Properties

Label 833.2.e.h.18.4
Level $833$
Weight $2$
Character 833.18
Analytic conductor $6.652$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(18,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 10x^{7} + 44x^{6} - 49x^{5} + 99x^{4} - 20x^{3} + 31x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 18.4
Root \(-0.272099 - 0.471289i\) of defining polynomial
Character \(\chi\) \(=\) 833.18
Dual form 833.2.e.h.324.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.704339 + 1.21995i) q^{2} +(1.27991 - 2.21687i) q^{3} +(0.00781334 - 0.0135331i) q^{4} +(0.883300 + 1.52992i) q^{5} +3.60597 q^{6} +2.83937 q^{8} +(-1.77635 - 3.07673i) q^{9} +(-1.24428 + 2.15516i) q^{10} +(2.70385 - 4.68320i) q^{11} +(-0.0200008 - 0.0346424i) q^{12} -5.90575 q^{13} +4.52218 q^{15} +(1.98425 + 3.43682i) q^{16} +(0.500000 - 0.866025i) q^{17} +(2.50231 - 4.33412i) q^{18} +(1.54420 + 2.67463i) q^{19} +0.0276061 q^{20} +7.61770 q^{22} +(3.01563 + 5.22322i) q^{23} +(3.63414 - 6.29452i) q^{24} +(0.939563 - 1.62737i) q^{25} +(-4.15965 - 7.20473i) q^{26} -1.41482 q^{27} -8.99415 q^{29} +(3.18515 + 5.51684i) q^{30} +(-1.13233 + 1.96125i) q^{31} +(0.0441979 - 0.0765530i) q^{32} +(-6.92138 - 11.9882i) q^{33} +1.40868 q^{34} -0.0555169 q^{36} +(0.839369 + 1.45383i) q^{37} +(-2.17528 + 3.76769i) q^{38} +(-7.55884 + 13.0923i) q^{39} +(2.50801 + 4.34401i) q^{40} -4.25753 q^{41} +4.06177 q^{43} +(-0.0422522 - 0.0731829i) q^{44} +(3.13810 - 5.43535i) q^{45} +(-4.24805 + 7.35783i) q^{46} +(-2.15115 - 3.72590i) q^{47} +10.1587 q^{48} +2.64708 q^{50} +(-1.27991 - 2.21687i) q^{51} +(-0.0461436 + 0.0799231i) q^{52} +(0.276351 - 0.478654i) q^{53} +(-0.996513 - 1.72601i) q^{54} +9.55324 q^{55} +7.90575 q^{57} +(-6.33493 - 10.9724i) q^{58} +(-1.08840 + 1.88516i) q^{59} +(0.0353334 - 0.0611992i) q^{60} +(1.87123 + 3.24107i) q^{61} -3.19017 q^{62} +8.06153 q^{64} +(-5.21655 - 9.03533i) q^{65} +(9.74999 - 16.8875i) q^{66} +(-4.29198 + 7.43392i) q^{67} +(-0.00781334 - 0.0135331i) q^{68} +15.4390 q^{69} +5.26519 q^{71} +(-5.04372 - 8.73597i) q^{72} +(-0.719107 + 1.24553i) q^{73} +(-1.18240 + 2.04798i) q^{74} +(-2.40512 - 4.16578i) q^{75} +0.0482614 q^{76} -21.2960 q^{78} +(2.96850 + 5.14160i) q^{79} +(-3.50538 + 6.07149i) q^{80} +(3.51821 - 6.09371i) q^{81} +(-2.99874 - 5.19398i) q^{82} -9.02540 q^{83} +1.76660 q^{85} +(2.86086 + 4.95516i) q^{86} +(-11.5117 + 19.9389i) q^{87} +(7.67722 - 13.2973i) q^{88} +(7.04978 + 12.2106i) q^{89} +8.84115 q^{90} +0.0942485 q^{92} +(2.89856 + 5.02045i) q^{93} +(3.03027 - 5.24859i) q^{94} +(-2.72798 + 4.72500i) q^{95} +(-0.113139 - 0.195962i) q^{96} +0.119116 q^{97} -19.2119 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - 2 q^{3} - 10 q^{4} + 2 q^{6} + 12 q^{8} - 11 q^{9} + 4 q^{10} + 2 q^{11} - 22 q^{12} - 4 q^{13} + 16 q^{15} - 4 q^{16} + 5 q^{17} + 18 q^{18} + 6 q^{19} + 38 q^{20} + 12 q^{22} + 10 q^{23}+ \cdots - 124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.704339 + 1.21995i 0.498043 + 0.862635i 0.999997 0.00225847i \(-0.000718893\pi\)
−0.501955 + 0.864894i \(0.667386\pi\)
\(3\) 1.27991 2.21687i 0.738958 1.27991i −0.214007 0.976832i \(-0.568652\pi\)
0.952965 0.303080i \(-0.0980150\pi\)
\(4\) 0.00781334 0.0135331i 0.00390667 0.00676655i
\(5\) 0.883300 + 1.52992i 0.395024 + 0.684201i 0.993104 0.117235i \(-0.0374031\pi\)
−0.598081 + 0.801436i \(0.704070\pi\)
\(6\) 3.60597 1.47213
\(7\) 0 0
\(8\) 2.83937 1.00387
\(9\) −1.77635 3.07673i −0.592117 1.02558i
\(10\) −1.24428 + 2.15516i −0.393477 + 0.681523i
\(11\) 2.70385 4.68320i 0.815241 1.41204i −0.0939137 0.995580i \(-0.529938\pi\)
0.909155 0.416459i \(-0.136729\pi\)
\(12\) −0.0200008 0.0346424i −0.00577373 0.0100004i
\(13\) −5.90575 −1.63796 −0.818980 0.573822i \(-0.805460\pi\)
−0.818980 + 0.573822i \(0.805460\pi\)
\(14\) 0 0
\(15\) 4.52218 1.16762
\(16\) 1.98425 + 3.43682i 0.496063 + 0.859206i
\(17\) 0.500000 0.866025i 0.121268 0.210042i
\(18\) 2.50231 4.33412i 0.589799 1.02156i
\(19\) 1.54420 + 2.67463i 0.354263 + 0.613602i 0.986992 0.160772i \(-0.0513983\pi\)
−0.632728 + 0.774374i \(0.718065\pi\)
\(20\) 0.0276061 0.00617291
\(21\) 0 0
\(22\) 7.61770 1.62410
\(23\) 3.01563 + 5.22322i 0.628802 + 1.08912i 0.987793 + 0.155775i \(0.0497876\pi\)
−0.358991 + 0.933341i \(0.616879\pi\)
\(24\) 3.63414 6.29452i 0.741816 1.28486i
\(25\) 0.939563 1.62737i 0.187913 0.325474i
\(26\) −4.15965 7.20473i −0.815775 1.41296i
\(27\) −1.41482 −0.272282
\(28\) 0 0
\(29\) −8.99415 −1.67017 −0.835086 0.550120i \(-0.814582\pi\)
−0.835086 + 0.550120i \(0.814582\pi\)
\(30\) 3.18515 + 5.51684i 0.581526 + 1.00723i
\(31\) −1.13233 + 1.96125i −0.203372 + 0.352250i −0.949613 0.313426i \(-0.898523\pi\)
0.746241 + 0.665676i \(0.231857\pi\)
\(32\) 0.0441979 0.0765530i 0.00781316 0.0135328i
\(33\) −6.92138 11.9882i −1.20486 2.08687i
\(34\) 1.40868 0.241586
\(35\) 0 0
\(36\) −0.0555169 −0.00925282
\(37\) 0.839369 + 1.45383i 0.137991 + 0.239008i 0.926736 0.375713i \(-0.122602\pi\)
−0.788745 + 0.614721i \(0.789269\pi\)
\(38\) −2.17528 + 3.76769i −0.352877 + 0.611200i
\(39\) −7.55884 + 13.0923i −1.21038 + 2.09645i
\(40\) 2.50801 + 4.34401i 0.396552 + 0.686848i
\(41\) −4.25753 −0.664915 −0.332457 0.943118i \(-0.607878\pi\)
−0.332457 + 0.943118i \(0.607878\pi\)
\(42\) 0 0
\(43\) 4.06177 0.619414 0.309707 0.950832i \(-0.399769\pi\)
0.309707 + 0.950832i \(0.399769\pi\)
\(44\) −0.0422522 0.0731829i −0.00636975 0.0110327i
\(45\) 3.13810 5.43535i 0.467800 0.810254i
\(46\) −4.24805 + 7.35783i −0.626340 + 1.08485i
\(47\) −2.15115 3.72590i −0.313777 0.543478i 0.665400 0.746487i \(-0.268261\pi\)
−0.979177 + 0.203010i \(0.934928\pi\)
\(48\) 10.1587 1.46628
\(49\) 0 0
\(50\) 2.64708 0.374354
\(51\) −1.27991 2.21687i −0.179224 0.310424i
\(52\) −0.0461436 + 0.0799231i −0.00639897 + 0.0110833i
\(53\) 0.276351 0.478654i 0.0379597 0.0657482i −0.846421 0.532514i \(-0.821247\pi\)
0.884381 + 0.466766i \(0.154581\pi\)
\(54\) −0.996513 1.72601i −0.135608 0.234880i
\(55\) 9.55324 1.28816
\(56\) 0 0
\(57\) 7.90575 1.04714
\(58\) −6.33493 10.9724i −0.831817 1.44075i
\(59\) −1.08840 + 1.88516i −0.141697 + 0.245427i −0.928136 0.372242i \(-0.878589\pi\)
0.786439 + 0.617668i \(0.211923\pi\)
\(60\) 0.0353334 0.0611992i 0.00456152 0.00790078i
\(61\) 1.87123 + 3.24107i 0.239587 + 0.414977i 0.960596 0.277949i \(-0.0896546\pi\)
−0.721009 + 0.692926i \(0.756321\pi\)
\(62\) −3.19017 −0.405152
\(63\) 0 0
\(64\) 8.06153 1.00769
\(65\) −5.21655 9.03533i −0.647033 1.12069i
\(66\) 9.74999 16.8875i 1.20014 2.07871i
\(67\) −4.29198 + 7.43392i −0.524349 + 0.908198i 0.475250 + 0.879851i \(0.342358\pi\)
−0.999598 + 0.0283473i \(0.990976\pi\)
\(68\) −0.00781334 0.0135331i −0.000947507 0.00164113i
\(69\) 15.4390 1.85863
\(70\) 0 0
\(71\) 5.26519 0.624863 0.312431 0.949940i \(-0.398857\pi\)
0.312431 + 0.949940i \(0.398857\pi\)
\(72\) −5.04372 8.73597i −0.594408 1.02954i
\(73\) −0.719107 + 1.24553i −0.0841651 + 0.145778i −0.905035 0.425337i \(-0.860156\pi\)
0.820870 + 0.571115i \(0.193489\pi\)
\(74\) −1.18240 + 2.04798i −0.137451 + 0.238072i
\(75\) −2.40512 4.16578i −0.277719 0.481023i
\(76\) 0.0482614 0.00553596
\(77\) 0 0
\(78\) −21.2960 −2.41129
\(79\) 2.96850 + 5.14160i 0.333983 + 0.578475i 0.983289 0.182052i \(-0.0582740\pi\)
−0.649306 + 0.760527i \(0.724941\pi\)
\(80\) −3.50538 + 6.07149i −0.391913 + 0.678813i
\(81\) 3.51821 6.09371i 0.390912 0.677079i
\(82\) −2.99874 5.19398i −0.331156 0.573579i
\(83\) −9.02540 −0.990666 −0.495333 0.868703i \(-0.664954\pi\)
−0.495333 + 0.868703i \(0.664954\pi\)
\(84\) 0 0
\(85\) 1.76660 0.191615
\(86\) 2.86086 + 4.95516i 0.308495 + 0.534329i
\(87\) −11.5117 + 19.9389i −1.23419 + 2.13767i
\(88\) 7.67722 13.2973i 0.818395 1.41750i
\(89\) 7.04978 + 12.2106i 0.747275 + 1.29432i 0.949124 + 0.314901i \(0.101971\pi\)
−0.201850 + 0.979417i \(0.564695\pi\)
\(90\) 8.84115 0.931939
\(91\) 0 0
\(92\) 0.0942485 0.00982608
\(93\) 2.89856 + 5.02045i 0.300566 + 0.520596i
\(94\) 3.03027 5.24859i 0.312549 0.541350i
\(95\) −2.72798 + 4.72500i −0.279885 + 0.484775i
\(96\) −0.113139 0.195962i −0.0115472 0.0200003i
\(97\) 0.119116 0.0120944 0.00604718 0.999982i \(-0.498075\pi\)
0.00604718 + 0.999982i \(0.498075\pi\)
\(98\) 0 0
\(99\) −19.2119 −1.93087
\(100\) −0.0146822 0.0254304i −0.00146822 0.00254304i
\(101\) 4.87062 8.43616i 0.484645 0.839430i −0.515199 0.857070i \(-0.672282\pi\)
0.999844 + 0.0176406i \(0.00561546\pi\)
\(102\) 1.80298 3.12286i 0.178522 0.309209i
\(103\) −7.42430 12.8593i −0.731538 1.26706i −0.956226 0.292631i \(-0.905469\pi\)
0.224687 0.974431i \(-0.427864\pi\)
\(104\) −16.7686 −1.64430
\(105\) 0 0
\(106\) 0.778579 0.0756223
\(107\) 1.43069 + 2.47803i 0.138310 + 0.239560i 0.926857 0.375414i \(-0.122500\pi\)
−0.788547 + 0.614975i \(0.789166\pi\)
\(108\) −0.0110545 + 0.0191469i −0.00106372 + 0.00184241i
\(109\) −8.40770 + 14.5626i −0.805311 + 1.39484i 0.110769 + 0.993846i \(0.464669\pi\)
−0.916081 + 0.400994i \(0.868665\pi\)
\(110\) 6.72872 + 11.6545i 0.641558 + 1.11121i
\(111\) 4.29727 0.407879
\(112\) 0 0
\(113\) −12.5273 −1.17847 −0.589237 0.807960i \(-0.700571\pi\)
−0.589237 + 0.807960i \(0.700571\pi\)
\(114\) 5.56833 + 9.64463i 0.521522 + 0.903302i
\(115\) −5.32740 + 9.22734i −0.496783 + 0.860453i
\(116\) −0.0702743 + 0.121719i −0.00652481 + 0.0113013i
\(117\) 10.4907 + 18.1704i 0.969864 + 1.67985i
\(118\) −3.06640 −0.282285
\(119\) 0 0
\(120\) 12.8402 1.17214
\(121\) −9.12159 15.7991i −0.829236 1.43628i
\(122\) −2.63597 + 4.56563i −0.238649 + 0.413353i
\(123\) −5.44927 + 9.43841i −0.491344 + 0.851032i
\(124\) 0.0176945 + 0.0306478i 0.00158901 + 0.00275225i
\(125\) 12.1527 1.08697
\(126\) 0 0
\(127\) 0.0546476 0.00484919 0.00242460 0.999997i \(-0.499228\pi\)
0.00242460 + 0.999997i \(0.499228\pi\)
\(128\) 5.58965 + 9.68156i 0.494060 + 0.855737i
\(129\) 5.19871 9.00443i 0.457721 0.792796i
\(130\) 7.34844 12.7279i 0.644501 1.11631i
\(131\) 2.81736 + 4.87980i 0.246154 + 0.426350i 0.962455 0.271440i \(-0.0874999\pi\)
−0.716302 + 0.697791i \(0.754167\pi\)
\(132\) −0.216316 −0.0188279
\(133\) 0 0
\(134\) −12.0920 −1.04459
\(135\) −1.24971 2.16456i −0.107558 0.186296i
\(136\) 1.41968 2.45897i 0.121737 0.210855i
\(137\) −9.58584 + 16.6032i −0.818973 + 1.41850i 0.0874660 + 0.996168i \(0.472123\pi\)
−0.906439 + 0.422336i \(0.861210\pi\)
\(138\) 10.8743 + 18.8348i 0.925678 + 1.60332i
\(139\) −21.6094 −1.83288 −0.916441 0.400170i \(-0.868951\pi\)
−0.916441 + 0.400170i \(0.868951\pi\)
\(140\) 0 0
\(141\) −11.0131 −0.927472
\(142\) 3.70848 + 6.42327i 0.311208 + 0.539029i
\(143\) −15.9683 + 27.6578i −1.33533 + 2.31286i
\(144\) 7.04945 12.2100i 0.587454 1.01750i
\(145\) −7.94453 13.7603i −0.659757 1.14273i
\(146\) −2.02598 −0.167671
\(147\) 0 0
\(148\) 0.0262331 0.00215635
\(149\) 2.20866 + 3.82551i 0.180940 + 0.313398i 0.942201 0.335048i \(-0.108753\pi\)
−0.761261 + 0.648446i \(0.775419\pi\)
\(150\) 3.38803 5.86825i 0.276632 0.479140i
\(151\) 6.49646 11.2522i 0.528675 0.915691i −0.470766 0.882258i \(-0.656023\pi\)
0.999441 0.0334333i \(-0.0106441\pi\)
\(152\) 4.38455 + 7.59426i 0.355634 + 0.615976i
\(153\) −3.55270 −0.287219
\(154\) 0 0
\(155\) −4.00074 −0.321347
\(156\) 0.118120 + 0.204589i 0.00945714 + 0.0163802i
\(157\) −6.91775 + 11.9819i −0.552096 + 0.956259i 0.446027 + 0.895020i \(0.352839\pi\)
−0.998123 + 0.0612392i \(0.980495\pi\)
\(158\) −4.18166 + 7.24285i −0.332675 + 0.576211i
\(159\) −0.707410 1.22527i −0.0561013 0.0971702i
\(160\) 0.156160 0.0123455
\(161\) 0 0
\(162\) 9.91204 0.778764
\(163\) −8.27218 14.3278i −0.647927 1.12224i −0.983617 0.180270i \(-0.942303\pi\)
0.335690 0.941972i \(-0.391030\pi\)
\(164\) −0.0332655 + 0.0576176i −0.00259760 + 0.00449918i
\(165\) 12.2273 21.1783i 0.951894 1.64873i
\(166\) −6.35694 11.0105i −0.493394 0.854584i
\(167\) 6.68337 0.517174 0.258587 0.965988i \(-0.416743\pi\)
0.258587 + 0.965988i \(0.416743\pi\)
\(168\) 0 0
\(169\) 21.8779 1.68292
\(170\) 1.24428 + 2.15516i 0.0954323 + 0.165294i
\(171\) 5.48607 9.50216i 0.419531 0.726648i
\(172\) 0.0317360 0.0549683i 0.00241985 0.00419130i
\(173\) 9.31019 + 16.1257i 0.707840 + 1.22602i 0.965657 + 0.259821i \(0.0836637\pi\)
−0.257816 + 0.966194i \(0.583003\pi\)
\(174\) −32.4326 −2.45871
\(175\) 0 0
\(176\) 21.4605 1.61764
\(177\) 2.78610 + 4.82567i 0.209416 + 0.362720i
\(178\) −9.93086 + 17.2008i −0.744350 + 1.28925i
\(179\) 4.35019 7.53474i 0.325148 0.563173i −0.656394 0.754418i \(-0.727919\pi\)
0.981542 + 0.191245i \(0.0612525\pi\)
\(180\) −0.0490381 0.0849365i −0.00365508 0.00633079i
\(181\) −2.99611 −0.222699 −0.111349 0.993781i \(-0.535517\pi\)
−0.111349 + 0.993781i \(0.535517\pi\)
\(182\) 0 0
\(183\) 9.58006 0.708179
\(184\) 8.56248 + 14.8306i 0.631234 + 1.09333i
\(185\) −1.48283 + 2.56833i −0.109020 + 0.188828i
\(186\) −4.08313 + 7.07220i −0.299390 + 0.518559i
\(187\) −2.70385 4.68320i −0.197725 0.342470i
\(188\) −0.0672306 −0.00490329
\(189\) 0 0
\(190\) −7.68569 −0.557578
\(191\) −0.884280 1.53162i −0.0639843 0.110824i 0.832259 0.554387i \(-0.187047\pi\)
−0.896243 + 0.443563i \(0.853714\pi\)
\(192\) 10.3180 17.8714i 0.744641 1.28976i
\(193\) 3.77023 6.53023i 0.271387 0.470056i −0.697830 0.716263i \(-0.745851\pi\)
0.969217 + 0.246207i \(0.0791843\pi\)
\(194\) 0.0838977 + 0.145315i 0.00602350 + 0.0104330i
\(195\) −26.7069 −1.91252
\(196\) 0 0
\(197\) −26.0165 −1.85360 −0.926800 0.375555i \(-0.877452\pi\)
−0.926800 + 0.375555i \(0.877452\pi\)
\(198\) −13.5317 23.4376i −0.961657 1.66564i
\(199\) −4.25329 + 7.36691i −0.301508 + 0.522226i −0.976478 0.215619i \(-0.930823\pi\)
0.674970 + 0.737845i \(0.264157\pi\)
\(200\) 2.66777 4.62071i 0.188640 0.326733i
\(201\) 10.9867 + 19.0295i 0.774943 + 1.34224i
\(202\) 13.7223 0.965496
\(203\) 0 0
\(204\) −0.0400016 −0.00280067
\(205\) −3.76068 6.51368i −0.262657 0.454935i
\(206\) 10.4585 18.1146i 0.728675 1.26210i
\(207\) 10.7136 18.5565i 0.744648 1.28977i
\(208\) −11.7185 20.2970i −0.812531 1.40735i
\(209\) 16.7011 1.15524
\(210\) 0 0
\(211\) −14.9389 −1.02844 −0.514219 0.857659i \(-0.671918\pi\)
−0.514219 + 0.857659i \(0.671918\pi\)
\(212\) −0.00431845 0.00747977i −0.000296592 0.000513713i
\(213\) 6.73898 11.6723i 0.461747 0.799770i
\(214\) −2.01538 + 3.49074i −0.137769 + 0.238622i
\(215\) 3.58776 + 6.21418i 0.244683 + 0.423804i
\(216\) −4.01720 −0.273336
\(217\) 0 0
\(218\) −23.6875 −1.60432
\(219\) 1.84079 + 3.18834i 0.124389 + 0.215448i
\(220\) 0.0746427 0.129285i 0.00503241 0.00871639i
\(221\) −2.95288 + 5.11453i −0.198632 + 0.344041i
\(222\) 3.02674 + 5.24246i 0.203141 + 0.351851i
\(223\) 1.84521 0.123564 0.0617821 0.998090i \(-0.480322\pi\)
0.0617821 + 0.998090i \(0.480322\pi\)
\(224\) 0 0
\(225\) −6.67597 −0.445065
\(226\) −8.82350 15.2827i −0.586930 1.01659i
\(227\) 2.27537 3.94106i 0.151022 0.261577i −0.780582 0.625054i \(-0.785077\pi\)
0.931603 + 0.363477i \(0.118410\pi\)
\(228\) 0.0617703 0.106989i 0.00409084 0.00708554i
\(229\) 5.58547 + 9.67432i 0.369098 + 0.639297i 0.989425 0.145047i \(-0.0463333\pi\)
−0.620327 + 0.784344i \(0.713000\pi\)
\(230\) −15.0092 −0.989677
\(231\) 0 0
\(232\) −25.5377 −1.67663
\(233\) −3.16579 5.48331i −0.207398 0.359224i 0.743496 0.668740i \(-0.233166\pi\)
−0.950894 + 0.309516i \(0.899833\pi\)
\(234\) −14.7780 + 25.5962i −0.966068 + 1.67328i
\(235\) 3.80021 6.58217i 0.247899 0.429373i
\(236\) 0.0170080 + 0.0294587i 0.00110713 + 0.00191760i
\(237\) 15.1977 0.987196
\(238\) 0 0
\(239\) 4.12428 0.266777 0.133389 0.991064i \(-0.457414\pi\)
0.133389 + 0.991064i \(0.457414\pi\)
\(240\) 8.97315 + 15.5420i 0.579214 + 1.00323i
\(241\) 13.5049 23.3912i 0.869927 1.50676i 0.00785612 0.999969i \(-0.497499\pi\)
0.862071 0.506788i \(-0.169167\pi\)
\(242\) 12.8494 22.2558i 0.825990 1.43066i
\(243\) −11.1282 19.2746i −0.713876 1.23647i
\(244\) 0.0584824 0.00374395
\(245\) 0 0
\(246\) −15.3525 −0.978841
\(247\) −9.11965 15.7957i −0.580269 1.00506i
\(248\) −3.21509 + 5.56871i −0.204159 + 0.353613i
\(249\) −11.5517 + 20.0082i −0.732061 + 1.26797i
\(250\) 8.55959 + 14.8256i 0.541356 + 0.937656i
\(251\) 16.1431 1.01894 0.509471 0.860488i \(-0.329841\pi\)
0.509471 + 0.860488i \(0.329841\pi\)
\(252\) 0 0
\(253\) 32.6152 2.05050
\(254\) 0.0384905 + 0.0666674i 0.00241511 + 0.00418309i
\(255\) 2.26109 3.91633i 0.141595 0.245250i
\(256\) 0.187509 0.324775i 0.0117193 0.0202984i
\(257\) −4.19242 7.26148i −0.261516 0.452959i 0.705129 0.709079i \(-0.250889\pi\)
−0.966645 + 0.256120i \(0.917556\pi\)
\(258\) 14.6466 0.911858
\(259\) 0 0
\(260\) −0.163035 −0.0101110
\(261\) 15.9768 + 27.6726i 0.988937 + 1.71289i
\(262\) −3.96875 + 6.87407i −0.245190 + 0.424682i
\(263\) −11.9058 + 20.6214i −0.734140 + 1.27157i 0.220960 + 0.975283i \(0.429081\pi\)
−0.955100 + 0.296285i \(0.904252\pi\)
\(264\) −19.6523 34.0389i −1.20952 2.09495i
\(265\) 0.976403 0.0599800
\(266\) 0 0
\(267\) 36.0924 2.20882
\(268\) 0.0670694 + 0.116168i 0.00409691 + 0.00709606i
\(269\) −0.555197 + 0.961629i −0.0338509 + 0.0586316i −0.882455 0.470398i \(-0.844110\pi\)
0.848604 + 0.529029i \(0.177444\pi\)
\(270\) 1.76044 3.04917i 0.107137 0.185567i
\(271\) −4.22952 7.32575i −0.256925 0.445008i 0.708491 0.705719i \(-0.249376\pi\)
−0.965417 + 0.260712i \(0.916043\pi\)
\(272\) 3.96850 0.240626
\(273\) 0 0
\(274\) −27.0067 −1.63154
\(275\) −5.08087 8.80033i −0.306388 0.530680i
\(276\) 0.120630 0.208937i 0.00726106 0.0125765i
\(277\) 11.7015 20.2676i 0.703074 1.21776i −0.264308 0.964438i \(-0.585143\pi\)
0.967382 0.253322i \(-0.0815232\pi\)
\(278\) −15.2203 26.3624i −0.912854 1.58111i
\(279\) 8.04564 0.481680
\(280\) 0 0
\(281\) −17.1406 −1.02252 −0.511261 0.859425i \(-0.670821\pi\)
−0.511261 + 0.859425i \(0.670821\pi\)
\(282\) −7.75697 13.4355i −0.461921 0.800070i
\(283\) 3.27484 5.67218i 0.194669 0.337176i −0.752123 0.659023i \(-0.770970\pi\)
0.946792 + 0.321846i \(0.104303\pi\)
\(284\) 0.0411387 0.0712543i 0.00244113 0.00422817i
\(285\) 6.98315 + 12.0952i 0.413646 + 0.716456i
\(286\) −44.9883 −2.66021
\(287\) 0 0
\(288\) −0.314044 −0.0185052
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 11.1913 19.3839i 0.657175 1.13826i
\(291\) 0.152457 0.264064i 0.00893721 0.0154797i
\(292\) 0.0112373 + 0.0194635i 0.000657611 + 0.00113902i
\(293\) 1.27837 0.0746829 0.0373415 0.999303i \(-0.488111\pi\)
0.0373415 + 0.999303i \(0.488111\pi\)
\(294\) 0 0
\(295\) −3.84552 −0.223895
\(296\) 2.38328 + 4.12796i 0.138525 + 0.239933i
\(297\) −3.82546 + 6.62589i −0.221976 + 0.384473i
\(298\) −3.11129 + 5.38891i −0.180232 + 0.312171i
\(299\) −17.8095 30.8470i −1.02995 1.78393i
\(300\) −0.0751680 −0.00433982
\(301\) 0 0
\(302\) 18.3028 1.05321
\(303\) −12.4679 21.5951i −0.716264 1.24061i
\(304\) −6.12815 + 10.6143i −0.351474 + 0.608770i
\(305\) −3.30572 + 5.72568i −0.189285 + 0.327851i
\(306\) −2.50231 4.33412i −0.143047 0.247765i
\(307\) 17.0396 0.972504 0.486252 0.873819i \(-0.338364\pi\)
0.486252 + 0.873819i \(0.338364\pi\)
\(308\) 0 0
\(309\) −38.0098 −2.16230
\(310\) −2.81787 4.88070i −0.160045 0.277205i
\(311\) 10.7481 18.6162i 0.609467 1.05563i −0.381861 0.924220i \(-0.624717\pi\)
0.991328 0.131408i \(-0.0419499\pi\)
\(312\) −21.4623 + 37.1739i −1.21507 + 2.10456i
\(313\) −7.80855 13.5248i −0.441366 0.764468i 0.556426 0.830897i \(-0.312172\pi\)
−0.997791 + 0.0664299i \(0.978839\pi\)
\(314\) −19.4898 −1.09987
\(315\) 0 0
\(316\) 0.0927757 0.00521904
\(317\) −0.815974 1.41331i −0.0458297 0.0793793i 0.842201 0.539164i \(-0.181260\pi\)
−0.888030 + 0.459785i \(0.847926\pi\)
\(318\) 0.996513 1.72601i 0.0558817 0.0967899i
\(319\) −24.3188 + 42.1214i −1.36159 + 2.35835i
\(320\) 7.12074 + 12.3335i 0.398062 + 0.689463i
\(321\) 7.32464 0.408821
\(322\) 0 0
\(323\) 3.08840 0.171843
\(324\) −0.0549779 0.0952245i −0.00305433 0.00529025i
\(325\) −5.54883 + 9.61085i −0.307793 + 0.533114i
\(326\) 11.6528 20.1833i 0.645391 1.11785i
\(327\) 21.5222 + 37.2776i 1.19018 + 2.06146i
\(328\) −12.0887 −0.667487
\(329\) 0 0
\(330\) 34.4487 1.89634
\(331\) 14.4228 + 24.9810i 0.792748 + 1.37308i 0.924259 + 0.381765i \(0.124684\pi\)
−0.131512 + 0.991315i \(0.541983\pi\)
\(332\) −0.0705185 + 0.122142i −0.00387021 + 0.00670339i
\(333\) 2.98203 5.16502i 0.163414 0.283041i
\(334\) 4.70735 + 8.15338i 0.257575 + 0.446133i
\(335\) −15.1644 −0.828520
\(336\) 0 0
\(337\) 3.80896 0.207487 0.103744 0.994604i \(-0.466918\pi\)
0.103744 + 0.994604i \(0.466918\pi\)
\(338\) 15.4095 + 26.6900i 0.838164 + 1.45174i
\(339\) −16.0339 + 27.7715i −0.870842 + 1.50834i
\(340\) 0.0138030 0.0239076i 0.000748575 0.00129657i
\(341\) 6.12328 + 10.6058i 0.331594 + 0.574338i
\(342\) 15.4562 0.835777
\(343\) 0 0
\(344\) 11.5329 0.621810
\(345\) 13.6372 + 23.6204i 0.734203 + 1.27168i
\(346\) −13.1151 + 22.7159i −0.705070 + 1.22122i
\(347\) −2.52218 + 4.36855i −0.135398 + 0.234516i −0.925749 0.378138i \(-0.876565\pi\)
0.790351 + 0.612654i \(0.209898\pi\)
\(348\) 0.179890 + 0.311579i 0.00964311 + 0.0167024i
\(349\) 24.7187 1.32316 0.661581 0.749874i \(-0.269886\pi\)
0.661581 + 0.749874i \(0.269886\pi\)
\(350\) 0 0
\(351\) 8.35558 0.445988
\(352\) −0.239009 0.413976i −0.0127392 0.0220650i
\(353\) 12.4028 21.4823i 0.660136 1.14339i −0.320444 0.947268i \(-0.603832\pi\)
0.980580 0.196121i \(-0.0628346\pi\)
\(354\) −3.92472 + 6.79782i −0.208597 + 0.361300i
\(355\) 4.65074 + 8.05532i 0.246836 + 0.427532i
\(356\) 0.220329 0.0116774
\(357\) 0 0
\(358\) 12.2560 0.647751
\(359\) −1.97710 3.42444i −0.104347 0.180735i 0.809124 0.587638i \(-0.199942\pi\)
−0.913471 + 0.406903i \(0.866609\pi\)
\(360\) 8.91023 15.4330i 0.469610 0.813389i
\(361\) 4.73091 8.19417i 0.248995 0.431272i
\(362\) −2.11028 3.65511i −0.110914 0.192108i
\(363\) −46.6994 −2.45108
\(364\) 0 0
\(365\) −2.54075 −0.132989
\(366\) 6.74761 + 11.6872i 0.352703 + 0.610900i
\(367\) 7.09142 12.2827i 0.370169 0.641151i −0.619422 0.785058i \(-0.712633\pi\)
0.989591 + 0.143907i \(0.0459665\pi\)
\(368\) −11.9675 + 20.7284i −0.623850 + 1.08054i
\(369\) 7.56287 + 13.0993i 0.393707 + 0.681921i
\(370\) −4.17765 −0.217186
\(371\) 0 0
\(372\) 0.0905897 0.00469686
\(373\) 3.27628 + 5.67468i 0.169639 + 0.293824i 0.938293 0.345841i \(-0.112406\pi\)
−0.768654 + 0.639665i \(0.779073\pi\)
\(374\) 3.80885 6.59712i 0.196951 0.341129i
\(375\) 15.5543 26.9409i 0.803223 1.39122i
\(376\) −6.10790 10.5792i −0.314991 0.545580i
\(377\) 53.1172 2.73567
\(378\) 0 0
\(379\) 29.6732 1.52421 0.762106 0.647453i \(-0.224166\pi\)
0.762106 + 0.647453i \(0.224166\pi\)
\(380\) 0.0426293 + 0.0738360i 0.00218683 + 0.00378771i
\(381\) 0.0699442 0.121147i 0.00358335 0.00620654i
\(382\) 1.24567 2.15756i 0.0637338 0.110390i
\(383\) 17.5505 + 30.3984i 0.896788 + 1.55328i 0.831575 + 0.555412i \(0.187439\pi\)
0.0652131 + 0.997871i \(0.479227\pi\)
\(384\) 28.6171 1.46036
\(385\) 0 0
\(386\) 10.6221 0.540650
\(387\) −7.21513 12.4970i −0.366766 0.635257i
\(388\) 0.000930690 0.00161200i 4.72486e−5 8.18370e-5i
\(389\) 10.8369 18.7701i 0.549453 0.951681i −0.448859 0.893603i \(-0.648169\pi\)
0.998312 0.0580782i \(-0.0184973\pi\)
\(390\) −18.8107 32.5811i −0.952517 1.64981i
\(391\) 6.03125 0.305014
\(392\) 0 0
\(393\) 14.4239 0.727588
\(394\) −18.3244 31.7389i −0.923172 1.59898i
\(395\) −5.24416 + 9.08314i −0.263862 + 0.457023i
\(396\) −0.150109 + 0.259997i −0.00754328 + 0.0130653i
\(397\) −2.52636 4.37578i −0.126794 0.219614i 0.795639 0.605772i \(-0.207135\pi\)
−0.922433 + 0.386157i \(0.873802\pi\)
\(398\) −11.9830 −0.600655
\(399\) 0 0
\(400\) 7.45732 0.372866
\(401\) −6.25419 10.8326i −0.312319 0.540953i 0.666545 0.745465i \(-0.267773\pi\)
−0.978864 + 0.204512i \(0.934439\pi\)
\(402\) −15.4767 + 26.8065i −0.771909 + 1.33699i
\(403\) 6.68724 11.5826i 0.333115 0.576972i
\(404\) −0.0761116 0.131829i −0.00378670 0.00655875i
\(405\) 12.4305 0.617678
\(406\) 0 0
\(407\) 9.07810 0.449985
\(408\) −3.63414 6.29452i −0.179917 0.311625i
\(409\) 17.5840 30.4563i 0.869471 1.50597i 0.00693207 0.999976i \(-0.497793\pi\)
0.862539 0.505991i \(-0.168873\pi\)
\(410\) 5.29758 9.17568i 0.261629 0.453155i
\(411\) 24.5381 + 42.5012i 1.21037 + 2.09643i
\(412\) −0.232034 −0.0114315
\(413\) 0 0
\(414\) 30.1841 1.48347
\(415\) −7.97213 13.8081i −0.391337 0.677815i
\(416\) −0.261022 + 0.452103i −0.0127976 + 0.0221662i
\(417\) −27.6581 + 47.9052i −1.35442 + 2.34593i
\(418\) 11.7632 + 20.3745i 0.575359 + 0.996551i
\(419\) 7.43256 0.363105 0.181552 0.983381i \(-0.441888\pi\)
0.181552 + 0.983381i \(0.441888\pi\)
\(420\) 0 0
\(421\) 17.3069 0.843488 0.421744 0.906715i \(-0.361418\pi\)
0.421744 + 0.906715i \(0.361418\pi\)
\(422\) −10.5221 18.2248i −0.512207 0.887168i
\(423\) −7.64238 + 13.2370i −0.371585 + 0.643605i
\(424\) 0.784662 1.35907i 0.0381066 0.0660025i
\(425\) −0.939563 1.62737i −0.0455755 0.0789391i
\(426\) 18.9861 0.919879
\(427\) 0 0
\(428\) 0.0447139 0.00216133
\(429\) 40.8759 + 70.7992i 1.97351 + 3.41822i
\(430\) −5.05400 + 8.75378i −0.243725 + 0.422145i
\(431\) −1.82099 + 3.15404i −0.0877139 + 0.151925i −0.906544 0.422110i \(-0.861289\pi\)
0.818831 + 0.574035i \(0.194623\pi\)
\(432\) −2.80736 4.86249i −0.135069 0.233947i
\(433\) 7.23197 0.347546 0.173773 0.984786i \(-0.444404\pi\)
0.173773 + 0.984786i \(0.444404\pi\)
\(434\) 0 0
\(435\) −40.6732 −1.95013
\(436\) 0.131384 + 0.227564i 0.00629217 + 0.0108984i
\(437\) −9.31345 + 16.1314i −0.445523 + 0.771668i
\(438\) −2.59308 + 4.49134i −0.123902 + 0.214605i
\(439\) −16.8957 29.2641i −0.806386 1.39670i −0.915352 0.402655i \(-0.868087\pi\)
0.108966 0.994045i \(-0.465246\pi\)
\(440\) 27.1252 1.29314
\(441\) 0 0
\(442\) −8.31930 −0.395709
\(443\) 6.11380 + 10.5894i 0.290475 + 0.503118i 0.973922 0.226882i \(-0.0728533\pi\)
−0.683447 + 0.730000i \(0.739520\pi\)
\(444\) 0.0335761 0.0581554i 0.00159345 0.00275993i
\(445\) −12.4541 + 21.5712i −0.590382 + 1.02257i
\(446\) 1.29965 + 2.25106i 0.0615402 + 0.106591i
\(447\) 11.3076 0.534829
\(448\) 0 0
\(449\) −31.8397 −1.50261 −0.751305 0.659955i \(-0.770575\pi\)
−0.751305 + 0.659955i \(0.770575\pi\)
\(450\) −4.70215 8.14436i −0.221661 0.383929i
\(451\) −11.5117 + 19.9389i −0.542066 + 0.938885i
\(452\) −0.0978804 + 0.169534i −0.00460391 + 0.00797420i
\(453\) −16.6298 28.8037i −0.781336 1.35331i
\(454\) 6.41053 0.300861
\(455\) 0 0
\(456\) 22.4473 1.05119
\(457\) 2.18849 + 3.79057i 0.102373 + 0.177316i 0.912662 0.408715i \(-0.134023\pi\)
−0.810289 + 0.586031i \(0.800690\pi\)
\(458\) −7.86813 + 13.6280i −0.367653 + 0.636794i
\(459\) −0.707410 + 1.22527i −0.0330191 + 0.0571907i
\(460\) 0.0832496 + 0.144193i 0.00388153 + 0.00672302i
\(461\) −14.1763 −0.660256 −0.330128 0.943936i \(-0.607092\pi\)
−0.330128 + 0.943936i \(0.607092\pi\)
\(462\) 0 0
\(463\) 0.854854 0.0397284 0.0198642 0.999803i \(-0.493677\pi\)
0.0198642 + 0.999803i \(0.493677\pi\)
\(464\) −17.8466 30.9113i −0.828510 1.43502i
\(465\) −5.12059 + 8.86912i −0.237462 + 0.411296i
\(466\) 4.45958 7.72422i 0.206586 0.357818i
\(467\) 8.70262 + 15.0734i 0.402709 + 0.697513i 0.994052 0.108907i \(-0.0347352\pi\)
−0.591342 + 0.806421i \(0.701402\pi\)
\(468\) 0.327869 0.0151558
\(469\) 0 0
\(470\) 10.7066 0.493857
\(471\) 17.7082 + 30.6715i 0.815952 + 1.41327i
\(472\) −3.09036 + 5.35266i −0.142245 + 0.246376i
\(473\) 10.9824 19.0221i 0.504972 0.874637i
\(474\) 10.7043 + 18.5404i 0.491666 + 0.851590i
\(475\) 5.80349 0.266282
\(476\) 0 0
\(477\) −1.96359 −0.0899064
\(478\) 2.90489 + 5.03142i 0.132867 + 0.230132i
\(479\) 3.61468 6.26082i 0.165159 0.286064i −0.771553 0.636165i \(-0.780520\pi\)
0.936712 + 0.350101i \(0.113853\pi\)
\(480\) 0.199871 0.346187i 0.00912283 0.0158012i
\(481\) −4.95710 8.58595i −0.226024 0.391486i
\(482\) 38.0481 1.73304
\(483\) 0 0
\(484\) −0.285080 −0.0129582
\(485\) 0.105215 + 0.182237i 0.00477755 + 0.00827497i
\(486\) 15.6761 27.1518i 0.711082 1.23163i
\(487\) 4.04074 6.99876i 0.183103 0.317144i −0.759832 0.650119i \(-0.774719\pi\)
0.942936 + 0.332975i \(0.108052\pi\)
\(488\) 5.31312 + 9.20260i 0.240514 + 0.416582i
\(489\) −42.3506 −1.91516
\(490\) 0 0
\(491\) −20.5372 −0.926829 −0.463415 0.886142i \(-0.653376\pi\)
−0.463415 + 0.886142i \(0.653376\pi\)
\(492\) 0.0851539 + 0.147491i 0.00383904 + 0.00664941i
\(493\) −4.49707 + 7.78916i −0.202538 + 0.350806i
\(494\) 12.8466 22.2510i 0.577998 1.00112i
\(495\) −16.9699 29.3927i −0.762740 1.32110i
\(496\) −8.98728 −0.403541
\(497\) 0 0
\(498\) −32.5453 −1.45839
\(499\) −12.9646 22.4554i −0.580376 1.00524i −0.995435 0.0954465i \(-0.969572\pi\)
0.415058 0.909795i \(-0.363761\pi\)
\(500\) 0.0949529 0.164463i 0.00424642 0.00735502i
\(501\) 8.55412 14.8162i 0.382170 0.661938i
\(502\) 11.3702 + 19.6938i 0.507477 + 0.878976i
\(503\) −29.5089 −1.31574 −0.657869 0.753133i \(-0.728542\pi\)
−0.657869 + 0.753133i \(0.728542\pi\)
\(504\) 0 0
\(505\) 17.2089 0.765785
\(506\) 22.9721 + 39.7889i 1.02124 + 1.76883i
\(507\) 28.0018 48.5005i 1.24360 2.15398i
\(508\) 0.000426981 0 0.000739552i 1.89442e−5 0 3.28123e-5i
\(509\) −5.29631 9.17347i −0.234755 0.406607i 0.724447 0.689331i \(-0.242095\pi\)
−0.959201 + 0.282724i \(0.908762\pi\)
\(510\) 6.37030 0.282082
\(511\) 0 0
\(512\) 22.8869 1.01147
\(513\) −2.18476 3.78412i −0.0964596 0.167073i
\(514\) 5.90577 10.2291i 0.260492 0.451186i
\(515\) 13.1158 22.7172i 0.577950 1.00104i
\(516\) −0.0812386 0.140709i −0.00357633 0.00619438i
\(517\) −23.2655 −1.02322
\(518\) 0 0
\(519\) 47.6649 2.09226
\(520\) −14.8117 25.6546i −0.649536 1.12503i
\(521\) 3.81020 6.59946i 0.166928 0.289128i −0.770410 0.637548i \(-0.779949\pi\)
0.937338 + 0.348421i \(0.113282\pi\)
\(522\) −22.5061 + 38.9817i −0.985066 + 1.70618i
\(523\) −8.00977 13.8733i −0.350243 0.606639i 0.636049 0.771649i \(-0.280568\pi\)
−0.986292 + 0.165010i \(0.947234\pi\)
\(524\) 0.0880518 0.00384656
\(525\) 0 0
\(526\) −33.5427 −1.46253
\(527\) 1.13233 + 1.96125i 0.0493249 + 0.0854333i
\(528\) 27.4675 47.5751i 1.19537 2.07044i
\(529\) −6.68801 + 11.5840i −0.290783 + 0.503651i
\(530\) 0.687719 + 1.19116i 0.0298726 + 0.0517408i
\(531\) 7.73349 0.335605
\(532\) 0 0
\(533\) 25.1439 1.08910
\(534\) 25.4213 + 44.0309i 1.10009 + 1.90540i
\(535\) −2.52746 + 4.37769i −0.109272 + 0.189264i
\(536\) −12.1865 + 21.1076i −0.526377 + 0.911712i
\(537\) −11.1357 19.2876i −0.480542 0.832322i
\(538\) −1.56419 −0.0674369
\(539\) 0 0
\(540\) −0.0390576 −0.00168077
\(541\) 6.77564 + 11.7357i 0.291307 + 0.504559i 0.974119 0.226035i \(-0.0725764\pi\)
−0.682812 + 0.730594i \(0.739243\pi\)
\(542\) 5.95804 10.3196i 0.255920 0.443266i
\(543\) −3.83476 + 6.64199i −0.164565 + 0.285035i
\(544\) −0.0441979 0.0765530i −0.00189497 0.00328218i
\(545\) −29.7061 −1.27247
\(546\) 0 0
\(547\) −10.6651 −0.456008 −0.228004 0.973660i \(-0.573220\pi\)
−0.228004 + 0.973660i \(0.573220\pi\)
\(548\) 0.149795 + 0.259452i 0.00639892 + 0.0110832i
\(549\) 6.64794 11.5146i 0.283727 0.491430i
\(550\) 7.15731 12.3968i 0.305189 0.528603i
\(551\) −13.8887 24.0560i −0.591680 1.02482i
\(552\) 43.8369 1.86582
\(553\) 0 0
\(554\) 32.9673 1.40064
\(555\) 3.79578 + 6.57448i 0.161122 + 0.279071i
\(556\) −0.168841 + 0.292442i −0.00716046 + 0.0124023i
\(557\) −7.01425 + 12.1490i −0.297203 + 0.514771i −0.975495 0.220022i \(-0.929387\pi\)
0.678292 + 0.734793i \(0.262721\pi\)
\(558\) 5.66686 + 9.81528i 0.239897 + 0.415514i
\(559\) −23.9878 −1.01458
\(560\) 0 0
\(561\) −13.8428 −0.584442
\(562\) −12.0728 20.9107i −0.509260 0.882064i
\(563\) −7.76099 + 13.4424i −0.327087 + 0.566531i −0.981932 0.189232i \(-0.939400\pi\)
0.654846 + 0.755763i \(0.272734\pi\)
\(564\) −0.0860492 + 0.149042i −0.00362333 + 0.00627578i
\(565\) −11.0654 19.1658i −0.465525 0.806313i
\(566\) 9.22638 0.387814
\(567\) 0 0
\(568\) 14.9498 0.627280
\(569\) −15.7484 27.2770i −0.660207 1.14351i −0.980561 0.196214i \(-0.937135\pi\)
0.320355 0.947298i \(-0.396198\pi\)
\(570\) −9.83701 + 17.0382i −0.412027 + 0.713651i
\(571\) 11.6600 20.1956i 0.487954 0.845161i −0.511950 0.859015i \(-0.671077\pi\)
0.999904 + 0.0138542i \(0.00441006\pi\)
\(572\) 0.249531 + 0.432200i 0.0104334 + 0.0180712i
\(573\) −4.52721 −0.189127
\(574\) 0 0
\(575\) 11.3335 0.472639
\(576\) −14.3201 24.8031i −0.596671 1.03346i
\(577\) 14.3827 24.9116i 0.598761 1.03709i −0.394243 0.919006i \(-0.628993\pi\)
0.993004 0.118079i \(-0.0376736\pi\)
\(578\) 0.704339 1.21995i 0.0292966 0.0507433i
\(579\) −9.65113 16.7162i −0.401087 0.694704i
\(580\) −0.248293 −0.0103098
\(581\) 0 0
\(582\) 0.429527 0.0178045
\(583\) −1.49442 2.58842i −0.0618926 0.107201i
\(584\) −2.04181 + 3.53652i −0.0844907 + 0.146342i
\(585\) −18.5328 + 32.0998i −0.766239 + 1.32716i
\(586\) 0.900403 + 1.55954i 0.0371953 + 0.0644241i
\(587\) 6.73037 0.277792 0.138896 0.990307i \(-0.455645\pi\)
0.138896 + 0.990307i \(0.455645\pi\)
\(588\) 0 0
\(589\) −6.99415 −0.288189
\(590\) −2.70855 4.69134i −0.111509 0.193140i
\(591\) −33.2989 + 57.6753i −1.36973 + 2.37245i
\(592\) −3.33104 + 5.76952i −0.136905 + 0.237126i
\(593\) −9.22118 15.9715i −0.378668 0.655873i 0.612200 0.790703i \(-0.290285\pi\)
−0.990869 + 0.134830i \(0.956951\pi\)
\(594\) −10.7777 −0.442214
\(595\) 0 0
\(596\) 0.0690280 0.00282750
\(597\) 10.8877 + 18.8580i 0.445603 + 0.771806i
\(598\) 25.0879 43.4535i 1.02592 1.77695i
\(599\) −15.7729 + 27.3194i −0.644462 + 1.11624i 0.339964 + 0.940439i \(0.389585\pi\)
−0.984426 + 0.175802i \(0.943748\pi\)
\(600\) −6.82901 11.8282i −0.278793 0.482884i
\(601\) −42.7597 −1.74420 −0.872102 0.489324i \(-0.837244\pi\)
−0.872102 + 0.489324i \(0.837244\pi\)
\(602\) 0 0
\(603\) 30.4962 1.24190
\(604\) −0.101518 0.175835i −0.00413071 0.00715461i
\(605\) 16.1142 27.9106i 0.655136 1.13473i
\(606\) 17.5633 30.4205i 0.713461 1.23575i
\(607\) −4.06733 7.04481i −0.165088 0.285940i 0.771599 0.636110i \(-0.219457\pi\)
−0.936686 + 0.350169i \(0.886124\pi\)
\(608\) 0.273001 0.0110717
\(609\) 0 0
\(610\) −9.31339 −0.377088
\(611\) 12.7041 + 22.0042i 0.513954 + 0.890195i
\(612\) −0.0277585 + 0.0480791i −0.00112207 + 0.00194348i
\(613\) 18.0859 31.3257i 0.730482 1.26523i −0.226195 0.974082i \(-0.572629\pi\)
0.956677 0.291150i \(-0.0940380\pi\)
\(614\) 12.0017 + 20.7875i 0.484349 + 0.838916i
\(615\) −19.2533 −0.776370
\(616\) 0 0
\(617\) −38.7539 −1.56017 −0.780086 0.625672i \(-0.784825\pi\)
−0.780086 + 0.625672i \(0.784825\pi\)
\(618\) −26.7718 46.3701i −1.07692 1.86528i
\(619\) 12.8857 22.3186i 0.517918 0.897061i −0.481865 0.876245i \(-0.660041\pi\)
0.999783 0.0208152i \(-0.00662616\pi\)
\(620\) −0.0312591 + 0.0541424i −0.00125540 + 0.00217441i
\(621\) −4.26657 7.38991i −0.171212 0.296547i
\(622\) 30.2811 1.21416
\(623\) 0 0
\(624\) −59.9946 −2.40171
\(625\) 6.03663 + 10.4557i 0.241465 + 0.418230i
\(626\) 10.9997 19.0521i 0.439638 0.761475i
\(627\) 21.3760 37.0242i 0.853673 1.47861i
\(628\) 0.108101 + 0.187237i 0.00431372 + 0.00747157i
\(629\) 1.67874 0.0669356
\(630\) 0 0
\(631\) −34.2365 −1.36293 −0.681467 0.731849i \(-0.738658\pi\)
−0.681467 + 0.731849i \(0.738658\pi\)
\(632\) 8.42867 + 14.5989i 0.335275 + 0.580713i
\(633\) −19.1205 + 33.1177i −0.759973 + 1.31631i
\(634\) 1.14945 1.99090i 0.0456503 0.0790686i
\(635\) 0.0482703 + 0.0836065i 0.00191555 + 0.00331782i
\(636\) −0.0221089 −0.000876676
\(637\) 0 0
\(638\) −68.5147 −2.71252
\(639\) −9.35282 16.1996i −0.369992 0.640845i
\(640\) −9.87467 + 17.1034i −0.390331 + 0.676073i
\(641\) 5.90924 10.2351i 0.233401 0.404262i −0.725406 0.688322i \(-0.758348\pi\)
0.958807 + 0.284059i \(0.0916812\pi\)
\(642\) 5.15903 + 8.93569i 0.203611 + 0.352664i
\(643\) 35.9141 1.41631 0.708156 0.706056i \(-0.249527\pi\)
0.708156 + 0.706056i \(0.249527\pi\)
\(644\) 0 0
\(645\) 18.3681 0.723242
\(646\) 2.17528 + 3.76769i 0.0855851 + 0.148238i
\(647\) −0.0802926 + 0.139071i −0.00315663 + 0.00546744i −0.867599 0.497264i \(-0.834338\pi\)
0.864443 + 0.502731i \(0.167671\pi\)
\(648\) 9.98949 17.3023i 0.392424 0.679699i
\(649\) 5.88572 + 10.1944i 0.231035 + 0.400164i
\(650\) −15.6330 −0.613177
\(651\) 0 0
\(652\) −0.258533 −0.0101249
\(653\) 11.3335 + 19.6303i 0.443516 + 0.768192i 0.997948 0.0640371i \(-0.0203976\pi\)
−0.554432 + 0.832229i \(0.687064\pi\)
\(654\) −30.3179 + 52.5121i −1.18552 + 2.05339i
\(655\) −4.97714 + 8.62066i −0.194473 + 0.336837i
\(656\) −8.44801 14.6324i −0.329839 0.571299i
\(657\) 5.10955 0.199342
\(658\) 0 0
\(659\) 11.8789 0.462737 0.231369 0.972866i \(-0.425680\pi\)
0.231369 + 0.972866i \(0.425680\pi\)
\(660\) −0.191072 0.330947i −0.00743747 0.0128821i
\(661\) 13.5716 23.5066i 0.527872 0.914302i −0.471600 0.881813i \(-0.656323\pi\)
0.999472 0.0324892i \(-0.0103434\pi\)
\(662\) −20.3171 + 35.1902i −0.789645 + 1.36770i
\(663\) 7.55884 + 13.0923i 0.293561 + 0.508463i
\(664\) −25.6264 −0.994499
\(665\) 0 0
\(666\) 8.40143 0.325549
\(667\) −27.1230 46.9784i −1.05021 1.81901i
\(668\) 0.0522194 0.0904467i 0.00202043 0.00349949i
\(669\) 2.36170 4.09059i 0.0913087 0.158151i
\(670\) −10.6809 18.4998i −0.412639 0.714711i
\(671\) 20.2381 0.781285
\(672\) 0 0
\(673\) 20.7262 0.798935 0.399468 0.916747i \(-0.369195\pi\)
0.399468 + 0.916747i \(0.369195\pi\)
\(674\) 2.68280 + 4.64675i 0.103338 + 0.178986i
\(675\) −1.32931 + 2.30244i −0.0511653 + 0.0886208i
\(676\) 0.170939 0.296076i 0.00657459 0.0113875i
\(677\) −6.74321 11.6796i −0.259162 0.448882i 0.706855 0.707358i \(-0.250113\pi\)
−0.966018 + 0.258476i \(0.916780\pi\)
\(678\) −45.1732 −1.73487
\(679\) 0 0
\(680\) 5.01603 0.192356
\(681\) −5.82455 10.0884i −0.223197 0.386589i
\(682\) −8.62573 + 14.9402i −0.330296 + 0.572090i
\(683\) −10.6760 + 18.4913i −0.408505 + 0.707552i −0.994722 0.102602i \(-0.967283\pi\)
0.586217 + 0.810154i \(0.300616\pi\)
\(684\) −0.0857291 0.148487i −0.00327794 0.00567755i
\(685\) −33.8687 −1.29406
\(686\) 0 0
\(687\) 28.5956 1.09099
\(688\) 8.05957 + 13.9596i 0.307268 + 0.532204i
\(689\) −1.63206 + 2.82681i −0.0621765 + 0.107693i
\(690\) −19.2105 + 33.2735i −0.731329 + 1.26670i
\(691\) 4.33509 + 7.50860i 0.164915 + 0.285641i 0.936625 0.350334i \(-0.113932\pi\)
−0.771710 + 0.635974i \(0.780598\pi\)
\(692\) 0.290975 0.0110612
\(693\) 0 0
\(694\) −7.10589 −0.269736
\(695\) −19.0875 33.0606i −0.724032 1.25406i
\(696\) −32.6860 + 56.6138i −1.23896 + 2.14594i
\(697\) −2.12877 + 3.68713i −0.0806327 + 0.139660i
\(698\) 17.4103 + 30.1556i 0.658991 + 1.14141i
\(699\) −16.2077 −0.613033
\(700\) 0 0
\(701\) 48.2784 1.82345 0.911725 0.410801i \(-0.134751\pi\)
0.911725 + 0.410801i \(0.134751\pi\)
\(702\) 5.88516 + 10.1934i 0.222121 + 0.384725i
\(703\) −2.59230 + 4.49000i −0.0977705 + 0.169344i
\(704\) 21.7971 37.7538i 0.821511 1.42290i
\(705\) −9.72788 16.8492i −0.366373 0.634577i
\(706\) 34.9432 1.31510
\(707\) 0 0
\(708\) 0.0870751 0.00327248
\(709\) −10.0895 17.4756i −0.378920 0.656309i 0.611985 0.790869i \(-0.290371\pi\)
−0.990905 + 0.134560i \(0.957038\pi\)
\(710\) −6.55139 + 11.3473i −0.245869 + 0.425858i
\(711\) 10.5462 18.2666i 0.395514 0.685050i
\(712\) 20.0169 + 34.6703i 0.750165 + 1.29932i
\(713\) −13.6587 −0.511522
\(714\) 0 0
\(715\) −56.4190 −2.10995
\(716\) −0.0679790 0.117743i −0.00254049 0.00440026i
\(717\) 5.27871 9.14300i 0.197137 0.341452i
\(718\) 2.78510 4.82393i 0.103939 0.180028i
\(719\) −9.71227 16.8222i −0.362207 0.627360i 0.626117 0.779729i \(-0.284643\pi\)
−0.988324 + 0.152369i \(0.951310\pi\)
\(720\) 24.9071 0.928234
\(721\) 0 0
\(722\) 13.3286 0.496041
\(723\) −34.5702 59.8773i −1.28568 2.22686i
\(724\) −0.0234096 + 0.0405466i −0.000870011 + 0.00150690i
\(725\) −8.45057 + 14.6368i −0.313846 + 0.543598i
\(726\) −32.8922 56.9709i −1.22074 2.11439i
\(727\) 5.10313 0.189265 0.0946323 0.995512i \(-0.469832\pi\)
0.0946323 + 0.995512i \(0.469832\pi\)
\(728\) 0 0
\(729\) −35.8634 −1.32827
\(730\) −1.78955 3.09959i −0.0662341 0.114721i
\(731\) 2.03089 3.51760i 0.0751150 0.130103i
\(732\) 0.0748523 0.129648i 0.00276662 0.00479193i
\(733\) 25.3132 + 43.8438i 0.934965 + 1.61941i 0.774697 + 0.632332i \(0.217902\pi\)
0.160267 + 0.987074i \(0.448764\pi\)
\(734\) 19.9790 0.737440
\(735\) 0 0
\(736\) 0.533138 0.0196517
\(737\) 23.2097 + 40.2004i 0.854941 + 1.48080i
\(738\) −10.6536 + 18.4527i −0.392166 + 0.679252i
\(739\) 20.6427 35.7543i 0.759355 1.31524i −0.183824 0.982959i \(-0.558848\pi\)
0.943180 0.332283i \(-0.107819\pi\)
\(740\) 0.0231717 + 0.0401345i 0.000851808 + 0.00147537i
\(741\) −46.6894 −1.71518
\(742\) 0 0
\(743\) −0.115352 −0.00423186 −0.00211593 0.999998i \(-0.500674\pi\)
−0.00211593 + 0.999998i \(0.500674\pi\)
\(744\) 8.23008 + 14.2549i 0.301729 + 0.522610i
\(745\) −3.90181 + 6.75814i −0.142951 + 0.247599i
\(746\) −4.61522 + 7.99380i −0.168975 + 0.292674i
\(747\) 16.0323 + 27.7687i 0.586590 + 1.01600i
\(748\) −0.0845043 −0.00308978
\(749\) 0 0
\(750\) 43.8221 1.60016
\(751\) 26.1711 + 45.3297i 0.954997 + 1.65410i 0.734375 + 0.678744i \(0.237475\pi\)
0.220621 + 0.975360i \(0.429191\pi\)
\(752\) 8.53683 14.7862i 0.311306 0.539198i
\(753\) 20.6617 35.7872i 0.752956 1.30416i
\(754\) 37.4125 + 64.8004i 1.36248 + 2.35989i
\(755\) 22.9533 0.835356
\(756\) 0 0
\(757\) −19.1277 −0.695207 −0.347604 0.937642i \(-0.613005\pi\)
−0.347604 + 0.937642i \(0.613005\pi\)
\(758\) 20.9000 + 36.1999i 0.759123 + 1.31484i
\(759\) 41.7446 72.3037i 1.51523 2.62446i
\(760\) −7.74574 + 13.4160i −0.280967 + 0.486650i
\(761\) 1.02273 + 1.77143i 0.0370741 + 0.0642142i 0.883967 0.467549i \(-0.154863\pi\)
−0.846893 + 0.531763i \(0.821530\pi\)
\(762\) 0.197058 0.00713865
\(763\) 0 0
\(764\) −0.0276367 −0.000999862
\(765\) −3.13810 5.43535i −0.113458 0.196515i
\(766\) −24.7230 + 42.8215i −0.893278 + 1.54720i
\(767\) 6.42780 11.1333i 0.232094 0.401999i
\(768\) −0.479989 0.831366i −0.0173201 0.0299993i
\(769\) 45.2661 1.63234 0.816168 0.577814i \(-0.196094\pi\)
0.816168 + 0.577814i \(0.196094\pi\)
\(770\) 0 0
\(771\) −21.4637 −0.772997
\(772\) −0.0589162 0.102046i −0.00212044 0.00367271i
\(773\) −1.36828 + 2.36992i −0.0492135 + 0.0852402i −0.889583 0.456774i \(-0.849005\pi\)
0.840369 + 0.542014i \(0.182338\pi\)
\(774\) 10.1638 17.6042i 0.365330 0.632770i
\(775\) 2.12778 + 3.68543i 0.0764323 + 0.132385i
\(776\) 0.338213 0.0121411
\(777\) 0 0
\(778\) 30.5314 1.09461
\(779\) −6.57447 11.3873i −0.235555 0.407993i
\(780\) −0.208670 + 0.361427i −0.00747159 + 0.0129412i
\(781\) 14.2363 24.6579i 0.509414 0.882331i
\(782\) 4.24805 + 7.35783i 0.151910 + 0.263116i
\(783\) 12.7251 0.454758
\(784\) 0 0
\(785\) −24.4418 −0.872364
\(786\) 10.1593 + 17.5964i 0.362370 + 0.627643i
\(787\) −11.4780 + 19.8804i −0.409145 + 0.708660i −0.994794 0.101905i \(-0.967506\pi\)
0.585649 + 0.810565i \(0.300840\pi\)
\(788\) −0.203276 + 0.352084i −0.00724140 + 0.0125425i
\(789\) 30.4766 + 52.7871i 1.08500 + 1.87927i
\(790\) −14.7747 −0.525658
\(791\) 0 0
\(792\) −54.5498 −1.93834
\(793\) −11.0510 19.1410i −0.392434 0.679716i
\(794\) 3.55883 6.16407i 0.126298 0.218755i
\(795\) 1.24971 2.16456i 0.0443227 0.0767691i
\(796\) 0.0664647 + 0.115120i 0.00235578 + 0.00408033i
\(797\) 23.9778 0.849337 0.424669 0.905349i \(-0.360391\pi\)
0.424669 + 0.905349i \(0.360391\pi\)
\(798\) 0 0
\(799\) −4.30229 −0.152204
\(800\) −0.0830534 0.143853i −0.00293638 0.00508596i
\(801\) 25.0458 43.3805i 0.884948 1.53278i
\(802\) 8.81014 15.2596i 0.311097 0.538835i
\(803\) 3.88871 + 6.73545i 0.137230 + 0.237689i
\(804\) 0.343372 0.0121098
\(805\) 0 0
\(806\) 18.8403 0.663623
\(807\) 1.42121 + 2.46160i 0.0500288 + 0.0866525i
\(808\) 13.8295 23.9534i 0.486520 0.842677i
\(809\) −0.273936 + 0.474470i −0.00963106 + 0.0166815i −0.870801 0.491636i \(-0.836399\pi\)
0.861170 + 0.508318i \(0.169732\pi\)
\(810\) 8.75530 + 15.1646i 0.307630 + 0.532831i
\(811\) −37.1882 −1.30585 −0.652927 0.757421i \(-0.726459\pi\)
−0.652927 + 0.757421i \(0.726459\pi\)
\(812\) 0 0
\(813\) −21.6537 −0.759428
\(814\) 6.39406 + 11.0748i 0.224112 + 0.388173i
\(815\) 14.6136 25.3115i 0.511893 0.886625i
\(816\) 5.07934 8.79767i 0.177812 0.307980i
\(817\) 6.27218 + 10.8637i 0.219436 + 0.380074i
\(818\) 49.5403 1.73213
\(819\) 0 0
\(820\) −0.117534 −0.00410446
\(821\) 3.63972 + 6.30417i 0.127027 + 0.220017i 0.922523 0.385941i \(-0.126123\pi\)
−0.795496 + 0.605958i \(0.792790\pi\)
\(822\) −34.5662 + 59.8705i −1.20564 + 2.08822i
\(823\) −7.32180 + 12.6817i −0.255222 + 0.442057i −0.964956 0.262413i \(-0.915482\pi\)
0.709734 + 0.704470i \(0.248815\pi\)
\(824\) −21.0803 36.5122i −0.734368 1.27196i
\(825\) −26.0123 −0.905631
\(826\) 0 0
\(827\) −12.0435 −0.418795 −0.209397 0.977831i \(-0.567150\pi\)
−0.209397 + 0.977831i \(0.567150\pi\)
\(828\) −0.167418 0.289977i −0.00581819 0.0100774i
\(829\) −13.1369 + 22.7538i −0.456264 + 0.790273i −0.998760 0.0497855i \(-0.984146\pi\)
0.542495 + 0.840059i \(0.317480\pi\)
\(830\) 11.2302 19.4512i 0.389805 0.675162i
\(831\) −29.9538 51.8814i −1.03908 1.79975i
\(832\) −47.6094 −1.65056
\(833\) 0 0
\(834\) −77.9227 −2.69824
\(835\) 5.90341 + 10.2250i 0.204296 + 0.353851i
\(836\) 0.130491 0.226018i 0.00451314 0.00781699i
\(837\) 1.60204 2.77481i 0.0553746 0.0959115i
\(838\) 5.23504 + 9.06736i 0.180842 + 0.313227i
\(839\) −45.9248 −1.58550 −0.792750 0.609547i \(-0.791352\pi\)
−0.792750 + 0.609547i \(0.791352\pi\)
\(840\) 0 0
\(841\) 51.8947 1.78947
\(842\) 12.1899 + 21.1136i 0.420093 + 0.727622i
\(843\) −21.9385 + 37.9985i −0.755601 + 1.30874i
\(844\) −0.116723 + 0.202170i −0.00401777 + 0.00695898i
\(845\) 19.3247 + 33.4714i 0.664791 + 1.15145i
\(846\) −21.5313 −0.740262
\(847\) 0 0
\(848\) 2.19340 0.0753216
\(849\) −8.38301 14.5198i −0.287704 0.498318i
\(850\) 1.32354 2.29244i 0.0453971 0.0786301i
\(851\) −5.06245 + 8.76841i −0.173538 + 0.300577i
\(852\) −0.105308 0.182399i −0.00360779 0.00624887i
\(853\) 10.4825 0.358915 0.179457 0.983766i \(-0.442566\pi\)
0.179457 + 0.983766i \(0.442566\pi\)
\(854\) 0 0
\(855\) 19.3834 0.662898
\(856\) 4.06226 + 7.03604i 0.138845 + 0.240487i
\(857\) −20.9609 + 36.3053i −0.716009 + 1.24016i 0.246560 + 0.969128i \(0.420700\pi\)
−0.962569 + 0.271037i \(0.912634\pi\)
\(858\) −57.5810 + 99.7333i −1.96578 + 3.40484i
\(859\) 5.25655 + 9.10461i 0.179351 + 0.310645i 0.941658 0.336570i \(-0.109267\pi\)
−0.762307 + 0.647215i \(0.775933\pi\)
\(860\) 0.112130 0.00382359
\(861\) 0 0
\(862\) −5.13037 −0.174741
\(863\) 9.40967 + 16.2980i 0.320309 + 0.554791i 0.980552 0.196261i \(-0.0628800\pi\)
−0.660243 + 0.751052i \(0.729547\pi\)
\(864\) −0.0625321 + 0.108309i −0.00212738 + 0.00368474i
\(865\) −16.4474 + 28.4877i −0.559227 + 0.968610i
\(866\) 5.09376 + 8.82265i 0.173093 + 0.299806i
\(867\) −2.55982 −0.0869362
\(868\) 0 0
\(869\) 32.1055 1.08911
\(870\) −28.6477 49.6193i −0.971249 1.68225i
\(871\) 25.3474 43.9029i 0.858862 1.48759i
\(872\) −23.8726 + 41.3485i −0.808427 + 1.40024i
\(873\) −0.211591 0.366486i −0.00716127 0.0124037i
\(874\) −26.2393 −0.887558
\(875\) 0 0
\(876\) 0.0575308 0.00194379
\(877\) 26.2417 + 45.4520i 0.886119 + 1.53480i 0.844425 + 0.535673i \(0.179942\pi\)
0.0416942 + 0.999130i \(0.486724\pi\)
\(878\) 23.8005 41.2237i 0.803229 1.39123i
\(879\) 1.63620 2.83397i 0.0551875 0.0955876i
\(880\) 18.9560 + 32.8328i 0.639007 + 1.10679i
\(881\) 1.43758 0.0484335 0.0242167 0.999707i \(-0.492291\pi\)
0.0242167 + 0.999707i \(0.492291\pi\)
\(882\) 0 0
\(883\) −3.17781 −0.106942 −0.0534710 0.998569i \(-0.517028\pi\)
−0.0534710 + 0.998569i \(0.517028\pi\)
\(884\) 0.0461436 + 0.0799231i 0.00155198 + 0.00268811i
\(885\) −4.92193 + 8.52503i −0.165449 + 0.286566i
\(886\) −8.61237 + 14.9171i −0.289338 + 0.501149i
\(887\) −1.88718 3.26868i −0.0633652 0.109752i 0.832602 0.553871i \(-0.186850\pi\)
−0.895968 + 0.444119i \(0.853517\pi\)
\(888\) 12.2015 0.409457
\(889\) 0 0
\(890\) −35.0877 −1.17614
\(891\) −19.0254 32.9530i −0.637375 1.10397i
\(892\) 0.0144172 0.0249714i 0.000482724 0.000836103i
\(893\) 6.64359 11.5070i 0.222319 0.385068i
\(894\) 7.96435 + 13.7947i 0.266368 + 0.461362i
\(895\) 15.3701 0.513765
\(896\) 0 0
\(897\) −91.1786 −3.04437
\(898\) −22.4260 38.8429i −0.748364 1.29620i
\(899\) 10.1843 17.6398i 0.339666 0.588319i
\(900\) −0.0521617 + 0.0903466i −0.00173872 + 0.00301155i
\(901\) −0.276351 0.478654i −0.00920659 0.0159463i
\(902\) −32.4326 −1.07989
\(903\) 0 0
\(904\) −35.5698 −1.18303
\(905\) −2.64646 4.58381i −0.0879714 0.152371i
\(906\) 23.4260 40.5751i 0.778278 1.34802i
\(907\) 24.3460 42.1685i 0.808395 1.40018i −0.105580 0.994411i \(-0.533670\pi\)
0.913975 0.405770i \(-0.132997\pi\)
\(908\) −0.0355565 0.0615856i −0.00117998 0.00204379i
\(909\) −34.6077 −1.14787
\(910\) 0 0
\(911\) 52.2254 1.73030 0.865152 0.501510i \(-0.167222\pi\)
0.865152 + 0.501510i \(0.167222\pi\)
\(912\) 15.6870 + 27.1707i 0.519448 + 0.899711i
\(913\) −24.4033 + 42.2678i −0.807632 + 1.39886i
\(914\) −3.08288 + 5.33970i −0.101972 + 0.176621i
\(915\) 8.46207 + 14.6567i 0.279747 + 0.484537i
\(916\) 0.174565 0.00576778
\(917\) 0 0
\(918\) −1.99303 −0.0657796
\(919\) −28.4848 49.3370i −0.939625 1.62748i −0.766171 0.642637i \(-0.777840\pi\)
−0.173455 0.984842i \(-0.555493\pi\)
\(920\) −15.1265 + 26.1998i −0.498705 + 0.863782i
\(921\) 21.8093 37.7747i 0.718639 1.24472i
\(922\) −9.98492 17.2944i −0.328836 0.569560i
\(923\) −31.0949 −1.02350
\(924\) 0 0
\(925\) 3.15456 0.103721
\(926\) 0.602107 + 1.04288i 0.0197865 + 0.0342712i
\(927\) −26.3763 + 45.6852i −0.866313 + 1.50050i
\(928\) −0.397522 + 0.688529i −0.0130493 + 0.0226021i
\(929\) −5.56936 9.64642i −0.182725 0.316489i 0.760083 0.649826i \(-0.225158\pi\)
−0.942808 + 0.333338i \(0.891825\pi\)
\(930\) −14.4265 −0.473064
\(931\) 0 0
\(932\) −0.0989417 −0.00324094
\(933\) −27.5132 47.6542i −0.900741 1.56013i
\(934\) −12.2592 + 21.2335i −0.401133 + 0.694783i
\(935\) 4.77662 8.27334i 0.156212 0.270567i
\(936\) 29.7869 + 51.5925i 0.973616 + 1.68635i
\(937\) −18.6644 −0.609740 −0.304870 0.952394i \(-0.598613\pi\)
−0.304870 + 0.952394i \(0.598613\pi\)
\(938\) 0 0
\(939\) −39.9771 −1.30460
\(940\) −0.0593847 0.102857i −0.00193692 0.00335484i
\(941\) −21.6492 + 37.4975i −0.705743 + 1.22238i 0.260679 + 0.965426i \(0.416054\pi\)
−0.966423 + 0.256958i \(0.917280\pi\)
\(942\) −24.9452 + 43.2063i −0.812758 + 1.40774i
\(943\) −12.8391 22.2380i −0.418099 0.724169i
\(944\) −8.63860 −0.281163
\(945\) 0 0
\(946\) 30.9414 1.00599
\(947\) −9.36396 16.2189i −0.304288 0.527042i 0.672815 0.739811i \(-0.265085\pi\)
−0.977103 + 0.212769i \(0.931752\pi\)
\(948\) 0.118745 0.205672i 0.00385665 0.00667991i
\(949\) 4.24687 7.35579i 0.137859 0.238779i
\(950\) 4.08762 + 7.07997i 0.132620 + 0.229704i
\(951\) −4.17750 −0.135465
\(952\) 0 0
\(953\) −22.3380 −0.723598 −0.361799 0.932256i \(-0.617837\pi\)
−0.361799 + 0.932256i \(0.617837\pi\)
\(954\) −1.38303 2.39548i −0.0447772 0.0775564i
\(955\) 1.56217 2.70576i 0.0505506 0.0875562i
\(956\) 0.0322244 0.0558143i 0.00104221 0.00180516i
\(957\) 62.2519 + 107.823i 2.01232 + 3.48544i
\(958\) 10.1839 0.329025
\(959\) 0 0
\(960\) 36.4557 1.17660
\(961\) 12.9357 + 22.4052i 0.417280 + 0.722750i
\(962\) 6.98296 12.0948i 0.225140 0.389953i
\(963\) 5.08282 8.80370i 0.163792 0.283695i
\(964\) −0.211037 0.365526i −0.00679703 0.0117728i
\(965\) 13.3210 0.428817
\(966\) 0 0
\(967\) −40.0648 −1.28840 −0.644199 0.764858i \(-0.722809\pi\)
−0.644199 + 0.764858i \(0.722809\pi\)
\(968\) −25.8996 44.8594i −0.832444 1.44183i
\(969\) 3.95288 6.84658i 0.126985 0.219944i
\(970\) −0.148214 + 0.256714i −0.00475885 + 0.00824258i
\(971\) −3.85524 6.67747i −0.123721 0.214290i 0.797512 0.603304i \(-0.206149\pi\)
−0.921232 + 0.389013i \(0.872816\pi\)
\(972\) −0.347794 −0.0111555
\(973\) 0 0
\(974\) 11.3842 0.364773
\(975\) 14.2040 + 24.6021i 0.454893 + 0.787897i
\(976\) −7.42600 + 12.8622i −0.237700 + 0.411709i
\(977\) −7.15670 + 12.3958i −0.228963 + 0.396576i −0.957501 0.288430i \(-0.906867\pi\)
0.728538 + 0.685005i \(0.240200\pi\)
\(978\) −29.8292 51.6657i −0.953833 1.65209i
\(979\) 76.2461 2.43684
\(980\) 0 0
\(981\) 59.7401 1.90735
\(982\) −14.4651 25.0543i −0.461601 0.799516i
\(983\) −10.2813 + 17.8077i −0.327922 + 0.567977i −0.982099 0.188364i \(-0.939681\pi\)
0.654178 + 0.756341i \(0.273015\pi\)
\(984\) −15.4725 + 26.7991i −0.493245 + 0.854325i
\(985\) −22.9804 39.8032i −0.732216 1.26824i
\(986\) −12.6699 −0.403490
\(987\) 0 0
\(988\) −0.285020 −0.00906768
\(989\) 12.2488 + 21.2155i 0.389489 + 0.674614i
\(990\) 23.9051 41.4049i 0.759755 1.31593i
\(991\) −8.74528 + 15.1473i −0.277803 + 0.481169i −0.970838 0.239735i \(-0.922940\pi\)
0.693036 + 0.720903i \(0.256273\pi\)
\(992\) 0.100093 + 0.173366i 0.00317795 + 0.00550438i
\(993\) 73.8396 2.34323
\(994\) 0 0
\(995\) −15.0277 −0.476410
\(996\) 0.180515 + 0.312661i 0.00571984 + 0.00990705i
\(997\) −25.8753 + 44.8174i −0.819479 + 1.41938i 0.0865870 + 0.996244i \(0.472404\pi\)
−0.906066 + 0.423136i \(0.860929\pi\)
\(998\) 18.2630 31.6324i 0.578105 1.00131i
\(999\) −1.18756 2.05691i −0.0375726 0.0650776i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.e.h.18.4 10
7.2 even 3 inner 833.2.e.h.324.4 10
7.3 odd 6 119.2.a.b.1.2 5
7.4 even 3 833.2.a.g.1.2 5
7.5 odd 6 833.2.e.i.324.4 10
7.6 odd 2 833.2.e.i.18.4 10
21.11 odd 6 7497.2.a.br.1.4 5
21.17 even 6 1071.2.a.m.1.4 5
28.3 even 6 1904.2.a.t.1.1 5
35.24 odd 6 2975.2.a.m.1.4 5
56.3 even 6 7616.2.a.bq.1.5 5
56.45 odd 6 7616.2.a.bt.1.1 5
119.101 odd 6 2023.2.a.j.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.2 5 7.3 odd 6
833.2.a.g.1.2 5 7.4 even 3
833.2.e.h.18.4 10 1.1 even 1 trivial
833.2.e.h.324.4 10 7.2 even 3 inner
833.2.e.i.18.4 10 7.6 odd 2
833.2.e.i.324.4 10 7.5 odd 6
1071.2.a.m.1.4 5 21.17 even 6
1904.2.a.t.1.1 5 28.3 even 6
2023.2.a.j.1.2 5 119.101 odd 6
2975.2.a.m.1.4 5 35.24 odd 6
7497.2.a.br.1.4 5 21.11 odd 6
7616.2.a.bq.1.5 5 56.3 even 6
7616.2.a.bt.1.1 5 56.45 odd 6