58197 −0.790987 0.611833i \(-0.790433\pi\)
−0.790987 + 0.611833i \(0.790433\pi\)
\(390\) 0 0
\(391\) 4.16559 0.210663
\(392\) 17.4233 0.880009
\(393\) 0 0
\(394\) −11.7770 −0.593318
\(395\) 0 0
\(396\) 0 0
\(397\) −14.0978 −0.707546 −0.353773 0.935331i \(-0.615101\pi\)
−0.353773 + 0.935331i \(0.615101\pi\)
\(398\) 27.5973 1.38333
\(399\) 0 0
\(400\) 0 0
\(401\) 17.4354 0.870682 0.435341 0.900266i \(-0.356628\pi\)
0.435341 + 0.900266i \(0.356628\pi\)
\(402\) 0 0
\(403\) −9.62993 −0.479701
\(404\) −11.3277 −0.563574
\(405\) 0 0
\(406\) 1.52244 0.0755573
\(407\) −4.41971 −0.219077
\(408\) 0 0
\(409\) −7.59745 −0.375670 −0.187835 0.982201i \(-0.560147\pi\)
−0.187835 + 0.982201i \(0.560147\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.50147 −0.172505
\(413\) −3.82851 −0.188389
\(414\) 0 0
\(415\) 0 0
\(416\) 16.3695 0.802582
\(417\) 0 0
\(418\) 6.98442 0.341619
\(419\) 35.1905 1.71917 0.859583 0.510996i \(-0.170723\pi\)
0.859583 + 0.510996i \(0.170723\pi\)
\(420\) 0 0
\(421\) 24.1940 1.17914 0.589571 0.807716i \(-0.299297\pi\)
0.589571 + 0.807716i \(0.299297\pi\)
\(422\) 4.36522 0.212496
\(423\) 0 0
\(424\) 11.3303 0.550246
\(425\) 0 0
\(426\) 0 0
\(427\) −3.20611 −0.155155
\(428\) 2.50878 0.121266
\(429\) 0 0
\(430\) 0 0
\(431\) 12.2546 0.590282 0.295141 0.955454i \(-0.404633\pi\)
0.295141 + 0.955454i \(0.404633\pi\)
\(432\) 0 0
\(433\) −5.67574 −0.272759 −0.136379 0.990657i \(-0.543547\pi\)
−0.136379 + 0.990657i \(0.543547\pi\)
\(434\) 3.22804 0.154951
\(435\) 0 0
\(436\) −1.16836 −0.0559545
\(437\) 4.11892 0.197035
\(438\) 0 0
\(439\) 29.2305 1.39510 0.697549 0.716537i \(-0.254274\pi\)
0.697549 + 0.716537i \(0.254274\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −5.52360 −0.262731
\(443\) −15.9668 −0.758607 −0.379304 0.925272i \(-0.623836\pi\)
−0.379304 + 0.925272i \(0.623836\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −3.44220 −0.162993
\(447\) 0 0
\(448\) −8.35540 −0.394755
\(449\) 13.3288 0.629023 0.314511 0.949254i \(-0.398159\pi\)
0.314511 + 0.949254i \(0.398159\pi\)
\(450\) 0 0
\(451\) 21.6209 1.01809
\(452\) 13.6319 0.641190
\(453\) 0 0
\(454\) −3.22360 −0.151291
\(455\) 0 0
\(456\) 0 0
\(457\) −13.1682 −0.615980 −0.307990 0.951390i \(-0.599656\pi\)
−0.307990 + 0.951390i \(0.599656\pi\)
\(458\) 8.01573 0.374550
\(459\) 0 0
\(460\) 0 0
\(461\) −1.08658 −0.0506072 −0.0253036 0.999680i \(-0.508055\pi\)
−0.0253036 + 0.999680i \(0.508055\pi\)
\(462\) 0 0
\(463\) −25.3893 −1.17994 −0.589970 0.807425i \(-0.700861\pi\)
−0.589970 + 0.807425i \(0.700861\pi\)
\(464\) 1.68394 0.0781749
\(465\) 0 0
\(466\) −3.45142 −0.159884
\(467\) −24.2164 −1.12060 −0.560300 0.828290i \(-0.689314\pi\)
−0.560300 + 0.828290i \(0.689314\pi\)
\(468\) 0 0
\(469\) −9.51675 −0.439443
\(470\) 0 0
\(471\) 0 0
\(472\) −10.3704 −0.477337
\(473\) 3.40433 0.156531
\(474\) 0 0
\(475\) 0 0
\(476\) −1.60400 −0.0735192
\(477\) 0 0
\(478\) −8.19192 −0.374690
\(479\) 8.36493 0.382204 0.191102 0.981570i \(-0.438794\pi\)
0.191102 + 0.981570i \(0.438794\pi\)
\(480\) 0 0
\(481\) 3.45615 0.157587
\(482\) 12.8449 0.585068
\(483\) 0 0
\(484\) −7.92248 −0.360113
\(485\) 0 0
\(486\) 0 0
\(487\) 13.7271 0.622032 0.311016 0.950405i \(-0.399331\pi\)
0.311016 + 0.950405i \(0.399331\pi\)
\(488\) −8.68449 −0.393128
\(489\) 0 0
\(490\) 0 0
\(491\) −33.0595 −1.49195 −0.745976 0.665972i \(-0.768017\pi\)
−0.745976 + 0.665972i \(0.768017\pi\)
\(492\) 0 0
\(493\) 2.02879 0.0913719
\(494\) −5.46172 −0.245734
\(495\) 0 0
\(496\) 3.57047 0.160319
\(497\) −15.6430 −0.701683
\(498\) 0 0
\(499\) −20.3734 −0.912041 −0.456020 0.889969i \(-0.650726\pi\)
−0.456020 + 0.889969i \(0.650726\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −8.84568 −0.394802
\(503\) −4.30818 −0.192092 −0.0960461 0.995377i \(-0.530620\pi\)
−0.0960461 + 0.995377i \(0.530620\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 12.3450 0.548801
\(507\) 0 0
\(508\) −15.8020 −0.701101
\(509\) 10.0595 0.445881 0.222941 0.974832i \(-0.428434\pi\)
0.222941 + 0.974832i \(0.428434\pi\)
\(510\) 0 0
\(511\) −0.0449902 −0.00199025
\(512\) −13.8384 −0.611579
\(513\) 0 0
\(514\) 15.6832 0.691758
\(515\) 0 0
\(516\) 0 0
\(517\) −16.5190 −0.726506
\(518\) −1.15853 −0.0509030
\(519\) 0 0
\(520\) 0 0
\(521\) −30.1033 −1.31885 −0.659425 0.751770i \(-0.729200\pi\)
−0.659425 + 0.751770i \(0.729200\pi\)
\(522\) 0 0
\(523\) −41.9861 −1.83592 −0.917962 0.396669i \(-0.870166\pi\)
−0.917962 + 0.396669i \(0.870166\pi\)
\(524\) 2.27979 0.0995931
\(525\) 0 0
\(526\) 24.4356 1.06544
\(527\) 4.30165 0.187383
\(528\) 0 0
\(529\) −15.7198 −0.683469
\(530\) 0 0
\(531\) 0 0
\(532\) −1.58603 −0.0687631
\(533\) −16.9072 −0.732333
\(534\) 0 0
\(535\) 0 0
\(536\) −25.7783 −1.11345
\(537\) 0 0
\(538\) 4.06625 0.175309
\(539\) 25.4024 1.09416
\(540\) 0 0
\(541\) 42.3908 1.82252 0.911262 0.411828i \(-0.135109\pi\)
0.911262 + 0.411828i \(0.135109\pi\)
\(542\) 8.39610 0.360643
\(543\) 0 0
\(544\) −7.31220 −0.313508
\(545\) 0 0
\(546\) 0 0
\(547\) 5.04402 0.215667 0.107833 0.994169i \(-0.465609\pi\)
0.107833 + 0.994169i \(0.465609\pi\)
\(548\) 3.61828 0.154565
\(549\) 0 0
\(550\) 0 0
\(551\) 2.00606 0.0854609
\(552\) 0 0
\(553\) 7.25912 0.308689
\(554\) 5.68204 0.241407
\(555\) 0 0
\(556\) −5.38088 −0.228200
\(557\) −11.9490 −0.506296 −0.253148 0.967428i \(-0.581466\pi\)
−0.253148 + 0.967428i \(0.581466\pi\)
\(558\) 0 0
\(559\) −2.66214 −0.112596
\(560\) 0 0
\(561\) 0 0
\(562\) −1.01104 −0.0426482
\(563\) 6.06416 0.255574 0.127787 0.991802i \(-0.459213\pi\)
0.127787 + 0.991802i \(0.459213\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −19.0375 −0.800204
\(567\) 0 0
\(568\) −42.3726 −1.77791
\(569\) 31.8955 1.33713 0.668564 0.743655i \(-0.266909\pi\)
0.668564 + 0.743655i \(0.266909\pi\)
\(570\) 0 0
\(571\) 40.0882 1.67764 0.838820 0.544408i \(-0.183246\pi\)
0.838820 + 0.544408i \(0.183246\pi\)
\(572\) 14.1809 0.592932
\(573\) 0 0
\(574\) 5.66744 0.236555
\(575\) 0 0
\(576\) 0 0
\(577\) −39.4370 −1.64178 −0.820892 0.571084i \(-0.806523\pi\)
−0.820892 + 0.571084i \(0.806523\pi\)
\(578\) −15.1310 −0.629368
\(579\) 0 0
\(580\) 0 0
\(581\) 13.0455 0.541219
\(582\) 0 0
\(583\) 16.5190 0.684148
\(584\) −0.121866 −0.00504286
\(585\) 0 0
\(586\) 14.6746 0.606204
\(587\) 18.3058 0.755561 0.377781 0.925895i \(-0.376687\pi\)
0.377781 + 0.925895i \(0.376687\pi\)
\(588\) 0 0
\(589\) 4.25346 0.175261
\(590\) 0 0
\(591\) 0 0
\(592\) −1.28143 −0.0526665
\(593\) −42.2895 −1.73662 −0.868311 0.496020i \(-0.834794\pi\)
−0.868311 + 0.496020i \(0.834794\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.34206 0.0959344
\(597\) 0 0
\(598\) −9.65360 −0.394765
\(599\) 38.3964 1.56883 0.784417 0.620234i \(-0.212963\pi\)
0.784417 + 0.620234i \(0.212963\pi\)
\(600\) 0 0
\(601\) −22.0508 −0.899470 −0.449735 0.893162i \(-0.648482\pi\)
−0.449735 + 0.893162i \(0.648482\pi\)
\(602\) 0.892371 0.0363703
\(603\) 0 0
\(604\) −1.97138 −0.0802142
\(605\) 0 0
\(606\) 0 0
\(607\) −28.8824 −1.17230 −0.586149 0.810203i \(-0.699357\pi\)
−0.586149 + 0.810203i \(0.699357\pi\)
\(608\) −7.23028 −0.293226
\(609\) 0 0
\(610\) 0 0
\(611\) 12.9176 0.522592
\(612\) 0 0
\(613\) −2.02571 −0.0818175 −0.0409088 0.999163i \(-0.513025\pi\)
−0.0409088 + 0.999163i \(0.513025\pi\)
\(614\) 4.38708 0.177048
\(615\) 0 0
\(616\) −14.9943 −0.604138
\(617\) −23.6766 −0.953183 −0.476591 0.879125i \(-0.658128\pi\)
−0.476591 + 0.879125i \(0.658128\pi\)
\(618\) 0 0
\(619\) −5.30766 −0.213333 −0.106666 0.994295i \(-0.534018\pi\)
−0.106666 + 0.994295i \(0.534018\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.11673 −0.365548
\(623\) 5.94673 0.238251
\(624\) 0 0
\(625\) 0 0
\(626\) 13.3425 0.533275
\(627\) 0 0
\(628\) −5.57290 −0.222383
\(629\) −1.54385 −0.0615573
\(630\) 0 0
\(631\) 45.6685 1.81803 0.909017 0.416760i \(-0.136834\pi\)
0.909017 + 0.416760i \(0.136834\pi\)
\(632\) 19.6630 0.782152
\(633\) 0 0
\(634\) −23.5431 −0.935015
\(635\) 0 0
\(636\) 0 0
\(637\) −19.8643 −0.787054
\(638\) 6.01243 0.238034
\(639\) 0 0
\(640\) 0 0
\(641\) 18.4272 0.727832 0.363916 0.931432i \(-0.381440\pi\)
0.363916 + 0.931432i \(0.381440\pi\)
\(642\) 0 0
\(643\) −3.86585 −0.152454 −0.0762272 0.997090i \(-0.524287\pi\)
−0.0762272 + 0.997090i \(0.524287\pi\)
\(644\) −2.80331 −0.110466
\(645\) 0 0
\(646\) 2.43973 0.0959898
\(647\) 1.12134 0.0440846 0.0220423 0.999757i \(-0.492983\pi\)
0.0220423 + 0.999757i \(0.492983\pi\)
\(648\) 0 0
\(649\) −15.1196 −0.593497
\(650\) 0 0
\(651\) 0 0
\(652\) −18.9750 −0.743119
\(653\) 14.0497 0.549805 0.274903 0.961472i \(-0.411354\pi\)
0.274903 + 0.961472i \(0.411354\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.26865 0.244750
\(657\) 0 0
\(658\) −4.33011 −0.168805
\(659\) 32.2839 1.25760 0.628801 0.777566i \(-0.283546\pi\)
0.628801 + 0.777566i \(0.283546\pi\)
\(660\) 0 0
\(661\) −45.7280 −1.77861 −0.889306 0.457312i \(-0.848812\pi\)
−0.889306 + 0.457312i \(0.848812\pi\)
\(662\) 33.1879 1.28988
\(663\) 0 0
\(664\) 35.3367 1.37133
\(665\) 0 0
\(666\) 0 0
\(667\) 3.54571 0.137291
\(668\) −19.5400 −0.756025
\(669\) 0 0
\(670\) 0 0
\(671\) −12.6616 −0.488796
\(672\) 0 0
\(673\) 6.76356 0.260716 0.130358 0.991467i \(-0.458387\pi\)
0.130358 + 0.991467i \(0.458387\pi\)
\(674\) 31.0467 1.19588
\(675\) 0 0
\(676\) 0.979436 0.0376706
\(677\) 3.64779 0.140196 0.0700981 0.997540i \(-0.477669\pi\)
0.0700981 + 0.997540i \(0.477669\pi\)
\(678\) 0 0
\(679\) −16.0167 −0.614664
\(680\) 0 0
\(681\) 0 0
\(682\) 12.7482 0.488154
\(683\) 9.05590 0.346514 0.173257 0.984877i \(-0.444571\pi\)
0.173257 + 0.984877i \(0.444571\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 14.7684 0.563861
\(687\) 0 0
\(688\) 0.987035 0.0376303
\(689\) −12.9176 −0.492123
\(690\) 0 0
\(691\) −19.7616 −0.751765 −0.375883 0.926667i \(-0.622660\pi\)
−0.375883 + 0.926667i \(0.622660\pi\)
\(692\) 2.83669 0.107835
\(693\) 0 0
\(694\) 19.7957 0.751433
\(695\) 0 0
\(696\) 0 0
\(697\) 7.55238 0.286067
\(698\) −1.62152 −0.0613754
\(699\) 0 0
\(700\) 0 0
\(701\) −12.3724 −0.467299 −0.233650 0.972321i \(-0.575067\pi\)
−0.233650 + 0.972321i \(0.575067\pi\)
\(702\) 0 0
\(703\) −1.52655 −0.0575750
\(704\) −32.9972 −1.24363
\(705\) 0 0
\(706\) −4.78376 −0.180039
\(707\) −13.6555 −0.513569
\(708\) 0 0
\(709\) −33.1915 −1.24653 −0.623266 0.782010i \(-0.714194\pi\)
−0.623266 + 0.782010i \(0.714194\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 16.1081 0.603676
\(713\) 7.51800 0.281551
\(714\) 0 0
\(715\) 0 0
\(716\) −10.8971 −0.407244
\(717\) 0 0
\(718\) 20.6691 0.771364
\(719\) 52.0978 1.94292 0.971460 0.237205i \(-0.0762314\pi\)
0.971460 + 0.237205i \(0.0762314\pi\)
\(720\) 0 0
\(721\) −4.22102 −0.157199
\(722\) −17.2564 −0.642217
\(723\) 0 0
\(724\) −9.51987 −0.353803
\(725\) 0 0
\(726\) 0 0
\(727\) −32.8479 −1.21826 −0.609131 0.793069i \(-0.708482\pi\)
−0.609131 + 0.793069i \(0.708482\pi\)
\(728\) 11.7253 0.434570
\(729\) 0 0
\(730\) 0 0
\(731\) 1.18917 0.0439829
\(732\) 0 0
\(733\) −43.3499 −1.60116 −0.800582 0.599223i \(-0.795476\pi\)
−0.800582 + 0.599223i \(0.795476\pi\)
\(734\) 1.76096 0.0649983
\(735\) 0 0
\(736\) −12.7795 −0.471060
\(737\) −37.5837 −1.38441
\(738\) 0 0
\(739\) 19.4215 0.714433 0.357216 0.934022i \(-0.383726\pi\)
0.357216 + 0.934022i \(0.383726\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.33011 0.158963
\(743\) 19.7858 0.725872 0.362936 0.931814i \(-0.381774\pi\)
0.362936 + 0.931814i \(0.381774\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.77066 −0.174666
\(747\) 0 0
\(748\) −6.33454 −0.231614
\(749\) 3.02434 0.110507
\(750\) 0 0
\(751\) 31.9047 1.16422 0.582109 0.813110i \(-0.302228\pi\)
0.582109 + 0.813110i \(0.302228\pi\)
\(752\) −4.78945 −0.174653
\(753\) 0 0
\(754\) −4.70163 −0.171223
\(755\) 0 0
\(756\) 0 0
\(757\) 12.9205 0.469602 0.234801 0.972043i \(-0.424556\pi\)
0.234801 + 0.972043i \(0.424556\pi\)
\(758\) −6.30826 −0.229126
\(759\) 0 0
\(760\) 0 0
\(761\) 30.3662 1.10077 0.550386 0.834910i \(-0.314481\pi\)
0.550386 + 0.834910i \(0.314481\pi\)
\(762\) 0 0
\(763\) −1.40846 −0.0509898
\(764\) −16.1368 −0.583808
\(765\) 0 0
\(766\) −11.0041 −0.397595
\(767\) 11.8233 0.426915
\(768\) 0 0
\(769\) 30.1604 1.08761 0.543806 0.839211i \(-0.316983\pi\)
0.543806 + 0.839211i \(0.316983\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 19.4840 0.701243
\(773\) −36.0839 −1.29785 −0.648923 0.760854i \(-0.724780\pi\)
−0.648923 + 0.760854i \(0.724780\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −43.3848 −1.55743
\(777\) 0 0
\(778\) −32.2997 −1.15800
\(779\) 7.46777 0.267561
\(780\) 0 0
\(781\) −61.7774 −2.21057
\(782\) 4.31222 0.154205
\(783\) 0 0
\(784\) 7.36506 0.263038
\(785\) 0 0
\(786\) 0 0
\(787\) 4.61177 0.164392 0.0821960 0.996616i \(-0.473807\pi\)
0.0821960 + 0.996616i \(0.473807\pi\)
\(788\) 10.5615 0.376239
\(789\) 0 0
\(790\) 0 0
\(791\) 16.4332 0.584299
\(792\) 0 0
\(793\) 9.90120 0.351602
\(794\) −14.5940 −0.517922
\(795\) 0 0
\(796\) −24.7490 −0.877206
\(797\) −24.7200 −0.875627 −0.437814 0.899066i \(-0.644247\pi\)
−0.437814 + 0.899066i \(0.644247\pi\)
\(798\) 0 0
\(799\) −5.77026 −0.204137
\(800\) 0 0
\(801\) 0 0
\(802\) 18.0491 0.637337
\(803\) −0.177676 −0.00627004
\(804\) 0 0
\(805\) 0 0
\(806\) −9.96891 −0.351140
\(807\) 0 0
\(808\) −36.9891 −1.30127
\(809\) 15.0367 0.528663 0.264331 0.964432i \(-0.414849\pi\)
0.264331 + 0.964432i \(0.414849\pi\)
\(810\) 0 0
\(811\) −5.05087 −0.177360 −0.0886800 0.996060i \(-0.528265\pi\)
−0.0886800 + 0.996060i \(0.528265\pi\)
\(812\) −1.36531 −0.0479130
\(813\) 0 0
\(814\) −4.57529 −0.160364
\(815\) 0 0
\(816\) 0 0
\(817\) 1.17584 0.0411375
\(818\) −7.86489 −0.274989
\(819\) 0 0
\(820\) 0 0
\(821\) 35.5461 1.24057 0.620285 0.784377i \(-0.287017\pi\)
0.620285 + 0.784377i \(0.287017\pi\)
\(822\) 0 0
\(823\) −53.3551 −1.85984 −0.929921 0.367760i \(-0.880125\pi\)
−0.929921 + 0.367760i \(0.880125\pi\)
\(824\) −11.4336 −0.398309
\(825\) 0 0
\(826\) −3.96328 −0.137900
\(827\) 35.6694 1.24035 0.620174 0.784464i \(-0.287062\pi\)
0.620174 + 0.784464i \(0.287062\pi\)
\(828\) 0 0
\(829\) 9.61754 0.334031 0.167016 0.985954i \(-0.446587\pi\)
0.167016 + 0.985954i \(0.446587\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 25.8034 0.894571
\(833\) 8.87332 0.307442
\(834\) 0 0
\(835\) 0 0
\(836\) −6.26357 −0.216630
\(837\) 0 0
\(838\) 36.4292 1.25843
\(839\) 1.25253 0.0432421 0.0216210 0.999766i \(-0.493117\pi\)
0.0216210 + 0.999766i \(0.493117\pi\)
\(840\) 0 0
\(841\) −27.2731 −0.940452
\(842\) 25.0456 0.863129
\(843\) 0 0
\(844\) −3.91469 −0.134749
\(845\) 0 0
\(846\) 0 0
\(847\) −9.55055 −0.328161
\(848\) 4.78945 0.164470
\(849\) 0 0
\(850\) 0 0
\(851\) −2.69819 −0.0924927
\(852\) 0 0
\(853\) 16.4029 0.561625 0.280812 0.959763i \(-0.409396\pi\)
0.280812 + 0.959763i \(0.409396\pi\)
\(854\) −3.31897 −0.113573
\(855\) 0 0
\(856\) 8.19210 0.280000
\(857\) −30.3328 −1.03615 −0.518074 0.855336i \(-0.673351\pi\)
−0.518074 + 0.855336i \(0.673351\pi\)
\(858\) 0 0
\(859\) 0.581991 0.0198573 0.00992864 0.999951i \(-0.496840\pi\)
0.00992864 + 0.999951i \(0.496840\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12.6859 0.432085
\(863\) 49.9890 1.70164 0.850822 0.525454i \(-0.176104\pi\)
0.850822 + 0.525454i \(0.176104\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −5.87553 −0.199659
\(867\) 0 0
\(868\) −2.89488 −0.0982585
\(869\) 28.6678 0.972489
\(870\) 0 0
\(871\) 29.3899 0.995839
\(872\) −3.81514 −0.129197
\(873\) 0 0
\(874\) 4.26391 0.144229
\(875\) 0 0
\(876\) 0 0
\(877\) −15.5113 −0.523781 −0.261890 0.965098i \(-0.584346\pi\)
−0.261890 + 0.965098i \(0.584346\pi\)
\(878\) 30.2595 1.02121
\(879\) 0 0
\(880\) 0 0
\(881\) −31.3544 −1.05636 −0.528178 0.849134i \(-0.677125\pi\)
−0.528178 + 0.849134i \(0.677125\pi\)
\(882\) 0 0
\(883\) 36.7810 1.23778 0.618890 0.785478i \(-0.287583\pi\)
0.618890 + 0.785478i \(0.287583\pi\)
\(884\) 4.95352 0.166605
\(885\) 0 0
\(886\) −16.5289 −0.555299
\(887\) 39.8443 1.33784 0.668920 0.743335i \(-0.266757\pi\)
0.668920 + 0.743335i \(0.266757\pi\)
\(888\) 0 0
\(889\) −19.0493 −0.638894
\(890\) 0 0
\(891\) 0 0
\(892\) 3.08693 0.103358
\(893\) −5.70562 −0.190931
\(894\) 0 0
\(895\) 0 0
\(896\) 1.95172 0.0652025
\(897\) 0 0
\(898\) 13.7979 0.460443
\(899\) 3.66152 0.122119
\(900\) 0 0
\(901\) 5.77026 0.192235
\(902\) 22.3819 0.745237
\(903\) 0 0
\(904\) 44.5132 1.48049
\(905\) 0 0
\(906\) 0 0
\(907\) 7.19614 0.238944 0.119472 0.992838i \(-0.461880\pi\)
0.119472 + 0.992838i \(0.461880\pi\)
\(908\) 2.89090 0.0959379
\(909\) 0 0
\(910\) 0 0
\(911\) −22.9749 −0.761193 −0.380596 0.924741i \(-0.624281\pi\)
−0.380596 + 0.924741i \(0.624281\pi\)
\(912\) 0 0
\(913\) 51.5195 1.70505
\(914\) −13.6317 −0.450896
\(915\) 0 0
\(916\) −7.18844 −0.237513
\(917\) 2.74829 0.0907564
\(918\) 0 0
\(919\) 12.4363 0.410237 0.205118 0.978737i \(-0.434242\pi\)
0.205118 + 0.978737i \(0.434242\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.12483 −0.0370443
\(923\) 48.3091 1.59011
\(924\) 0 0
\(925\) 0 0
\(926\) −26.2830 −0.863714
\(927\) 0 0
\(928\) −6.22407 −0.204315
\(929\) −1.24689 −0.0409091 −0.0204545 0.999791i \(-0.506511\pi\)
−0.0204545 + 0.999791i \(0.506511\pi\)
\(930\) 0 0
\(931\) 8.77391 0.287553
\(932\) 3.09521 0.101387
\(933\) 0 0
\(934\) −25.0688 −0.820276
\(935\) 0 0
\(936\) 0 0
\(937\) 16.7786 0.548135 0.274067 0.961711i \(-0.411631\pi\)
0.274067 + 0.961711i \(0.411631\pi\)
\(938\) −9.85175 −0.321671
\(939\) 0 0
\(940\) 0 0
\(941\) 33.4454 1.09029 0.545145 0.838342i \(-0.316475\pi\)
0.545145 + 0.838342i \(0.316475\pi\)
\(942\) 0 0
\(943\) 13.1993 0.429829
\(944\) −4.38371 −0.142678
\(945\) 0 0
\(946\) 3.52416 0.114580
\(947\) −23.5223 −0.764373 −0.382187 0.924085i \(-0.624829\pi\)
−0.382187 + 0.924085i \(0.624829\pi\)
\(948\) 0 0
\(949\) 0.138940 0.00451018
\(950\) 0 0
\(951\) 0 0
\(952\) −5.23766 −0.169753
\(953\) 6.88378 0.222988 0.111494 0.993765i \(-0.464436\pi\)
0.111494 + 0.993765i \(0.464436\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7.34644 0.237601
\(957\) 0 0
\(958\) 8.65939 0.279772
\(959\) 4.36184 0.140851
\(960\) 0 0
\(961\) −23.2364 −0.749562
\(962\) 3.57781 0.115353
\(963\) 0 0
\(964\) −11.5192 −0.371007
\(965\) 0 0
\(966\) 0 0
\(967\) 6.71730 0.216014 0.108007 0.994150i \(-0.465553\pi\)
0.108007 + 0.994150i \(0.465553\pi\)
\(968\) −25.8698 −0.831488
\(969\) 0 0
\(970\) 0 0
\(971\) 24.3441 0.781238 0.390619 0.920552i \(-0.372261\pi\)
0.390619 + 0.920552i \(0.372261\pi\)
\(972\) 0 0
\(973\) −6.48665 −0.207953
\(974\) 14.2103 0.455326
\(975\) 0 0
\(976\) −3.67105 −0.117507
\(977\) −15.1279 −0.483984 −0.241992 0.970278i \(-0.577801\pi\)
−0.241992 + 0.970278i \(0.577801\pi\)
\(978\) 0 0
\(979\) 23.4849 0.750581
\(980\) 0 0
\(981\) 0 0
\(982\) −34.2232 −1.09211
\(983\) −29.6121 −0.944481 −0.472240 0.881470i \(-0.656555\pi\)
−0.472240 + 0.881470i \(0.656555\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2.10020 0.0668840
\(987\) 0 0
\(988\) 4.89802 0.155827
\(989\) 2.07831 0.0660863
\(990\) 0 0
\(991\) −36.7988 −1.16895 −0.584476 0.811411i \(-0.698700\pi\)
−0.584476 + 0.811411i \(0.698700\pi\)
\(992\) −13.1970 −0.419004
\(993\) 0 0
\(994\) −16.1936 −0.513630
\(995\) 0 0
\(996\) 0 0
\(997\) −38.0854 −1.20618 −0.603089 0.797674i \(-0.706064\pi\)
−0.603089 + 0.797674i \(0.706064\pi\)
\(998\) −21.0906 −0.667612
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8325.2.a.ca.1.4 5
3.2 odd 2 2775.2.a.bc.1.2 yes 5
5.4 even 2 8325.2.a.cg.1.2 5
15.14 odd 2 2775.2.a.z.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2775.2.a.z.1.4 5 15.14 odd 2
2775.2.a.bc.1.2 yes 5 3.2 odd 2
8325.2.a.ca.1.4 5 1.1 even 1 trivial
8325.2.a.cg.1.2 5 5.4 even 2