Properties

Label 8325.2.a.cf.1.4
Level $8325$
Weight $2$
Character 8325.1
Self dual yes
Analytic conductor $66.475$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8325,2,Mod(1,8325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.457904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 8x^{2} + 5x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1665)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.51432\) of defining polynomial
Character \(\chi\) \(=\) 8325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.51432 q^{2} +0.293161 q^{4} +1.43000 q^{7} -2.58470 q^{8} -1.00554 q^{11} -3.60102 q^{13} +2.16548 q^{14} -4.50038 q^{16} +6.24140 q^{17} -0.485681 q^{19} -1.52271 q^{22} +0.828979 q^{23} -5.45309 q^{26} +0.419221 q^{28} -8.26057 q^{29} +8.91565 q^{31} -1.64561 q^{32} +9.45147 q^{34} -1.00000 q^{37} -0.735476 q^{38} +0.301089 q^{41} -2.65670 q^{43} -0.294787 q^{44} +1.25534 q^{46} +6.02864 q^{47} -4.95510 q^{49} -1.05568 q^{52} -9.83973 q^{53} -3.69612 q^{56} -12.5091 q^{58} -0.849222 q^{59} -7.73517 q^{61} +13.5011 q^{62} +6.50877 q^{64} +0.424456 q^{67} +1.82974 q^{68} -13.1515 q^{71} +2.76126 q^{73} -1.51432 q^{74} -0.142383 q^{76} -1.43793 q^{77} +1.35514 q^{79} +0.455945 q^{82} +3.64439 q^{83} -4.02309 q^{86} +2.59903 q^{88} -7.97497 q^{89} -5.14946 q^{91} +0.243025 q^{92} +9.12928 q^{94} -10.2603 q^{97} -7.50360 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 4 q^{4} + 6 q^{8} - 12 q^{11} + 3 q^{13} - 10 q^{14} - 2 q^{16} + 4 q^{17} - 8 q^{19} - 10 q^{22} + 18 q^{23} - 2 q^{26} + 4 q^{28} - 13 q^{29} - 16 q^{31} + 14 q^{32} - 2 q^{34} - 5 q^{37}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51432 1.07079 0.535393 0.844603i \(-0.320164\pi\)
0.535393 + 0.844603i \(0.320164\pi\)
\(3\) 0 0
\(4\) 0.293161 0.146581
\(5\) 0 0
\(6\) 0 0
\(7\) 1.43000 0.540489 0.270245 0.962792i \(-0.412895\pi\)
0.270245 + 0.962792i \(0.412895\pi\)
\(8\) −2.58470 −0.913829
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00554 −0.303183 −0.151591 0.988443i \(-0.548440\pi\)
−0.151591 + 0.988443i \(0.548440\pi\)
\(12\) 0 0
\(13\) −3.60102 −0.998744 −0.499372 0.866388i \(-0.666436\pi\)
−0.499372 + 0.866388i \(0.666436\pi\)
\(14\) 2.16548 0.578748
\(15\) 0 0
\(16\) −4.50038 −1.12509
\(17\) 6.24140 1.51376 0.756881 0.653553i \(-0.226722\pi\)
0.756881 + 0.653553i \(0.226722\pi\)
\(18\) 0 0
\(19\) −0.485681 −0.111423 −0.0557115 0.998447i \(-0.517743\pi\)
−0.0557115 + 0.998447i \(0.517743\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.52271 −0.324644
\(23\) 0.828979 0.172854 0.0864271 0.996258i \(-0.472455\pi\)
0.0864271 + 0.996258i \(0.472455\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −5.45309 −1.06944
\(27\) 0 0
\(28\) 0.419221 0.0792253
\(29\) −8.26057 −1.53395 −0.766975 0.641677i \(-0.778239\pi\)
−0.766975 + 0.641677i \(0.778239\pi\)
\(30\) 0 0
\(31\) 8.91565 1.60130 0.800649 0.599134i \(-0.204488\pi\)
0.800649 + 0.599134i \(0.204488\pi\)
\(32\) −1.64561 −0.290906
\(33\) 0 0
\(34\) 9.45147 1.62091
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) −0.735476 −0.119310
\(39\) 0 0
\(40\) 0 0
\(41\) 0.301089 0.0470223 0.0235111 0.999724i \(-0.492515\pi\)
0.0235111 + 0.999724i \(0.492515\pi\)
\(42\) 0 0
\(43\) −2.65670 −0.405143 −0.202572 0.979267i \(-0.564930\pi\)
−0.202572 + 0.979267i \(0.564930\pi\)
\(44\) −0.294787 −0.0444408
\(45\) 0 0
\(46\) 1.25534 0.185090
\(47\) 6.02864 0.879367 0.439684 0.898153i \(-0.355091\pi\)
0.439684 + 0.898153i \(0.355091\pi\)
\(48\) 0 0
\(49\) −4.95510 −0.707871
\(50\) 0 0
\(51\) 0 0
\(52\) −1.05568 −0.146397
\(53\) −9.83973 −1.35159 −0.675795 0.737089i \(-0.736200\pi\)
−0.675795 + 0.737089i \(0.736200\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.69612 −0.493915
\(57\) 0 0
\(58\) −12.5091 −1.64253
\(59\) −0.849222 −0.110559 −0.0552796 0.998471i \(-0.517605\pi\)
−0.0552796 + 0.998471i \(0.517605\pi\)
\(60\) 0 0
\(61\) −7.73517 −0.990387 −0.495193 0.868783i \(-0.664903\pi\)
−0.495193 + 0.868783i \(0.664903\pi\)
\(62\) 13.5011 1.71465
\(63\) 0 0
\(64\) 6.50877 0.813597
\(65\) 0 0
\(66\) 0 0
\(67\) 0.424456 0.0518556 0.0259278 0.999664i \(-0.491746\pi\)
0.0259278 + 0.999664i \(0.491746\pi\)
\(68\) 1.82974 0.221888
\(69\) 0 0
\(70\) 0 0
\(71\) −13.1515 −1.56080 −0.780400 0.625280i \(-0.784985\pi\)
−0.780400 + 0.625280i \(0.784985\pi\)
\(72\) 0 0
\(73\) 2.76126 0.323181 0.161591 0.986858i \(-0.448338\pi\)
0.161591 + 0.986858i \(0.448338\pi\)
\(74\) −1.51432 −0.176036
\(75\) 0 0
\(76\) −0.142383 −0.0163325
\(77\) −1.43793 −0.163867
\(78\) 0 0
\(79\) 1.35514 0.152466 0.0762329 0.997090i \(-0.475711\pi\)
0.0762329 + 0.997090i \(0.475711\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0.455945 0.0503508
\(83\) 3.64439 0.400024 0.200012 0.979793i \(-0.435902\pi\)
0.200012 + 0.979793i \(0.435902\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.02309 −0.433821
\(87\) 0 0
\(88\) 2.59903 0.277057
\(89\) −7.97497 −0.845345 −0.422673 0.906282i \(-0.638908\pi\)
−0.422673 + 0.906282i \(0.638908\pi\)
\(90\) 0 0
\(91\) −5.14946 −0.539810
\(92\) 0.243025 0.0253371
\(93\) 0 0
\(94\) 9.12928 0.941613
\(95\) 0 0
\(96\) 0 0
\(97\) −10.2603 −1.04177 −0.520886 0.853626i \(-0.674398\pi\)
−0.520886 + 0.853626i \(0.674398\pi\)
\(98\) −7.50360 −0.757978
\(99\) 0 0
\(100\) 0 0
\(101\) 9.04018 0.899531 0.449766 0.893147i \(-0.351508\pi\)
0.449766 + 0.893147i \(0.351508\pi\)
\(102\) 0 0
\(103\) 0.773667 0.0762317 0.0381158 0.999273i \(-0.487864\pi\)
0.0381158 + 0.999273i \(0.487864\pi\)
\(104\) 9.30755 0.912680
\(105\) 0 0
\(106\) −14.9005 −1.44726
\(107\) 8.63769 0.835037 0.417518 0.908669i \(-0.362900\pi\)
0.417518 + 0.908669i \(0.362900\pi\)
\(108\) 0 0
\(109\) −17.5007 −1.67626 −0.838132 0.545467i \(-0.816352\pi\)
−0.838132 + 0.545467i \(0.816352\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −6.43554 −0.608102
\(113\) −1.40458 −0.132132 −0.0660660 0.997815i \(-0.521045\pi\)
−0.0660660 + 0.997815i \(0.521045\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.42168 −0.224848
\(117\) 0 0
\(118\) −1.28599 −0.118385
\(119\) 8.92520 0.818172
\(120\) 0 0
\(121\) −9.98888 −0.908080
\(122\) −11.7135 −1.06049
\(123\) 0 0
\(124\) 2.61373 0.234719
\(125\) 0 0
\(126\) 0 0
\(127\) −4.65718 −0.413258 −0.206629 0.978419i \(-0.566249\pi\)
−0.206629 + 0.978419i \(0.566249\pi\)
\(128\) 13.1476 1.16209
\(129\) 0 0
\(130\) 0 0
\(131\) −20.1789 −1.76304 −0.881520 0.472146i \(-0.843479\pi\)
−0.881520 + 0.472146i \(0.843479\pi\)
\(132\) 0 0
\(133\) −0.694524 −0.0602229
\(134\) 0.642762 0.0555262
\(135\) 0 0
\(136\) −16.1321 −1.38332
\(137\) −8.39419 −0.717164 −0.358582 0.933498i \(-0.616740\pi\)
−0.358582 + 0.933498i \(0.616740\pi\)
\(138\) 0 0
\(139\) −14.4736 −1.22764 −0.613819 0.789447i \(-0.710368\pi\)
−0.613819 + 0.789447i \(0.710368\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −19.9156 −1.67128
\(143\) 3.62099 0.302802
\(144\) 0 0
\(145\) 0 0
\(146\) 4.18143 0.346058
\(147\) 0 0
\(148\) −0.293161 −0.0240977
\(149\) −2.37980 −0.194961 −0.0974806 0.995237i \(-0.531078\pi\)
−0.0974806 + 0.995237i \(0.531078\pi\)
\(150\) 0 0
\(151\) −10.0175 −0.815217 −0.407608 0.913157i \(-0.633637\pi\)
−0.407608 + 0.913157i \(0.633637\pi\)
\(152\) 1.25534 0.101821
\(153\) 0 0
\(154\) −2.17748 −0.175467
\(155\) 0 0
\(156\) 0 0
\(157\) −10.8952 −0.869536 −0.434768 0.900543i \(-0.643170\pi\)
−0.434768 + 0.900543i \(0.643170\pi\)
\(158\) 2.05212 0.163258
\(159\) 0 0
\(160\) 0 0
\(161\) 1.18544 0.0934258
\(162\) 0 0
\(163\) 22.9713 1.79925 0.899626 0.436662i \(-0.143839\pi\)
0.899626 + 0.436662i \(0.143839\pi\)
\(164\) 0.0882678 0.00689256
\(165\) 0 0
\(166\) 5.51876 0.428339
\(167\) 16.3091 1.26204 0.631020 0.775767i \(-0.282637\pi\)
0.631020 + 0.775767i \(0.282637\pi\)
\(168\) 0 0
\(169\) −0.0326469 −0.00251130
\(170\) 0 0
\(171\) 0 0
\(172\) −0.778843 −0.0593862
\(173\) −3.35883 −0.255367 −0.127684 0.991815i \(-0.540754\pi\)
−0.127684 + 0.991815i \(0.540754\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.52533 0.341110
\(177\) 0 0
\(178\) −12.0767 −0.905183
\(179\) −9.01947 −0.674147 −0.337073 0.941478i \(-0.609437\pi\)
−0.337073 + 0.941478i \(0.609437\pi\)
\(180\) 0 0
\(181\) −10.3388 −0.768479 −0.384239 0.923234i \(-0.625536\pi\)
−0.384239 + 0.923234i \(0.625536\pi\)
\(182\) −7.79793 −0.578021
\(183\) 0 0
\(184\) −2.14266 −0.157959
\(185\) 0 0
\(186\) 0 0
\(187\) −6.27600 −0.458947
\(188\) 1.76736 0.128898
\(189\) 0 0
\(190\) 0 0
\(191\) −11.7668 −0.851416 −0.425708 0.904861i \(-0.639975\pi\)
−0.425708 + 0.904861i \(0.639975\pi\)
\(192\) 0 0
\(193\) −12.6209 −0.908472 −0.454236 0.890881i \(-0.650088\pi\)
−0.454236 + 0.890881i \(0.650088\pi\)
\(194\) −15.5373 −1.11551
\(195\) 0 0
\(196\) −1.45264 −0.103760
\(197\) 1.08156 0.0770578 0.0385289 0.999257i \(-0.487733\pi\)
0.0385289 + 0.999257i \(0.487733\pi\)
\(198\) 0 0
\(199\) −4.67462 −0.331375 −0.165688 0.986178i \(-0.552984\pi\)
−0.165688 + 0.986178i \(0.552984\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 13.6897 0.963205
\(203\) −11.8126 −0.829084
\(204\) 0 0
\(205\) 0 0
\(206\) 1.17158 0.0816278
\(207\) 0 0
\(208\) 16.2060 1.12368
\(209\) 0.488374 0.0337815
\(210\) 0 0
\(211\) −0.377789 −0.0260080 −0.0130040 0.999915i \(-0.504139\pi\)
−0.0130040 + 0.999915i \(0.504139\pi\)
\(212\) −2.88463 −0.198117
\(213\) 0 0
\(214\) 13.0802 0.894145
\(215\) 0 0
\(216\) 0 0
\(217\) 12.7494 0.865485
\(218\) −26.5017 −1.79492
\(219\) 0 0
\(220\) 0 0
\(221\) −22.4754 −1.51186
\(222\) 0 0
\(223\) 22.4985 1.50661 0.753306 0.657671i \(-0.228458\pi\)
0.753306 + 0.657671i \(0.228458\pi\)
\(224\) −2.35323 −0.157232
\(225\) 0 0
\(226\) −2.12699 −0.141485
\(227\) 23.3995 1.55308 0.776538 0.630070i \(-0.216974\pi\)
0.776538 + 0.630070i \(0.216974\pi\)
\(228\) 0 0
\(229\) 27.5246 1.81887 0.909437 0.415841i \(-0.136513\pi\)
0.909437 + 0.415841i \(0.136513\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 21.3511 1.40177
\(233\) −8.18885 −0.536469 −0.268235 0.963354i \(-0.586440\pi\)
−0.268235 + 0.963354i \(0.586440\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.248959 −0.0162059
\(237\) 0 0
\(238\) 13.5156 0.876087
\(239\) −7.84205 −0.507260 −0.253630 0.967301i \(-0.581625\pi\)
−0.253630 + 0.967301i \(0.581625\pi\)
\(240\) 0 0
\(241\) 2.81826 0.181540 0.0907700 0.995872i \(-0.471067\pi\)
0.0907700 + 0.995872i \(0.471067\pi\)
\(242\) −15.1264 −0.972359
\(243\) 0 0
\(244\) −2.26765 −0.145172
\(245\) 0 0
\(246\) 0 0
\(247\) 1.74895 0.111283
\(248\) −23.0443 −1.46331
\(249\) 0 0
\(250\) 0 0
\(251\) −25.9733 −1.63942 −0.819710 0.572779i \(-0.805865\pi\)
−0.819710 + 0.572779i \(0.805865\pi\)
\(252\) 0 0
\(253\) −0.833575 −0.0524064
\(254\) −7.05246 −0.442511
\(255\) 0 0
\(256\) 6.89209 0.430756
\(257\) 5.90010 0.368038 0.184019 0.982923i \(-0.441089\pi\)
0.184019 + 0.982923i \(0.441089\pi\)
\(258\) 0 0
\(259\) −1.43000 −0.0888559
\(260\) 0 0
\(261\) 0 0
\(262\) −30.5573 −1.88784
\(263\) −22.6113 −1.39427 −0.697135 0.716940i \(-0.745542\pi\)
−0.697135 + 0.716940i \(0.745542\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.05173 −0.0644858
\(267\) 0 0
\(268\) 0.124434 0.00760103
\(269\) 29.5891 1.80408 0.902039 0.431655i \(-0.142070\pi\)
0.902039 + 0.431655i \(0.142070\pi\)
\(270\) 0 0
\(271\) −7.91061 −0.480535 −0.240268 0.970707i \(-0.577235\pi\)
−0.240268 + 0.970707i \(0.577235\pi\)
\(272\) −28.0887 −1.70313
\(273\) 0 0
\(274\) −12.7115 −0.767929
\(275\) 0 0
\(276\) 0 0
\(277\) −20.0183 −1.20278 −0.601392 0.798954i \(-0.705387\pi\)
−0.601392 + 0.798954i \(0.705387\pi\)
\(278\) −21.9177 −1.31454
\(279\) 0 0
\(280\) 0 0
\(281\) 1.95583 0.116675 0.0583375 0.998297i \(-0.481420\pi\)
0.0583375 + 0.998297i \(0.481420\pi\)
\(282\) 0 0
\(283\) −26.0247 −1.54701 −0.773503 0.633793i \(-0.781497\pi\)
−0.773503 + 0.633793i \(0.781497\pi\)
\(284\) −3.85552 −0.228783
\(285\) 0 0
\(286\) 5.48333 0.324236
\(287\) 0.430558 0.0254150
\(288\) 0 0
\(289\) 21.9551 1.29147
\(290\) 0 0
\(291\) 0 0
\(292\) 0.809496 0.0473722
\(293\) 13.5422 0.791143 0.395571 0.918435i \(-0.370547\pi\)
0.395571 + 0.918435i \(0.370547\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.58470 0.150233
\(297\) 0 0
\(298\) −3.60378 −0.208761
\(299\) −2.98517 −0.172637
\(300\) 0 0
\(301\) −3.79908 −0.218976
\(302\) −15.1698 −0.872922
\(303\) 0 0
\(304\) 2.18575 0.125361
\(305\) 0 0
\(306\) 0 0
\(307\) 24.6104 1.40459 0.702295 0.711886i \(-0.252159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(308\) −0.421545 −0.0240198
\(309\) 0 0
\(310\) 0 0
\(311\) 28.1674 1.59723 0.798614 0.601843i \(-0.205567\pi\)
0.798614 + 0.601843i \(0.205567\pi\)
\(312\) 0 0
\(313\) 16.2843 0.920441 0.460221 0.887805i \(-0.347770\pi\)
0.460221 + 0.887805i \(0.347770\pi\)
\(314\) −16.4989 −0.931086
\(315\) 0 0
\(316\) 0.397276 0.0223485
\(317\) −10.7976 −0.606451 −0.303225 0.952919i \(-0.598064\pi\)
−0.303225 + 0.952919i \(0.598064\pi\)
\(318\) 0 0
\(319\) 8.30637 0.465068
\(320\) 0 0
\(321\) 0 0
\(322\) 1.79514 0.100039
\(323\) −3.03133 −0.168668
\(324\) 0 0
\(325\) 0 0
\(326\) 34.7859 1.92661
\(327\) 0 0
\(328\) −0.778225 −0.0429703
\(329\) 8.62095 0.475289
\(330\) 0 0
\(331\) −11.1507 −0.612896 −0.306448 0.951887i \(-0.599140\pi\)
−0.306448 + 0.951887i \(0.599140\pi\)
\(332\) 1.06839 0.0586357
\(333\) 0 0
\(334\) 24.6972 1.35137
\(335\) 0 0
\(336\) 0 0
\(337\) −35.3432 −1.92527 −0.962634 0.270807i \(-0.912709\pi\)
−0.962634 + 0.270807i \(0.912709\pi\)
\(338\) −0.0494378 −0.00268906
\(339\) 0 0
\(340\) 0 0
\(341\) −8.96508 −0.485486
\(342\) 0 0
\(343\) −17.0958 −0.923086
\(344\) 6.86677 0.370231
\(345\) 0 0
\(346\) −5.08634 −0.273443
\(347\) −7.89341 −0.423740 −0.211870 0.977298i \(-0.567955\pi\)
−0.211870 + 0.977298i \(0.567955\pi\)
\(348\) 0 0
\(349\) −33.8866 −1.81391 −0.906955 0.421227i \(-0.861600\pi\)
−0.906955 + 0.421227i \(0.861600\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.65474 0.0881978
\(353\) −13.0296 −0.693498 −0.346749 0.937958i \(-0.612714\pi\)
−0.346749 + 0.937958i \(0.612714\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2.33795 −0.123911
\(357\) 0 0
\(358\) −13.6583 −0.721866
\(359\) 1.77204 0.0935248 0.0467624 0.998906i \(-0.485110\pi\)
0.0467624 + 0.998906i \(0.485110\pi\)
\(360\) 0 0
\(361\) −18.7641 −0.987585
\(362\) −15.6563 −0.822875
\(363\) 0 0
\(364\) −1.50962 −0.0791258
\(365\) 0 0
\(366\) 0 0
\(367\) 6.37821 0.332940 0.166470 0.986047i \(-0.446763\pi\)
0.166470 + 0.986047i \(0.446763\pi\)
\(368\) −3.73072 −0.194477
\(369\) 0 0
\(370\) 0 0
\(371\) −14.0708 −0.730520
\(372\) 0 0
\(373\) −1.64642 −0.0852484 −0.0426242 0.999091i \(-0.513572\pi\)
−0.0426242 + 0.999091i \(0.513572\pi\)
\(374\) −9.50387 −0.491433
\(375\) 0 0
\(376\) −15.5822 −0.803591
\(377\) 29.7465 1.53202
\(378\) 0 0
\(379\) 1.86269 0.0956801 0.0478401 0.998855i \(-0.484766\pi\)
0.0478401 + 0.998855i \(0.484766\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −17.8187 −0.911684
\(383\) 17.5264 0.895555 0.447777 0.894145i \(-0.352216\pi\)
0.447777 + 0.894145i \(0.352216\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −19.1121 −0.972778
\(387\) 0 0
\(388\) −3.00791 −0.152704
\(389\) 1.60428 0.0813402 0.0406701 0.999173i \(-0.487051\pi\)
0.0406701 + 0.999173i \(0.487051\pi\)
\(390\) 0 0
\(391\) 5.17399 0.261660
\(392\) 12.8074 0.646873
\(393\) 0 0
\(394\) 1.63782 0.0825123
\(395\) 0 0
\(396\) 0 0
\(397\) −15.9428 −0.800147 −0.400073 0.916483i \(-0.631015\pi\)
−0.400073 + 0.916483i \(0.631015\pi\)
\(398\) −7.07886 −0.354831
\(399\) 0 0
\(400\) 0 0
\(401\) 13.6963 0.683962 0.341981 0.939707i \(-0.388902\pi\)
0.341981 + 0.939707i \(0.388902\pi\)
\(402\) 0 0
\(403\) −32.1054 −1.59929
\(404\) 2.65023 0.131854
\(405\) 0 0
\(406\) −17.8881 −0.887771
\(407\) 1.00554 0.0498430
\(408\) 0 0
\(409\) 0.355950 0.0176006 0.00880030 0.999961i \(-0.497199\pi\)
0.00880030 + 0.999961i \(0.497199\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.226809 0.0111741
\(413\) −1.21439 −0.0597561
\(414\) 0 0
\(415\) 0 0
\(416\) 5.92589 0.290541
\(417\) 0 0
\(418\) 0.739554 0.0361728
\(419\) 31.8129 1.55416 0.777082 0.629400i \(-0.216699\pi\)
0.777082 + 0.629400i \(0.216699\pi\)
\(420\) 0 0
\(421\) 25.1473 1.22560 0.612801 0.790237i \(-0.290043\pi\)
0.612801 + 0.790237i \(0.290043\pi\)
\(422\) −0.572092 −0.0278490
\(423\) 0 0
\(424\) 25.4327 1.23512
\(425\) 0 0
\(426\) 0 0
\(427\) −11.0613 −0.535293
\(428\) 2.53224 0.122400
\(429\) 0 0
\(430\) 0 0
\(431\) 1.18312 0.0569887 0.0284944 0.999594i \(-0.490929\pi\)
0.0284944 + 0.999594i \(0.490929\pi\)
\(432\) 0 0
\(433\) 18.5064 0.889359 0.444679 0.895690i \(-0.353318\pi\)
0.444679 + 0.895690i \(0.353318\pi\)
\(434\) 19.3066 0.926748
\(435\) 0 0
\(436\) −5.13054 −0.245708
\(437\) −0.402620 −0.0192599
\(438\) 0 0
\(439\) 22.3714 1.06773 0.533865 0.845570i \(-0.320739\pi\)
0.533865 + 0.845570i \(0.320739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −34.0349 −1.61888
\(443\) −5.58381 −0.265295 −0.132647 0.991163i \(-0.542348\pi\)
−0.132647 + 0.991163i \(0.542348\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 34.0699 1.61326
\(447\) 0 0
\(448\) 9.30755 0.439740
\(449\) 0.244500 0.0115387 0.00576934 0.999983i \(-0.498164\pi\)
0.00576934 + 0.999983i \(0.498164\pi\)
\(450\) 0 0
\(451\) −0.302759 −0.0142564
\(452\) −0.411770 −0.0193680
\(453\) 0 0
\(454\) 35.4342 1.66301
\(455\) 0 0
\(456\) 0 0
\(457\) 17.7132 0.828591 0.414295 0.910142i \(-0.364028\pi\)
0.414295 + 0.910142i \(0.364028\pi\)
\(458\) 41.6810 1.94762
\(459\) 0 0
\(460\) 0 0
\(461\) 33.8452 1.57633 0.788165 0.615464i \(-0.211031\pi\)
0.788165 + 0.615464i \(0.211031\pi\)
\(462\) 0 0
\(463\) −17.6019 −0.818029 −0.409015 0.912528i \(-0.634127\pi\)
−0.409015 + 0.912528i \(0.634127\pi\)
\(464\) 37.1757 1.72584
\(465\) 0 0
\(466\) −12.4005 −0.574443
\(467\) −1.23902 −0.0573348 −0.0286674 0.999589i \(-0.509126\pi\)
−0.0286674 + 0.999589i \(0.509126\pi\)
\(468\) 0 0
\(469\) 0.606973 0.0280274
\(470\) 0 0
\(471\) 0 0
\(472\) 2.19498 0.101032
\(473\) 2.67143 0.122833
\(474\) 0 0
\(475\) 0 0
\(476\) 2.61653 0.119928
\(477\) 0 0
\(478\) −11.8754 −0.543167
\(479\) 7.20703 0.329298 0.164649 0.986352i \(-0.447351\pi\)
0.164649 + 0.986352i \(0.447351\pi\)
\(480\) 0 0
\(481\) 3.60102 0.164192
\(482\) 4.26774 0.194390
\(483\) 0 0
\(484\) −2.92836 −0.133107
\(485\) 0 0
\(486\) 0 0
\(487\) −34.8356 −1.57855 −0.789276 0.614038i \(-0.789544\pi\)
−0.789276 + 0.614038i \(0.789544\pi\)
\(488\) 19.9931 0.905044
\(489\) 0 0
\(490\) 0 0
\(491\) −1.08796 −0.0490989 −0.0245495 0.999699i \(-0.507815\pi\)
−0.0245495 + 0.999699i \(0.507815\pi\)
\(492\) 0 0
\(493\) −51.5575 −2.32204
\(494\) 2.64847 0.119160
\(495\) 0 0
\(496\) −40.1238 −1.80161
\(497\) −18.8067 −0.843596
\(498\) 0 0
\(499\) 18.4025 0.823809 0.411905 0.911227i \(-0.364864\pi\)
0.411905 + 0.911227i \(0.364864\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −39.3318 −1.75547
\(503\) −7.66267 −0.341661 −0.170831 0.985300i \(-0.554645\pi\)
−0.170831 + 0.985300i \(0.554645\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.26230 −0.0561160
\(507\) 0 0
\(508\) −1.36531 −0.0605757
\(509\) −5.94536 −0.263523 −0.131762 0.991281i \(-0.542063\pi\)
−0.131762 + 0.991281i \(0.542063\pi\)
\(510\) 0 0
\(511\) 3.94861 0.174676
\(512\) −15.8584 −0.700847
\(513\) 0 0
\(514\) 8.93463 0.394089
\(515\) 0 0
\(516\) 0 0
\(517\) −6.06206 −0.266609
\(518\) −2.16548 −0.0951456
\(519\) 0 0
\(520\) 0 0
\(521\) 37.7815 1.65524 0.827620 0.561290i \(-0.189695\pi\)
0.827620 + 0.561290i \(0.189695\pi\)
\(522\) 0 0
\(523\) 33.5417 1.46667 0.733337 0.679865i \(-0.237962\pi\)
0.733337 + 0.679865i \(0.237962\pi\)
\(524\) −5.91568 −0.258428
\(525\) 0 0
\(526\) −34.2407 −1.49296
\(527\) 55.6461 2.42398
\(528\) 0 0
\(529\) −22.3128 −0.970121
\(530\) 0 0
\(531\) 0 0
\(532\) −0.203608 −0.00882752
\(533\) −1.08423 −0.0469632
\(534\) 0 0
\(535\) 0 0
\(536\) −1.09709 −0.0473871
\(537\) 0 0
\(538\) 44.8073 1.93178
\(539\) 4.98257 0.214614
\(540\) 0 0
\(541\) −9.97375 −0.428805 −0.214402 0.976745i \(-0.568780\pi\)
−0.214402 + 0.976745i \(0.568780\pi\)
\(542\) −11.9792 −0.514550
\(543\) 0 0
\(544\) −10.2709 −0.440363
\(545\) 0 0
\(546\) 0 0
\(547\) 5.30442 0.226801 0.113400 0.993549i \(-0.463826\pi\)
0.113400 + 0.993549i \(0.463826\pi\)
\(548\) −2.46085 −0.105122
\(549\) 0 0
\(550\) 0 0
\(551\) 4.01201 0.170917
\(552\) 0 0
\(553\) 1.93786 0.0824061
\(554\) −30.3141 −1.28792
\(555\) 0 0
\(556\) −4.24312 −0.179948
\(557\) 15.6542 0.663289 0.331645 0.943404i \(-0.392397\pi\)
0.331645 + 0.943404i \(0.392397\pi\)
\(558\) 0 0
\(559\) 9.56684 0.404634
\(560\) 0 0
\(561\) 0 0
\(562\) 2.96175 0.124934
\(563\) −11.4875 −0.484140 −0.242070 0.970259i \(-0.577826\pi\)
−0.242070 + 0.970259i \(0.577826\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −39.4096 −1.65651
\(567\) 0 0
\(568\) 33.9927 1.42630
\(569\) 14.6116 0.612550 0.306275 0.951943i \(-0.400917\pi\)
0.306275 + 0.951943i \(0.400917\pi\)
\(570\) 0 0
\(571\) −27.6908 −1.15882 −0.579411 0.815035i \(-0.696718\pi\)
−0.579411 + 0.815035i \(0.696718\pi\)
\(572\) 1.06153 0.0443849
\(573\) 0 0
\(574\) 0.652002 0.0272140
\(575\) 0 0
\(576\) 0 0
\(577\) 14.2052 0.591371 0.295686 0.955285i \(-0.404452\pi\)
0.295686 + 0.955285i \(0.404452\pi\)
\(578\) 33.2470 1.38289
\(579\) 0 0
\(580\) 0 0
\(581\) 5.21148 0.216208
\(582\) 0 0
\(583\) 9.89428 0.409779
\(584\) −7.13703 −0.295332
\(585\) 0 0
\(586\) 20.5072 0.847144
\(587\) −28.6303 −1.18170 −0.590849 0.806782i \(-0.701207\pi\)
−0.590849 + 0.806782i \(0.701207\pi\)
\(588\) 0 0
\(589\) −4.33016 −0.178421
\(590\) 0 0
\(591\) 0 0
\(592\) 4.50038 0.184964
\(593\) −13.8042 −0.566872 −0.283436 0.958991i \(-0.591474\pi\)
−0.283436 + 0.958991i \(0.591474\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.697667 −0.0285775
\(597\) 0 0
\(598\) −4.52050 −0.184857
\(599\) −24.2711 −0.991689 −0.495845 0.868411i \(-0.665141\pi\)
−0.495845 + 0.868411i \(0.665141\pi\)
\(600\) 0 0
\(601\) −26.5945 −1.08481 −0.542406 0.840117i \(-0.682487\pi\)
−0.542406 + 0.840117i \(0.682487\pi\)
\(602\) −5.75303 −0.234476
\(603\) 0 0
\(604\) −2.93676 −0.119495
\(605\) 0 0
\(606\) 0 0
\(607\) −35.5776 −1.44405 −0.722026 0.691866i \(-0.756789\pi\)
−0.722026 + 0.691866i \(0.756789\pi\)
\(608\) 0.799244 0.0324136
\(609\) 0 0
\(610\) 0 0
\(611\) −21.7093 −0.878262
\(612\) 0 0
\(613\) −4.87831 −0.197033 −0.0985165 0.995135i \(-0.531410\pi\)
−0.0985165 + 0.995135i \(0.531410\pi\)
\(614\) 37.2680 1.50402
\(615\) 0 0
\(616\) 3.71661 0.149746
\(617\) 13.4467 0.541344 0.270672 0.962672i \(-0.412754\pi\)
0.270672 + 0.962672i \(0.412754\pi\)
\(618\) 0 0
\(619\) −24.1560 −0.970911 −0.485456 0.874261i \(-0.661346\pi\)
−0.485456 + 0.874261i \(0.661346\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 42.6545 1.71029
\(623\) −11.4042 −0.456900
\(624\) 0 0
\(625\) 0 0
\(626\) 24.6596 0.985595
\(627\) 0 0
\(628\) −3.19407 −0.127457
\(629\) −6.24140 −0.248861
\(630\) 0 0
\(631\) 34.5765 1.37647 0.688235 0.725487i \(-0.258386\pi\)
0.688235 + 0.725487i \(0.258386\pi\)
\(632\) −3.50264 −0.139328
\(633\) 0 0
\(634\) −16.3509 −0.649379
\(635\) 0 0
\(636\) 0 0
\(637\) 17.8434 0.706982
\(638\) 12.5785 0.497987
\(639\) 0 0
\(640\) 0 0
\(641\) −31.6135 −1.24866 −0.624329 0.781161i \(-0.714628\pi\)
−0.624329 + 0.781161i \(0.714628\pi\)
\(642\) 0 0
\(643\) −30.0703 −1.18586 −0.592929 0.805255i \(-0.702028\pi\)
−0.592929 + 0.805255i \(0.702028\pi\)
\(644\) 0.347526 0.0136944
\(645\) 0 0
\(646\) −4.59040 −0.180607
\(647\) 16.6914 0.656205 0.328103 0.944642i \(-0.393591\pi\)
0.328103 + 0.944642i \(0.393591\pi\)
\(648\) 0 0
\(649\) 0.853930 0.0335197
\(650\) 0 0
\(651\) 0 0
\(652\) 6.73430 0.263736
\(653\) 32.8997 1.28746 0.643732 0.765251i \(-0.277385\pi\)
0.643732 + 0.765251i \(0.277385\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.35502 −0.0529045
\(657\) 0 0
\(658\) 13.0549 0.508932
\(659\) −28.2476 −1.10037 −0.550184 0.835043i \(-0.685443\pi\)
−0.550184 + 0.835043i \(0.685443\pi\)
\(660\) 0 0
\(661\) 15.9506 0.620407 0.310203 0.950670i \(-0.399603\pi\)
0.310203 + 0.950670i \(0.399603\pi\)
\(662\) −16.8857 −0.656279
\(663\) 0 0
\(664\) −9.41964 −0.365553
\(665\) 0 0
\(666\) 0 0
\(667\) −6.84785 −0.265150
\(668\) 4.78121 0.184991
\(669\) 0 0
\(670\) 0 0
\(671\) 7.77805 0.300268
\(672\) 0 0
\(673\) −42.4140 −1.63494 −0.817471 0.575970i \(-0.804624\pi\)
−0.817471 + 0.575970i \(0.804624\pi\)
\(674\) −53.5209 −2.06155
\(675\) 0 0
\(676\) −0.00957081 −0.000368108 0
\(677\) 27.5448 1.05863 0.529316 0.848425i \(-0.322449\pi\)
0.529316 + 0.848425i \(0.322449\pi\)
\(678\) 0 0
\(679\) −14.6722 −0.563067
\(680\) 0 0
\(681\) 0 0
\(682\) −13.5760 −0.519851
\(683\) 7.46557 0.285662 0.142831 0.989747i \(-0.454379\pi\)
0.142831 + 0.989747i \(0.454379\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −25.8885 −0.988427
\(687\) 0 0
\(688\) 11.9562 0.455825
\(689\) 35.4331 1.34989
\(690\) 0 0
\(691\) −1.14169 −0.0434320 −0.0217160 0.999764i \(-0.506913\pi\)
−0.0217160 + 0.999764i \(0.506913\pi\)
\(692\) −0.984680 −0.0374319
\(693\) 0 0
\(694\) −11.9531 −0.453735
\(695\) 0 0
\(696\) 0 0
\(697\) 1.87922 0.0711805
\(698\) −51.3152 −1.94231
\(699\) 0 0
\(700\) 0 0
\(701\) −4.34341 −0.164048 −0.0820242 0.996630i \(-0.526138\pi\)
−0.0820242 + 0.996630i \(0.526138\pi\)
\(702\) 0 0
\(703\) 0.485681 0.0183178
\(704\) −6.54486 −0.246669
\(705\) 0 0
\(706\) −19.7310 −0.742587
\(707\) 12.9275 0.486187
\(708\) 0 0
\(709\) −41.6107 −1.56272 −0.781362 0.624079i \(-0.785474\pi\)
−0.781362 + 0.624079i \(0.785474\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 20.6129 0.772501
\(713\) 7.39089 0.276791
\(714\) 0 0
\(715\) 0 0
\(716\) −2.64416 −0.0988169
\(717\) 0 0
\(718\) 2.68344 0.100145
\(719\) 26.3710 0.983471 0.491736 0.870745i \(-0.336363\pi\)
0.491736 + 0.870745i \(0.336363\pi\)
\(720\) 0 0
\(721\) 1.10634 0.0412024
\(722\) −28.4149 −1.05749
\(723\) 0 0
\(724\) −3.03094 −0.112644
\(725\) 0 0
\(726\) 0 0
\(727\) −24.0658 −0.892552 −0.446276 0.894895i \(-0.647250\pi\)
−0.446276 + 0.894895i \(0.647250\pi\)
\(728\) 13.3098 0.493294
\(729\) 0 0
\(730\) 0 0
\(731\) −16.5815 −0.613290
\(732\) 0 0
\(733\) −19.8486 −0.733126 −0.366563 0.930393i \(-0.619466\pi\)
−0.366563 + 0.930393i \(0.619466\pi\)
\(734\) 9.65864 0.356507
\(735\) 0 0
\(736\) −1.36418 −0.0502843
\(737\) −0.426810 −0.0157217
\(738\) 0 0
\(739\) −5.32613 −0.195925 −0.0979624 0.995190i \(-0.531232\pi\)
−0.0979624 + 0.995190i \(0.531232\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −21.3077 −0.782230
\(743\) 41.3416 1.51668 0.758339 0.651861i \(-0.226011\pi\)
0.758339 + 0.651861i \(0.226011\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.49321 −0.0912827
\(747\) 0 0
\(748\) −1.83988 −0.0672728
\(749\) 12.3519 0.451328
\(750\) 0 0
\(751\) −27.7021 −1.01087 −0.505433 0.862866i \(-0.668667\pi\)
−0.505433 + 0.862866i \(0.668667\pi\)
\(752\) −27.1312 −0.989371
\(753\) 0 0
\(754\) 45.0457 1.64047
\(755\) 0 0
\(756\) 0 0
\(757\) 2.43292 0.0884261 0.0442131 0.999022i \(-0.485922\pi\)
0.0442131 + 0.999022i \(0.485922\pi\)
\(758\) 2.82071 0.102453
\(759\) 0 0
\(760\) 0 0
\(761\) 41.1185 1.49054 0.745272 0.666761i \(-0.232320\pi\)
0.745272 + 0.666761i \(0.232320\pi\)
\(762\) 0 0
\(763\) −25.0260 −0.906003
\(764\) −3.44957 −0.124801
\(765\) 0 0
\(766\) 26.5405 0.958947
\(767\) 3.05806 0.110420
\(768\) 0 0
\(769\) 21.6760 0.781655 0.390827 0.920464i \(-0.372189\pi\)
0.390827 + 0.920464i \(0.372189\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.69996 −0.133164
\(773\) 16.1814 0.582003 0.291002 0.956723i \(-0.406012\pi\)
0.291002 + 0.956723i \(0.406012\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 26.5197 0.952001
\(777\) 0 0
\(778\) 2.42939 0.0870979
\(779\) −0.146233 −0.00523936
\(780\) 0 0
\(781\) 13.2244 0.473208
\(782\) 7.83507 0.280182
\(783\) 0 0
\(784\) 22.2998 0.796422
\(785\) 0 0
\(786\) 0 0
\(787\) 44.4560 1.58468 0.792342 0.610077i \(-0.208862\pi\)
0.792342 + 0.610077i \(0.208862\pi\)
\(788\) 0.317071 0.0112952
\(789\) 0 0
\(790\) 0 0
\(791\) −2.00855 −0.0714160
\(792\) 0 0
\(793\) 27.8545 0.989142
\(794\) −24.1425 −0.856785
\(795\) 0 0
\(796\) −1.37042 −0.0485732
\(797\) 19.5738 0.693338 0.346669 0.937988i \(-0.387313\pi\)
0.346669 + 0.937988i \(0.387313\pi\)
\(798\) 0 0
\(799\) 37.6271 1.33115
\(800\) 0 0
\(801\) 0 0
\(802\) 20.7406 0.732377
\(803\) −2.77657 −0.0979831
\(804\) 0 0
\(805\) 0 0
\(806\) −48.6179 −1.71249
\(807\) 0 0
\(808\) −23.3661 −0.822017
\(809\) 25.6304 0.901116 0.450558 0.892747i \(-0.351225\pi\)
0.450558 + 0.892747i \(0.351225\pi\)
\(810\) 0 0
\(811\) −43.7556 −1.53647 −0.768234 0.640170i \(-0.778864\pi\)
−0.768234 + 0.640170i \(0.778864\pi\)
\(812\) −3.46301 −0.121528
\(813\) 0 0
\(814\) 1.52271 0.0533711
\(815\) 0 0
\(816\) 0 0
\(817\) 1.29031 0.0451422
\(818\) 0.539022 0.0188465
\(819\) 0 0
\(820\) 0 0
\(821\) 20.2095 0.705317 0.352659 0.935752i \(-0.385278\pi\)
0.352659 + 0.935752i \(0.385278\pi\)
\(822\) 0 0
\(823\) 19.9936 0.696934 0.348467 0.937321i \(-0.386702\pi\)
0.348467 + 0.937321i \(0.386702\pi\)
\(824\) −1.99970 −0.0696627
\(825\) 0 0
\(826\) −1.83897 −0.0639859
\(827\) −50.8207 −1.76721 −0.883604 0.468234i \(-0.844890\pi\)
−0.883604 + 0.468234i \(0.844890\pi\)
\(828\) 0 0
\(829\) −56.8590 −1.97479 −0.987397 0.158260i \(-0.949411\pi\)
−0.987397 + 0.158260i \(0.949411\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −23.4382 −0.812575
\(833\) −30.9268 −1.07155
\(834\) 0 0
\(835\) 0 0
\(836\) 0.143172 0.00495172
\(837\) 0 0
\(838\) 48.1749 1.66418
\(839\) 1.68762 0.0582633 0.0291316 0.999576i \(-0.490726\pi\)
0.0291316 + 0.999576i \(0.490726\pi\)
\(840\) 0 0
\(841\) 39.2371 1.35300
\(842\) 38.0810 1.31236
\(843\) 0 0
\(844\) −0.110753 −0.00381228
\(845\) 0 0
\(846\) 0 0
\(847\) −14.2841 −0.490808
\(848\) 44.2825 1.52067
\(849\) 0 0
\(850\) 0 0
\(851\) −0.828979 −0.0284170
\(852\) 0 0
\(853\) 28.0236 0.959510 0.479755 0.877403i \(-0.340726\pi\)
0.479755 + 0.877403i \(0.340726\pi\)
\(854\) −16.7503 −0.573184
\(855\) 0 0
\(856\) −22.3258 −0.763080
\(857\) −47.8661 −1.63508 −0.817538 0.575875i \(-0.804662\pi\)
−0.817538 + 0.575875i \(0.804662\pi\)
\(858\) 0 0
\(859\) −21.3156 −0.727280 −0.363640 0.931540i \(-0.618466\pi\)
−0.363640 + 0.931540i \(0.618466\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.79162 0.0610227
\(863\) 30.1233 1.02541 0.512705 0.858565i \(-0.328644\pi\)
0.512705 + 0.858565i \(0.328644\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 28.0245 0.952312
\(867\) 0 0
\(868\) 3.73763 0.126863
\(869\) −1.36266 −0.0462250
\(870\) 0 0
\(871\) −1.52848 −0.0517905
\(872\) 45.2341 1.53182
\(873\) 0 0
\(874\) −0.609695 −0.0206232
\(875\) 0 0
\(876\) 0 0
\(877\) 31.9006 1.07721 0.538603 0.842560i \(-0.318952\pi\)
0.538603 + 0.842560i \(0.318952\pi\)
\(878\) 33.8775 1.14331
\(879\) 0 0
\(880\) 0 0
\(881\) 15.7688 0.531265 0.265632 0.964074i \(-0.414419\pi\)
0.265632 + 0.964074i \(0.414419\pi\)
\(882\) 0 0
\(883\) −32.3052 −1.08716 −0.543578 0.839359i \(-0.682931\pi\)
−0.543578 + 0.839359i \(0.682931\pi\)
\(884\) −6.58893 −0.221610
\(885\) 0 0
\(886\) −8.45567 −0.284074
\(887\) 56.2557 1.88888 0.944440 0.328684i \(-0.106605\pi\)
0.944440 + 0.328684i \(0.106605\pi\)
\(888\) 0 0
\(889\) −6.65977 −0.223362
\(890\) 0 0
\(891\) 0 0
\(892\) 6.59570 0.220840
\(893\) −2.92800 −0.0979816
\(894\) 0 0
\(895\) 0 0
\(896\) 18.8011 0.628099
\(897\) 0 0
\(898\) 0.370251 0.0123554
\(899\) −73.6484 −2.45631
\(900\) 0 0
\(901\) −61.4137 −2.04599
\(902\) −0.458473 −0.0152655
\(903\) 0 0
\(904\) 3.63042 0.120746
\(905\) 0 0
\(906\) 0 0
\(907\) −49.2033 −1.63377 −0.816884 0.576802i \(-0.804301\pi\)
−0.816884 + 0.576802i \(0.804301\pi\)
\(908\) 6.85982 0.227651
\(909\) 0 0
\(910\) 0 0
\(911\) −35.1411 −1.16428 −0.582139 0.813090i \(-0.697784\pi\)
−0.582139 + 0.813090i \(0.697784\pi\)
\(912\) 0 0
\(913\) −3.66459 −0.121280
\(914\) 26.8235 0.887243
\(915\) 0 0
\(916\) 8.06914 0.266612
\(917\) −28.8559 −0.952905
\(918\) 0 0
\(919\) −3.02770 −0.0998747 −0.0499373 0.998752i \(-0.515902\pi\)
−0.0499373 + 0.998752i \(0.515902\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 51.2525 1.68791
\(923\) 47.3590 1.55884
\(924\) 0 0
\(925\) 0 0
\(926\) −26.6549 −0.875933
\(927\) 0 0
\(928\) 13.5937 0.446236
\(929\) −26.6586 −0.874640 −0.437320 0.899306i \(-0.644072\pi\)
−0.437320 + 0.899306i \(0.644072\pi\)
\(930\) 0 0
\(931\) 2.40660 0.0788731
\(932\) −2.40065 −0.0786361
\(933\) 0 0
\(934\) −1.87626 −0.0613933
\(935\) 0 0
\(936\) 0 0
\(937\) 22.3140 0.728966 0.364483 0.931210i \(-0.381246\pi\)
0.364483 + 0.931210i \(0.381246\pi\)
\(938\) 0.919150 0.0300113
\(939\) 0 0
\(940\) 0 0
\(941\) 30.9818 1.00998 0.504989 0.863126i \(-0.331497\pi\)
0.504989 + 0.863126i \(0.331497\pi\)
\(942\) 0 0
\(943\) 0.249597 0.00812800
\(944\) 3.82182 0.124390
\(945\) 0 0
\(946\) 4.04540 0.131527
\(947\) −35.9505 −1.16823 −0.584117 0.811669i \(-0.698559\pi\)
−0.584117 + 0.811669i \(0.698559\pi\)
\(948\) 0 0
\(949\) −9.94336 −0.322775
\(950\) 0 0
\(951\) 0 0
\(952\) −23.0690 −0.747669
\(953\) 59.5051 1.92756 0.963779 0.266703i \(-0.0859341\pi\)
0.963779 + 0.266703i \(0.0859341\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −2.29899 −0.0743546
\(957\) 0 0
\(958\) 10.9137 0.352607
\(959\) −12.0037 −0.387620
\(960\) 0 0
\(961\) 48.4888 1.56416
\(962\) 5.45309 0.175815
\(963\) 0 0
\(964\) 0.826205 0.0266103
\(965\) 0 0
\(966\) 0 0
\(967\) 55.7295 1.79214 0.896070 0.443912i \(-0.146410\pi\)
0.896070 + 0.443912i \(0.146410\pi\)
\(968\) 25.8182 0.829830
\(969\) 0 0
\(970\) 0 0
\(971\) 41.7036 1.33833 0.669165 0.743114i \(-0.266652\pi\)
0.669165 + 0.743114i \(0.266652\pi\)
\(972\) 0 0
\(973\) −20.6973 −0.663526
\(974\) −52.7522 −1.69029
\(975\) 0 0
\(976\) 34.8112 1.11428
\(977\) 18.0352 0.576997 0.288499 0.957480i \(-0.406844\pi\)
0.288499 + 0.957480i \(0.406844\pi\)
\(978\) 0 0
\(979\) 8.01919 0.256294
\(980\) 0 0
\(981\) 0 0
\(982\) −1.64752 −0.0525744
\(983\) −15.8266 −0.504789 −0.252395 0.967624i \(-0.581218\pi\)
−0.252395 + 0.967624i \(0.581218\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −78.0746 −2.48640
\(987\) 0 0
\(988\) 0.512724 0.0163119
\(989\) −2.20235 −0.0700307
\(990\) 0 0
\(991\) 9.99354 0.317455 0.158728 0.987322i \(-0.449261\pi\)
0.158728 + 0.987322i \(0.449261\pi\)
\(992\) −14.6717 −0.465828
\(993\) 0 0
\(994\) −28.4793 −0.903310
\(995\) 0 0
\(996\) 0 0
\(997\) 20.1129 0.636981 0.318491 0.947926i \(-0.396824\pi\)
0.318491 + 0.947926i \(0.396824\pi\)
\(998\) 27.8673 0.882123
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8325.2.a.cf.1.4 5
3.2 odd 2 8325.2.a.by.1.2 5
5.4 even 2 1665.2.a.o.1.2 5
15.14 odd 2 1665.2.a.r.1.4 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1665.2.a.o.1.2 5 5.4 even 2
1665.2.a.r.1.4 yes 5 15.14 odd 2
8325.2.a.by.1.2 5 3.2 odd 2
8325.2.a.cf.1.4 5 1.1 even 1 trivial