Properties

Label 833.2.j.a.373.5
Level $833$
Weight $2$
Character 833.373
Analytic conductor $6.652$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(67,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 15 x^{18} + 158 x^{16} - 789 x^{14} + 2811 x^{12} - 5497 x^{10} + 7763 x^{8} - 6130 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 373.5
Root \(0.974258 - 0.562488i\) of defining polynomial
Character \(\chi\) \(=\) 833.373
Dual form 833.2.j.a.67.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.274428 + 0.475324i) q^{2} +(-0.974258 + 0.562488i) q^{3} +(0.849378 + 1.47117i) q^{4} +(-0.987893 - 0.570360i) q^{5} -0.617451i q^{6} -2.03009 q^{8} +(-0.867214 + 1.50206i) q^{9} +(0.542212 - 0.313046i) q^{10} +(1.75771 - 1.01481i) q^{11} +(-1.65503 - 0.955531i) q^{12} -3.31337 q^{13} +1.28328 q^{15} +(-1.14164 + 1.97738i) q^{16} +(4.11485 + 0.260800i) q^{17} +(-0.475976 - 0.824415i) q^{18} +(-2.05093 + 3.55231i) q^{19} -1.93781i q^{20} +1.11398i q^{22} +(-7.79225 - 4.49886i) q^{23} +(1.97783 - 1.14190i) q^{24} +(-1.84938 - 3.20322i) q^{25} +(0.909284 - 1.57493i) q^{26} -5.32612i q^{27} +5.23430i q^{29} +(-0.352170 + 0.609976i) q^{30} +(-2.49688 + 1.44157i) q^{31} +(-2.65669 - 4.60152i) q^{32} +(-1.14164 + 1.97738i) q^{33} +(-1.25320 + 1.88432i) q^{34} -2.94637 q^{36} +(-3.72601 - 2.15121i) q^{37} +(-1.12566 - 1.94971i) q^{38} +(3.22808 - 1.86373i) q^{39} +(2.00551 + 1.15788i) q^{40} +1.64114i q^{41} +7.25974 q^{43} +(2.98592 + 1.72392i) q^{44} +(1.71343 - 0.989249i) q^{45} +(4.27683 - 2.46923i) q^{46} +(3.08101 - 5.33647i) q^{47} -2.56864i q^{48} +2.03009 q^{50} +(-4.15562 + 2.06047i) q^{51} +(-2.81431 - 4.87452i) q^{52} +(-1.23164 - 2.13326i) q^{53} +(2.53163 + 1.46164i) q^{54} -2.31524 q^{55} -4.61449i q^{57} +(-2.48799 - 1.43644i) q^{58} +(-2.18771 - 3.78922i) q^{59} +(1.08999 + 1.88792i) q^{60} +(-13.0992 - 7.56283i) q^{61} -1.58244i q^{62} -1.65029 q^{64} +(3.27326 + 1.88982i) q^{65} +(-0.626598 - 1.08530i) q^{66} +(2.99102 + 5.18060i) q^{67} +(3.11138 + 6.27514i) q^{68} +10.1222 q^{69} +2.01341i q^{71} +(1.76052 - 3.04931i) q^{72} +(-3.73554 + 2.15671i) q^{73} +(2.04505 - 1.18071i) q^{74} +(3.60354 + 2.08051i) q^{75} -6.96805 q^{76} +2.04585i q^{78} +(-4.82037 - 2.78304i) q^{79} +(2.25564 - 1.30229i) q^{80} +(0.394240 + 0.682843i) q^{81} +(-0.780075 - 0.450376i) q^{82} -6.77689 q^{83} +(-3.91628 - 2.60459i) q^{85} +(-1.99228 + 3.45073i) q^{86} +(-2.94423 - 5.09956i) q^{87} +(-3.56830 + 2.06016i) q^{88} +(2.58195 - 4.47206i) q^{89} +1.08591i q^{90} -15.2849i q^{92} +(1.62174 - 2.80893i) q^{93} +(1.69104 + 2.92896i) q^{94} +(4.05219 - 2.33953i) q^{95} +(5.17660 + 2.98871i) q^{96} -13.6395i q^{97} +3.52024i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 10 q^{4} + 16 q^{13} - 16 q^{15} - 2 q^{16} + 2 q^{17} + 18 q^{18} + 10 q^{19} - 10 q^{25} - 12 q^{26} - 10 q^{30} - 12 q^{32} - 2 q^{33} - 24 q^{34} + 56 q^{36} + 2 q^{38} - 52 q^{43}+ \cdots - 50 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.274428 + 0.475324i −0.194050 + 0.336105i −0.946589 0.322443i \(-0.895496\pi\)
0.752539 + 0.658548i \(0.228829\pi\)
\(3\) −0.974258 + 0.562488i −0.562488 + 0.324753i −0.754144 0.656709i \(-0.771948\pi\)
0.191655 + 0.981462i \(0.438614\pi\)
\(4\) 0.849378 + 1.47117i 0.424689 + 0.735583i
\(5\) −0.987893 0.570360i −0.441799 0.255073i 0.262561 0.964915i \(-0.415433\pi\)
−0.704361 + 0.709842i \(0.748766\pi\)
\(6\) 0.617451i 0.252073i
\(7\) 0 0
\(8\) −2.03009 −0.717744
\(9\) −0.867214 + 1.50206i −0.289071 + 0.500686i
\(10\) 0.542212 0.313046i 0.171462 0.0989939i
\(11\) 1.75771 1.01481i 0.529969 0.305978i −0.211035 0.977479i \(-0.567683\pi\)
0.741004 + 0.671501i \(0.234350\pi\)
\(12\) −1.65503 0.955531i −0.477765 0.275838i
\(13\) −3.31337 −0.918964 −0.459482 0.888187i \(-0.651965\pi\)
−0.459482 + 0.888187i \(0.651965\pi\)
\(14\) 0 0
\(15\) 1.28328 0.331343
\(16\) −1.14164 + 1.97738i −0.285411 + 0.494346i
\(17\) 4.11485 + 0.260800i 0.997997 + 0.0632534i
\(18\) −0.475976 0.824415i −0.112189 0.194316i
\(19\) −2.05093 + 3.55231i −0.470515 + 0.814955i −0.999431 0.0337184i \(-0.989265\pi\)
0.528917 + 0.848674i \(0.322598\pi\)
\(20\) 1.93781i 0.433307i
\(21\) 0 0
\(22\) 1.11398i 0.237500i
\(23\) −7.79225 4.49886i −1.62480 0.938076i −0.985612 0.169023i \(-0.945939\pi\)
−0.639184 0.769054i \(-0.720728\pi\)
\(24\) 1.97783 1.14190i 0.403723 0.233090i
\(25\) −1.84938 3.20322i −0.369876 0.640643i
\(26\) 0.909284 1.57493i 0.178325 0.308868i
\(27\) 5.32612i 1.02501i
\(28\) 0 0
\(29\) 5.23430i 0.971985i 0.873963 + 0.485992i \(0.161542\pi\)
−0.873963 + 0.485992i \(0.838458\pi\)
\(30\) −0.352170 + 0.609976i −0.0642971 + 0.111366i
\(31\) −2.49688 + 1.44157i −0.448453 + 0.258914i −0.707177 0.707037i \(-0.750031\pi\)
0.258724 + 0.965951i \(0.416698\pi\)
\(32\) −2.65669 4.60152i −0.469640 0.813441i
\(33\) −1.14164 + 1.97738i −0.198734 + 0.344218i
\(34\) −1.25320 + 1.88432i −0.214921 + 0.323157i
\(35\) 0 0
\(36\) −2.94637 −0.491062
\(37\) −3.72601 2.15121i −0.612553 0.353657i 0.161411 0.986887i \(-0.448395\pi\)
−0.773964 + 0.633230i \(0.781729\pi\)
\(38\) −1.12566 1.94971i −0.182607 0.316285i
\(39\) 3.22808 1.86373i 0.516907 0.298436i
\(40\) 2.00551 + 1.15788i 0.317099 + 0.183077i
\(41\) 1.64114i 0.256304i 0.991755 + 0.128152i \(0.0409045\pi\)
−0.991755 + 0.128152i \(0.959096\pi\)
\(42\) 0 0
\(43\) 7.25974 1.10710 0.553550 0.832816i \(-0.313273\pi\)
0.553550 + 0.832816i \(0.313273\pi\)
\(44\) 2.98592 + 1.72392i 0.450144 + 0.259891i
\(45\) 1.71343 0.989249i 0.255423 0.147468i
\(46\) 4.27683 2.46923i 0.630584 0.364068i
\(47\) 3.08101 5.33647i 0.449412 0.778404i −0.548936 0.835865i \(-0.684967\pi\)
0.998348 + 0.0574601i \(0.0183002\pi\)
\(48\) 2.56864i 0.370751i
\(49\) 0 0
\(50\) 2.03009 0.287098
\(51\) −4.15562 + 2.06047i −0.581904 + 0.288523i
\(52\) −2.81431 4.87452i −0.390274 0.675974i
\(53\) −1.23164 2.13326i −0.169178 0.293025i 0.768953 0.639305i \(-0.220778\pi\)
−0.938131 + 0.346280i \(0.887445\pi\)
\(54\) 2.53163 + 1.46164i 0.344512 + 0.198904i
\(55\) −2.31524 −0.312187
\(56\) 0 0
\(57\) 4.61449i 0.611204i
\(58\) −2.48799 1.43644i −0.326689 0.188614i
\(59\) −2.18771 3.78922i −0.284815 0.493314i 0.687749 0.725948i \(-0.258599\pi\)
−0.972564 + 0.232634i \(0.925266\pi\)
\(60\) 1.08999 + 1.88792i 0.140718 + 0.243730i
\(61\) −13.0992 7.56283i −1.67718 0.968321i −0.963445 0.267908i \(-0.913668\pi\)
−0.713737 0.700414i \(-0.752999\pi\)
\(62\) 1.58244i 0.200970i
\(63\) 0 0
\(64\) −1.65029 −0.206286
\(65\) 3.27326 + 1.88982i 0.405998 + 0.234403i
\(66\) −0.626598 1.08530i −0.0771289 0.133591i
\(67\) 2.99102 + 5.18060i 0.365411 + 0.632911i 0.988842 0.148968i \(-0.0475950\pi\)
−0.623431 + 0.781879i \(0.714262\pi\)
\(68\) 3.11138 + 6.27514i 0.377310 + 0.760973i
\(69\) 10.1222 1.21857
\(70\) 0 0
\(71\) 2.01341i 0.238948i 0.992837 + 0.119474i \(0.0381208\pi\)
−0.992837 + 0.119474i \(0.961879\pi\)
\(72\) 1.76052 3.04931i 0.207479 0.359365i
\(73\) −3.73554 + 2.15671i −0.437212 + 0.252424i −0.702414 0.711768i \(-0.747895\pi\)
0.265202 + 0.964193i \(0.414561\pi\)
\(74\) 2.04505 1.18071i 0.237732 0.137255i
\(75\) 3.60354 + 2.08051i 0.416101 + 0.240236i
\(76\) −6.96805 −0.799290
\(77\) 0 0
\(78\) 2.04585i 0.231646i
\(79\) −4.82037 2.78304i −0.542334 0.313117i 0.203690 0.979035i \(-0.434707\pi\)
−0.746025 + 0.665918i \(0.768040\pi\)
\(80\) 2.25564 1.30229i 0.252188 0.145601i
\(81\) 0.394240 + 0.682843i 0.0438044 + 0.0758715i
\(82\) −0.780075 0.450376i −0.0861449 0.0497358i
\(83\) −6.77689 −0.743860 −0.371930 0.928261i \(-0.621304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(84\) 0 0
\(85\) −3.91628 2.60459i −0.424780 0.282507i
\(86\) −1.99228 + 3.45073i −0.214833 + 0.372102i
\(87\) −2.94423 5.09956i −0.315655 0.546730i
\(88\) −3.56830 + 2.06016i −0.380383 + 0.219614i
\(89\) 2.58195 4.47206i 0.273686 0.474038i −0.696117 0.717928i \(-0.745090\pi\)
0.969803 + 0.243891i \(0.0784238\pi\)
\(90\) 1.08591i 0.114465i
\(91\) 0 0
\(92\) 15.2849i 1.59356i
\(93\) 1.62174 2.80893i 0.168166 0.291273i
\(94\) 1.69104 + 2.92896i 0.174417 + 0.302099i
\(95\) 4.05219 2.33953i 0.415746 0.240031i
\(96\) 5.17660 + 2.98871i 0.528334 + 0.305034i
\(97\) 13.6395i 1.38488i −0.721474 0.692441i \(-0.756535\pi\)
0.721474 0.692441i \(-0.243465\pi\)
\(98\) 0 0
\(99\) 3.52024i 0.353798i
\(100\) 3.14164 5.44148i 0.314164 0.544148i
\(101\) 4.47099 + 7.74398i 0.444880 + 0.770555i 0.998044 0.0625174i \(-0.0199129\pi\)
−0.553164 + 0.833073i \(0.686580\pi\)
\(102\) 0.161032 2.54072i 0.0159445 0.251569i
\(103\) −7.62708 + 13.2105i −0.751518 + 1.30167i 0.195568 + 0.980690i \(0.437345\pi\)
−0.947087 + 0.320978i \(0.895988\pi\)
\(104\) 6.72644 0.659581
\(105\) 0 0
\(106\) 1.35198 0.131316
\(107\) 14.5421 + 8.39588i 1.40584 + 0.811660i 0.994983 0.100042i \(-0.0318976\pi\)
0.410853 + 0.911702i \(0.365231\pi\)
\(108\) 7.83561 4.52389i 0.753982 0.435312i
\(109\) −14.2407 + 8.22187i −1.36401 + 0.787513i −0.990155 0.139974i \(-0.955298\pi\)
−0.373857 + 0.927487i \(0.621965\pi\)
\(110\) 0.635367 1.10049i 0.0605799 0.104927i
\(111\) 4.84013 0.459405
\(112\) 0 0
\(113\) 3.43944i 0.323556i 0.986827 + 0.161778i \(0.0517228\pi\)
−0.986827 + 0.161778i \(0.948277\pi\)
\(114\) 2.19338 + 1.26635i 0.205429 + 0.118604i
\(115\) 5.13194 + 8.88878i 0.478556 + 0.828883i
\(116\) −7.70052 + 4.44590i −0.714976 + 0.412791i
\(117\) 2.87340 4.97688i 0.265646 0.460113i
\(118\) 2.40148 0.221074
\(119\) 0 0
\(120\) −2.60518 −0.237819
\(121\) −3.44030 + 5.95878i −0.312755 + 0.541708i
\(122\) 7.18959 4.15091i 0.650915 0.375806i
\(123\) −0.923124 1.59890i −0.0832353 0.144168i
\(124\) −4.24159 2.44888i −0.380906 0.219916i
\(125\) 9.92285i 0.887527i
\(126\) 0 0
\(127\) −9.80475 −0.870030 −0.435015 0.900423i \(-0.643257\pi\)
−0.435015 + 0.900423i \(0.643257\pi\)
\(128\) 5.76626 9.98745i 0.509670 0.882774i
\(129\) −7.07286 + 4.08352i −0.622731 + 0.359534i
\(130\) −1.79655 + 1.03724i −0.157568 + 0.0909719i
\(131\) −2.59864 1.50033i −0.227044 0.131084i 0.382164 0.924095i \(-0.375179\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(132\) −3.87874 −0.337601
\(133\) 0 0
\(134\) −3.28328 −0.283633
\(135\) −3.03781 + 5.26164i −0.261453 + 0.452850i
\(136\) −8.35351 0.529448i −0.716307 0.0453998i
\(137\) 7.25154 + 12.5600i 0.619541 + 1.07308i 0.989570 + 0.144056i \(0.0460145\pi\)
−0.370029 + 0.929020i \(0.620652\pi\)
\(138\) −2.77782 + 4.81133i −0.236464 + 0.409568i
\(139\) 15.3995i 1.30617i 0.757286 + 0.653083i \(0.226525\pi\)
−0.757286 + 0.653083i \(0.773475\pi\)
\(140\) 0 0
\(141\) 6.93214i 0.583791i
\(142\) −0.957022 0.552537i −0.0803115 0.0463679i
\(143\) −5.82395 + 3.36246i −0.487023 + 0.281183i
\(144\) −1.98010 3.42963i −0.165008 0.285802i
\(145\) 2.98544 5.17093i 0.247927 0.429422i
\(146\) 2.36746i 0.195932i
\(147\) 0 0
\(148\) 7.30878i 0.600778i
\(149\) 4.34247 7.52137i 0.355749 0.616175i −0.631497 0.775378i \(-0.717559\pi\)
0.987246 + 0.159203i \(0.0508925\pi\)
\(150\) −1.97783 + 1.14190i −0.161489 + 0.0932358i
\(151\) −2.06609 3.57858i −0.168136 0.291221i 0.769628 0.638492i \(-0.220442\pi\)
−0.937765 + 0.347272i \(0.887108\pi\)
\(152\) 4.16356 7.21150i 0.337709 0.584930i
\(153\) −3.96019 + 5.95457i −0.320162 + 0.481399i
\(154\) 0 0
\(155\) 3.28887 0.264168
\(156\) 5.48372 + 3.16603i 0.439049 + 0.253485i
\(157\) 6.90703 + 11.9633i 0.551241 + 0.954778i 0.998185 + 0.0602162i \(0.0191790\pi\)
−0.446944 + 0.894562i \(0.647488\pi\)
\(158\) 2.64570 1.52749i 0.210480 0.121521i
\(159\) 2.39986 + 1.38556i 0.190322 + 0.109882i
\(160\) 6.06107i 0.479170i
\(161\) 0 0
\(162\) −0.432762 −0.0340010
\(163\) 5.24200 + 3.02647i 0.410585 + 0.237051i 0.691041 0.722816i \(-0.257152\pi\)
−0.280456 + 0.959867i \(0.590486\pi\)
\(164\) −2.41439 + 1.39395i −0.188533 + 0.108849i
\(165\) 2.25564 1.30229i 0.175601 0.101384i
\(166\) 1.85977 3.22122i 0.144346 0.250015i
\(167\) 14.9772i 1.15897i 0.814982 + 0.579487i \(0.196747\pi\)
−0.814982 + 0.579487i \(0.803253\pi\)
\(168\) 0 0
\(169\) −2.02156 −0.155505
\(170\) 2.31276 1.14673i 0.177381 0.0879501i
\(171\) −3.55718 6.16122i −0.272025 0.471160i
\(172\) 6.16626 + 10.6803i 0.470173 + 0.814364i
\(173\) 7.70976 + 4.45123i 0.586162 + 0.338421i 0.763579 0.645715i \(-0.223441\pi\)
−0.177416 + 0.984136i \(0.556774\pi\)
\(174\) 3.23192 0.245012
\(175\) 0 0
\(176\) 4.63422i 0.349317i
\(177\) 4.26278 + 2.46112i 0.320411 + 0.184989i
\(178\) 1.41712 + 2.45452i 0.106218 + 0.183974i
\(179\) −0.172453 0.298697i −0.0128897 0.0223257i 0.859509 0.511121i \(-0.170770\pi\)
−0.872398 + 0.488796i \(0.837436\pi\)
\(180\) 2.91070 + 1.68049i 0.216951 + 0.125256i
\(181\) 6.20058i 0.460885i −0.973086 0.230443i \(-0.925983\pi\)
0.973086 0.230443i \(-0.0740174\pi\)
\(182\) 0 0
\(183\) 17.0160 1.25786
\(184\) 15.8189 + 9.13307i 1.16619 + 0.673299i
\(185\) 2.45393 + 4.25034i 0.180417 + 0.312491i
\(186\) 0.890102 + 1.54170i 0.0652654 + 0.113043i
\(187\) 7.49737 3.71740i 0.548262 0.271843i
\(188\) 10.4678 0.763441
\(189\) 0 0
\(190\) 2.56814i 0.186312i
\(191\) −2.95994 + 5.12677i −0.214174 + 0.370960i −0.953017 0.302918i \(-0.902039\pi\)
0.738843 + 0.673878i \(0.235373\pi\)
\(192\) 1.60781 0.928267i 0.116033 0.0669919i
\(193\) −2.97231 + 1.71606i −0.213952 + 0.123525i −0.603147 0.797630i \(-0.706087\pi\)
0.389195 + 0.921155i \(0.372753\pi\)
\(194\) 6.48319 + 3.74307i 0.465466 + 0.268737i
\(195\) −4.25200 −0.304492
\(196\) 0 0
\(197\) 2.84776i 0.202895i 0.994841 + 0.101447i \(0.0323473\pi\)
−0.994841 + 0.101447i \(0.967653\pi\)
\(198\) −1.67326 0.966055i −0.118913 0.0686545i
\(199\) −1.89381 + 1.09339i −0.134249 + 0.0775086i −0.565620 0.824666i \(-0.691363\pi\)
0.431371 + 0.902174i \(0.358030\pi\)
\(200\) 3.75440 + 6.50281i 0.265476 + 0.459818i
\(201\) −5.82805 3.36483i −0.411079 0.237337i
\(202\) −4.90787 −0.345316
\(203\) 0 0
\(204\) −6.56099 4.36350i −0.459361 0.305506i
\(205\) 0.936043 1.62127i 0.0653761 0.113235i
\(206\) −4.18618 7.25067i −0.291665 0.505178i
\(207\) 13.5151 7.80294i 0.939364 0.542342i
\(208\) 3.78269 6.55180i 0.262282 0.454286i
\(209\) 8.32523i 0.575868i
\(210\) 0 0
\(211\) 13.6122i 0.937103i 0.883436 + 0.468551i \(0.155224\pi\)
−0.883436 + 0.468551i \(0.844776\pi\)
\(212\) 2.09225 3.62388i 0.143696 0.248889i
\(213\) −1.13252 1.96158i −0.0775990 0.134405i
\(214\) −7.98152 + 4.60813i −0.545606 + 0.315006i
\(215\) −7.17185 4.14067i −0.489116 0.282391i
\(216\) 10.8125i 0.735697i
\(217\) 0 0
\(218\) 9.02526i 0.611268i
\(219\) 2.42625 4.20240i 0.163951 0.283972i
\(220\) −1.96651 3.40610i −0.132582 0.229639i
\(221\) −13.6340 0.864129i −0.917124 0.0581276i
\(222\) −1.32827 + 2.30063i −0.0891476 + 0.154408i
\(223\) 20.1620 1.35015 0.675075 0.737749i \(-0.264111\pi\)
0.675075 + 0.737749i \(0.264111\pi\)
\(224\) 0 0
\(225\) 6.41522 0.427682
\(226\) −1.63485 0.943882i −0.108749 0.0627861i
\(227\) −5.94960 + 3.43500i −0.394889 + 0.227989i −0.684276 0.729223i \(-0.739882\pi\)
0.289387 + 0.957212i \(0.406548\pi\)
\(228\) 6.78868 3.91944i 0.449591 0.259572i
\(229\) −2.11263 + 3.65919i −0.139607 + 0.241806i −0.927348 0.374200i \(-0.877917\pi\)
0.787741 + 0.616007i \(0.211251\pi\)
\(230\) −5.63340 −0.371455
\(231\) 0 0
\(232\) 10.6261i 0.697637i
\(233\) −11.5702 6.68006i −0.757990 0.437626i 0.0705838 0.997506i \(-0.477514\pi\)
−0.828573 + 0.559880i \(0.810847\pi\)
\(234\) 1.57709 + 2.73159i 0.103097 + 0.178570i
\(235\) −6.08742 + 3.51458i −0.397100 + 0.229266i
\(236\) 3.71638 6.43696i 0.241916 0.419010i
\(237\) 6.26172 0.406742
\(238\) 0 0
\(239\) 14.9476 0.966878 0.483439 0.875378i \(-0.339388\pi\)
0.483439 + 0.875378i \(0.339388\pi\)
\(240\) −1.46505 + 2.53754i −0.0945687 + 0.163798i
\(241\) −12.2719 + 7.08519i −0.790503 + 0.456397i −0.840140 0.542370i \(-0.817527\pi\)
0.0496364 + 0.998767i \(0.484194\pi\)
\(242\) −1.88824 3.27052i −0.121380 0.210237i
\(243\) 13.0695 + 7.54567i 0.838408 + 0.484055i
\(244\) 25.6948i 1.64494i
\(245\) 0 0
\(246\) 1.01333 0.0646073
\(247\) 6.79548 11.7701i 0.432386 0.748915i
\(248\) 5.06889 2.92652i 0.321875 0.185834i
\(249\) 6.60244 3.81192i 0.418413 0.241571i
\(250\) −4.71657 2.72311i −0.298302 0.172225i
\(251\) 26.6386 1.68142 0.840708 0.541489i \(-0.182139\pi\)
0.840708 + 0.541489i \(0.182139\pi\)
\(252\) 0 0
\(253\) −18.2620 −1.14812
\(254\) 2.69070 4.66043i 0.168830 0.292421i
\(255\) 5.28052 + 0.334681i 0.330679 + 0.0209585i
\(256\) 1.51456 + 2.62330i 0.0946602 + 0.163956i
\(257\) −12.1663 + 21.0726i −0.758912 + 1.31447i 0.184493 + 0.982834i \(0.440936\pi\)
−0.943406 + 0.331641i \(0.892398\pi\)
\(258\) 4.48254i 0.279071i
\(259\) 0 0
\(260\) 6.42067i 0.398193i
\(261\) −7.86222 4.53926i −0.486659 0.280973i
\(262\) 1.42628 0.823464i 0.0881160 0.0508738i
\(263\) −15.2145 26.3523i −0.938165 1.62495i −0.768890 0.639381i \(-0.779191\pi\)
−0.169276 0.985569i \(-0.554143\pi\)
\(264\) 2.31763 4.01426i 0.142641 0.247061i
\(265\) 2.80990i 0.172611i
\(266\) 0 0
\(267\) 5.80926i 0.355521i
\(268\) −5.08101 + 8.80057i −0.310372 + 0.537581i
\(269\) −13.4020 + 7.73765i −0.817134 + 0.471773i −0.849427 0.527706i \(-0.823052\pi\)
0.0322929 + 0.999478i \(0.489719\pi\)
\(270\) −1.66732 2.88789i −0.101470 0.175751i
\(271\) −7.95501 + 13.7785i −0.483233 + 0.836984i −0.999815 0.0192542i \(-0.993871\pi\)
0.516582 + 0.856238i \(0.327204\pi\)
\(272\) −5.21339 + 7.83889i −0.316108 + 0.475302i
\(273\) 0 0
\(274\) −7.96012 −0.480888
\(275\) −6.50134 3.75355i −0.392045 0.226348i
\(276\) 8.59759 + 14.8915i 0.517514 + 0.896361i
\(277\) −16.2478 + 9.38070i −0.976238 + 0.563631i −0.901132 0.433544i \(-0.857263\pi\)
−0.0751060 + 0.997176i \(0.523930\pi\)
\(278\) −7.31974 4.22606i −0.439009 0.253462i
\(279\) 5.00061i 0.299379i
\(280\) 0 0
\(281\) 2.80633 0.167411 0.0837057 0.996491i \(-0.473324\pi\)
0.0837057 + 0.996491i \(0.473324\pi\)
\(282\) −3.29501 1.90238i −0.196215 0.113285i
\(283\) 14.2770 8.24282i 0.848679 0.489985i −0.0115261 0.999934i \(-0.503669\pi\)
0.860205 + 0.509949i \(0.170336\pi\)
\(284\) −2.96206 + 1.71015i −0.175766 + 0.101479i
\(285\) −2.63192 + 4.55862i −0.155902 + 0.270029i
\(286\) 3.69102i 0.218254i
\(287\) 0 0
\(288\) 9.21566 0.543038
\(289\) 16.8640 + 2.14631i 0.991998 + 0.126253i
\(290\) 1.63858 + 2.83810i 0.0962206 + 0.166659i
\(291\) 7.67206 + 13.2884i 0.449744 + 0.778980i
\(292\) −6.34577 3.66373i −0.371358 0.214404i
\(293\) −32.6415 −1.90693 −0.953467 0.301497i \(-0.902514\pi\)
−0.953467 + 0.301497i \(0.902514\pi\)
\(294\) 0 0
\(295\) 4.99113i 0.290595i
\(296\) 7.56413 + 4.36715i 0.439656 + 0.253836i
\(297\) −5.40502 9.36177i −0.313631 0.543225i
\(298\) 2.38339 + 4.12816i 0.138066 + 0.239138i
\(299\) 25.8186 + 14.9064i 1.49313 + 0.862059i
\(300\) 7.06855i 0.408103i
\(301\) 0 0
\(302\) 2.26798 0.130508
\(303\) −8.71180 5.02976i −0.500480 0.288952i
\(304\) −4.68285 8.11093i −0.268580 0.465194i
\(305\) 8.62708 + 14.9425i 0.493985 + 0.855607i
\(306\) −1.74356 3.51648i −0.0996728 0.201024i
\(307\) 22.5412 1.28649 0.643246 0.765659i \(-0.277587\pi\)
0.643246 + 0.765659i \(0.277587\pi\)
\(308\) 0 0
\(309\) 17.1606i 0.976231i
\(310\) −0.902559 + 1.56328i −0.0512619 + 0.0887882i
\(311\) −4.94603 + 2.85559i −0.280463 + 0.161926i −0.633633 0.773634i \(-0.718437\pi\)
0.353170 + 0.935559i \(0.385104\pi\)
\(312\) −6.55329 + 3.78354i −0.371007 + 0.214201i
\(313\) −21.0773 12.1690i −1.19136 0.687833i −0.232746 0.972538i \(-0.574771\pi\)
−0.958615 + 0.284705i \(0.908104\pi\)
\(314\) −7.58195 −0.427874
\(315\) 0 0
\(316\) 9.45543i 0.531909i
\(317\) 12.2553 + 7.07561i 0.688327 + 0.397406i 0.802985 0.595999i \(-0.203244\pi\)
−0.114658 + 0.993405i \(0.536577\pi\)
\(318\) −1.31718 + 0.760475i −0.0738639 + 0.0426453i
\(319\) 5.31184 + 9.20038i 0.297406 + 0.515122i
\(320\) 1.63031 + 0.941259i 0.0911370 + 0.0526180i
\(321\) −18.8903 −1.05436
\(322\) 0 0
\(323\) −9.36569 + 14.0823i −0.521121 + 0.783562i
\(324\) −0.669717 + 1.15998i −0.0372065 + 0.0644436i
\(325\) 6.12768 + 10.6134i 0.339902 + 0.588728i
\(326\) −2.87711 + 1.66110i −0.159348 + 0.0919997i
\(327\) 9.24942 16.0205i 0.511494 0.885933i
\(328\) 3.33167i 0.183960i
\(329\) 0 0
\(330\) 1.42955i 0.0786940i
\(331\) 7.07795 12.2594i 0.389039 0.673836i −0.603281 0.797529i \(-0.706140\pi\)
0.992321 + 0.123693i \(0.0394737\pi\)
\(332\) −5.75614 9.96993i −0.315909 0.547171i
\(333\) 6.46250 3.73112i 0.354143 0.204464i
\(334\) −7.11904 4.11018i −0.389536 0.224899i
\(335\) 6.82384i 0.372826i
\(336\) 0 0
\(337\) 18.1667i 0.989603i −0.869006 0.494802i \(-0.835241\pi\)
0.869006 0.494802i \(-0.164759\pi\)
\(338\) 0.554775 0.960898i 0.0301758 0.0522660i
\(339\) −1.93465 3.35091i −0.105076 0.181996i
\(340\) 0.505381 7.97378i 0.0274081 0.432439i
\(341\) −2.92586 + 5.06774i −0.158444 + 0.274433i
\(342\) 3.90477 0.211146
\(343\) 0 0
\(344\) −14.7379 −0.794615
\(345\) −9.99967 5.77331i −0.538364 0.310825i
\(346\) −4.23156 + 2.44309i −0.227490 + 0.131341i
\(347\) 10.7330 6.19670i 0.576177 0.332656i −0.183436 0.983032i \(-0.558722\pi\)
0.759613 + 0.650376i \(0.225389\pi\)
\(348\) 5.00153 8.66291i 0.268110 0.464381i
\(349\) −7.24161 −0.387634 −0.193817 0.981038i \(-0.562087\pi\)
−0.193817 + 0.981038i \(0.562087\pi\)
\(350\) 0 0
\(351\) 17.6474i 0.941950i
\(352\) −9.33936 5.39208i −0.497790 0.287399i
\(353\) −12.8706 22.2925i −0.685031 1.18651i −0.973427 0.228998i \(-0.926455\pi\)
0.288395 0.957511i \(-0.406878\pi\)
\(354\) −2.33966 + 1.35080i −0.124351 + 0.0717944i
\(355\) 1.14837 1.98903i 0.0609491 0.105567i
\(356\) 8.77220 0.464925
\(357\) 0 0
\(358\) 0.189304 0.0100050
\(359\) −15.2923 + 26.4870i −0.807096 + 1.39793i 0.107771 + 0.994176i \(0.465629\pi\)
−0.914867 + 0.403756i \(0.867705\pi\)
\(360\) −3.47841 + 2.00826i −0.183328 + 0.105845i
\(361\) 1.08741 + 1.88344i 0.0572319 + 0.0991286i
\(362\) 2.94728 + 1.70162i 0.154906 + 0.0894349i
\(363\) 7.74053i 0.406272i
\(364\) 0 0
\(365\) 4.92042 0.257546
\(366\) −4.66968 + 8.08812i −0.244088 + 0.422773i
\(367\) 10.6706 6.16066i 0.557000 0.321584i −0.194941 0.980815i \(-0.562451\pi\)
0.751940 + 0.659231i \(0.229118\pi\)
\(368\) 17.7919 10.2722i 0.927468 0.535474i
\(369\) −2.46509 1.42322i −0.128328 0.0740900i
\(370\) −2.69372 −0.140040
\(371\) 0 0
\(372\) 5.50987 0.285674
\(373\) −9.29149 + 16.0933i −0.481095 + 0.833281i −0.999765 0.0216939i \(-0.993094\pi\)
0.518670 + 0.854975i \(0.326427\pi\)
\(374\) −0.290525 + 4.58384i −0.0150227 + 0.237025i
\(375\) −5.58149 9.66742i −0.288227 0.499224i
\(376\) −6.25473 + 10.8335i −0.322563 + 0.558696i
\(377\) 17.3432i 0.893219i
\(378\) 0 0
\(379\) 30.4848i 1.56590i −0.622087 0.782948i \(-0.713715\pi\)
0.622087 0.782948i \(-0.286285\pi\)
\(380\) 6.88368 + 3.97430i 0.353126 + 0.203877i
\(381\) 9.55236 5.51506i 0.489382 0.282545i
\(382\) −1.62459 2.81386i −0.0831210 0.143970i
\(383\) 8.83907 15.3097i 0.451655 0.782290i −0.546834 0.837241i \(-0.684167\pi\)
0.998489 + 0.0549512i \(0.0175003\pi\)
\(384\) 12.9738i 0.662067i
\(385\) 0 0
\(386\) 1.88375i 0.0958802i
\(387\) −6.29575 + 10.9046i −0.320031 + 0.554310i
\(388\) 20.0660 11.5851i 1.01870 0.588144i
\(389\) −6.14671 10.6464i −0.311651 0.539795i 0.667069 0.744996i \(-0.267549\pi\)
−0.978720 + 0.205201i \(0.934215\pi\)
\(390\) 1.16687 2.02108i 0.0590867 0.102341i
\(391\) −30.8906 20.5443i −1.56221 1.03897i
\(392\) 0 0
\(393\) 3.37566 0.170280
\(394\) −1.35361 0.781507i −0.0681939 0.0393718i
\(395\) 3.17468 + 5.49870i 0.159735 + 0.276670i
\(396\) −5.17886 + 2.99002i −0.260248 + 0.150254i
\(397\) −11.3137 6.53199i −0.567820 0.327831i 0.188458 0.982081i \(-0.439651\pi\)
−0.756278 + 0.654250i \(0.772984\pi\)
\(398\) 1.20023i 0.0601622i
\(399\) 0 0
\(400\) 8.44531 0.422266
\(401\) −27.2434 15.7290i −1.36047 0.785467i −0.370783 0.928719i \(-0.620911\pi\)
−0.989686 + 0.143252i \(0.954244\pi\)
\(402\) 3.19877 1.84681i 0.159540 0.0921105i
\(403\) 8.27309 4.77647i 0.412112 0.237933i
\(404\) −7.59512 + 13.1551i −0.377872 + 0.654493i
\(405\) 0.899435i 0.0446933i
\(406\) 0 0
\(407\) −8.73233 −0.432846
\(408\) 8.43628 4.18293i 0.417658 0.207086i
\(409\) −13.3672 23.1527i −0.660968 1.14483i −0.980362 0.197208i \(-0.936813\pi\)
0.319394 0.947622i \(-0.396521\pi\)
\(410\) 0.513754 + 0.889848i 0.0253725 + 0.0439464i
\(411\) −14.1297 8.15781i −0.696969 0.402395i
\(412\) −25.9131 −1.27665
\(413\) 0 0
\(414\) 8.56540i 0.420966i
\(415\) 6.69484 + 3.86527i 0.328637 + 0.189739i
\(416\) 8.80259 + 15.2465i 0.431582 + 0.747523i
\(417\) −8.66203 15.0031i −0.424181 0.734704i
\(418\) −3.95718 2.28468i −0.193552 0.111747i
\(419\) 3.15118i 0.153945i −0.997033 0.0769726i \(-0.975475\pi\)
0.997033 0.0769726i \(-0.0245254\pi\)
\(420\) 0 0
\(421\) −1.13129 −0.0551356 −0.0275678 0.999620i \(-0.508776\pi\)
−0.0275678 + 0.999620i \(0.508776\pi\)
\(422\) −6.47021 3.73558i −0.314965 0.181845i
\(423\) 5.34379 + 9.25572i 0.259824 + 0.450029i
\(424\) 2.50033 + 4.33070i 0.121427 + 0.210317i
\(425\) −6.77451 13.6631i −0.328612 0.662756i
\(426\) 1.24318 0.0602324
\(427\) 0 0
\(428\) 28.5251i 1.37881i
\(429\) 3.78269 6.55180i 0.182630 0.316324i
\(430\) 3.93632 2.27263i 0.189826 0.109596i
\(431\) 33.5797 19.3873i 1.61748 0.933852i 0.629910 0.776668i \(-0.283092\pi\)
0.987569 0.157183i \(-0.0502414\pi\)
\(432\) 10.5318 + 6.08052i 0.506710 + 0.292549i
\(433\) −21.2104 −1.01930 −0.509652 0.860380i \(-0.670226\pi\)
−0.509652 + 0.860380i \(0.670226\pi\)
\(434\) 0 0
\(435\) 6.71709i 0.322060i
\(436\) −24.1915 13.9670i −1.15856 0.668896i
\(437\) 31.9626 18.4536i 1.52898 0.882757i
\(438\) 1.33167 + 2.30651i 0.0636295 + 0.110209i
\(439\) 18.9723 + 10.9536i 0.905496 + 0.522789i 0.878979 0.476860i \(-0.158225\pi\)
0.0265169 + 0.999648i \(0.491558\pi\)
\(440\) 4.70014 0.224070
\(441\) 0 0
\(442\) 4.15231 6.24344i 0.197505 0.296970i
\(443\) −3.09107 + 5.35389i −0.146861 + 0.254371i −0.930066 0.367393i \(-0.880250\pi\)
0.783205 + 0.621764i \(0.213584\pi\)
\(444\) 4.11110 + 7.12064i 0.195104 + 0.337930i
\(445\) −5.10138 + 2.94528i −0.241828 + 0.139620i
\(446\) −5.53303 + 9.58350i −0.261997 + 0.453792i
\(447\) 9.77035i 0.462122i
\(448\) 0 0
\(449\) 16.1641i 0.762832i 0.924403 + 0.381416i \(0.124563\pi\)
−0.924403 + 0.381416i \(0.875437\pi\)
\(450\) −1.76052 + 3.04931i −0.0829917 + 0.143746i
\(451\) 1.66546 + 2.88465i 0.0784232 + 0.135833i
\(452\) −5.05999 + 2.92139i −0.238002 + 0.137411i
\(453\) 4.02582 + 2.32431i 0.189149 + 0.109205i
\(454\) 3.77065i 0.176965i
\(455\) 0 0
\(456\) 9.36782i 0.438688i
\(457\) 1.56351 2.70807i 0.0731378 0.126678i −0.827137 0.562000i \(-0.810032\pi\)
0.900275 + 0.435322i \(0.143365\pi\)
\(458\) −1.15953 2.00837i −0.0541815 0.0938450i
\(459\) 1.38905 21.9162i 0.0648355 1.02296i
\(460\) −8.71791 + 15.0999i −0.406475 + 0.704035i
\(461\) 29.6147 1.37929 0.689646 0.724146i \(-0.257766\pi\)
0.689646 + 0.724146i \(0.257766\pi\)
\(462\) 0 0
\(463\) −18.3178 −0.851300 −0.425650 0.904888i \(-0.639955\pi\)
−0.425650 + 0.904888i \(0.639955\pi\)
\(464\) −10.3502 5.97570i −0.480496 0.277415i
\(465\) −3.20421 + 1.84995i −0.148592 + 0.0857894i
\(466\) 6.35039 3.66640i 0.294176 0.169843i
\(467\) 14.0873 24.3999i 0.651882 1.12909i −0.330784 0.943707i \(-0.607313\pi\)
0.982666 0.185386i \(-0.0593536\pi\)
\(468\) 9.76242 0.451268
\(469\) 0 0
\(470\) 3.85800i 0.177956i
\(471\) −13.4585 7.77025i −0.620134 0.358034i
\(472\) 4.44124 + 7.69245i 0.204425 + 0.354074i
\(473\) 12.7605 7.36729i 0.586729 0.338748i
\(474\) −1.71839 + 2.97635i −0.0789285 + 0.136708i
\(475\) 15.1717 0.696128
\(476\) 0 0
\(477\) 4.27237 0.195618
\(478\) −4.10204 + 7.10494i −0.187623 + 0.324972i
\(479\) 28.5734 16.4969i 1.30555 0.753761i 0.324202 0.945988i \(-0.394904\pi\)
0.981351 + 0.192227i \(0.0615709\pi\)
\(480\) −3.40928 5.90505i −0.155612 0.269528i
\(481\) 12.3457 + 7.12777i 0.562914 + 0.324998i
\(482\) 7.77751i 0.354256i
\(483\) 0 0
\(484\) −11.6885 −0.531294
\(485\) −7.77944 + 13.4744i −0.353246 + 0.611840i
\(486\) −7.17328 + 4.14149i −0.325386 + 0.187862i
\(487\) −34.3475 + 19.8305i −1.55643 + 0.898607i −0.558839 + 0.829276i \(0.688753\pi\)
−0.997594 + 0.0693311i \(0.977914\pi\)
\(488\) 26.5925 + 15.3532i 1.20379 + 0.695007i
\(489\) −6.80941 −0.307932
\(490\) 0 0
\(491\) 19.5148 0.880693 0.440346 0.897828i \(-0.354856\pi\)
0.440346 + 0.897828i \(0.354856\pi\)
\(492\) 1.56816 2.71614i 0.0706982 0.122453i
\(493\) −1.36511 + 21.5383i −0.0614813 + 0.970038i
\(494\) 3.72975 + 6.46011i 0.167809 + 0.290654i
\(495\) 2.00781 3.47762i 0.0902442 0.156308i
\(496\) 6.58305i 0.295588i
\(497\) 0 0
\(498\) 4.18440i 0.187507i
\(499\) 20.8436 + 12.0340i 0.933087 + 0.538718i 0.887787 0.460255i \(-0.152242\pi\)
0.0453003 + 0.998973i \(0.485576\pi\)
\(500\) −14.5982 + 8.42825i −0.652850 + 0.376923i
\(501\) −8.42452 14.5917i −0.376380 0.651909i
\(502\) −7.31040 + 12.6620i −0.326279 + 0.565132i
\(503\) 1.23988i 0.0552836i −0.999618 0.0276418i \(-0.991200\pi\)
0.999618 0.0276418i \(-0.00879978\pi\)
\(504\) 0 0
\(505\) 10.2003i 0.453908i
\(506\) 5.01162 8.68037i 0.222794 0.385890i
\(507\) 1.96953 1.13711i 0.0874697 0.0505007i
\(508\) −8.32794 14.4244i −0.369492 0.639980i
\(509\) −11.0587 + 19.1543i −0.490170 + 0.848999i −0.999936 0.0113141i \(-0.996399\pi\)
0.509766 + 0.860313i \(0.329732\pi\)
\(510\) −1.60821 + 2.41811i −0.0712126 + 0.107076i
\(511\) 0 0
\(512\) 21.4025 0.945865
\(513\) 18.9200 + 10.9235i 0.835339 + 0.482283i
\(514\) −6.67755 11.5659i −0.294534 0.510148i
\(515\) 15.0695 8.70037i 0.664041 0.383384i
\(516\) −12.0151 6.93690i −0.528934 0.305380i
\(517\) 12.5066i 0.550041i
\(518\) 0 0
\(519\) −10.0151 −0.439613
\(520\) −6.64500 3.83649i −0.291403 0.168241i
\(521\) −28.3971 + 16.3951i −1.24410 + 0.718281i −0.969926 0.243399i \(-0.921738\pi\)
−0.274173 + 0.961680i \(0.588404\pi\)
\(522\) 4.31523 2.49140i 0.188873 0.109046i
\(523\) −4.79475 + 8.30476i −0.209660 + 0.363142i −0.951607 0.307316i \(-0.900569\pi\)
0.741947 + 0.670458i \(0.233902\pi\)
\(524\) 5.09737i 0.222680i
\(525\) 0 0
\(526\) 16.7012 0.728205
\(527\) −10.6502 + 5.28067i −0.463932 + 0.230030i
\(528\) −2.60669 4.51493i −0.113442 0.196487i
\(529\) 28.9794 + 50.1938i 1.25998 + 2.18234i
\(530\) −1.33562 0.771118i −0.0580154 0.0334952i
\(531\) 7.58884 0.329328
\(532\) 0 0
\(533\) 5.43772i 0.235534i
\(534\) −2.76128 1.59423i −0.119492 0.0689889i
\(535\) −9.57735 16.5885i −0.414065 0.717182i
\(536\) −6.07203 10.5171i −0.262272 0.454268i
\(537\) 0.336027 + 0.194005i 0.0145007 + 0.00837195i
\(538\) 8.49372i 0.366190i
\(539\) 0 0
\(540\) −10.3210 −0.444145
\(541\) −2.60991 1.50683i −0.112209 0.0647838i 0.442845 0.896598i \(-0.353969\pi\)
−0.555054 + 0.831814i \(0.687302\pi\)
\(542\) −4.36616 7.56242i −0.187543 0.324834i
\(543\) 3.48775 + 6.04097i 0.149674 + 0.259243i
\(544\) −9.73179 19.6274i −0.417247 0.841518i
\(545\) 18.7577 0.803493
\(546\) 0 0
\(547\) 15.7999i 0.675555i −0.941226 0.337777i \(-0.890325\pi\)
0.941226 0.337777i \(-0.109675\pi\)
\(548\) −12.3186 + 21.3364i −0.526224 + 0.911447i
\(549\) 22.7196 13.1172i 0.969650 0.559828i
\(550\) 3.56830 2.06016i 0.152153 0.0878456i
\(551\) −18.5938 10.7352i −0.792124 0.457333i
\(552\) −20.5490 −0.874623
\(553\) 0 0
\(554\) 10.2973i 0.437491i
\(555\) −4.78153 2.76062i −0.202965 0.117182i
\(556\) −22.6552 + 13.0800i −0.960794 + 0.554715i
\(557\) −0.833611 1.44386i −0.0353212 0.0611782i 0.847824 0.530277i \(-0.177912\pi\)
−0.883146 + 0.469099i \(0.844579\pi\)
\(558\) 2.37691 + 1.37231i 0.100623 + 0.0580945i
\(559\) −24.0542 −1.01739
\(560\) 0 0
\(561\) −5.21339 + 7.83889i −0.220109 + 0.330958i
\(562\) −0.770136 + 1.33391i −0.0324862 + 0.0562678i
\(563\) −6.43750 11.1501i −0.271308 0.469920i 0.697889 0.716206i \(-0.254123\pi\)
−0.969197 + 0.246286i \(0.920790\pi\)
\(564\) −10.1983 + 5.88801i −0.429427 + 0.247930i
\(565\) 1.96172 3.39780i 0.0825303 0.142947i
\(566\) 9.04826i 0.380327i
\(567\) 0 0
\(568\) 4.08740i 0.171503i
\(569\) 21.3989 37.0639i 0.897087 1.55380i 0.0658867 0.997827i \(-0.479012\pi\)
0.831200 0.555973i \(-0.187654\pi\)
\(570\) −1.44455 2.50203i −0.0605055 0.104799i
\(571\) 0.771225 0.445267i 0.0322748 0.0186338i −0.483776 0.875192i \(-0.660735\pi\)
0.516051 + 0.856558i \(0.327402\pi\)
\(572\) −9.89346 5.71199i −0.413666 0.238830i
\(573\) 6.65973i 0.278214i
\(574\) 0 0
\(575\) 33.2803i 1.38789i
\(576\) 1.43115 2.47883i 0.0596313 0.103284i
\(577\) −1.69789 2.94083i −0.0706841 0.122428i 0.828517 0.559964i \(-0.189185\pi\)
−0.899201 + 0.437535i \(0.855852\pi\)
\(578\) −5.64814 + 7.42684i −0.234932 + 0.308916i
\(579\) 1.93053 3.34378i 0.0802302 0.138963i
\(580\) 10.1431 0.421168
\(581\) 0 0
\(582\) −8.42173 −0.349092
\(583\) −4.32972 2.49976i −0.179318 0.103530i
\(584\) 7.58347 4.37832i 0.313806 0.181176i
\(585\) −5.67723 + 3.27775i −0.234724 + 0.135518i
\(586\) 8.95774 15.5153i 0.370041 0.640930i
\(587\) −8.27144 −0.341399 −0.170699 0.985323i \(-0.554603\pi\)
−0.170699 + 0.985323i \(0.554603\pi\)
\(588\) 0 0
\(589\) 11.8262i 0.487292i
\(590\) −2.37240 1.36971i −0.0976703 0.0563900i
\(591\) −1.60183 2.77446i −0.0658906 0.114126i
\(592\) 8.50755 4.91183i 0.349658 0.201875i
\(593\) 17.9564 31.1014i 0.737382 1.27718i −0.216288 0.976330i \(-0.569395\pi\)
0.953670 0.300854i \(-0.0972716\pi\)
\(594\) 5.93317 0.243441
\(595\) 0 0
\(596\) 14.7536 0.604330
\(597\) 1.23004 2.13049i 0.0503423 0.0871953i
\(598\) −14.1707 + 8.18147i −0.579484 + 0.334565i
\(599\) −16.2375 28.1242i −0.663447 1.14912i −0.979704 0.200450i \(-0.935760\pi\)
0.316257 0.948673i \(-0.397574\pi\)
\(600\) −7.31551 4.22361i −0.298655 0.172428i
\(601\) 28.7082i 1.17103i 0.810660 + 0.585517i \(0.199108\pi\)
−0.810660 + 0.585517i \(0.800892\pi\)
\(602\) 0 0
\(603\) −10.3754 −0.422520
\(604\) 3.50979 6.07913i 0.142811 0.247356i
\(605\) 6.79731 3.92443i 0.276350 0.159551i
\(606\) 4.78153 2.76062i 0.194237 0.112143i
\(607\) −6.14544 3.54807i −0.249436 0.144012i 0.370070 0.929004i \(-0.379334\pi\)
−0.619506 + 0.784992i \(0.712667\pi\)
\(608\) 21.7947 0.883890
\(609\) 0 0
\(610\) −9.47006 −0.383432
\(611\) −10.2085 + 17.6817i −0.412994 + 0.715326i
\(612\) −12.1239 0.768414i −0.490078 0.0310613i
\(613\) 18.2405 + 31.5934i 0.736725 + 1.27605i 0.953962 + 0.299926i \(0.0969621\pi\)
−0.217237 + 0.976119i \(0.569705\pi\)
\(614\) −6.18594 + 10.7144i −0.249644 + 0.432396i
\(615\) 2.10605i 0.0849243i
\(616\) 0 0
\(617\) 38.4014i 1.54598i −0.634417 0.772991i \(-0.718760\pi\)
0.634417 0.772991i \(-0.281240\pi\)
\(618\) 8.15683 + 4.70935i 0.328116 + 0.189438i
\(619\) −17.1212 + 9.88495i −0.688161 + 0.397310i −0.802923 0.596083i \(-0.796723\pi\)
0.114762 + 0.993393i \(0.463389\pi\)
\(620\) 2.79349 + 4.83847i 0.112189 + 0.194318i
\(621\) −23.9615 + 41.5025i −0.961540 + 1.66544i
\(622\) 3.13462i 0.125687i
\(623\) 0 0
\(624\) 8.51087i 0.340707i
\(625\) −3.58729 + 6.21337i −0.143492 + 0.248535i
\(626\) 11.5684 6.67904i 0.462368 0.266948i
\(627\) −4.68285 8.11093i −0.187015 0.323919i
\(628\) −11.7334 + 20.3228i −0.468212 + 0.810968i
\(629\) −14.7709 9.82367i −0.588956 0.391695i
\(630\) 0 0
\(631\) 35.5979 1.41713 0.708566 0.705645i \(-0.249343\pi\)
0.708566 + 0.705645i \(0.249343\pi\)
\(632\) 9.78578 + 5.64982i 0.389258 + 0.224738i
\(633\) −7.65670 13.2618i −0.304327 0.527109i
\(634\) −6.72641 + 3.88350i −0.267140 + 0.154233i
\(635\) 9.68604 + 5.59224i 0.384379 + 0.221921i
\(636\) 4.70746i 0.186663i
\(637\) 0 0
\(638\) −5.83088 −0.230847
\(639\) −3.02426 1.74606i −0.119638 0.0690729i
\(640\) −11.3929 + 6.57769i −0.450344 + 0.260006i
\(641\) −28.5654 + 16.4923i −1.12827 + 0.651405i −0.943498 0.331377i \(-0.892487\pi\)
−0.184768 + 0.982782i \(0.559153\pi\)
\(642\) 5.18404 8.97903i 0.204598 0.354374i
\(643\) 23.2670i 0.917562i 0.888549 + 0.458781i \(0.151714\pi\)
−0.888549 + 0.458781i \(0.848286\pi\)
\(644\) 0 0
\(645\) 9.31631 0.366829
\(646\) −4.12346 8.31633i −0.162235 0.327202i
\(647\) 5.59248 + 9.68647i 0.219863 + 0.380814i 0.954766 0.297358i \(-0.0961056\pi\)
−0.734903 + 0.678172i \(0.762772\pi\)
\(648\) −0.800341 1.38623i −0.0314404 0.0544563i
\(649\) −7.69071 4.44023i −0.301887 0.174294i
\(650\) −6.72644 −0.263833
\(651\) 0 0
\(652\) 10.2825i 0.402692i
\(653\) −9.30736 5.37361i −0.364225 0.210286i 0.306707 0.951804i \(-0.400773\pi\)
−0.670933 + 0.741518i \(0.734106\pi\)
\(654\) 5.07661 + 8.79294i 0.198511 + 0.343831i
\(655\) 1.71145 + 2.96432i 0.0668720 + 0.115826i
\(656\) −3.24517 1.87360i −0.126703 0.0731517i
\(657\) 7.48133i 0.291875i
\(658\) 0 0
\(659\) −14.7868 −0.576012 −0.288006 0.957629i \(-0.592992\pi\)
−0.288006 + 0.957629i \(0.592992\pi\)
\(660\) 3.83178 + 2.21228i 0.149152 + 0.0861129i
\(661\) 16.9628 + 29.3805i 0.659777 + 1.14277i 0.980673 + 0.195653i \(0.0626827\pi\)
−0.320896 + 0.947114i \(0.603984\pi\)
\(662\) 3.88478 + 6.72864i 0.150986 + 0.261516i
\(663\) 13.7691 6.82710i 0.534749 0.265142i
\(664\) 13.7577 0.533902
\(665\) 0 0
\(666\) 4.09571i 0.158705i
\(667\) 23.5484 40.7870i 0.911796 1.57928i
\(668\) −22.0340 + 12.7213i −0.852521 + 0.492203i
\(669\) −19.6430 + 11.3409i −0.759443 + 0.438465i
\(670\) 3.24353 + 1.87266i 0.125309 + 0.0723470i
\(671\) −30.6995 −1.18514
\(672\) 0 0
\(673\) 6.64520i 0.256154i −0.991764 0.128077i \(-0.959120\pi\)
0.991764 0.128077i \(-0.0408804\pi\)
\(674\) 8.63507 + 4.98546i 0.332611 + 0.192033i
\(675\) −17.0607 + 9.85001i −0.656667 + 0.379127i
\(676\) −1.71707 2.97406i −0.0660412 0.114387i
\(677\) 6.81492 + 3.93459i 0.261918 + 0.151219i 0.625209 0.780457i \(-0.285014\pi\)
−0.363291 + 0.931676i \(0.618347\pi\)
\(678\) 2.12369 0.0815598
\(679\) 0 0
\(680\) 7.95040 + 5.28755i 0.304884 + 0.202768i
\(681\) 3.86430 6.69316i 0.148080 0.256482i
\(682\) −1.60588 2.78146i −0.0614923 0.106508i
\(683\) −9.25324 + 5.34236i −0.354065 + 0.204420i −0.666474 0.745528i \(-0.732197\pi\)
0.312409 + 0.949948i \(0.398864\pi\)
\(684\) 6.04278 10.4664i 0.231052 0.400193i
\(685\) 16.5440i 0.632112i
\(686\) 0 0
\(687\) 4.75333i 0.181351i
\(688\) −8.28803 + 14.3553i −0.315978 + 0.547290i
\(689\) 4.08087 + 7.06827i 0.155469 + 0.269280i
\(690\) 5.48839 3.16872i 0.208939 0.120631i
\(691\) 23.1718 + 13.3783i 0.881498 + 0.508933i 0.871152 0.491013i \(-0.163373\pi\)
0.0103461 + 0.999946i \(0.496707\pi\)
\(692\) 15.1231i 0.574895i
\(693\) 0 0
\(694\) 6.80220i 0.258208i
\(695\) 8.78325 15.2130i 0.333168 0.577064i
\(696\) 5.97705 + 10.3526i 0.226559 + 0.392413i
\(697\) −0.428011 + 6.75306i −0.0162121 + 0.255790i
\(698\) 1.98730 3.44211i 0.0752205 0.130286i
\(699\) 15.0298 0.568480
\(700\) 0 0
\(701\) −6.69611 −0.252909 −0.126454 0.991972i \(-0.540360\pi\)
−0.126454 + 0.991972i \(0.540360\pi\)
\(702\) −8.38824 4.84295i −0.316594 0.182786i
\(703\) 15.2835 8.82396i 0.576430 0.332802i
\(704\) −2.90073 + 1.67473i −0.109325 + 0.0631189i
\(705\) 3.95382 6.84821i 0.148909 0.257919i
\(706\) 14.1282 0.531722
\(707\) 0 0
\(708\) 8.36168i 0.314251i
\(709\) 26.4352 + 15.2624i 0.992794 + 0.573190i 0.906108 0.423046i \(-0.139039\pi\)
0.0866857 + 0.996236i \(0.472372\pi\)
\(710\) 0.630291 + 1.09170i 0.0236544 + 0.0409706i
\(711\) 8.36059 4.82699i 0.313547 0.181026i
\(712\) −5.24158 + 9.07868i −0.196436 + 0.340238i
\(713\) 25.9417 0.971526
\(714\) 0 0
\(715\) 7.67125 0.286888
\(716\) 0.292955 0.507414i 0.0109483 0.0189629i
\(717\) −14.5628 + 8.40783i −0.543857 + 0.313996i
\(718\) −8.39328 14.5376i −0.313234 0.542538i
\(719\) −23.3926 13.5057i −0.872395 0.503678i −0.00425163 0.999991i \(-0.501353\pi\)
−0.868143 + 0.496313i \(0.834687\pi\)
\(720\) 4.51747i 0.168356i
\(721\) 0 0
\(722\) −1.19366 −0.0444235
\(723\) 7.97068 13.8056i 0.296433 0.513436i
\(724\) 9.12208 5.26664i 0.339019 0.195733i
\(725\) 16.7666 9.68020i 0.622696 0.359514i
\(726\) 3.67926 + 2.12422i 0.136550 + 0.0788372i
\(727\) 4.21060 0.156162 0.0780812 0.996947i \(-0.475121\pi\)
0.0780812 + 0.996947i \(0.475121\pi\)
\(728\) 0 0
\(729\) −19.3428 −0.716402
\(730\) −1.35030 + 2.33879i −0.0499770 + 0.0865626i
\(731\) 29.8727 + 1.89334i 1.10488 + 0.0700278i
\(732\) 14.4530 + 25.0334i 0.534199 + 0.925261i
\(733\) 11.9575 20.7110i 0.441661 0.764980i −0.556152 0.831081i \(-0.687723\pi\)
0.997813 + 0.0661010i \(0.0210560\pi\)
\(734\) 6.76264i 0.249614i
\(735\) 0 0
\(736\) 47.8082i 1.76223i
\(737\) 10.5147 + 6.07066i 0.387314 + 0.223616i
\(738\) 1.35298 0.781145i 0.0498040 0.0287544i
\(739\) −7.78094 13.4770i −0.286227 0.495759i 0.686679 0.726960i \(-0.259068\pi\)
−0.972906 + 0.231201i \(0.925734\pi\)
\(740\) −4.16864 + 7.22029i −0.153242 + 0.265423i
\(741\) 15.2895i 0.561674i
\(742\) 0 0
\(743\) 0.761676i 0.0279432i −0.999902 0.0139716i \(-0.995553\pi\)
0.999902 0.0139716i \(-0.00444744\pi\)
\(744\) −3.29227 + 5.70238i −0.120700 + 0.209059i
\(745\) −8.57979 + 4.95354i −0.314339 + 0.181484i
\(746\) −5.09970 8.83293i −0.186713 0.323397i
\(747\) 5.87701 10.1793i 0.215029 0.372441i
\(748\) 11.8370 + 7.87241i 0.432804 + 0.287844i
\(749\) 0 0
\(750\) 6.12688 0.223722
\(751\) 7.00604 + 4.04494i 0.255654 + 0.147602i 0.622350 0.782739i \(-0.286178\pi\)
−0.366696 + 0.930341i \(0.619511\pi\)
\(752\) 7.03483 + 12.1847i 0.256534 + 0.444330i
\(753\) −25.9529 + 14.9839i −0.945776 + 0.546044i
\(754\) 8.24363 + 4.75946i 0.300215 + 0.173329i
\(755\) 4.71367i 0.171548i
\(756\) 0 0
\(757\) −31.6796 −1.15142 −0.575708 0.817655i \(-0.695274\pi\)
−0.575708 + 0.817655i \(0.695274\pi\)
\(758\) 14.4901 + 8.36588i 0.526305 + 0.303863i
\(759\) 17.7919 10.2722i 0.645806 0.372856i
\(760\) −8.22630 + 4.74946i −0.298399 + 0.172281i
\(761\) −16.1975 + 28.0549i −0.587160 + 1.01699i 0.407442 + 0.913231i \(0.366421\pi\)
−0.994602 + 0.103760i \(0.966913\pi\)
\(762\) 6.05395i 0.219312i
\(763\) 0 0
\(764\) −10.0564 −0.363829
\(765\) 7.30850 3.62375i 0.264239 0.131017i
\(766\) 4.85139 + 8.40285i 0.175288 + 0.303607i
\(767\) 7.24869 + 12.5551i 0.261735 + 0.453338i
\(768\) −2.95115 1.70385i −0.106491 0.0614823i
\(769\) 19.8665 0.716405 0.358203 0.933644i \(-0.383390\pi\)
0.358203 + 0.933644i \(0.383390\pi\)
\(770\) 0 0
\(771\) 27.3736i 0.985836i
\(772\) −5.04923 2.91517i −0.181726 0.104919i
\(773\) 7.03023 + 12.1767i 0.252860 + 0.437966i 0.964312 0.264768i \(-0.0852955\pi\)
−0.711452 + 0.702735i \(0.751962\pi\)
\(774\) −3.45546 5.98504i −0.124204 0.215128i
\(775\) 9.23535 + 5.33203i 0.331744 + 0.191532i
\(776\) 27.6894i 0.993992i
\(777\) 0 0
\(778\) 6.74733 0.241904
\(779\) −5.82985 3.36586i −0.208876 0.120595i
\(780\) −3.61155 6.25540i −0.129314 0.223979i
\(781\) 2.04324 + 3.53899i 0.0731128 + 0.126635i
\(782\) 18.2425 9.04510i 0.652350 0.323452i
\(783\) 27.8785 0.996297
\(784\) 0 0
\(785\) 15.7580i 0.562427i
\(786\) −0.926378 + 1.60453i −0.0330428 + 0.0572318i
\(787\) −4.70256 + 2.71502i −0.167628 + 0.0967802i −0.581467 0.813570i \(-0.697521\pi\)
0.413839 + 0.910350i \(0.364188\pi\)
\(788\) −4.18953 + 2.41883i −0.149246 + 0.0861671i
\(789\) 29.6457 + 17.1159i 1.05541 + 0.609344i
\(790\) −3.48489 −0.123987
\(791\) 0 0
\(792\) 7.14640i 0.253936i
\(793\) 43.4026 + 25.0585i 1.54127 + 0.889853i
\(794\) 6.20963 3.58513i 0.220371 0.127231i
\(795\) −1.58054 2.73757i −0.0560559 0.0970917i
\(796\) −3.21713 1.85741i −0.114028 0.0658341i
\(797\) −39.1614 −1.38717 −0.693583 0.720376i \(-0.743969\pi\)
−0.693583 + 0.720376i \(0.743969\pi\)
\(798\) 0 0
\(799\) 14.0697 21.1552i 0.497749 0.748419i
\(800\) −9.82643 + 17.0199i −0.347417 + 0.601744i
\(801\) 4.47820 + 7.75647i 0.158229 + 0.274061i
\(802\) 14.9527 8.63296i 0.527999 0.304840i
\(803\) −4.37733 + 7.58176i −0.154473 + 0.267554i
\(804\) 11.4320i 0.403177i
\(805\) 0 0
\(806\) 5.24320i 0.184684i
\(807\) 8.70467 15.0769i 0.306419 0.530733i
\(808\) −9.07651 15.7210i −0.319310 0.553062i
\(809\) −18.9733 + 10.9543i −0.667067 + 0.385131i −0.794964 0.606656i \(-0.792511\pi\)
0.127897 + 0.991787i \(0.459177\pi\)
\(810\) 0.427523 + 0.246831i 0.0150216 + 0.00867274i
\(811\) 52.6748i 1.84966i 0.380377 + 0.924832i \(0.375794\pi\)
−0.380377 + 0.924832i \(0.624206\pi\)
\(812\) 0 0
\(813\) 17.8984i 0.627725i
\(814\) 2.39640 4.15069i 0.0839938 0.145481i
\(815\) −3.45235 5.97965i −0.120931 0.209458i
\(816\) 0.669903 10.5696i 0.0234513 0.370009i
\(817\) −14.8892 + 25.7888i −0.520907 + 0.902237i
\(818\) 14.6734 0.513044
\(819\) 0 0
\(820\) 3.18022 0.111058
\(821\) 28.5249 + 16.4689i 0.995526 + 0.574767i 0.906922 0.421300i \(-0.138426\pi\)
0.0886047 + 0.996067i \(0.471759\pi\)
\(822\) 7.75521 4.47747i 0.270494 0.156170i
\(823\) 14.7744 8.53002i 0.515004 0.297338i −0.219884 0.975526i \(-0.570568\pi\)
0.734888 + 0.678188i \(0.237235\pi\)
\(824\) 15.4836 26.8185i 0.539398 0.934265i
\(825\) 8.44531 0.294028
\(826\) 0 0
\(827\) 10.9933i 0.382275i −0.981563 0.191138i \(-0.938782\pi\)
0.981563 0.191138i \(-0.0612177\pi\)
\(828\) 22.9588 + 13.2553i 0.797875 + 0.460653i
\(829\) −7.00673 12.1360i −0.243354 0.421501i 0.718314 0.695719i \(-0.244914\pi\)
−0.961667 + 0.274218i \(0.911581\pi\)
\(830\) −3.67451 + 2.12148i −0.127544 + 0.0736377i
\(831\) 10.5531 18.2784i 0.366082 0.634072i
\(832\) 5.46802 0.189569
\(833\) 0 0
\(834\) 9.50843 0.329250
\(835\) 8.54242 14.7959i 0.295623 0.512033i
\(836\) −12.2478 + 7.07127i −0.423599 + 0.244565i
\(837\) 7.67800 + 13.2987i 0.265390 + 0.459670i
\(838\) 1.49783 + 0.864774i 0.0517417 + 0.0298731i
\(839\) 8.65856i 0.298927i 0.988767 + 0.149463i \(0.0477546\pi\)
−0.988767 + 0.149463i \(0.952245\pi\)
\(840\) 0 0
\(841\) 1.60212 0.0552454
\(842\) 0.310457 0.537728i 0.0106991 0.0185313i
\(843\) −2.73409 + 1.57853i −0.0941670 + 0.0543673i
\(844\) −20.0258 + 11.5619i −0.689317 + 0.397977i
\(845\) 1.99709 + 1.15302i 0.0687020 + 0.0396651i
\(846\) −5.86596 −0.201676
\(847\) 0 0
\(848\) 5.62435 0.193141
\(849\) −9.27298 + 16.0613i −0.318248 + 0.551222i
\(850\) 8.35351 + 0.529448i 0.286523 + 0.0181599i
\(851\) 19.3560 + 33.5256i 0.663515 + 1.14924i
\(852\) 1.92387 3.33225i 0.0659109 0.114161i
\(853\) 12.4062i 0.424781i −0.977185 0.212390i \(-0.931875\pi\)
0.977185 0.212390i \(-0.0681248\pi\)
\(854\) 0 0
\(855\) 8.11550i 0.277544i
\(856\) −29.5217 17.0444i −1.00903 0.582564i
\(857\) 27.6243 15.9489i 0.943628 0.544804i 0.0525324 0.998619i \(-0.483271\pi\)
0.891096 + 0.453815i \(0.149937\pi\)
\(858\) 2.07615 + 3.59600i 0.0708787 + 0.122766i
\(859\) 12.0930 20.9457i 0.412608 0.714657i −0.582566 0.812783i \(-0.697951\pi\)
0.995174 + 0.0981257i \(0.0312847\pi\)
\(860\) 14.0680i 0.479714i
\(861\) 0 0
\(862\) 21.2817i 0.724857i
\(863\) 2.76224 4.78434i 0.0940278 0.162861i −0.815175 0.579215i \(-0.803359\pi\)
0.909202 + 0.416354i \(0.136692\pi\)
\(864\) −24.5082 + 14.1498i −0.833787 + 0.481387i
\(865\) −5.07761 8.79469i −0.172644 0.299028i
\(866\) 5.82073 10.0818i 0.197796 0.342593i
\(867\) −17.6371 + 7.39473i −0.598988 + 0.251138i
\(868\) 0 0
\(869\) −11.2971 −0.383228
\(870\) −3.19280 1.84336i −0.108246 0.0624958i
\(871\) −9.91036 17.1653i −0.335800 0.581622i
\(872\) 28.9099 16.6911i 0.979012 0.565233i
\(873\) 20.4873 + 11.8284i 0.693391 + 0.400330i
\(874\) 20.2568i 0.685197i
\(875\) 0 0
\(876\) 8.24323 0.278513
\(877\) 45.2599 + 26.1308i 1.52832 + 0.882376i 0.999433 + 0.0336833i \(0.0107238\pi\)
0.528887 + 0.848692i \(0.322610\pi\)
\(878\) −10.4131 + 6.01198i −0.351424 + 0.202894i
\(879\) 31.8012 18.3604i 1.07263 0.619282i
\(880\) 2.64317 4.57811i 0.0891014 0.154328i
\(881\) 40.1220i 1.35174i −0.737019 0.675872i \(-0.763767\pi\)
0.737019 0.675872i \(-0.236233\pi\)
\(882\) 0 0
\(883\) −22.4561 −0.755709 −0.377854 0.925865i \(-0.623338\pi\)
−0.377854 + 0.925865i \(0.623338\pi\)
\(884\) −10.3092 20.7919i −0.346735 0.699307i
\(885\) −2.80745 4.86265i −0.0943714 0.163456i
\(886\) −1.69655 2.93852i −0.0569969 0.0987215i
\(887\) 41.1975 + 23.7854i 1.38328 + 0.798634i 0.992546 0.121871i \(-0.0388896\pi\)
0.390729 + 0.920506i \(0.372223\pi\)
\(888\) −9.82589 −0.329735
\(889\) 0 0
\(890\) 3.23308i 0.108373i
\(891\) 1.38592 + 0.800160i 0.0464300 + 0.0268064i
\(892\) 17.1252 + 29.6617i 0.573394 + 0.993147i
\(893\) 12.6379 + 21.8894i 0.422910 + 0.732501i
\(894\) −4.64408 2.68126i −0.155321 0.0896748i
\(895\) 0.393441i 0.0131513i
\(896\) 0 0
\(897\) −33.5387 −1.11982
\(898\) −7.68320 4.43590i −0.256392 0.148028i
\(899\) −7.54563 13.0694i −0.251661 0.435889i
\(900\) 5.44895 + 9.43786i 0.181632 + 0.314595i
\(901\) −4.51164 9.09924i −0.150305 0.303139i
\(902\) −1.82819 −0.0608722
\(903\) 0 0
\(904\) 6.98238i 0.232230i
\(905\) −3.53656 + 6.12551i −0.117559 + 0.203619i
\(906\) −2.20960 + 1.27571i −0.0734090 + 0.0423827i
\(907\) −25.7030 + 14.8397i −0.853455 + 0.492743i −0.861815 0.507222i \(-0.830672\pi\)
0.00835992 + 0.999965i \(0.497339\pi\)
\(908\) −10.1069 5.83523i −0.335410 0.193649i
\(909\) −15.5092 −0.514408
\(910\) 0 0
\(911\) 25.0521i 0.830014i 0.909818 + 0.415007i \(0.136221\pi\)
−0.909818 + 0.415007i \(0.863779\pi\)
\(912\) 9.12461 + 5.26809i 0.302146 + 0.174444i
\(913\) −11.9118 + 6.87728i −0.394223 + 0.227605i
\(914\) 0.858142 + 1.48634i 0.0283848 + 0.0491639i
\(915\) −16.8100 9.70526i −0.555722 0.320846i
\(916\) −7.17770 −0.237158
\(917\) 0 0
\(918\) 10.0361 + 6.67468i 0.331240 + 0.220297i
\(919\) −12.2949 + 21.2955i −0.405573 + 0.702473i −0.994388 0.105795i \(-0.966261\pi\)
0.588815 + 0.808268i \(0.299595\pi\)
\(920\) −10.4183 18.0450i −0.343481 0.594926i
\(921\) −21.9609 + 12.6791i −0.723637 + 0.417792i
\(922\) −8.12711 + 14.0766i −0.267652 + 0.463587i
\(923\) 6.67118i 0.219584i
\(924\) 0 0
\(925\) 15.9136i 0.523237i
\(926\) 5.02693 8.70689i 0.165195 0.286126i
\(927\) −13.2286 22.9126i −0.434485 0.752550i
\(928\) 24.0857 13.9059i 0.790652 0.456483i
\(929\) −14.4995 8.37129i −0.475713 0.274653i 0.242915 0.970048i \(-0.421896\pi\)
−0.718628 + 0.695394i \(0.755230\pi\)
\(930\) 2.03072i 0.0665898i
\(931\) 0 0
\(932\) 22.6956i 0.743419i
\(933\) 3.21247 5.56417i 0.105172 0.182163i
\(934\) 7.73191 + 13.3921i 0.252996 + 0.438201i
\(935\) −9.52686 0.603815i −0.311562 0.0197469i
\(936\) −5.83326 + 10.1035i −0.190666 + 0.330243i
\(937\) 28.1196 0.918627 0.459313 0.888274i \(-0.348095\pi\)
0.459313 + 0.888274i \(0.348095\pi\)
\(938\) 0 0
\(939\) 27.3797 0.893503
\(940\) −10.3411 5.97041i −0.337288 0.194733i
\(941\) −45.2683 + 26.1357i −1.47570 + 0.851998i −0.999624 0.0274041i \(-0.991276\pi\)
−0.476080 + 0.879402i \(0.657943\pi\)
\(942\) 7.38678 4.26476i 0.240674 0.138953i
\(943\) 7.38327 12.7882i 0.240432 0.416441i
\(944\) 9.99032 0.325157
\(945\) 0 0
\(946\) 8.08717i 0.262937i
\(947\) 33.7929 + 19.5104i 1.09812 + 0.634002i 0.935727 0.352724i \(-0.114745\pi\)
0.162396 + 0.986726i \(0.448078\pi\)
\(948\) 5.31857 + 9.21203i 0.172739 + 0.299193i
\(949\) 12.3772 7.14600i 0.401782 0.231969i
\(950\) −4.16356 + 7.21150i −0.135084 + 0.233972i
\(951\) −15.9198 −0.516234
\(952\) 0 0
\(953\) 15.4840 0.501576 0.250788 0.968042i \(-0.419310\pi\)
0.250788 + 0.968042i \(0.419310\pi\)
\(954\) −1.17246 + 2.03076i −0.0379598 + 0.0657482i
\(955\) 5.84822 3.37647i 0.189244 0.109260i
\(956\) 12.6961 + 21.9904i 0.410622 + 0.711219i
\(957\) −10.3502 5.97570i −0.334575 0.193167i
\(958\) 18.1088i 0.585070i
\(959\) 0 0
\(960\) −2.11779 −0.0683513
\(961\) −11.3437 + 19.6479i −0.365927 + 0.633804i
\(962\) −6.77600 + 3.91213i −0.218467 + 0.126132i
\(963\) −25.2222 + 14.5620i −0.812774 + 0.469255i
\(964\) −20.8470 12.0360i −0.671436 0.387654i
\(965\) 3.91510 0.126032
\(966\) 0 0
\(967\) −38.1965 −1.22832 −0.614158 0.789183i \(-0.710504\pi\)
−0.614158 + 0.789183i \(0.710504\pi\)
\(968\) 6.98412 12.0969i 0.224478 0.388808i
\(969\) 1.20346 18.9879i 0.0386607 0.609980i
\(970\) −4.26980 7.39551i −0.137095 0.237455i
\(971\) −11.1591 + 19.3281i −0.358113 + 0.620269i −0.987646 0.156705i \(-0.949913\pi\)
0.629533 + 0.776974i \(0.283246\pi\)
\(972\) 25.6365i 0.822291i
\(973\) 0 0
\(974\) 21.7682i 0.697500i
\(975\) −11.9399 6.89349i −0.382382 0.220769i
\(976\) 29.9092 17.2681i 0.957371 0.552738i
\(977\) −11.0963 19.2193i −0.355001 0.614880i 0.632117 0.774873i \(-0.282186\pi\)
−0.987118 + 0.159993i \(0.948853\pi\)
\(978\) 1.86870 3.23668i 0.0597543 0.103498i
\(979\) 10.4808i 0.334967i
\(980\) 0 0
\(981\) 28.5205i 0.910589i
\(982\) −5.35543 + 9.27588i −0.170899 + 0.296005i
\(983\) 17.9676 10.3736i 0.573079 0.330867i −0.185299 0.982682i \(-0.559325\pi\)
0.758378 + 0.651815i \(0.225992\pi\)
\(984\) 1.87402 + 3.24590i 0.0597417 + 0.103476i
\(985\) 1.62425 2.81328i 0.0517529 0.0896387i
\(986\) −9.86307 6.55960i −0.314104 0.208900i
\(987\) 0 0
\(988\) 23.0877 0.734518
\(989\) −56.5697 32.6605i −1.79881 1.03854i
\(990\) 1.10200 + 1.90872i 0.0350238 + 0.0606630i
\(991\) −2.48705 + 1.43590i −0.0790038 + 0.0456129i −0.538981 0.842318i \(-0.681191\pi\)
0.459978 + 0.887930i \(0.347857\pi\)
\(992\) 13.2669 + 7.65962i 0.421223 + 0.243193i
\(993\) 15.9251i 0.505367i
\(994\) 0 0
\(995\) 2.49451 0.0790814
\(996\) 11.2159 + 6.47553i 0.355391 + 0.205185i
\(997\) 24.3282 14.0459i 0.770480 0.444837i −0.0625656 0.998041i \(-0.519928\pi\)
0.833046 + 0.553204i \(0.186595\pi\)
\(998\) −11.4401 + 6.60497i −0.362131 + 0.209077i
\(999\) −11.4576 + 19.8452i −0.362503 + 0.627874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.j.a.373.5 20
7.2 even 3 833.2.b.d.50.5 10
7.3 odd 6 119.2.j.a.67.5 yes 20
7.4 even 3 inner 833.2.j.a.67.6 20
7.5 odd 6 833.2.b.c.50.6 10
7.6 odd 2 119.2.j.a.16.6 yes 20
17.16 even 2 inner 833.2.j.a.373.6 20
119.16 even 6 833.2.b.d.50.6 10
119.33 odd 6 833.2.b.c.50.5 10
119.67 even 6 inner 833.2.j.a.67.5 20
119.101 odd 6 119.2.j.a.67.6 yes 20
119.118 odd 2 119.2.j.a.16.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.j.a.16.5 20 119.118 odd 2
119.2.j.a.16.6 yes 20 7.6 odd 2
119.2.j.a.67.5 yes 20 7.3 odd 6
119.2.j.a.67.6 yes 20 119.101 odd 6
833.2.b.c.50.5 10 119.33 odd 6
833.2.b.c.50.6 10 7.5 odd 6
833.2.b.d.50.5 10 7.2 even 3
833.2.b.d.50.6 10 119.16 even 6
833.2.j.a.67.5 20 119.67 even 6 inner
833.2.j.a.67.6 20 7.4 even 3 inner
833.2.j.a.373.5 20 1.1 even 1 trivial
833.2.j.a.373.6 20 17.16 even 2 inner