Properties

Label 836.2.j.b.685.2
Level $836$
Weight $2$
Character 836.685
Analytic conductor $6.675$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [836,2,Mod(229,836)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(836, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("836.229");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 836 = 2^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 836.j (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.67549360898\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 3 x^{18} - x^{17} + 54 x^{16} - 67 x^{15} + 423 x^{14} - 418 x^{13} + 1762 x^{12} - 726 x^{11} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 685.2
Root \(0.444729 - 1.36874i\) of defining polynomial
Character \(\chi\) \(=\) 836.685
Dual form 836.2.j.b.609.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.444729 - 1.36874i) q^{3} +(1.18149 + 0.858404i) q^{5} +(0.910570 - 2.80245i) q^{7} +(0.751396 - 0.545921i) q^{9} +(-1.13357 - 3.11689i) q^{11} +(-2.39150 + 1.73752i) q^{13} +(0.649484 - 1.99891i) q^{15} +(-0.901971 - 0.655320i) q^{17} +(0.309017 + 0.951057i) q^{19} -4.24077 q^{21} +6.23162 q^{23} +(-0.886020 - 2.72689i) q^{25} +(-4.57434 - 3.32345i) q^{27} +(-1.68336 + 5.18085i) q^{29} +(4.00663 - 2.91099i) q^{31} +(-3.76207 + 2.93773i) q^{33} +(3.48146 - 2.52943i) q^{35} +(-0.880550 + 2.71005i) q^{37} +(3.44178 + 2.50060i) q^{39} +(-3.78902 - 11.6614i) q^{41} -1.95512 q^{43} +1.35639 q^{45} +(-1.24603 - 3.83489i) q^{47} +(-1.36145 - 0.989153i) q^{49} +(-0.495828 + 1.52600i) q^{51} +(-0.0606444 + 0.0440608i) q^{53} +(1.33625 - 4.65564i) q^{55} +(1.16432 - 0.845925i) q^{57} +(0.907196 - 2.79206i) q^{59} +(0.0599368 + 0.0435466i) q^{61} +(-0.845717 - 2.60285i) q^{63} -4.31703 q^{65} +3.18622 q^{67} +(-2.77138 - 8.52944i) q^{69} +(-9.36673 - 6.80533i) q^{71} +(-0.149260 + 0.459374i) q^{73} +(-3.33835 + 2.42546i) q^{75} +(-9.76712 + 0.338611i) q^{77} +(-4.27115 + 3.10317i) q^{79} +(-1.65356 + 5.08914i) q^{81} +(6.79125 + 4.93413i) q^{83} +(-0.503142 - 1.54851i) q^{85} +7.83986 q^{87} +7.78559 q^{89} +(2.69169 + 8.28418i) q^{91} +(-5.76624 - 4.18942i) q^{93} +(-0.451290 + 1.38893i) q^{95} +(-3.84654 + 2.79467i) q^{97} +(-2.55334 - 1.72318i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{5} + 15 q^{7} + 9 q^{9} + 2 q^{11} + 4 q^{13} + 15 q^{15} + 7 q^{17} - 5 q^{19} - 12 q^{21} - 16 q^{23} - 5 q^{25} - 3 q^{27} + 16 q^{29} + q^{31} - 27 q^{33} - 13 q^{35} + 14 q^{37} - 29 q^{39}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/836\mathbb{Z}\right)^\times\).

\(n\) \(419\) \(705\) \(761\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.444729 1.36874i −0.256765 0.790240i −0.993477 0.114034i \(-0.963623\pi\)
0.736712 0.676206i \(-0.236377\pi\)
\(4\) 0 0
\(5\) 1.18149 + 0.858404i 0.528379 + 0.383890i 0.819751 0.572720i \(-0.194112\pi\)
−0.291372 + 0.956610i \(0.594112\pi\)
\(6\) 0 0
\(7\) 0.910570 2.80245i 0.344163 1.05923i −0.617867 0.786283i \(-0.712003\pi\)
0.962030 0.272943i \(-0.0879970\pi\)
\(8\) 0 0
\(9\) 0.751396 0.545921i 0.250465 0.181974i
\(10\) 0 0
\(11\) −1.13357 3.11689i −0.341783 0.939779i
\(12\) 0 0
\(13\) −2.39150 + 1.73752i −0.663282 + 0.481902i −0.867770 0.496967i \(-0.834447\pi\)
0.204488 + 0.978869i \(0.434447\pi\)
\(14\) 0 0
\(15\) 0.649484 1.99891i 0.167696 0.516116i
\(16\) 0 0
\(17\) −0.901971 0.655320i −0.218760 0.158939i 0.473008 0.881058i \(-0.343168\pi\)
−0.691768 + 0.722119i \(0.743168\pi\)
\(18\) 0 0
\(19\) 0.309017 + 0.951057i 0.0708934 + 0.218187i
\(20\) 0 0
\(21\) −4.24077 −0.925411
\(22\) 0 0
\(23\) 6.23162 1.29938 0.649691 0.760198i \(-0.274898\pi\)
0.649691 + 0.760198i \(0.274898\pi\)
\(24\) 0 0
\(25\) −0.886020 2.72689i −0.177204 0.545378i
\(26\) 0 0
\(27\) −4.57434 3.32345i −0.880332 0.639599i
\(28\) 0 0
\(29\) −1.68336 + 5.18085i −0.312592 + 0.962060i 0.664142 + 0.747606i \(0.268797\pi\)
−0.976734 + 0.214453i \(0.931203\pi\)
\(30\) 0 0
\(31\) 4.00663 2.91099i 0.719612 0.522829i −0.166648 0.986016i \(-0.553294\pi\)
0.886260 + 0.463188i \(0.153294\pi\)
\(32\) 0 0
\(33\) −3.76207 + 2.93773i −0.654893 + 0.511393i
\(34\) 0 0
\(35\) 3.48146 2.52943i 0.588474 0.427552i
\(36\) 0 0
\(37\) −0.880550 + 2.71005i −0.144761 + 0.445530i −0.996980 0.0776556i \(-0.975257\pi\)
0.852219 + 0.523186i \(0.175257\pi\)
\(38\) 0 0
\(39\) 3.44178 + 2.50060i 0.551126 + 0.400416i
\(40\) 0 0
\(41\) −3.78902 11.6614i −0.591746 1.82121i −0.570301 0.821436i \(-0.693174\pi\)
−0.0214444 0.999770i \(-0.506826\pi\)
\(42\) 0 0
\(43\) −1.95512 −0.298154 −0.149077 0.988826i \(-0.547630\pi\)
−0.149077 + 0.988826i \(0.547630\pi\)
\(44\) 0 0
\(45\) 1.35639 0.202199
\(46\) 0 0
\(47\) −1.24603 3.83489i −0.181753 0.559377i 0.818125 0.575041i \(-0.195014\pi\)
−0.999877 + 0.0156639i \(0.995014\pi\)
\(48\) 0 0
\(49\) −1.36145 0.989153i −0.194493 0.141308i
\(50\) 0 0
\(51\) −0.495828 + 1.52600i −0.0694298 + 0.213683i
\(52\) 0 0
\(53\) −0.0606444 + 0.0440608i −0.00833015 + 0.00605221i −0.591943 0.805980i \(-0.701639\pi\)
0.583612 + 0.812032i \(0.301639\pi\)
\(54\) 0 0
\(55\) 1.33625 4.65564i 0.180180 0.627767i
\(56\) 0 0
\(57\) 1.16432 0.845925i 0.154217 0.112046i
\(58\) 0 0
\(59\) 0.907196 2.79206i 0.118107 0.363496i −0.874475 0.485070i \(-0.838794\pi\)
0.992582 + 0.121574i \(0.0387942\pi\)
\(60\) 0 0
\(61\) 0.0599368 + 0.0435466i 0.00767412 + 0.00557557i 0.591616 0.806220i \(-0.298490\pi\)
−0.583942 + 0.811796i \(0.698490\pi\)
\(62\) 0 0
\(63\) −0.845717 2.60285i −0.106550 0.327928i
\(64\) 0 0
\(65\) −4.31703 −0.535462
\(66\) 0 0
\(67\) 3.18622 0.389259 0.194630 0.980877i \(-0.437650\pi\)
0.194630 + 0.980877i \(0.437650\pi\)
\(68\) 0 0
\(69\) −2.77138 8.52944i −0.333635 1.02682i
\(70\) 0 0
\(71\) −9.36673 6.80533i −1.11163 0.807644i −0.128707 0.991683i \(-0.541083\pi\)
−0.982919 + 0.184039i \(0.941083\pi\)
\(72\) 0 0
\(73\) −0.149260 + 0.459374i −0.0174695 + 0.0537657i −0.959411 0.282011i \(-0.908999\pi\)
0.941942 + 0.335776i \(0.108999\pi\)
\(74\) 0 0
\(75\) −3.33835 + 2.42546i −0.385480 + 0.280067i
\(76\) 0 0
\(77\) −9.76712 + 0.338611i −1.11307 + 0.0385883i
\(78\) 0 0
\(79\) −4.27115 + 3.10317i −0.480542 + 0.349134i −0.801536 0.597947i \(-0.795983\pi\)
0.320993 + 0.947081i \(0.395983\pi\)
\(80\) 0 0
\(81\) −1.65356 + 5.08914i −0.183729 + 0.565460i
\(82\) 0 0
\(83\) 6.79125 + 4.93413i 0.745436 + 0.541591i 0.894409 0.447250i \(-0.147597\pi\)
−0.148973 + 0.988841i \(0.547597\pi\)
\(84\) 0 0
\(85\) −0.503142 1.54851i −0.0545734 0.167960i
\(86\) 0 0
\(87\) 7.83986 0.840521
\(88\) 0 0
\(89\) 7.78559 0.825271 0.412635 0.910896i \(-0.364608\pi\)
0.412635 + 0.910896i \(0.364608\pi\)
\(90\) 0 0
\(91\) 2.69169 + 8.28418i 0.282166 + 0.868418i
\(92\) 0 0
\(93\) −5.76624 4.18942i −0.597931 0.434422i
\(94\) 0 0
\(95\) −0.451290 + 1.38893i −0.0463013 + 0.142501i
\(96\) 0 0
\(97\) −3.84654 + 2.79467i −0.390557 + 0.283756i −0.765684 0.643218i \(-0.777599\pi\)
0.375127 + 0.926973i \(0.377599\pi\)
\(98\) 0 0
\(99\) −2.55334 1.72318i −0.256620 0.173187i
\(100\) 0 0
\(101\) 1.51615 1.10154i 0.150862 0.109608i −0.509794 0.860297i \(-0.670278\pi\)
0.660656 + 0.750689i \(0.270278\pi\)
\(102\) 0 0
\(103\) −0.830742 + 2.55676i −0.0818554 + 0.251925i −0.983606 0.180332i \(-0.942283\pi\)
0.901750 + 0.432257i \(0.142283\pi\)
\(104\) 0 0
\(105\) −5.01043 3.64029i −0.488968 0.355256i
\(106\) 0 0
\(107\) 0.820248 + 2.52446i 0.0792964 + 0.244049i 0.982844 0.184438i \(-0.0590466\pi\)
−0.903548 + 0.428488i \(0.859047\pi\)
\(108\) 0 0
\(109\) 8.05431 0.771463 0.385731 0.922611i \(-0.373949\pi\)
0.385731 + 0.922611i \(0.373949\pi\)
\(110\) 0 0
\(111\) 4.10095 0.389245
\(112\) 0 0
\(113\) 0.0797114 + 0.245326i 0.00749862 + 0.0230784i 0.954736 0.297455i \(-0.0961378\pi\)
−0.947237 + 0.320533i \(0.896138\pi\)
\(114\) 0 0
\(115\) 7.36260 + 5.34924i 0.686566 + 0.498820i
\(116\) 0 0
\(117\) −0.848410 + 2.61114i −0.0784356 + 0.241400i
\(118\) 0 0
\(119\) −2.65781 + 1.93101i −0.243641 + 0.177016i
\(120\) 0 0
\(121\) −8.43005 + 7.06642i −0.766368 + 0.642401i
\(122\) 0 0
\(123\) −14.2763 + 10.3723i −1.28725 + 0.935242i
\(124\) 0 0
\(125\) 3.55039 10.9270i 0.317557 0.977340i
\(126\) 0 0
\(127\) 15.9850 + 11.6138i 1.41844 + 1.03056i 0.992027 + 0.126025i \(0.0402221\pi\)
0.426410 + 0.904530i \(0.359778\pi\)
\(128\) 0 0
\(129\) 0.869501 + 2.67605i 0.0765553 + 0.235613i
\(130\) 0 0
\(131\) 4.64754 0.406057 0.203029 0.979173i \(-0.434922\pi\)
0.203029 + 0.979173i \(0.434922\pi\)
\(132\) 0 0
\(133\) 2.94667 0.255508
\(134\) 0 0
\(135\) −2.55168 7.85326i −0.219614 0.675901i
\(136\) 0 0
\(137\) 9.46074 + 6.87363i 0.808286 + 0.587254i 0.913333 0.407213i \(-0.133499\pi\)
−0.105047 + 0.994467i \(0.533499\pi\)
\(138\) 0 0
\(139\) 5.20941 16.0329i 0.441856 1.35989i −0.444039 0.896007i \(-0.646455\pi\)
0.885895 0.463886i \(-0.153545\pi\)
\(140\) 0 0
\(141\) −4.69481 + 3.41098i −0.395374 + 0.287256i
\(142\) 0 0
\(143\) 8.12660 + 5.48444i 0.679580 + 0.458632i
\(144\) 0 0
\(145\) −6.43614 + 4.67613i −0.534492 + 0.388331i
\(146\) 0 0
\(147\) −0.748411 + 2.30337i −0.0617279 + 0.189979i
\(148\) 0 0
\(149\) 11.4868 + 8.34565i 0.941036 + 0.683703i 0.948670 0.316268i \(-0.102430\pi\)
−0.00763386 + 0.999971i \(0.502430\pi\)
\(150\) 0 0
\(151\) 4.71828 + 14.5214i 0.383968 + 1.18173i 0.937226 + 0.348722i \(0.113384\pi\)
−0.553258 + 0.833010i \(0.686616\pi\)
\(152\) 0 0
\(153\) −1.03549 −0.0837145
\(154\) 0 0
\(155\) 7.23260 0.580936
\(156\) 0 0
\(157\) 6.00898 + 18.4937i 0.479569 + 1.47596i 0.839695 + 0.543058i \(0.182734\pi\)
−0.360126 + 0.932904i \(0.617266\pi\)
\(158\) 0 0
\(159\) 0.0872779 + 0.0634111i 0.00692159 + 0.00502883i
\(160\) 0 0
\(161\) 5.67433 17.4638i 0.447200 1.37634i
\(162\) 0 0
\(163\) 15.7633 11.4527i 1.23468 0.897047i 0.237447 0.971400i \(-0.423689\pi\)
0.997232 + 0.0743537i \(0.0236894\pi\)
\(164\) 0 0
\(165\) −6.96662 + 0.241522i −0.542350 + 0.0188024i
\(166\) 0 0
\(167\) 6.18705 4.49516i 0.478769 0.347846i −0.322080 0.946712i \(-0.604382\pi\)
0.800849 + 0.598867i \(0.204382\pi\)
\(168\) 0 0
\(169\) −1.31695 + 4.05317i −0.101304 + 0.311782i
\(170\) 0 0
\(171\) 0.751396 + 0.545921i 0.0574607 + 0.0417477i
\(172\) 0 0
\(173\) −0.529979 1.63111i −0.0402935 0.124011i 0.928886 0.370365i \(-0.120767\pi\)
−0.969180 + 0.246354i \(0.920767\pi\)
\(174\) 0 0
\(175\) −8.44875 −0.638665
\(176\) 0 0
\(177\) −4.22505 −0.317574
\(178\) 0 0
\(179\) −2.59553 7.98823i −0.193999 0.597068i −0.999987 0.00513580i \(-0.998365\pi\)
0.805988 0.591932i \(-0.201635\pi\)
\(180\) 0 0
\(181\) 16.2215 + 11.7856i 1.20573 + 0.876015i 0.994836 0.101493i \(-0.0323620\pi\)
0.210896 + 0.977509i \(0.432362\pi\)
\(182\) 0 0
\(183\) 0.0329482 0.101404i 0.00243560 0.00749601i
\(184\) 0 0
\(185\) −3.36668 + 2.44604i −0.247523 + 0.179836i
\(186\) 0 0
\(187\) −1.02012 + 3.55420i −0.0745985 + 0.259909i
\(188\) 0 0
\(189\) −13.4791 + 9.79311i −0.980457 + 0.712344i
\(190\) 0 0
\(191\) −4.15467 + 12.7868i −0.300622 + 0.925219i 0.680653 + 0.732606i \(0.261696\pi\)
−0.981275 + 0.192613i \(0.938304\pi\)
\(192\) 0 0
\(193\) 9.68381 + 7.03570i 0.697056 + 0.506441i 0.878972 0.476873i \(-0.158230\pi\)
−0.181916 + 0.983314i \(0.558230\pi\)
\(194\) 0 0
\(195\) 1.91991 + 5.90887i 0.137488 + 0.423143i
\(196\) 0 0
\(197\) −18.0316 −1.28469 −0.642347 0.766414i \(-0.722039\pi\)
−0.642347 + 0.766414i \(0.722039\pi\)
\(198\) 0 0
\(199\) 21.3508 1.51352 0.756760 0.653693i \(-0.226781\pi\)
0.756760 + 0.653693i \(0.226781\pi\)
\(200\) 0 0
\(201\) −1.41701 4.36110i −0.0999480 0.307608i
\(202\) 0 0
\(203\) 12.9862 + 9.43506i 0.911455 + 0.662211i
\(204\) 0 0
\(205\) 5.53350 17.0304i 0.386476 1.18945i
\(206\) 0 0
\(207\) 4.68242 3.40197i 0.325450 0.236454i
\(208\) 0 0
\(209\) 2.61405 2.04126i 0.180818 0.141197i
\(210\) 0 0
\(211\) −22.5653 + 16.3947i −1.55346 + 1.12866i −0.612337 + 0.790597i \(0.709770\pi\)
−0.941125 + 0.338059i \(0.890230\pi\)
\(212\) 0 0
\(213\) −5.14904 + 15.8471i −0.352806 + 1.08583i
\(214\) 0 0
\(215\) −2.30996 1.67829i −0.157538 0.114458i
\(216\) 0 0
\(217\) −4.50957 13.8790i −0.306129 0.942169i
\(218\) 0 0
\(219\) 0.695143 0.0469734
\(220\) 0 0
\(221\) 3.29570 0.221692
\(222\) 0 0
\(223\) 2.30587 + 7.09673i 0.154412 + 0.475232i 0.998101 0.0616008i \(-0.0196206\pi\)
−0.843689 + 0.536833i \(0.819621\pi\)
\(224\) 0 0
\(225\) −2.15442 1.56528i −0.143628 0.104352i
\(226\) 0 0
\(227\) −8.55548 + 26.3311i −0.567847 + 1.74765i 0.0914899 + 0.995806i \(0.470837\pi\)
−0.659337 + 0.751848i \(0.729163\pi\)
\(228\) 0 0
\(229\) 17.0410 12.3810i 1.12610 0.818162i 0.140980 0.990012i \(-0.454975\pi\)
0.985123 + 0.171851i \(0.0549747\pi\)
\(230\) 0 0
\(231\) 4.80719 + 13.2180i 0.316290 + 0.869682i
\(232\) 0 0
\(233\) −20.1169 + 14.6158i −1.31790 + 0.957513i −0.317948 + 0.948108i \(0.602994\pi\)
−0.999956 + 0.00940470i \(0.997006\pi\)
\(234\) 0 0
\(235\) 1.81971 5.60049i 0.118705 0.365336i
\(236\) 0 0
\(237\) 6.14693 + 4.46601i 0.399286 + 0.290098i
\(238\) 0 0
\(239\) −4.85432 14.9401i −0.314000 0.966393i −0.976164 0.217034i \(-0.930362\pi\)
0.662164 0.749359i \(-0.269638\pi\)
\(240\) 0 0
\(241\) −14.3016 −0.921249 −0.460624 0.887595i \(-0.652374\pi\)
−0.460624 + 0.887595i \(0.652374\pi\)
\(242\) 0 0
\(243\) −9.26150 −0.594126
\(244\) 0 0
\(245\) −0.759451 2.33735i −0.0485196 0.149328i
\(246\) 0 0
\(247\) −2.39150 1.73752i −0.152167 0.110556i
\(248\) 0 0
\(249\) 3.73326 11.4898i 0.236585 0.728135i
\(250\) 0 0
\(251\) −0.284593 + 0.206769i −0.0179633 + 0.0130511i −0.596731 0.802442i \(-0.703534\pi\)
0.578767 + 0.815493i \(0.303534\pi\)
\(252\) 0 0
\(253\) −7.06396 19.4233i −0.444107 1.22113i
\(254\) 0 0
\(255\) −1.89574 + 1.37734i −0.118716 + 0.0862522i
\(256\) 0 0
\(257\) 0.362330 1.11514i 0.0226015 0.0695604i −0.939120 0.343590i \(-0.888357\pi\)
0.961721 + 0.274030i \(0.0883568\pi\)
\(258\) 0 0
\(259\) 6.79298 + 4.93539i 0.422095 + 0.306670i
\(260\) 0 0
\(261\) 1.56347 + 4.81185i 0.0967761 + 0.297846i
\(262\) 0 0
\(263\) −11.5816 −0.714154 −0.357077 0.934075i \(-0.616227\pi\)
−0.357077 + 0.934075i \(0.616227\pi\)
\(264\) 0 0
\(265\) −0.109473 −0.00672486
\(266\) 0 0
\(267\) −3.46248 10.6564i −0.211900 0.652162i
\(268\) 0 0
\(269\) −0.665649 0.483622i −0.0405853 0.0294870i 0.567308 0.823506i \(-0.307985\pi\)
−0.607893 + 0.794019i \(0.707985\pi\)
\(270\) 0 0
\(271\) 3.61488 11.1254i 0.219588 0.675822i −0.779208 0.626765i \(-0.784378\pi\)
0.998796 0.0490570i \(-0.0156216\pi\)
\(272\) 0 0
\(273\) 10.1418 7.36844i 0.613809 0.445958i
\(274\) 0 0
\(275\) −7.49506 + 5.85274i −0.451969 + 0.352934i
\(276\) 0 0
\(277\) −1.23962 + 0.900637i −0.0744816 + 0.0541140i −0.624403 0.781102i \(-0.714658\pi\)
0.549921 + 0.835216i \(0.314658\pi\)
\(278\) 0 0
\(279\) 1.42140 4.37461i 0.0850968 0.261901i
\(280\) 0 0
\(281\) −12.3427 8.96749i −0.736303 0.534955i 0.155248 0.987876i \(-0.450382\pi\)
−0.891551 + 0.452920i \(0.850382\pi\)
\(282\) 0 0
\(283\) 2.77098 + 8.52820i 0.164718 + 0.506949i 0.999015 0.0443653i \(-0.0141265\pi\)
−0.834298 + 0.551314i \(0.814127\pi\)
\(284\) 0 0
\(285\) 2.10178 0.124498
\(286\) 0 0
\(287\) −36.1306 −2.13272
\(288\) 0 0
\(289\) −4.86918 14.9858i −0.286422 0.881518i
\(290\) 0 0
\(291\) 5.53584 + 4.02202i 0.324516 + 0.235775i
\(292\) 0 0
\(293\) −4.55441 + 14.0170i −0.266072 + 0.818885i 0.725373 + 0.688356i \(0.241667\pi\)
−0.991445 + 0.130528i \(0.958333\pi\)
\(294\) 0 0
\(295\) 3.46856 2.52006i 0.201947 0.146723i
\(296\) 0 0
\(297\) −5.17353 + 18.0251i −0.300199 + 1.04592i
\(298\) 0 0
\(299\) −14.9029 + 10.8276i −0.861857 + 0.626175i
\(300\) 0 0
\(301\) −1.78028 + 5.47913i −0.102614 + 0.315812i
\(302\) 0 0
\(303\) −2.18200 1.58532i −0.125353 0.0910740i
\(304\) 0 0
\(305\) 0.0334342 + 0.102900i 0.00191444 + 0.00589203i
\(306\) 0 0
\(307\) 5.58452 0.318726 0.159363 0.987220i \(-0.449056\pi\)
0.159363 + 0.987220i \(0.449056\pi\)
\(308\) 0 0
\(309\) 3.86899 0.220099
\(310\) 0 0
\(311\) −8.80809 27.1085i −0.499461 1.53718i −0.809888 0.586585i \(-0.800472\pi\)
0.310427 0.950597i \(-0.399528\pi\)
\(312\) 0 0
\(313\) 13.4224 + 9.75197i 0.758681 + 0.551214i 0.898505 0.438962i \(-0.144654\pi\)
−0.139825 + 0.990176i \(0.544654\pi\)
\(314\) 0 0
\(315\) 1.23509 3.80121i 0.0695893 0.214174i
\(316\) 0 0
\(317\) −17.9155 + 13.0164i −1.00624 + 0.731073i −0.963416 0.268010i \(-0.913634\pi\)
−0.0428195 + 0.999083i \(0.513634\pi\)
\(318\) 0 0
\(319\) 18.0564 0.625986i 1.01096 0.0350485i
\(320\) 0 0
\(321\) 3.09054 2.24541i 0.172497 0.125326i
\(322\) 0 0
\(323\) 0.344522 1.06033i 0.0191697 0.0589984i
\(324\) 0 0
\(325\) 6.85695 + 4.98187i 0.380355 + 0.276344i
\(326\) 0 0
\(327\) −3.58199 11.0242i −0.198084 0.609641i
\(328\) 0 0
\(329\) −11.8817 −0.655059
\(330\) 0 0
\(331\) 23.4297 1.28781 0.643907 0.765104i \(-0.277312\pi\)
0.643907 + 0.765104i \(0.277312\pi\)
\(332\) 0 0
\(333\) 0.817834 + 2.51704i 0.0448170 + 0.137933i
\(334\) 0 0
\(335\) 3.76450 + 2.73507i 0.205676 + 0.149433i
\(336\) 0 0
\(337\) −4.97422 + 15.3091i −0.270963 + 0.833938i 0.719296 + 0.694703i \(0.244464\pi\)
−0.990259 + 0.139235i \(0.955536\pi\)
\(338\) 0 0
\(339\) 0.300337 0.218208i 0.0163121 0.0118514i
\(340\) 0 0
\(341\) −13.6150 9.18844i −0.737295 0.497582i
\(342\) 0 0
\(343\) 12.6756 9.20935i 0.684417 0.497258i
\(344\) 0 0
\(345\) 4.04734 12.4564i 0.217901 0.670632i
\(346\) 0 0
\(347\) 3.10113 + 2.25311i 0.166478 + 0.120953i 0.667905 0.744247i \(-0.267191\pi\)
−0.501427 + 0.865200i \(0.667191\pi\)
\(348\) 0 0
\(349\) −1.40223 4.31562i −0.0750596 0.231010i 0.906487 0.422234i \(-0.138754\pi\)
−0.981546 + 0.191225i \(0.938754\pi\)
\(350\) 0 0
\(351\) 16.7141 0.892132
\(352\) 0 0
\(353\) 27.3402 1.45517 0.727586 0.686017i \(-0.240642\pi\)
0.727586 + 0.686017i \(0.240642\pi\)
\(354\) 0 0
\(355\) −5.22499 16.0809i −0.277314 0.853484i
\(356\) 0 0
\(357\) 3.82505 + 2.77906i 0.202443 + 0.147084i
\(358\) 0 0
\(359\) 7.70706 23.7199i 0.406763 1.25189i −0.512651 0.858597i \(-0.671336\pi\)
0.919414 0.393291i \(-0.128664\pi\)
\(360\) 0 0
\(361\) −0.809017 + 0.587785i −0.0425798 + 0.0309361i
\(362\) 0 0
\(363\) 13.4211 + 8.39587i 0.704428 + 0.440669i
\(364\) 0 0
\(365\) −0.570678 + 0.414622i −0.0298706 + 0.0217023i
\(366\) 0 0
\(367\) −5.48434 + 16.8791i −0.286280 + 0.881079i 0.699732 + 0.714405i \(0.253303\pi\)
−0.986012 + 0.166674i \(0.946697\pi\)
\(368\) 0 0
\(369\) −9.21327 6.69383i −0.479624 0.348467i
\(370\) 0 0
\(371\) 0.0682569 + 0.210073i 0.00354372 + 0.0109065i
\(372\) 0 0
\(373\) 21.7030 1.12374 0.561870 0.827225i \(-0.310082\pi\)
0.561870 + 0.827225i \(0.310082\pi\)
\(374\) 0 0
\(375\) −16.5351 −0.853871
\(376\) 0 0
\(377\) −4.97610 15.3149i −0.256282 0.788756i
\(378\) 0 0
\(379\) 1.28126 + 0.930890i 0.0658139 + 0.0478166i 0.620206 0.784439i \(-0.287049\pi\)
−0.554392 + 0.832256i \(0.687049\pi\)
\(380\) 0 0
\(381\) 8.78719 27.0442i 0.450182 1.38552i
\(382\) 0 0
\(383\) 26.9390 19.5724i 1.37652 1.00010i 0.379325 0.925264i \(-0.376156\pi\)
0.997196 0.0748369i \(-0.0238436\pi\)
\(384\) 0 0
\(385\) −11.8304 7.98407i −0.602935 0.406906i
\(386\) 0 0
\(387\) −1.46907 + 1.06734i −0.0746772 + 0.0542562i
\(388\) 0 0
\(389\) 9.26830 28.5249i 0.469921 1.44627i −0.382765 0.923846i \(-0.625028\pi\)
0.852686 0.522423i \(-0.174972\pi\)
\(390\) 0 0
\(391\) −5.62074 4.08371i −0.284253 0.206522i
\(392\) 0 0
\(393\) −2.06690 6.36125i −0.104261 0.320883i
\(394\) 0 0
\(395\) −7.71011 −0.387938
\(396\) 0 0
\(397\) 3.94977 0.198234 0.0991168 0.995076i \(-0.468398\pi\)
0.0991168 + 0.995076i \(0.468398\pi\)
\(398\) 0 0
\(399\) −1.31047 4.03321i −0.0656055 0.201913i
\(400\) 0 0
\(401\) 28.2071 + 20.4937i 1.40860 + 1.02341i 0.993524 + 0.113618i \(0.0362440\pi\)
0.415073 + 0.909788i \(0.363756\pi\)
\(402\) 0 0
\(403\) −4.52393 + 13.9232i −0.225353 + 0.693565i
\(404\) 0 0
\(405\) −6.32221 + 4.59335i −0.314153 + 0.228246i
\(406\) 0 0
\(407\) 9.44511 0.327447i 0.468177 0.0162310i
\(408\) 0 0
\(409\) −3.18228 + 2.31206i −0.157354 + 0.114324i −0.663676 0.748020i \(-0.731005\pi\)
0.506322 + 0.862344i \(0.331005\pi\)
\(410\) 0 0
\(411\) 5.20072 16.0062i 0.256532 0.789526i
\(412\) 0 0
\(413\) −6.99854 5.08474i −0.344376 0.250204i
\(414\) 0 0
\(415\) 3.78833 + 11.6593i 0.185962 + 0.572331i
\(416\) 0 0
\(417\) −24.2616 −1.18810
\(418\) 0 0
\(419\) −22.8214 −1.11490 −0.557449 0.830211i \(-0.688220\pi\)
−0.557449 + 0.830211i \(0.688220\pi\)
\(420\) 0 0
\(421\) 8.45973 + 26.0364i 0.412302 + 1.26894i 0.914642 + 0.404265i \(0.132473\pi\)
−0.502340 + 0.864670i \(0.667527\pi\)
\(422\) 0 0
\(423\) −3.02982 2.20129i −0.147315 0.107030i
\(424\) 0 0
\(425\) −0.987822 + 3.04020i −0.0479164 + 0.147471i
\(426\) 0 0
\(427\) 0.176614 0.128317i 0.00854694 0.00620971i
\(428\) 0 0
\(429\) 3.89262 13.5623i 0.187937 0.654792i
\(430\) 0 0
\(431\) 12.6649 9.20162i 0.610049 0.443227i −0.239383 0.970925i \(-0.576945\pi\)
0.849432 + 0.527699i \(0.176945\pi\)
\(432\) 0 0
\(433\) 6.49529 19.9905i 0.312144 0.960680i −0.664770 0.747048i \(-0.731471\pi\)
0.976914 0.213632i \(-0.0685295\pi\)
\(434\) 0 0
\(435\) 9.26272 + 6.72976i 0.444114 + 0.322667i
\(436\) 0 0
\(437\) 1.92568 + 5.92662i 0.0921176 + 0.283509i
\(438\) 0 0
\(439\) −12.7001 −0.606144 −0.303072 0.952968i \(-0.598012\pi\)
−0.303072 + 0.952968i \(0.598012\pi\)
\(440\) 0 0
\(441\) −1.56299 −0.0744281
\(442\) 0 0
\(443\) −4.97295 15.3052i −0.236272 0.727171i −0.996950 0.0780415i \(-0.975133\pi\)
0.760678 0.649129i \(-0.224867\pi\)
\(444\) 0 0
\(445\) 9.19861 + 6.68318i 0.436056 + 0.316813i
\(446\) 0 0
\(447\) 6.31448 19.4340i 0.298665 0.919195i
\(448\) 0 0
\(449\) 0.734658 0.533760i 0.0346706 0.0251897i −0.570315 0.821426i \(-0.693179\pi\)
0.604986 + 0.796236i \(0.293179\pi\)
\(450\) 0 0
\(451\) −32.0523 + 25.0290i −1.50928 + 1.17857i
\(452\) 0 0
\(453\) 17.7776 12.9162i 0.835263 0.606854i
\(454\) 0 0
\(455\) −3.93096 + 12.0982i −0.184286 + 0.567175i
\(456\) 0 0
\(457\) 17.1170 + 12.4362i 0.800698 + 0.581741i 0.911119 0.412144i \(-0.135220\pi\)
−0.110421 + 0.993885i \(0.535220\pi\)
\(458\) 0 0
\(459\) 1.94800 + 5.99532i 0.0909247 + 0.279837i
\(460\) 0 0
\(461\) −27.9700 −1.30269 −0.651347 0.758780i \(-0.725796\pi\)
−0.651347 + 0.758780i \(0.725796\pi\)
\(462\) 0 0
\(463\) −29.9663 −1.39265 −0.696325 0.717726i \(-0.745183\pi\)
−0.696325 + 0.717726i \(0.745183\pi\)
\(464\) 0 0
\(465\) −3.21655 9.89952i −0.149164 0.459079i
\(466\) 0 0
\(467\) 2.25594 + 1.63904i 0.104393 + 0.0758456i 0.638757 0.769409i \(-0.279449\pi\)
−0.534364 + 0.845254i \(0.679449\pi\)
\(468\) 0 0
\(469\) 2.90128 8.92922i 0.133969 0.412313i
\(470\) 0 0
\(471\) 22.6407 16.4494i 1.04323 0.757949i
\(472\) 0 0
\(473\) 2.21627 + 6.09392i 0.101904 + 0.280199i
\(474\) 0 0
\(475\) 2.31963 1.68531i 0.106432 0.0773273i
\(476\) 0 0
\(477\) −0.0215143 + 0.0662142i −0.000985072 + 0.00303174i
\(478\) 0 0
\(479\) −12.7337 9.25158i −0.581818 0.422716i 0.257561 0.966262i \(-0.417081\pi\)
−0.839379 + 0.543546i \(0.817081\pi\)
\(480\) 0 0
\(481\) −2.60295 8.01106i −0.118684 0.365273i
\(482\) 0 0
\(483\) −26.4268 −1.20246
\(484\) 0 0
\(485\) −6.94360 −0.315293
\(486\) 0 0
\(487\) −8.95663 27.5657i −0.405864 1.24912i −0.920172 0.391515i \(-0.871951\pi\)
0.514308 0.857606i \(-0.328049\pi\)
\(488\) 0 0
\(489\) −22.6862 16.4825i −1.02590 0.745363i
\(490\) 0 0
\(491\) 1.63727 5.03898i 0.0738887 0.227406i −0.907291 0.420504i \(-0.861853\pi\)
0.981180 + 0.193098i \(0.0618534\pi\)
\(492\) 0 0
\(493\) 4.91346 3.56984i 0.221291 0.160777i
\(494\) 0 0
\(495\) −1.53756 4.22772i −0.0691081 0.190022i
\(496\) 0 0
\(497\) −27.6006 + 20.0530i −1.23806 + 0.899501i
\(498\) 0 0
\(499\) −8.48604 + 26.1173i −0.379887 + 1.16917i 0.560235 + 0.828334i \(0.310711\pi\)
−0.940122 + 0.340839i \(0.889289\pi\)
\(500\) 0 0
\(501\) −8.90425 6.46932i −0.397813 0.289028i
\(502\) 0 0
\(503\) −7.65020 23.5449i −0.341106 1.04982i −0.963636 0.267219i \(-0.913895\pi\)
0.622530 0.782596i \(-0.286105\pi\)
\(504\) 0 0
\(505\) 2.73688 0.121790
\(506\) 0 0
\(507\) 6.13341 0.272394
\(508\) 0 0
\(509\) −9.59152 29.5197i −0.425137 1.30844i −0.902863 0.429928i \(-0.858539\pi\)
0.477727 0.878509i \(-0.341461\pi\)
\(510\) 0 0
\(511\) 1.15146 + 0.836585i 0.0509376 + 0.0370084i
\(512\) 0 0
\(513\) 1.74724 5.37746i 0.0771426 0.237421i
\(514\) 0 0
\(515\) −3.17625 + 2.30768i −0.139962 + 0.101688i
\(516\) 0 0
\(517\) −10.5405 + 8.23086i −0.463571 + 0.361993i
\(518\) 0 0
\(519\) −1.99686 + 1.45080i −0.0876523 + 0.0636831i
\(520\) 0 0
\(521\) −1.84110 + 5.66632i −0.0806601 + 0.248246i −0.983252 0.182251i \(-0.941662\pi\)
0.902592 + 0.430497i \(0.141662\pi\)
\(522\) 0 0
\(523\) −6.17055 4.48317i −0.269819 0.196035i 0.444645 0.895707i \(-0.353330\pi\)
−0.714465 + 0.699671i \(0.753330\pi\)
\(524\) 0 0
\(525\) 3.75741 + 11.5641i 0.163987 + 0.504699i
\(526\) 0 0
\(527\) −5.52149 −0.240520
\(528\) 0 0
\(529\) 15.8331 0.688394
\(530\) 0 0
\(531\) −0.842583 2.59320i −0.0365650 0.112535i
\(532\) 0 0
\(533\) 29.3234 + 21.3047i 1.27014 + 0.922809i
\(534\) 0 0
\(535\) −1.19789 + 3.68674i −0.0517895 + 0.159392i
\(536\) 0 0
\(537\) −9.77947 + 7.10520i −0.422015 + 0.306612i
\(538\) 0 0
\(539\) −1.53979 + 5.36477i −0.0663233 + 0.231077i
\(540\) 0 0
\(541\) 14.4458 10.4955i 0.621072 0.451235i −0.232224 0.972662i \(-0.574600\pi\)
0.853296 + 0.521427i \(0.174600\pi\)
\(542\) 0 0
\(543\) 8.91719 27.4443i 0.382673 1.17775i
\(544\) 0 0
\(545\) 9.51610 + 6.91385i 0.407625 + 0.296157i
\(546\) 0 0
\(547\) 6.12941 + 18.8644i 0.262075 + 0.806583i 0.992353 + 0.123433i \(0.0393905\pi\)
−0.730278 + 0.683150i \(0.760610\pi\)
\(548\) 0 0
\(549\) 0.0688093 0.00293671
\(550\) 0 0
\(551\) −5.44747 −0.232070
\(552\) 0 0
\(553\) 4.80730 + 14.7953i 0.204427 + 0.629162i
\(554\) 0 0
\(555\) 4.84524 + 3.52027i 0.205669 + 0.149427i
\(556\) 0 0
\(557\) −0.939857 + 2.89258i −0.0398230 + 0.122563i −0.968992 0.247094i \(-0.920525\pi\)
0.929169 + 0.369656i \(0.120525\pi\)
\(558\) 0 0
\(559\) 4.67567 3.39708i 0.197760 0.143681i
\(560\) 0 0
\(561\) 5.31844 0.184382i 0.224545 0.00778461i
\(562\) 0 0
\(563\) 11.7859 8.56296i 0.496716 0.360886i −0.311045 0.950395i \(-0.600679\pi\)
0.807761 + 0.589510i \(0.200679\pi\)
\(564\) 0 0
\(565\) −0.116411 + 0.358276i −0.00489744 + 0.0150728i
\(566\) 0 0
\(567\) 12.7564 + 9.26804i 0.535717 + 0.389221i
\(568\) 0 0
\(569\) −4.64990 14.3109i −0.194934 0.599944i −0.999977 0.00672879i \(-0.997858\pi\)
0.805044 0.593216i \(-0.202142\pi\)
\(570\) 0 0
\(571\) 9.64735 0.403729 0.201864 0.979413i \(-0.435300\pi\)
0.201864 + 0.979413i \(0.435300\pi\)
\(572\) 0 0
\(573\) 19.3494 0.808334
\(574\) 0 0
\(575\) −5.52134 16.9929i −0.230256 0.708654i
\(576\) 0 0
\(577\) −2.08946 1.51808i −0.0869855 0.0631987i 0.543442 0.839446i \(-0.317121\pi\)
−0.630428 + 0.776248i \(0.717121\pi\)
\(578\) 0 0
\(579\) 5.32334 16.3836i 0.221230 0.680877i
\(580\) 0 0
\(581\) 20.0115 14.5392i 0.830219 0.603189i
\(582\) 0 0
\(583\) 0.206077 + 0.139076i 0.00853485 + 0.00575996i
\(584\) 0 0
\(585\) −3.24380 + 2.35676i −0.134115 + 0.0974400i
\(586\) 0 0
\(587\) −6.89037 + 21.2064i −0.284396 + 0.875281i 0.702183 + 0.711997i \(0.252209\pi\)
−0.986579 + 0.163285i \(0.947791\pi\)
\(588\) 0 0
\(589\) 4.00663 + 2.91099i 0.165090 + 0.119945i
\(590\) 0 0
\(591\) 8.01916 + 24.6804i 0.329864 + 1.01522i
\(592\) 0 0
\(593\) −15.2005 −0.624208 −0.312104 0.950048i \(-0.601034\pi\)
−0.312104 + 0.950048i \(0.601034\pi\)
\(594\) 0 0
\(595\) −4.79777 −0.196689
\(596\) 0 0
\(597\) −9.49534 29.2236i −0.388618 1.19604i
\(598\) 0 0
\(599\) 17.8600 + 12.9760i 0.729738 + 0.530186i 0.889481 0.456973i \(-0.151066\pi\)
−0.159743 + 0.987159i \(0.551066\pi\)
\(600\) 0 0
\(601\) −5.10665 + 15.7167i −0.208305 + 0.641096i 0.791257 + 0.611484i \(0.209427\pi\)
−0.999561 + 0.0296118i \(0.990573\pi\)
\(602\) 0 0
\(603\) 2.39412 1.73943i 0.0974960 0.0708350i
\(604\) 0 0
\(605\) −16.0259 + 1.11252i −0.651544 + 0.0452304i
\(606\) 0 0
\(607\) −6.40771 + 4.65548i −0.260081 + 0.188960i −0.710183 0.704017i \(-0.751388\pi\)
0.450102 + 0.892977i \(0.351388\pi\)
\(608\) 0 0
\(609\) 7.13874 21.9708i 0.289276 0.890301i
\(610\) 0 0
\(611\) 9.64310 + 7.00613i 0.390118 + 0.283437i
\(612\) 0 0
\(613\) 5.81789 + 17.9056i 0.234982 + 0.723201i 0.997124 + 0.0757907i \(0.0241481\pi\)
−0.762141 + 0.647411i \(0.775852\pi\)
\(614\) 0 0
\(615\) −25.7710 −1.03919
\(616\) 0 0
\(617\) −13.2885 −0.534975 −0.267487 0.963561i \(-0.586193\pi\)
−0.267487 + 0.963561i \(0.586193\pi\)
\(618\) 0 0
\(619\) −12.0924 37.2166i −0.486035 1.49586i −0.830477 0.557053i \(-0.811932\pi\)
0.344442 0.938807i \(-0.388068\pi\)
\(620\) 0 0
\(621\) −28.5055 20.7105i −1.14389 0.831083i
\(622\) 0 0
\(623\) 7.08933 21.8187i 0.284028 0.874148i
\(624\) 0 0
\(625\) 1.97638 1.43592i 0.0790551 0.0574369i
\(626\) 0 0
\(627\) −3.95649 2.67014i −0.158007 0.106635i
\(628\) 0 0
\(629\) 2.57018 1.86735i 0.102480 0.0744560i
\(630\) 0 0
\(631\) −6.84149 + 21.0559i −0.272355 + 0.838224i 0.717552 + 0.696505i \(0.245263\pi\)
−0.989907 + 0.141718i \(0.954737\pi\)
\(632\) 0 0
\(633\) 32.4754 + 23.5948i 1.29078 + 0.937809i
\(634\) 0 0
\(635\) 8.91681 + 27.4431i 0.353853 + 1.08905i
\(636\) 0 0
\(637\) 4.97458 0.197100
\(638\) 0 0
\(639\) −10.7533 −0.425394
\(640\) 0 0
\(641\) −2.38545 7.34167i −0.0942197 0.289978i 0.892830 0.450394i \(-0.148717\pi\)
−0.987050 + 0.160416i \(0.948717\pi\)
\(642\) 0 0
\(643\) −34.4678 25.0424i −1.35928 0.987574i −0.998490 0.0549265i \(-0.982508\pi\)
−0.360789 0.932648i \(-0.617492\pi\)
\(644\) 0 0
\(645\) −1.26982 + 3.90811i −0.0499992 + 0.153882i
\(646\) 0 0
\(647\) 8.58585 6.23799i 0.337545 0.245241i −0.406080 0.913837i \(-0.633105\pi\)
0.743625 + 0.668597i \(0.233105\pi\)
\(648\) 0 0
\(649\) −9.73093 + 0.337356i −0.381972 + 0.0132424i
\(650\) 0 0
\(651\) −16.9912 + 12.3448i −0.665937 + 0.483832i
\(652\) 0 0
\(653\) −14.9279 + 45.9434i −0.584175 + 1.79791i 0.0183831 + 0.999831i \(0.494148\pi\)
−0.602558 + 0.798075i \(0.705852\pi\)
\(654\) 0 0
\(655\) 5.49103 + 3.98946i 0.214552 + 0.155881i
\(656\) 0 0
\(657\) 0.138629 + 0.426656i 0.00540843 + 0.0166455i
\(658\) 0 0
\(659\) 1.71267 0.0667161 0.0333581 0.999443i \(-0.489380\pi\)
0.0333581 + 0.999443i \(0.489380\pi\)
\(660\) 0 0
\(661\) 48.7587 1.89649 0.948246 0.317536i \(-0.102855\pi\)
0.948246 + 0.317536i \(0.102855\pi\)
\(662\) 0 0
\(663\) −1.46569 4.51094i −0.0569228 0.175190i
\(664\) 0 0
\(665\) 3.48146 + 2.52943i 0.135005 + 0.0980871i
\(666\) 0 0
\(667\) −10.4901 + 32.2851i −0.406177 + 1.25008i
\(668\) 0 0
\(669\) 8.68806 6.31225i 0.335900 0.244046i
\(670\) 0 0
\(671\) 0.0677878 0.236180i 0.00261692 0.00911761i
\(672\) 0 0
\(673\) −13.1869 + 9.58082i −0.508316 + 0.369313i −0.812184 0.583401i \(-0.801722\pi\)
0.303868 + 0.952714i \(0.401722\pi\)
\(674\) 0 0
\(675\) −5.00973 + 15.4184i −0.192825 + 0.593453i
\(676\) 0 0
\(677\) 0.432090 + 0.313932i 0.0166066 + 0.0120654i 0.596058 0.802942i \(-0.296733\pi\)
−0.579451 + 0.815007i \(0.696733\pi\)
\(678\) 0 0
\(679\) 4.32938 + 13.3245i 0.166146 + 0.511346i
\(680\) 0 0
\(681\) 39.8451 1.52687
\(682\) 0 0
\(683\) −22.9689 −0.878882 −0.439441 0.898271i \(-0.644823\pi\)
−0.439441 + 0.898271i \(0.644823\pi\)
\(684\) 0 0
\(685\) 5.27743 + 16.2423i 0.201640 + 0.620585i
\(686\) 0 0
\(687\) −24.5250 17.8185i −0.935688 0.679817i
\(688\) 0 0
\(689\) 0.0684743 0.210742i 0.00260866 0.00802864i
\(690\) 0 0
\(691\) −39.3754 + 28.6079i −1.49791 + 1.08830i −0.526708 + 0.850046i \(0.676574\pi\)
−0.971204 + 0.238251i \(0.923426\pi\)
\(692\) 0 0
\(693\) −7.15413 + 5.58651i −0.271763 + 0.212214i
\(694\) 0 0
\(695\) 19.9176 14.4710i 0.755517 0.548915i
\(696\) 0 0
\(697\) −4.22437 + 13.0013i −0.160009 + 0.492458i
\(698\) 0 0
\(699\) 28.9518 + 21.0347i 1.09506 + 0.795605i
\(700\) 0 0
\(701\) 7.40026 + 22.7756i 0.279504 + 0.860224i 0.987992 + 0.154502i \(0.0493773\pi\)
−0.708489 + 0.705722i \(0.750623\pi\)
\(702\) 0 0
\(703\) −2.84952 −0.107472
\(704\) 0 0
\(705\) −8.47488 −0.319182
\(706\) 0 0
\(707\) −1.70646 5.25195i −0.0641781 0.197520i
\(708\) 0 0
\(709\) 20.6628 + 15.0124i 0.776008 + 0.563803i 0.903778 0.428001i \(-0.140782\pi\)
−0.127770 + 0.991804i \(0.540782\pi\)
\(710\) 0 0
\(711\) −1.51524 + 4.66343i −0.0568259 + 0.174892i
\(712\) 0 0
\(713\) 24.9678 18.1402i 0.935051 0.679354i
\(714\) 0 0
\(715\) 4.89364 + 13.4557i 0.183012 + 0.503215i
\(716\) 0 0
\(717\) −18.2902 + 13.2886i −0.683059 + 0.496271i
\(718\) 0 0
\(719\) 9.37470 28.8524i 0.349617 1.07601i −0.609448 0.792826i \(-0.708609\pi\)
0.959065 0.283185i \(-0.0913912\pi\)
\(720\) 0 0
\(721\) 6.40874 + 4.65622i 0.238674 + 0.173407i
\(722\) 0 0
\(723\) 6.36035 + 19.5752i 0.236544 + 0.728008i
\(724\) 0 0
\(725\) 15.6191 0.580079
\(726\) 0 0
\(727\) −21.9102 −0.812605 −0.406302 0.913739i \(-0.633182\pi\)
−0.406302 + 0.913739i \(0.633182\pi\)
\(728\) 0 0
\(729\) 9.07955 + 27.9440i 0.336280 + 1.03496i
\(730\) 0 0
\(731\) 1.76347 + 1.28123i 0.0652242 + 0.0473881i
\(732\) 0 0
\(733\) −10.3997 + 32.0070i −0.384122 + 1.18221i 0.552994 + 0.833185i \(0.313485\pi\)
−0.937115 + 0.349020i \(0.886515\pi\)
\(734\) 0 0
\(735\) −2.86147 + 2.07898i −0.105547 + 0.0766842i
\(736\) 0 0
\(737\) −3.61180 9.93112i −0.133042 0.365818i
\(738\) 0 0
\(739\) −18.6794 + 13.5714i −0.687132 + 0.499230i −0.875716 0.482827i \(-0.839610\pi\)
0.188584 + 0.982057i \(0.439610\pi\)
\(740\) 0 0
\(741\) −1.31464 + 4.04606i −0.0482946 + 0.148636i
\(742\) 0 0
\(743\) −34.0341 24.7272i −1.24859 0.907154i −0.250451 0.968129i \(-0.580579\pi\)
−0.998139 + 0.0609749i \(0.980579\pi\)
\(744\) 0 0
\(745\) 6.40762 + 19.7206i 0.234757 + 0.722508i
\(746\) 0 0
\(747\) 7.79657 0.285261
\(748\) 0 0
\(749\) 7.82157 0.285794
\(750\) 0 0
\(751\) −9.97077 30.6869i −0.363838 1.11978i −0.950705 0.310096i \(-0.899639\pi\)
0.586867 0.809684i \(-0.300361\pi\)
\(752\) 0 0
\(753\) 0.409578 + 0.297576i 0.0149259 + 0.0108443i
\(754\) 0 0
\(755\) −6.89059 + 21.2071i −0.250774 + 0.771804i
\(756\) 0 0
\(757\) 31.5798 22.9441i 1.14779 0.833917i 0.159603 0.987181i \(-0.448979\pi\)
0.988185 + 0.153264i \(0.0489786\pi\)
\(758\) 0 0
\(759\) −23.4438 + 18.3068i −0.850957 + 0.664495i
\(760\) 0 0
\(761\) 43.4969 31.6023i 1.57676 1.14558i 0.656468 0.754354i \(-0.272050\pi\)
0.920293 0.391229i \(-0.127950\pi\)
\(762\) 0 0
\(763\) 7.33401 22.5718i 0.265509 0.817153i
\(764\) 0 0
\(765\) −1.22342 0.888870i −0.0442330 0.0321372i
\(766\) 0 0
\(767\) 2.68172 + 8.25348i 0.0968313 + 0.298016i
\(768\) 0 0
\(769\) 37.2325 1.34264 0.671319 0.741168i \(-0.265728\pi\)
0.671319 + 0.741168i \(0.265728\pi\)
\(770\) 0 0
\(771\) −1.68747 −0.0607727
\(772\) 0 0
\(773\) 2.83313 + 8.71946i 0.101900 + 0.313617i 0.988990 0.147979i \(-0.0472768\pi\)
−0.887090 + 0.461596i \(0.847277\pi\)
\(774\) 0 0
\(775\) −11.4879 8.34644i −0.412657 0.299813i
\(776\) 0 0
\(777\) 3.73421 11.4927i 0.133964 0.412299i
\(778\) 0 0
\(779\) 9.91978 7.20715i 0.355413 0.258223i
\(780\) 0 0
\(781\) −10.5937 + 36.9094i −0.379071 + 1.32072i
\(782\) 0 0
\(783\) 24.9186 18.1044i 0.890517 0.646999i
\(784\) 0 0
\(785\) −8.77554 + 27.0083i −0.313212 + 0.963969i
\(786\) 0 0
\(787\) −1.82857 1.32853i −0.0651815 0.0473572i 0.554717 0.832039i \(-0.312826\pi\)
−0.619899 + 0.784682i \(0.712826\pi\)
\(788\) 0 0
\(789\) 5.15069 + 15.8522i 0.183370 + 0.564353i
\(790\) 0 0
\(791\) 0.760097 0.0270259
\(792\) 0 0
\(793\) −0.219002 −0.00777699
\(794\) 0 0
\(795\) 0.0486858 + 0.149839i 0.00172671 + 0.00531426i
\(796\) 0 0
\(797\) −23.8779 17.3483i −0.845798 0.614508i 0.0781865 0.996939i \(-0.475087\pi\)
−0.923984 + 0.382431i \(0.875087\pi\)
\(798\) 0 0
\(799\) −1.38920 + 4.27552i −0.0491463 + 0.151257i
\(800\) 0 0
\(801\) 5.85006 4.25032i 0.206702 0.150178i
\(802\) 0 0
\(803\) 1.60102 0.0555047i 0.0564987 0.00195872i
\(804\) 0 0
\(805\) 21.6951 15.7624i 0.764653 0.555553i
\(806\) 0 0
\(807\) −0.365918 + 1.12618i −0.0128809 + 0.0396434i
\(808\) 0 0
\(809\) 36.9244 + 26.8272i 1.29819 + 0.943193i 0.999936 0.0112921i \(-0.00359448\pi\)
0.298258 + 0.954485i \(0.403594\pi\)
\(810\) 0 0
\(811\) −8.31247 25.5832i −0.291890 0.898346i −0.984248 0.176792i \(-0.943428\pi\)
0.692358 0.721554i \(-0.256572\pi\)
\(812\) 0 0
\(813\) −16.8354 −0.590445
\(814\) 0 0
\(815\) 28.4553 0.996746
\(816\) 0 0
\(817\) −0.604167 1.85943i −0.0211371 0.0650534i
\(818\) 0 0
\(819\) 6.54504 + 4.75525i 0.228702 + 0.166162i
\(820\) 0 0
\(821\) −8.56963 + 26.3746i −0.299082 + 0.920480i 0.682738 + 0.730664i \(0.260789\pi\)
−0.981820 + 0.189816i \(0.939211\pi\)
\(822\) 0 0
\(823\) 0.410277 0.298084i 0.0143014 0.0103906i −0.580612 0.814181i \(-0.697187\pi\)
0.594913 + 0.803790i \(0.297187\pi\)
\(824\) 0 0
\(825\) 11.3441 + 7.65588i 0.394952 + 0.266543i
\(826\) 0 0
\(827\) −1.51155 + 1.09821i −0.0525618 + 0.0381884i −0.613756 0.789496i \(-0.710342\pi\)
0.561194 + 0.827684i \(0.310342\pi\)
\(828\) 0 0
\(829\) 13.3355 41.0425i 0.463161 1.42546i −0.398119 0.917334i \(-0.630337\pi\)
0.861281 0.508130i \(-0.169663\pi\)
\(830\) 0 0
\(831\) 1.78403 + 1.29617i 0.0618873 + 0.0449638i
\(832\) 0 0
\(833\) 0.579778 + 1.78437i 0.0200881 + 0.0618249i
\(834\) 0 0
\(835\) 11.1686 0.386506
\(836\) 0 0
\(837\) −28.0022 −0.967898
\(838\) 0 0
\(839\) −5.24736 16.1497i −0.181159 0.557550i 0.818702 0.574218i \(-0.194694\pi\)
−0.999861 + 0.0166686i \(0.994694\pi\)
\(840\) 0 0
\(841\) −0.546012 0.396701i −0.0188280 0.0136793i
\(842\) 0 0
\(843\) −6.78497 + 20.8820i −0.233687 + 0.719214i
\(844\) 0 0
\(845\) −5.03523 + 3.65831i −0.173217 + 0.125850i
\(846\) 0 0
\(847\) 12.1271 + 30.0592i 0.416692 + 1.03285i
\(848\) 0 0
\(849\) 10.4405 7.58548i 0.358318 0.260333i
\(850\) 0 0
\(851\) −5.48725 + 16.8880i −0.188100 + 0.578914i
\(852\) 0 0
\(853\) −16.5048 11.9914i −0.565114 0.410579i 0.268213 0.963360i \(-0.413567\pi\)
−0.833327 + 0.552780i \(0.813567\pi\)
\(854\) 0 0
\(855\) 0.419147 + 1.29000i 0.0143345 + 0.0441172i
\(856\) 0 0
\(857\) −24.6779 −0.842981 −0.421490 0.906833i \(-0.638493\pi\)
−0.421490 + 0.906833i \(0.638493\pi\)
\(858\) 0 0
\(859\) −3.52545 −0.120287 −0.0601433 0.998190i \(-0.519156\pi\)
−0.0601433 + 0.998190i \(0.519156\pi\)
\(860\) 0 0
\(861\) 16.0684 + 49.4533i 0.547608 + 1.68536i
\(862\) 0 0
\(863\) 31.8266 + 23.1234i 1.08339 + 0.787130i 0.978271 0.207329i \(-0.0664772\pi\)
0.105121 + 0.994459i \(0.466477\pi\)
\(864\) 0 0
\(865\) 0.773983 2.38207i 0.0263162 0.0809929i
\(866\) 0 0
\(867\) −18.3461 + 13.3293i −0.623068 + 0.452685i
\(868\) 0 0
\(869\) 14.5139 + 9.79507i 0.492350 + 0.332275i
\(870\) 0 0
\(871\) −7.61984 + 5.53614i −0.258189 + 0.187585i
\(872\) 0 0
\(873\) −1.36460 + 4.19981i −0.0461848 + 0.142142i
\(874\) 0 0
\(875\) −27.3894 19.8996i −0.925932 0.672729i
\(876\) 0 0
\(877\) −15.7541 48.4860i −0.531977 1.63726i −0.750093 0.661333i \(-0.769991\pi\)
0.218116 0.975923i \(-0.430009\pi\)
\(878\) 0 0
\(879\) 21.2111 0.715433
\(880\) 0 0
\(881\) −11.9057 −0.401112 −0.200556 0.979682i \(-0.564275\pi\)
−0.200556 + 0.979682i \(0.564275\pi\)
\(882\) 0 0
\(883\) 15.9426 + 49.0663i 0.536512 + 1.65121i 0.740360 + 0.672210i \(0.234655\pi\)
−0.203849 + 0.979002i \(0.565345\pi\)
\(884\) 0 0
\(885\) −4.99186 3.62680i −0.167800 0.121914i
\(886\) 0 0
\(887\) −3.71113 + 11.4217i −0.124607 + 0.383502i −0.993829 0.110920i \(-0.964620\pi\)
0.869222 + 0.494422i \(0.164620\pi\)
\(888\) 0 0
\(889\) 47.1024 34.2219i 1.57976 1.14777i
\(890\) 0 0
\(891\) 17.7367 0.614905i 0.594203 0.0206001i
\(892\) 0 0
\(893\) 3.26216 2.37010i 0.109164 0.0793122i
\(894\) 0 0
\(895\) 3.79053 11.6660i 0.126703 0.389953i
\(896\) 0 0
\(897\) 21.4479 + 15.5828i 0.716123 + 0.520294i
\(898\) 0 0
\(899\) 8.33678 + 25.6580i 0.278047 + 0.855742i
\(900\) 0 0
\(901\) 0.0835735 0.00278424
\(902\) 0 0
\(903\) 8.29123 0.275915
\(904\) 0 0
\(905\) 9.04873 + 27.8491i 0.300790 + 0.925736i
\(906\) 0 0
\(907\) −26.2567 19.0766i −0.871839 0.633428i 0.0592407 0.998244i \(-0.481132\pi\)
−0.931080 + 0.364816i \(0.881132\pi\)
\(908\) 0 0
\(909\) 0.537870 1.65539i 0.0178400 0.0549059i
\(910\) 0 0
\(911\) −2.28751 + 1.66197i −0.0757886 + 0.0550636i −0.625034 0.780597i \(-0.714915\pi\)
0.549246 + 0.835661i \(0.314915\pi\)
\(912\) 0 0
\(913\) 7.68083 26.7608i 0.254198 0.885652i
\(914\) 0 0
\(915\) 0.125974 0.0915252i 0.00416456 0.00302573i
\(916\) 0 0
\(917\) 4.23191 13.0245i 0.139750 0.430106i
\(918\) 0 0
\(919\) 27.7668 + 20.1737i 0.915941 + 0.665470i 0.942510 0.334177i \(-0.108458\pi\)
−0.0265692 + 0.999647i \(0.508458\pi\)
\(920\) 0 0
\(921\) −2.48360 7.64374i −0.0818375 0.251870i
\(922\) 0 0
\(923\) 34.2249 1.12653
\(924\) 0 0
\(925\) 8.17020 0.268635
\(926\) 0 0
\(927\) 0.771574 + 2.37466i 0.0253418 + 0.0779941i
\(928\) 0 0
\(929\) 34.8929 + 25.3512i 1.14480 + 0.831745i 0.987781 0.155851i \(-0.0498120\pi\)
0.157018 + 0.987596i \(0.449812\pi\)
\(930\) 0 0
\(931\) 0.520028 1.60048i 0.0170432 0.0524537i
\(932\) 0 0
\(933\) −33.1872 + 24.1119i −1.08650 + 0.789388i
\(934\) 0 0
\(935\) −4.25620 + 3.32358i −0.139193 + 0.108693i
\(936\) 0 0
\(937\) −44.7267 + 32.4958i −1.46116 + 1.06159i −0.478097 + 0.878307i \(0.658673\pi\)
−0.983060 + 0.183286i \(0.941327\pi\)
\(938\) 0 0
\(939\) 7.37852 22.7088i 0.240789 0.741072i
\(940\) 0 0
\(941\) −10.4023 7.55768i −0.339104 0.246373i 0.405180 0.914237i \(-0.367209\pi\)
−0.744284 + 0.667864i \(0.767209\pi\)
\(942\) 0 0
\(943\) −23.6117 72.6694i −0.768904 2.36644i
\(944\) 0 0
\(945\) −24.3318 −0.791515
\(946\) 0 0
\(947\) −5.74390 −0.186652 −0.0933258 0.995636i \(-0.529750\pi\)
−0.0933258 + 0.995636i \(0.529750\pi\)
\(948\) 0 0
\(949\) −0.441220 1.35793i −0.0143226 0.0440804i
\(950\) 0 0
\(951\) 25.7836 + 18.7328i 0.836089 + 0.607454i
\(952\) 0 0
\(953\) −1.09429 + 3.36786i −0.0354474 + 0.109096i −0.967215 0.253960i \(-0.918267\pi\)
0.931767 + 0.363056i \(0.118267\pi\)
\(954\) 0 0
\(955\) −15.8849 + 11.5411i −0.514024 + 0.373460i
\(956\) 0 0
\(957\) −8.88700 24.4360i −0.287276 0.789904i
\(958\) 0 0
\(959\) 27.8777 20.2543i 0.900216 0.654045i
\(960\) 0 0
\(961\) −2.00029 + 6.15627i −0.0645256 + 0.198589i
\(962\) 0 0
\(963\) 1.99449 + 1.44908i 0.0642716 + 0.0466960i
\(964\) 0 0
\(965\) 5.40187 + 16.6252i 0.173892 + 0.535185i
\(966\) 0 0
\(967\) −48.5614 −1.56163 −0.780815 0.624762i \(-0.785196\pi\)
−0.780815 + 0.624762i \(0.785196\pi\)
\(968\) 0 0
\(969\) −1.60453 −0.0515450
\(970\) 0 0
\(971\) −5.49626 16.9157i −0.176383 0.542852i 0.823311 0.567591i \(-0.192125\pi\)
−0.999694 + 0.0247390i \(0.992125\pi\)
\(972\) 0 0
\(973\) −40.1878 29.1982i −1.28836 0.936050i
\(974\) 0 0
\(975\) 3.76937 11.6009i 0.120717 0.371527i
\(976\) 0 0
\(977\) −17.2000 + 12.4966i −0.550278 + 0.399800i −0.827888 0.560894i \(-0.810458\pi\)
0.277610 + 0.960694i \(0.410458\pi\)
\(978\) 0 0
\(979\) −8.82549 24.2669i −0.282064 0.775572i
\(980\) 0 0
\(981\) 6.05198 4.39702i 0.193225 0.140386i
\(982\) 0 0
\(983\) −16.7843 + 51.6568i −0.535336 + 1.64760i 0.207585 + 0.978217i \(0.433440\pi\)
−0.742921 + 0.669379i \(0.766560\pi\)
\(984\) 0 0
\(985\) −21.3041 15.4783i −0.678806 0.493181i
\(986\) 0 0
\(987\) 5.28414 + 16.2629i 0.168196 + 0.517654i
\(988\) 0 0
\(989\) −12.1836 −0.387416
\(990\) 0 0
\(991\) −15.7311 −0.499714 −0.249857 0.968283i \(-0.580384\pi\)
−0.249857 + 0.968283i \(0.580384\pi\)
\(992\) 0 0
\(993\) −10.4199 32.0691i −0.330665 1.01768i
\(994\) 0 0
\(995\) 25.2258 + 18.3276i 0.799712 + 0.581025i
\(996\) 0 0
\(997\) 8.60209 26.4745i 0.272431 0.838456i −0.717457 0.696603i \(-0.754694\pi\)
0.989888 0.141853i \(-0.0453061\pi\)
\(998\) 0 0
\(999\) 13.0347 9.47024i 0.412399 0.299625i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 836.2.j.b.685.2 yes 20
11.2 odd 10 9196.2.a.t.1.3 10
11.4 even 5 inner 836.2.j.b.609.2 20
11.9 even 5 9196.2.a.s.1.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.b.609.2 20 11.4 even 5 inner
836.2.j.b.685.2 yes 20 1.1 even 1 trivial
9196.2.a.s.1.3 10 11.9 even 5
9196.2.a.t.1.3 10 11.2 odd 10