Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [84,4,Mod(19,84)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(84, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 5]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("84.19");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 84 = 2^{2} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 84.o (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.95616044048\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −2.75199 | + | 0.653091i | −1.50000 | − | 2.59808i | 7.14694 | − | 3.59460i | 9.22104 | + | 5.32377i | 5.82477 | + | 6.17025i | −18.0489 | − | 4.15182i | −17.3207 | + | 14.5599i | −4.50000 | + | 7.79423i | −28.8532 | − | 8.62881i |
19.2 | −2.65324 | − | 0.979961i | −1.50000 | − | 2.59808i | 6.07935 | + | 5.20014i | −3.65498 | − | 2.11020i | 1.43384 | + | 8.36326i | 4.33605 | − | 18.0055i | −11.0340 | − | 19.7547i | −4.50000 | + | 7.79423i | 7.62961 | + | 9.18060i |
19.3 | −2.51510 | + | 1.29394i | −1.50000 | − | 2.59808i | 4.65146 | − | 6.50876i | −13.3774 | − | 7.72344i | 7.13439 | + | 4.59352i | 10.8861 | + | 14.9831i | −3.27697 | + | 22.3889i | −4.50000 | + | 7.79423i | 43.6391 | + | 2.11574i |
19.4 | −1.80305 | − | 2.17922i | −1.50000 | − | 2.59808i | −1.49801 | + | 7.85850i | 8.01713 | + | 4.62869i | −2.95720 | + | 7.95330i | 11.9290 | + | 14.1668i | 19.8264 | − | 10.9048i | −4.50000 | + | 7.79423i | −4.36836 | − | 25.8169i |
19.5 | −0.746666 | + | 2.72809i | −1.50000 | − | 2.59808i | −6.88498 | − | 4.07395i | 13.2084 | + | 7.62590i | 8.20779 | − | 2.15224i | −10.0891 | + | 15.5309i | 16.2549 | − | 15.7410i | −4.50000 | + | 7.79423i | −30.6665 | + | 30.3399i |
19.6 | −0.199616 | − | 2.82137i | −1.50000 | − | 2.59808i | −7.92031 | + | 1.12638i | −0.0819989 | − | 0.0473421i | −7.03072 | + | 4.75068i | −18.4054 | − | 2.05975i | 4.75896 | + | 22.1213i | −4.50000 | + | 7.79423i | −0.117202 | + | 0.240800i |
19.7 | −0.0644263 | + | 2.82769i | −1.50000 | − | 2.59808i | −7.99170 | − | 0.364356i | −4.32707 | − | 2.49824i | 7.44320 | − | 4.07416i | 15.5037 | − | 10.1309i | 1.54516 | − | 22.5746i | −4.50000 | + | 7.79423i | 7.34303 | − | 12.0747i |
19.8 | 1.49919 | + | 2.39842i | −1.50000 | − | 2.59808i | −3.50484 | + | 7.19139i | −11.8351 | − | 6.83298i | 3.98249 | − | 7.49265i | −16.3232 | + | 8.74950i | −22.5024 | + | 2.37520i | −4.50000 | + | 7.79423i | −1.35469 | − | 38.6294i |
19.9 | 1.63466 | − | 2.30822i | −1.50000 | − | 2.59808i | −2.65580 | − | 7.54631i | −12.0209 | − | 6.94026i | −8.44893 | − | 0.784626i | 13.4721 | + | 12.7083i | −21.7599 | − | 6.20544i | −4.50000 | + | 7.79423i | −35.6697 | + | 16.4020i |
19.10 | 2.12158 | − | 1.87053i | −1.50000 | − | 2.59808i | 1.00225 | − | 7.93697i | 18.9410 | + | 10.9356i | −8.04215 | − | 2.70625i | 2.66595 | − | 18.3274i | −12.7200 | − | 18.7137i | −4.50000 | + | 7.79423i | 60.6402 | − | 12.2289i |
19.11 | 2.22073 | + | 1.75167i | −1.50000 | − | 2.59808i | 1.86331 | + | 7.77998i | 7.82897 | + | 4.52006i | 1.21987 | − | 8.39714i | 17.6230 | − | 5.69464i | −9.49004 | + | 20.5412i | −4.50000 | + | 7.79423i | 9.46840 | + | 23.7516i |
19.12 | 2.75793 | − | 0.627568i | −1.50000 | − | 2.59808i | 7.21232 | − | 3.46157i | −11.9192 | − | 6.88154i | −5.76736 | − | 6.22395i | −8.54943 | − | 16.4289i | 17.7187 | − | 14.0730i | −4.50000 | + | 7.79423i | −37.1908 | − | 11.4987i |
31.1 | −2.75199 | − | 0.653091i | −1.50000 | + | 2.59808i | 7.14694 | + | 3.59460i | 9.22104 | − | 5.32377i | 5.82477 | − | 6.17025i | −18.0489 | + | 4.15182i | −17.3207 | − | 14.5599i | −4.50000 | − | 7.79423i | −28.8532 | + | 8.62881i |
31.2 | −2.65324 | + | 0.979961i | −1.50000 | + | 2.59808i | 6.07935 | − | 5.20014i | −3.65498 | + | 2.11020i | 1.43384 | − | 8.36326i | 4.33605 | + | 18.0055i | −11.0340 | + | 19.7547i | −4.50000 | − | 7.79423i | 7.62961 | − | 9.18060i |
31.3 | −2.51510 | − | 1.29394i | −1.50000 | + | 2.59808i | 4.65146 | + | 6.50876i | −13.3774 | + | 7.72344i | 7.13439 | − | 4.59352i | 10.8861 | − | 14.9831i | −3.27697 | − | 22.3889i | −4.50000 | − | 7.79423i | 43.6391 | − | 2.11574i |
31.4 | −1.80305 | + | 2.17922i | −1.50000 | + | 2.59808i | −1.49801 | − | 7.85850i | 8.01713 | − | 4.62869i | −2.95720 | − | 7.95330i | 11.9290 | − | 14.1668i | 19.8264 | + | 10.9048i | −4.50000 | − | 7.79423i | −4.36836 | + | 25.8169i |
31.5 | −0.746666 | − | 2.72809i | −1.50000 | + | 2.59808i | −6.88498 | + | 4.07395i | 13.2084 | − | 7.62590i | 8.20779 | + | 2.15224i | −10.0891 | − | 15.5309i | 16.2549 | + | 15.7410i | −4.50000 | − | 7.79423i | −30.6665 | − | 30.3399i |
31.6 | −0.199616 | + | 2.82137i | −1.50000 | + | 2.59808i | −7.92031 | − | 1.12638i | −0.0819989 | + | 0.0473421i | −7.03072 | − | 4.75068i | −18.4054 | + | 2.05975i | 4.75896 | − | 22.1213i | −4.50000 | − | 7.79423i | −0.117202 | − | 0.240800i |
31.7 | −0.0644263 | − | 2.82769i | −1.50000 | + | 2.59808i | −7.99170 | + | 0.364356i | −4.32707 | + | 2.49824i | 7.44320 | + | 4.07416i | 15.5037 | + | 10.1309i | 1.54516 | + | 22.5746i | −4.50000 | − | 7.79423i | 7.34303 | + | 12.0747i |
31.8 | 1.49919 | − | 2.39842i | −1.50000 | + | 2.59808i | −3.50484 | − | 7.19139i | −11.8351 | + | 6.83298i | 3.98249 | + | 7.49265i | −16.3232 | − | 8.74950i | −22.5024 | − | 2.37520i | −4.50000 | − | 7.79423i | −1.35469 | + | 38.6294i |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
28.f | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 84.4.o.a | ✓ | 24 |
4.b | odd | 2 | 1 | 84.4.o.b | yes | 24 | |
7.d | odd | 6 | 1 | 84.4.o.b | yes | 24 | |
28.f | even | 6 | 1 | inner | 84.4.o.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
84.4.o.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
84.4.o.a | ✓ | 24 | 28.f | even | 6 | 1 | inner |
84.4.o.b | yes | 24 | 4.b | odd | 2 | 1 | |
84.4.o.b | yes | 24 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{24} - 6 T_{11}^{23} - 8863 T_{11}^{22} + 53250 T_{11}^{21} + 51135286 T_{11}^{20} + \cdots + 32\!\cdots\!00 \) acting on \(S_{4}^{\mathrm{new}}(84, [\chi])\).