Properties

Label 841.2.a.g.1.2
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.11973625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 15x^{3} + 13x^{2} - 27x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.94573\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.94573 q^{2} -2.27154 q^{3} +1.78585 q^{4} +3.21726 q^{5} +4.41979 q^{6} -2.53022 q^{7} +0.416673 q^{8} +2.15987 q^{9} -6.25991 q^{10} -1.12328 q^{11} -4.05663 q^{12} -1.54902 q^{13} +4.92311 q^{14} -7.30813 q^{15} -4.38244 q^{16} +4.41979 q^{17} -4.20253 q^{18} -4.91337 q^{19} +5.74556 q^{20} +5.74748 q^{21} +2.18560 q^{22} +2.47406 q^{23} -0.946487 q^{24} +5.35078 q^{25} +3.01398 q^{26} +1.90838 q^{27} -4.51860 q^{28} +14.2196 q^{30} +1.58761 q^{31} +7.69368 q^{32} +2.55158 q^{33} -8.59970 q^{34} -8.14037 q^{35} +3.85722 q^{36} +8.28372 q^{37} +9.56008 q^{38} +3.51866 q^{39} +1.34055 q^{40} -11.7882 q^{41} -11.1830 q^{42} +1.88390 q^{43} -2.00602 q^{44} +6.94888 q^{45} -4.81385 q^{46} -0.962649 q^{47} +9.95486 q^{48} -0.597997 q^{49} -10.4111 q^{50} -10.0397 q^{51} -2.76633 q^{52} +1.61810 q^{53} -3.71318 q^{54} -3.61390 q^{55} -1.05427 q^{56} +11.1609 q^{57} -13.3686 q^{59} -13.0512 q^{60} -1.92241 q^{61} -3.08905 q^{62} -5.46495 q^{63} -6.20492 q^{64} -4.98362 q^{65} -4.96468 q^{66} -3.02385 q^{67} +7.89309 q^{68} -5.61992 q^{69} +15.8389 q^{70} +4.14265 q^{71} +0.899961 q^{72} -3.79682 q^{73} -16.1178 q^{74} -12.1545 q^{75} -8.77456 q^{76} +2.84215 q^{77} -6.84635 q^{78} -13.2356 q^{79} -14.0994 q^{80} -10.8146 q^{81} +22.9366 q^{82} -9.70833 q^{83} +10.2642 q^{84} +14.2196 q^{85} -3.66555 q^{86} -0.468042 q^{88} +4.87979 q^{89} -13.5206 q^{90} +3.91937 q^{91} +4.41831 q^{92} -3.60630 q^{93} +1.87305 q^{94} -15.8076 q^{95} -17.4765 q^{96} -15.6150 q^{97} +1.16354 q^{98} -2.42615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 2 q^{3} + 8 q^{4} - 2 q^{5} - 3 q^{6} - 4 q^{7} - 3 q^{8} + 6 q^{9} - 15 q^{10} - 13 q^{11} + 4 q^{12} - 6 q^{13} + 6 q^{14} - 19 q^{15} + 4 q^{16} - 3 q^{17} - 17 q^{18} + 6 q^{19} - 5 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.94573 −1.37584 −0.687918 0.725788i \(-0.741475\pi\)
−0.687918 + 0.725788i \(0.741475\pi\)
\(3\) −2.27154 −1.31147 −0.655736 0.754990i \(-0.727642\pi\)
−0.655736 + 0.754990i \(0.727642\pi\)
\(4\) 1.78585 0.892926
\(5\) 3.21726 1.43880 0.719402 0.694594i \(-0.244416\pi\)
0.719402 + 0.694594i \(0.244416\pi\)
\(6\) 4.41979 1.80437
\(7\) −2.53022 −0.956332 −0.478166 0.878269i \(-0.658698\pi\)
−0.478166 + 0.878269i \(0.658698\pi\)
\(8\) 0.416673 0.147316
\(9\) 2.15987 0.719958
\(10\) −6.25991 −1.97956
\(11\) −1.12328 −0.338683 −0.169341 0.985557i \(-0.554164\pi\)
−0.169341 + 0.985557i \(0.554164\pi\)
\(12\) −4.05663 −1.17105
\(13\) −1.54902 −0.429622 −0.214811 0.976656i \(-0.568914\pi\)
−0.214811 + 0.976656i \(0.568914\pi\)
\(14\) 4.92311 1.31576
\(15\) −7.30813 −1.88695
\(16\) −4.38244 −1.09561
\(17\) 4.41979 1.07196 0.535978 0.844232i \(-0.319943\pi\)
0.535978 + 0.844232i \(0.319943\pi\)
\(18\) −4.20253 −0.990545
\(19\) −4.91337 −1.12721 −0.563603 0.826046i \(-0.690585\pi\)
−0.563603 + 0.826046i \(0.690585\pi\)
\(20\) 5.74556 1.28475
\(21\) 5.74748 1.25420
\(22\) 2.18560 0.465972
\(23\) 2.47406 0.515877 0.257939 0.966161i \(-0.416957\pi\)
0.257939 + 0.966161i \(0.416957\pi\)
\(24\) −0.946487 −0.193201
\(25\) 5.35078 1.07016
\(26\) 3.01398 0.591089
\(27\) 1.90838 0.367267
\(28\) −4.51860 −0.853934
\(29\) 0 0
\(30\) 14.2196 2.59613
\(31\) 1.58761 0.285142 0.142571 0.989785i \(-0.454463\pi\)
0.142571 + 0.989785i \(0.454463\pi\)
\(32\) 7.69368 1.36006
\(33\) 2.55158 0.444173
\(34\) −8.59970 −1.47484
\(35\) −8.14037 −1.37597
\(36\) 3.85722 0.642869
\(37\) 8.28372 1.36183 0.680917 0.732360i \(-0.261581\pi\)
0.680917 + 0.732360i \(0.261581\pi\)
\(38\) 9.56008 1.55085
\(39\) 3.51866 0.563437
\(40\) 1.34055 0.211959
\(41\) −11.7882 −1.84101 −0.920504 0.390733i \(-0.872222\pi\)
−0.920504 + 0.390733i \(0.872222\pi\)
\(42\) −11.1830 −1.72558
\(43\) 1.88390 0.287292 0.143646 0.989629i \(-0.454117\pi\)
0.143646 + 0.989629i \(0.454117\pi\)
\(44\) −2.00602 −0.302419
\(45\) 6.94888 1.03588
\(46\) −4.81385 −0.709763
\(47\) −0.962649 −0.140417 −0.0702084 0.997532i \(-0.522366\pi\)
−0.0702084 + 0.997532i \(0.522366\pi\)
\(48\) 9.95486 1.43686
\(49\) −0.597997 −0.0854282
\(50\) −10.4111 −1.47236
\(51\) −10.0397 −1.40584
\(52\) −2.76633 −0.383621
\(53\) 1.61810 0.222263 0.111132 0.993806i \(-0.464552\pi\)
0.111132 + 0.993806i \(0.464552\pi\)
\(54\) −3.71318 −0.505299
\(55\) −3.61390 −0.487298
\(56\) −1.05427 −0.140883
\(57\) 11.1609 1.47830
\(58\) 0 0
\(59\) −13.3686 −1.74045 −0.870224 0.492657i \(-0.836026\pi\)
−0.870224 + 0.492657i \(0.836026\pi\)
\(60\) −13.0512 −1.68491
\(61\) −1.92241 −0.246140 −0.123070 0.992398i \(-0.539274\pi\)
−0.123070 + 0.992398i \(0.539274\pi\)
\(62\) −3.08905 −0.392309
\(63\) −5.46495 −0.688519
\(64\) −6.20492 −0.775615
\(65\) −4.98362 −0.618141
\(66\) −4.96468 −0.611109
\(67\) −3.02385 −0.369421 −0.184711 0.982793i \(-0.559135\pi\)
−0.184711 + 0.982793i \(0.559135\pi\)
\(68\) 7.89309 0.957177
\(69\) −5.61992 −0.676559
\(70\) 15.8389 1.89312
\(71\) 4.14265 0.491642 0.245821 0.969315i \(-0.420942\pi\)
0.245821 + 0.969315i \(0.420942\pi\)
\(72\) 0.899961 0.106061
\(73\) −3.79682 −0.444384 −0.222192 0.975003i \(-0.571321\pi\)
−0.222192 + 0.975003i \(0.571321\pi\)
\(74\) −16.1178 −1.87366
\(75\) −12.1545 −1.40348
\(76\) −8.77456 −1.00651
\(77\) 2.84215 0.323893
\(78\) −6.84635 −0.775197
\(79\) −13.2356 −1.48913 −0.744563 0.667552i \(-0.767342\pi\)
−0.744563 + 0.667552i \(0.767342\pi\)
\(80\) −14.0994 −1.57637
\(81\) −10.8146 −1.20162
\(82\) 22.9366 2.53293
\(83\) −9.70833 −1.06563 −0.532814 0.846232i \(-0.678865\pi\)
−0.532814 + 0.846232i \(0.678865\pi\)
\(84\) 10.2642 1.11991
\(85\) 14.2196 1.54233
\(86\) −3.66555 −0.395267
\(87\) 0 0
\(88\) −0.468042 −0.0498934
\(89\) 4.87979 0.517257 0.258628 0.965977i \(-0.416730\pi\)
0.258628 + 0.965977i \(0.416730\pi\)
\(90\) −13.5206 −1.42520
\(91\) 3.91937 0.410861
\(92\) 4.41831 0.460640
\(93\) −3.60630 −0.373956
\(94\) 1.87305 0.193190
\(95\) −15.8076 −1.62183
\(96\) −17.4765 −1.78368
\(97\) −15.6150 −1.58546 −0.792731 0.609571i \(-0.791342\pi\)
−0.792731 + 0.609571i \(0.791342\pi\)
\(98\) 1.16354 0.117535
\(99\) −2.42615 −0.243837
\(100\) 9.55570 0.955570
\(101\) −11.3941 −1.13376 −0.566880 0.823800i \(-0.691850\pi\)
−0.566880 + 0.823800i \(0.691850\pi\)
\(102\) 19.5345 1.93421
\(103\) 7.38911 0.728070 0.364035 0.931385i \(-0.381399\pi\)
0.364035 + 0.931385i \(0.381399\pi\)
\(104\) −0.645436 −0.0632902
\(105\) 18.4912 1.80455
\(106\) −3.14838 −0.305798
\(107\) −11.9202 −1.15237 −0.576183 0.817321i \(-0.695458\pi\)
−0.576183 + 0.817321i \(0.695458\pi\)
\(108\) 3.40808 0.327942
\(109\) 16.1719 1.54898 0.774492 0.632583i \(-0.218005\pi\)
0.774492 + 0.632583i \(0.218005\pi\)
\(110\) 7.03166 0.670442
\(111\) −18.8168 −1.78601
\(112\) 11.0885 1.04777
\(113\) −6.34816 −0.597184 −0.298592 0.954381i \(-0.596517\pi\)
−0.298592 + 0.954381i \(0.596517\pi\)
\(114\) −21.7161 −2.03390
\(115\) 7.95970 0.742246
\(116\) 0 0
\(117\) −3.34570 −0.309310
\(118\) 26.0117 2.39457
\(119\) −11.1830 −1.02515
\(120\) −3.04510 −0.277978
\(121\) −9.73823 −0.885294
\(122\) 3.74049 0.338648
\(123\) 26.7773 2.41443
\(124\) 2.83523 0.254611
\(125\) 1.12854 0.100940
\(126\) 10.6333 0.947290
\(127\) −17.8415 −1.58318 −0.791590 0.611053i \(-0.790746\pi\)
−0.791590 + 0.611053i \(0.790746\pi\)
\(128\) −3.31428 −0.292943
\(129\) −4.27934 −0.376775
\(130\) 9.69675 0.850461
\(131\) 0.574730 0.0502144 0.0251072 0.999685i \(-0.492007\pi\)
0.0251072 + 0.999685i \(0.492007\pi\)
\(132\) 4.55674 0.396614
\(133\) 12.4319 1.07798
\(134\) 5.88358 0.508264
\(135\) 6.13974 0.528425
\(136\) 1.84161 0.157916
\(137\) 13.7829 1.17755 0.588774 0.808297i \(-0.299611\pi\)
0.588774 + 0.808297i \(0.299611\pi\)
\(138\) 10.9348 0.930834
\(139\) 10.6013 0.899192 0.449596 0.893232i \(-0.351568\pi\)
0.449596 + 0.893232i \(0.351568\pi\)
\(140\) −14.5375 −1.22864
\(141\) 2.18669 0.184153
\(142\) −8.06046 −0.676419
\(143\) 1.73999 0.145506
\(144\) −9.46551 −0.788793
\(145\) 0 0
\(146\) 7.38758 0.611400
\(147\) 1.35837 0.112037
\(148\) 14.7935 1.21602
\(149\) 2.36656 0.193876 0.0969381 0.995290i \(-0.469095\pi\)
0.0969381 + 0.995290i \(0.469095\pi\)
\(150\) 23.6493 1.93096
\(151\) 9.74934 0.793390 0.396695 0.917950i \(-0.370157\pi\)
0.396695 + 0.917950i \(0.370157\pi\)
\(152\) −2.04727 −0.166056
\(153\) 9.54619 0.771763
\(154\) −5.53005 −0.445624
\(155\) 5.10774 0.410264
\(156\) 6.28381 0.503108
\(157\) 18.7547 1.49679 0.748396 0.663252i \(-0.230824\pi\)
0.748396 + 0.663252i \(0.230824\pi\)
\(158\) 25.7530 2.04879
\(159\) −3.67557 −0.291492
\(160\) 24.7526 1.95686
\(161\) −6.25991 −0.493350
\(162\) 21.0422 1.65323
\(163\) −9.65226 −0.756023 −0.378012 0.925801i \(-0.623392\pi\)
−0.378012 + 0.925801i \(0.623392\pi\)
\(164\) −21.0520 −1.64388
\(165\) 8.20910 0.639078
\(166\) 18.8898 1.46613
\(167\) 0.464845 0.0359708 0.0179854 0.999838i \(-0.494275\pi\)
0.0179854 + 0.999838i \(0.494275\pi\)
\(168\) 2.39482 0.184764
\(169\) −10.6005 −0.815425
\(170\) −27.6675 −2.12200
\(171\) −10.6123 −0.811541
\(172\) 3.36437 0.256530
\(173\) −22.2914 −1.69478 −0.847392 0.530968i \(-0.821828\pi\)
−0.847392 + 0.530968i \(0.821828\pi\)
\(174\) 0 0
\(175\) −13.5386 −1.02342
\(176\) 4.92272 0.371064
\(177\) 30.3673 2.28255
\(178\) −9.49474 −0.711661
\(179\) 7.50994 0.561319 0.280660 0.959807i \(-0.409447\pi\)
0.280660 + 0.959807i \(0.409447\pi\)
\(180\) 12.4097 0.924963
\(181\) −23.9371 −1.77923 −0.889615 0.456711i \(-0.849027\pi\)
−0.889615 + 0.456711i \(0.849027\pi\)
\(182\) −7.62602 −0.565278
\(183\) 4.36683 0.322806
\(184\) 1.03087 0.0759971
\(185\) 26.6509 1.95941
\(186\) 7.01688 0.514503
\(187\) −4.96468 −0.363053
\(188\) −1.71915 −0.125382
\(189\) −4.82861 −0.351229
\(190\) 30.7573 2.23137
\(191\) −13.4059 −0.970016 −0.485008 0.874510i \(-0.661183\pi\)
−0.485008 + 0.874510i \(0.661183\pi\)
\(192\) 14.0947 1.01720
\(193\) −12.7705 −0.919243 −0.459622 0.888115i \(-0.652015\pi\)
−0.459622 + 0.888115i \(0.652015\pi\)
\(194\) 30.3825 2.18134
\(195\) 11.3205 0.810675
\(196\) −1.06794 −0.0762811
\(197\) −4.07710 −0.290481 −0.145241 0.989396i \(-0.546396\pi\)
−0.145241 + 0.989396i \(0.546396\pi\)
\(198\) 4.72063 0.335480
\(199\) 16.9678 1.20282 0.601409 0.798941i \(-0.294606\pi\)
0.601409 + 0.798941i \(0.294606\pi\)
\(200\) 2.22952 0.157651
\(201\) 6.86877 0.484486
\(202\) 22.1699 1.55987
\(203\) 0 0
\(204\) −17.9294 −1.25531
\(205\) −37.9258 −2.64885
\(206\) −14.3772 −1.00171
\(207\) 5.34366 0.371410
\(208\) 6.78850 0.470698
\(209\) 5.51911 0.381765
\(210\) −35.9787 −2.48277
\(211\) −4.41621 −0.304024 −0.152012 0.988379i \(-0.548575\pi\)
−0.152012 + 0.988379i \(0.548575\pi\)
\(212\) 2.88969 0.198465
\(213\) −9.41017 −0.644774
\(214\) 23.1934 1.58547
\(215\) 6.06100 0.413357
\(216\) 0.795168 0.0541044
\(217\) −4.01699 −0.272691
\(218\) −31.4660 −2.13115
\(219\) 8.62462 0.582798
\(220\) −6.45389 −0.435121
\(221\) −6.84635 −0.460536
\(222\) 36.6123 2.45725
\(223\) −17.0683 −1.14298 −0.571488 0.820611i \(-0.693634\pi\)
−0.571488 + 0.820611i \(0.693634\pi\)
\(224\) −19.4667 −1.30067
\(225\) 11.5570 0.770467
\(226\) 12.3518 0.821628
\(227\) −9.78008 −0.649127 −0.324563 0.945864i \(-0.605217\pi\)
−0.324563 + 0.945864i \(0.605217\pi\)
\(228\) 19.9317 1.32001
\(229\) 3.43919 0.227268 0.113634 0.993523i \(-0.463751\pi\)
0.113634 + 0.993523i \(0.463751\pi\)
\(230\) −15.4874 −1.02121
\(231\) −6.45605 −0.424777
\(232\) 0 0
\(233\) −4.39157 −0.287702 −0.143851 0.989599i \(-0.545949\pi\)
−0.143851 + 0.989599i \(0.545949\pi\)
\(234\) 6.50981 0.425560
\(235\) −3.09709 −0.202032
\(236\) −23.8744 −1.55409
\(237\) 30.0652 1.95295
\(238\) 21.7591 1.41043
\(239\) 17.6803 1.14364 0.571821 0.820378i \(-0.306237\pi\)
0.571821 + 0.820378i \(0.306237\pi\)
\(240\) 32.0274 2.06736
\(241\) 11.4068 0.734778 0.367389 0.930067i \(-0.380252\pi\)
0.367389 + 0.930067i \(0.380252\pi\)
\(242\) 18.9479 1.21802
\(243\) 18.8405 1.20862
\(244\) −3.43315 −0.219785
\(245\) −1.92391 −0.122914
\(246\) −52.1014 −3.32186
\(247\) 7.61093 0.484272
\(248\) 0.661512 0.0420061
\(249\) 22.0528 1.39754
\(250\) −2.19583 −0.138877
\(251\) −25.5356 −1.61179 −0.805897 0.592056i \(-0.798317\pi\)
−0.805897 + 0.592056i \(0.798317\pi\)
\(252\) −9.75960 −0.614797
\(253\) −2.77907 −0.174719
\(254\) 34.7147 2.17820
\(255\) −32.3004 −2.02273
\(256\) 18.8585 1.17866
\(257\) 0.178617 0.0111418 0.00557091 0.999984i \(-0.498227\pi\)
0.00557091 + 0.999984i \(0.498227\pi\)
\(258\) 8.32643 0.518381
\(259\) −20.9596 −1.30237
\(260\) −8.90000 −0.551955
\(261\) 0 0
\(262\) −1.11827 −0.0690869
\(263\) −5.63230 −0.347303 −0.173651 0.984807i \(-0.555557\pi\)
−0.173651 + 0.984807i \(0.555557\pi\)
\(264\) 1.06317 0.0654338
\(265\) 5.20585 0.319793
\(266\) −24.1891 −1.48313
\(267\) −11.0846 −0.678367
\(268\) −5.40014 −0.329866
\(269\) 1.94833 0.118792 0.0593958 0.998235i \(-0.481083\pi\)
0.0593958 + 0.998235i \(0.481083\pi\)
\(270\) −11.9463 −0.727026
\(271\) 17.4418 1.05951 0.529756 0.848150i \(-0.322284\pi\)
0.529756 + 0.848150i \(0.322284\pi\)
\(272\) −19.3694 −1.17444
\(273\) −8.90298 −0.538833
\(274\) −26.8177 −1.62011
\(275\) −6.01044 −0.362443
\(276\) −10.0363 −0.604117
\(277\) −15.3445 −0.921964 −0.460982 0.887409i \(-0.652503\pi\)
−0.460982 + 0.887409i \(0.652503\pi\)
\(278\) −20.6273 −1.23714
\(279\) 3.42903 0.205291
\(280\) −3.39187 −0.202703
\(281\) −13.2112 −0.788114 −0.394057 0.919086i \(-0.628929\pi\)
−0.394057 + 0.919086i \(0.628929\pi\)
\(282\) −4.25470 −0.253364
\(283\) −11.1563 −0.663170 −0.331585 0.943425i \(-0.607583\pi\)
−0.331585 + 0.943425i \(0.607583\pi\)
\(284\) 7.39816 0.439000
\(285\) 35.9076 2.12698
\(286\) −3.38555 −0.200192
\(287\) 29.8267 1.76062
\(288\) 16.6174 0.979188
\(289\) 2.53452 0.149090
\(290\) 0 0
\(291\) 35.4700 2.07929
\(292\) −6.78056 −0.396802
\(293\) 6.80277 0.397422 0.198711 0.980058i \(-0.436324\pi\)
0.198711 + 0.980058i \(0.436324\pi\)
\(294\) −2.64302 −0.154144
\(295\) −43.0104 −2.50416
\(296\) 3.45160 0.200620
\(297\) −2.14365 −0.124387
\(298\) −4.60468 −0.266742
\(299\) −3.83238 −0.221632
\(300\) −21.7061 −1.25320
\(301\) −4.76668 −0.274747
\(302\) −18.9695 −1.09157
\(303\) 25.8822 1.48689
\(304\) 21.5325 1.23498
\(305\) −6.18491 −0.354147
\(306\) −18.5743 −1.06182
\(307\) 16.1578 0.922176 0.461088 0.887354i \(-0.347459\pi\)
0.461088 + 0.887354i \(0.347459\pi\)
\(308\) 5.07567 0.289213
\(309\) −16.7846 −0.954844
\(310\) −9.93827 −0.564456
\(311\) 4.33954 0.246073 0.123036 0.992402i \(-0.460737\pi\)
0.123036 + 0.992402i \(0.460737\pi\)
\(312\) 1.46613 0.0830033
\(313\) 1.07340 0.0606724 0.0303362 0.999540i \(-0.490342\pi\)
0.0303362 + 0.999540i \(0.490342\pi\)
\(314\) −36.4916 −2.05934
\(315\) −17.5822 −0.990644
\(316\) −23.6369 −1.32968
\(317\) −7.79415 −0.437763 −0.218882 0.975751i \(-0.570241\pi\)
−0.218882 + 0.975751i \(0.570241\pi\)
\(318\) 7.15166 0.401045
\(319\) 0 0
\(320\) −19.9629 −1.11596
\(321\) 27.0771 1.51130
\(322\) 12.1801 0.678769
\(323\) −21.7161 −1.20831
\(324\) −19.3132 −1.07296
\(325\) −8.28848 −0.459762
\(326\) 18.7807 1.04016
\(327\) −36.7350 −2.03145
\(328\) −4.91183 −0.271210
\(329\) 2.43571 0.134285
\(330\) −15.9727 −0.879266
\(331\) 9.95716 0.547295 0.273648 0.961830i \(-0.411770\pi\)
0.273648 + 0.961830i \(0.411770\pi\)
\(332\) −17.3377 −0.951527
\(333\) 17.8918 0.980464
\(334\) −0.904461 −0.0494899
\(335\) −9.72850 −0.531525
\(336\) −25.1880 −1.37412
\(337\) 21.3599 1.16355 0.581774 0.813350i \(-0.302359\pi\)
0.581774 + 0.813350i \(0.302359\pi\)
\(338\) 20.6257 1.12189
\(339\) 14.4201 0.783191
\(340\) 25.3941 1.37719
\(341\) −1.78333 −0.0965728
\(342\) 20.6486 1.11655
\(343\) 19.2246 1.03803
\(344\) 0.784970 0.0423227
\(345\) −18.0807 −0.973435
\(346\) 43.3730 2.33174
\(347\) 26.9149 1.44487 0.722434 0.691440i \(-0.243023\pi\)
0.722434 + 0.691440i \(0.243023\pi\)
\(348\) 0 0
\(349\) 18.7783 1.00518 0.502591 0.864524i \(-0.332380\pi\)
0.502591 + 0.864524i \(0.332380\pi\)
\(350\) 26.3425 1.40806
\(351\) −2.95612 −0.157786
\(352\) −8.64218 −0.460630
\(353\) 29.5764 1.57419 0.787095 0.616831i \(-0.211584\pi\)
0.787095 + 0.616831i \(0.211584\pi\)
\(354\) −59.0865 −3.14041
\(355\) 13.3280 0.707376
\(356\) 8.71458 0.461872
\(357\) 25.4026 1.34445
\(358\) −14.6123 −0.772283
\(359\) −20.2837 −1.07053 −0.535267 0.844683i \(-0.679789\pi\)
−0.535267 + 0.844683i \(0.679789\pi\)
\(360\) 2.89541 0.152602
\(361\) 5.14124 0.270592
\(362\) 46.5750 2.44793
\(363\) 22.1207 1.16104
\(364\) 6.99941 0.366869
\(365\) −12.2154 −0.639382
\(366\) −8.49667 −0.444128
\(367\) 16.9933 0.887044 0.443522 0.896263i \(-0.353729\pi\)
0.443522 + 0.896263i \(0.353729\pi\)
\(368\) −10.8424 −0.565200
\(369\) −25.4610 −1.32545
\(370\) −51.8553 −2.69583
\(371\) −4.09415 −0.212558
\(372\) −6.44033 −0.333915
\(373\) −10.4156 −0.539300 −0.269650 0.962958i \(-0.586908\pi\)
−0.269650 + 0.962958i \(0.586908\pi\)
\(374\) 9.65990 0.499502
\(375\) −2.56352 −0.132380
\(376\) −0.401110 −0.0206856
\(377\) 0 0
\(378\) 9.39515 0.483234
\(379\) −22.8981 −1.17619 −0.588097 0.808790i \(-0.700123\pi\)
−0.588097 + 0.808790i \(0.700123\pi\)
\(380\) −28.2301 −1.44817
\(381\) 40.5277 2.07630
\(382\) 26.0842 1.33458
\(383\) −2.90269 −0.148320 −0.0741602 0.997246i \(-0.523628\pi\)
−0.0741602 + 0.997246i \(0.523628\pi\)
\(384\) 7.52849 0.384187
\(385\) 9.14395 0.466019
\(386\) 24.8480 1.26473
\(387\) 4.06899 0.206838
\(388\) −27.8861 −1.41570
\(389\) 3.15385 0.159907 0.0799533 0.996799i \(-0.474523\pi\)
0.0799533 + 0.996799i \(0.474523\pi\)
\(390\) −22.0265 −1.11536
\(391\) 10.9348 0.552998
\(392\) −0.249169 −0.0125850
\(393\) −1.30552 −0.0658548
\(394\) 7.93292 0.399655
\(395\) −42.5826 −2.14256
\(396\) −4.33275 −0.217729
\(397\) 21.2009 1.06404 0.532021 0.846731i \(-0.321433\pi\)
0.532021 + 0.846731i \(0.321433\pi\)
\(398\) −33.0148 −1.65488
\(399\) −28.2395 −1.41374
\(400\) −23.4494 −1.17247
\(401\) −4.29991 −0.214728 −0.107364 0.994220i \(-0.534241\pi\)
−0.107364 + 0.994220i \(0.534241\pi\)
\(402\) −13.3648 −0.666573
\(403\) −2.45924 −0.122503
\(404\) −20.3483 −1.01236
\(405\) −34.7933 −1.72889
\(406\) 0 0
\(407\) −9.30497 −0.461230
\(408\) −4.18327 −0.207103
\(409\) −25.4982 −1.26081 −0.630403 0.776268i \(-0.717110\pi\)
−0.630403 + 0.776268i \(0.717110\pi\)
\(410\) 73.7931 3.64438
\(411\) −31.3082 −1.54432
\(412\) 13.1959 0.650113
\(413\) 33.8255 1.66445
\(414\) −10.3973 −0.511000
\(415\) −31.2343 −1.53323
\(416\) −11.9177 −0.584313
\(417\) −24.0813 −1.17927
\(418\) −10.7387 −0.525246
\(419\) 6.74628 0.329578 0.164789 0.986329i \(-0.447306\pi\)
0.164789 + 0.986329i \(0.447306\pi\)
\(420\) 33.0225 1.61133
\(421\) 34.5466 1.68370 0.841849 0.539713i \(-0.181467\pi\)
0.841849 + 0.539713i \(0.181467\pi\)
\(422\) 8.59273 0.418288
\(423\) −2.07920 −0.101094
\(424\) 0.674219 0.0327430
\(425\) 23.6493 1.14716
\(426\) 18.3096 0.887104
\(427\) 4.86413 0.235392
\(428\) −21.2877 −1.02898
\(429\) −3.95246 −0.190826
\(430\) −11.7930 −0.568711
\(431\) 9.87958 0.475882 0.237941 0.971280i \(-0.423527\pi\)
0.237941 + 0.971280i \(0.423527\pi\)
\(432\) −8.36333 −0.402381
\(433\) −3.20188 −0.153873 −0.0769363 0.997036i \(-0.524514\pi\)
−0.0769363 + 0.997036i \(0.524514\pi\)
\(434\) 7.81596 0.375178
\(435\) 0 0
\(436\) 28.8806 1.38313
\(437\) −12.1560 −0.581500
\(438\) −16.7811 −0.801834
\(439\) 6.41437 0.306141 0.153071 0.988215i \(-0.451084\pi\)
0.153071 + 0.988215i \(0.451084\pi\)
\(440\) −1.50581 −0.0717869
\(441\) −1.29160 −0.0615047
\(442\) 13.3211 0.633622
\(443\) 8.49949 0.403823 0.201911 0.979404i \(-0.435285\pi\)
0.201911 + 0.979404i \(0.435285\pi\)
\(444\) −33.6040 −1.59477
\(445\) 15.6996 0.744231
\(446\) 33.2102 1.57255
\(447\) −5.37573 −0.254263
\(448\) 15.6998 0.741746
\(449\) −16.9423 −0.799555 −0.399778 0.916612i \(-0.630913\pi\)
−0.399778 + 0.916612i \(0.630913\pi\)
\(450\) −22.4868 −1.06004
\(451\) 13.2415 0.623518
\(452\) −11.3369 −0.533242
\(453\) −22.1460 −1.04051
\(454\) 19.0294 0.893092
\(455\) 12.6096 0.591149
\(456\) 4.65045 0.217777
\(457\) 0.505911 0.0236655 0.0118328 0.999930i \(-0.496233\pi\)
0.0118328 + 0.999930i \(0.496233\pi\)
\(458\) −6.69173 −0.312684
\(459\) 8.43461 0.393694
\(460\) 14.2149 0.662771
\(461\) −5.50088 −0.256201 −0.128101 0.991761i \(-0.540888\pi\)
−0.128101 + 0.991761i \(0.540888\pi\)
\(462\) 12.5617 0.584424
\(463\) −6.56599 −0.305148 −0.152574 0.988292i \(-0.548756\pi\)
−0.152574 + 0.988292i \(0.548756\pi\)
\(464\) 0 0
\(465\) −11.6024 −0.538050
\(466\) 8.54480 0.395830
\(467\) 4.47819 0.207226 0.103613 0.994618i \(-0.466960\pi\)
0.103613 + 0.994618i \(0.466960\pi\)
\(468\) −5.97492 −0.276191
\(469\) 7.65099 0.353290
\(470\) 6.02610 0.277963
\(471\) −42.6021 −1.96300
\(472\) −5.57035 −0.256396
\(473\) −2.11615 −0.0973008
\(474\) −58.4988 −2.68694
\(475\) −26.2904 −1.20628
\(476\) −19.9712 −0.915380
\(477\) 3.49489 0.160020
\(478\) −34.4010 −1.57347
\(479\) −9.27693 −0.423874 −0.211937 0.977283i \(-0.567977\pi\)
−0.211937 + 0.977283i \(0.567977\pi\)
\(480\) −56.2264 −2.56637
\(481\) −12.8317 −0.585074
\(482\) −22.1946 −1.01093
\(483\) 14.2196 0.647015
\(484\) −17.3910 −0.790502
\(485\) −50.2375 −2.28117
\(486\) −36.6586 −1.66287
\(487\) 38.0837 1.72574 0.862869 0.505428i \(-0.168665\pi\)
0.862869 + 0.505428i \(0.168665\pi\)
\(488\) −0.801018 −0.0362604
\(489\) 21.9254 0.991503
\(490\) 3.74341 0.169110
\(491\) 31.5938 1.42581 0.712904 0.701262i \(-0.247380\pi\)
0.712904 + 0.701262i \(0.247380\pi\)
\(492\) 47.8204 2.15591
\(493\) 0 0
\(494\) −14.8088 −0.666279
\(495\) −7.80557 −0.350834
\(496\) −6.95758 −0.312405
\(497\) −10.4818 −0.470173
\(498\) −42.9088 −1.92279
\(499\) −21.0654 −0.943016 −0.471508 0.881862i \(-0.656290\pi\)
−0.471508 + 0.881862i \(0.656290\pi\)
\(500\) 2.01541 0.0901318
\(501\) −1.05591 −0.0471746
\(502\) 49.6853 2.21757
\(503\) −26.2365 −1.16983 −0.584915 0.811095i \(-0.698872\pi\)
−0.584915 + 0.811095i \(0.698872\pi\)
\(504\) −2.27710 −0.101430
\(505\) −36.6580 −1.63126
\(506\) 5.40732 0.240384
\(507\) 24.0795 1.06941
\(508\) −31.8623 −1.41366
\(509\) −20.9900 −0.930366 −0.465183 0.885215i \(-0.654011\pi\)
−0.465183 + 0.885215i \(0.654011\pi\)
\(510\) 62.8477 2.78294
\(511\) 9.60679 0.424979
\(512\) −30.0650 −1.32870
\(513\) −9.37656 −0.413985
\(514\) −0.347540 −0.0153293
\(515\) 23.7727 1.04755
\(516\) −7.64228 −0.336432
\(517\) 1.08133 0.0475567
\(518\) 40.7817 1.79184
\(519\) 50.6357 2.22266
\(520\) −2.07654 −0.0910622
\(521\) −37.4112 −1.63901 −0.819507 0.573069i \(-0.805753\pi\)
−0.819507 + 0.573069i \(0.805753\pi\)
\(522\) 0 0
\(523\) 17.4633 0.763618 0.381809 0.924241i \(-0.375301\pi\)
0.381809 + 0.924241i \(0.375301\pi\)
\(524\) 1.02638 0.0448378
\(525\) 30.7535 1.34219
\(526\) 10.9589 0.477832
\(527\) 7.01688 0.305660
\(528\) −11.1821 −0.486640
\(529\) −16.8790 −0.733871
\(530\) −10.1292 −0.439983
\(531\) −28.8746 −1.25305
\(532\) 22.2015 0.962559
\(533\) 18.2602 0.790937
\(534\) 21.5676 0.933323
\(535\) −38.3503 −1.65803
\(536\) −1.25995 −0.0544217
\(537\) −17.0591 −0.736154
\(538\) −3.79091 −0.163438
\(539\) 0.671721 0.0289331
\(540\) 10.9647 0.471845
\(541\) 5.69494 0.244845 0.122422 0.992478i \(-0.460934\pi\)
0.122422 + 0.992478i \(0.460934\pi\)
\(542\) −33.9369 −1.45771
\(543\) 54.3740 2.33341
\(544\) 34.0044 1.45793
\(545\) 52.0292 2.22868
\(546\) 17.3228 0.741346
\(547\) −26.1122 −1.11648 −0.558238 0.829681i \(-0.688522\pi\)
−0.558238 + 0.829681i \(0.688522\pi\)
\(548\) 24.6141 1.05146
\(549\) −4.15217 −0.177210
\(550\) 11.6947 0.498663
\(551\) 0 0
\(552\) −2.34167 −0.0996680
\(553\) 33.4891 1.42410
\(554\) 29.8563 1.26847
\(555\) −60.5385 −2.56971
\(556\) 18.9324 0.802912
\(557\) 28.6514 1.21400 0.606998 0.794703i \(-0.292373\pi\)
0.606998 + 0.794703i \(0.292373\pi\)
\(558\) −6.67195 −0.282446
\(559\) −2.91820 −0.123427
\(560\) 35.6747 1.50753
\(561\) 11.2774 0.476134
\(562\) 25.7054 1.08432
\(563\) 2.23595 0.0942341 0.0471170 0.998889i \(-0.484997\pi\)
0.0471170 + 0.998889i \(0.484997\pi\)
\(564\) 3.90511 0.164435
\(565\) −20.4237 −0.859231
\(566\) 21.7070 0.912414
\(567\) 27.3632 1.14915
\(568\) 1.72613 0.0724268
\(569\) 14.6792 0.615385 0.307692 0.951486i \(-0.400443\pi\)
0.307692 + 0.951486i \(0.400443\pi\)
\(570\) −69.8663 −2.92638
\(571\) 20.8600 0.872962 0.436481 0.899714i \(-0.356225\pi\)
0.436481 + 0.899714i \(0.356225\pi\)
\(572\) 3.10737 0.129926
\(573\) 30.4520 1.27215
\(574\) −58.0347 −2.42232
\(575\) 13.2381 0.552069
\(576\) −13.4018 −0.558410
\(577\) 22.4919 0.936348 0.468174 0.883636i \(-0.344912\pi\)
0.468174 + 0.883636i \(0.344912\pi\)
\(578\) −4.93149 −0.205123
\(579\) 29.0087 1.20556
\(580\) 0 0
\(581\) 24.5642 1.01909
\(582\) −69.0150 −2.86076
\(583\) −1.81759 −0.0752767
\(584\) −1.58203 −0.0654650
\(585\) −10.7640 −0.445036
\(586\) −13.2363 −0.546788
\(587\) 16.4960 0.680864 0.340432 0.940269i \(-0.389427\pi\)
0.340432 + 0.940269i \(0.389427\pi\)
\(588\) 2.42585 0.100040
\(589\) −7.80050 −0.321414
\(590\) 83.6865 3.44532
\(591\) 9.26127 0.380958
\(592\) −36.3029 −1.49204
\(593\) −45.1022 −1.85212 −0.926062 0.377371i \(-0.876828\pi\)
−0.926062 + 0.377371i \(0.876828\pi\)
\(594\) 4.17095 0.171136
\(595\) −35.9787 −1.47498
\(596\) 4.22633 0.173117
\(597\) −38.5431 −1.57746
\(598\) 7.45676 0.304930
\(599\) 10.5711 0.431925 0.215963 0.976402i \(-0.430711\pi\)
0.215963 + 0.976402i \(0.430711\pi\)
\(600\) −5.06444 −0.206755
\(601\) −0.743399 −0.0303239 −0.0151619 0.999885i \(-0.504826\pi\)
−0.0151619 + 0.999885i \(0.504826\pi\)
\(602\) 9.27465 0.378006
\(603\) −6.53113 −0.265968
\(604\) 17.4109 0.708439
\(605\) −31.3305 −1.27376
\(606\) −50.3597 −2.04572
\(607\) −32.6175 −1.32390 −0.661952 0.749546i \(-0.730272\pi\)
−0.661952 + 0.749546i \(0.730272\pi\)
\(608\) −37.8019 −1.53307
\(609\) 0 0
\(610\) 12.0342 0.487248
\(611\) 1.49117 0.0603261
\(612\) 17.0481 0.689128
\(613\) 15.0054 0.606064 0.303032 0.952980i \(-0.402001\pi\)
0.303032 + 0.952980i \(0.402001\pi\)
\(614\) −31.4387 −1.26876
\(615\) 86.1497 3.47389
\(616\) 1.18425 0.0477147
\(617\) 41.5249 1.67173 0.835864 0.548936i \(-0.184967\pi\)
0.835864 + 0.548936i \(0.184967\pi\)
\(618\) 32.6583 1.31371
\(619\) −21.3783 −0.859268 −0.429634 0.903003i \(-0.641357\pi\)
−0.429634 + 0.903003i \(0.641357\pi\)
\(620\) 9.12168 0.366335
\(621\) 4.72144 0.189465
\(622\) −8.44356 −0.338556
\(623\) −12.3469 −0.494669
\(624\) −15.4203 −0.617307
\(625\) −23.1231 −0.924923
\(626\) −2.08855 −0.0834752
\(627\) −12.5369 −0.500674
\(628\) 33.4932 1.33652
\(629\) 36.6123 1.45983
\(630\) 34.2101 1.36296
\(631\) 22.2833 0.887085 0.443542 0.896253i \(-0.353722\pi\)
0.443542 + 0.896253i \(0.353722\pi\)
\(632\) −5.51494 −0.219372
\(633\) 10.0316 0.398719
\(634\) 15.1653 0.602290
\(635\) −57.4009 −2.27788
\(636\) −6.56403 −0.260281
\(637\) 0.926312 0.0367018
\(638\) 0 0
\(639\) 8.94760 0.353962
\(640\) −10.6629 −0.421488
\(641\) −26.5934 −1.05038 −0.525188 0.850986i \(-0.676005\pi\)
−0.525188 + 0.850986i \(0.676005\pi\)
\(642\) −52.6846 −2.07930
\(643\) 38.2237 1.50740 0.753699 0.657220i \(-0.228268\pi\)
0.753699 + 0.657220i \(0.228268\pi\)
\(644\) −11.1793 −0.440525
\(645\) −13.7678 −0.542106
\(646\) 42.2535 1.66244
\(647\) 32.8334 1.29081 0.645407 0.763839i \(-0.276688\pi\)
0.645407 + 0.763839i \(0.276688\pi\)
\(648\) −4.50614 −0.177018
\(649\) 15.0168 0.589460
\(650\) 16.1271 0.632558
\(651\) 9.12473 0.357626
\(652\) −17.2375 −0.675073
\(653\) 1.30358 0.0510131 0.0255066 0.999675i \(-0.491880\pi\)
0.0255066 + 0.999675i \(0.491880\pi\)
\(654\) 71.4762 2.79494
\(655\) 1.84906 0.0722487
\(656\) 51.6611 2.01703
\(657\) −8.20066 −0.319938
\(658\) −4.73923 −0.184754
\(659\) 19.7479 0.769267 0.384634 0.923069i \(-0.374328\pi\)
0.384634 + 0.923069i \(0.374328\pi\)
\(660\) 14.6602 0.570649
\(661\) −42.1752 −1.64042 −0.820212 0.572059i \(-0.806145\pi\)
−0.820212 + 0.572059i \(0.806145\pi\)
\(662\) −19.3739 −0.752989
\(663\) 15.5517 0.603980
\(664\) −4.04520 −0.156984
\(665\) 39.9967 1.55101
\(666\) −34.8125 −1.34896
\(667\) 0 0
\(668\) 0.830144 0.0321192
\(669\) 38.7712 1.49898
\(670\) 18.9290 0.731291
\(671\) 2.15942 0.0833634
\(672\) 44.2193 1.70579
\(673\) −41.6873 −1.60693 −0.803464 0.595353i \(-0.797012\pi\)
−0.803464 + 0.595353i \(0.797012\pi\)
\(674\) −41.5605 −1.60085
\(675\) 10.2113 0.393033
\(676\) −18.9310 −0.728114
\(677\) 24.5737 0.944443 0.472221 0.881480i \(-0.343452\pi\)
0.472221 + 0.881480i \(0.343452\pi\)
\(678\) −28.0575 −1.07754
\(679\) 39.5093 1.51623
\(680\) 5.92493 0.227211
\(681\) 22.2158 0.851311
\(682\) 3.46988 0.132868
\(683\) 43.1311 1.65036 0.825182 0.564867i \(-0.191072\pi\)
0.825182 + 0.564867i \(0.191072\pi\)
\(684\) −18.9519 −0.724646
\(685\) 44.3431 1.69426
\(686\) −37.4058 −1.42816
\(687\) −7.81225 −0.298056
\(688\) −8.25607 −0.314760
\(689\) −2.50648 −0.0954891
\(690\) 35.1802 1.33929
\(691\) −41.0599 −1.56199 −0.780996 0.624536i \(-0.785288\pi\)
−0.780996 + 0.624536i \(0.785288\pi\)
\(692\) −39.8091 −1.51332
\(693\) 6.13869 0.233190
\(694\) −52.3691 −1.98790
\(695\) 34.1072 1.29376
\(696\) 0 0
\(697\) −52.1014 −1.97348
\(698\) −36.5375 −1.38297
\(699\) 9.97562 0.377313
\(700\) −24.1780 −0.913842
\(701\) 1.11188 0.0419949 0.0209975 0.999780i \(-0.493316\pi\)
0.0209975 + 0.999780i \(0.493316\pi\)
\(702\) 5.75180 0.217088
\(703\) −40.7010 −1.53507
\(704\) 6.96989 0.262687
\(705\) 7.03516 0.264959
\(706\) −57.5475 −2.16583
\(707\) 28.8297 1.08425
\(708\) 54.2315 2.03815
\(709\) 29.9385 1.12437 0.562183 0.827013i \(-0.309962\pi\)
0.562183 + 0.827013i \(0.309962\pi\)
\(710\) −25.9326 −0.973234
\(711\) −28.5873 −1.07211
\(712\) 2.03328 0.0762002
\(713\) 3.92783 0.147099
\(714\) −49.4266 −1.84974
\(715\) 5.59801 0.209354
\(716\) 13.4116 0.501217
\(717\) −40.1614 −1.49986
\(718\) 39.4666 1.47288
\(719\) −5.03075 −0.187615 −0.0938076 0.995590i \(-0.529904\pi\)
−0.0938076 + 0.995590i \(0.529904\pi\)
\(720\) −30.4530 −1.13492
\(721\) −18.6961 −0.696277
\(722\) −10.0034 −0.372290
\(723\) −25.9110 −0.963640
\(724\) −42.7481 −1.58872
\(725\) 0 0
\(726\) −43.0409 −1.59740
\(727\) −0.650727 −0.0241341 −0.0120671 0.999927i \(-0.503841\pi\)
−0.0120671 + 0.999927i \(0.503841\pi\)
\(728\) 1.63309 0.0605265
\(729\) −10.3533 −0.383455
\(730\) 23.7678 0.879685
\(731\) 8.32643 0.307964
\(732\) 7.79852 0.288242
\(733\) −11.3833 −0.420451 −0.210225 0.977653i \(-0.567420\pi\)
−0.210225 + 0.977653i \(0.567420\pi\)
\(734\) −33.0644 −1.22043
\(735\) 4.37024 0.161199
\(736\) 19.0346 0.701626
\(737\) 3.39664 0.125117
\(738\) 49.5402 1.82360
\(739\) 19.1778 0.705465 0.352732 0.935724i \(-0.385253\pi\)
0.352732 + 0.935724i \(0.385253\pi\)
\(740\) 47.5946 1.74961
\(741\) −17.2885 −0.635109
\(742\) 7.96609 0.292444
\(743\) −32.1621 −1.17991 −0.589956 0.807436i \(-0.700855\pi\)
−0.589956 + 0.807436i \(0.700855\pi\)
\(744\) −1.50265 −0.0550898
\(745\) 7.61385 0.278950
\(746\) 20.2659 0.741988
\(747\) −20.9688 −0.767208
\(748\) −8.86618 −0.324180
\(749\) 30.1606 1.10205
\(750\) 4.98792 0.182133
\(751\) 38.3085 1.39790 0.698949 0.715172i \(-0.253652\pi\)
0.698949 + 0.715172i \(0.253652\pi\)
\(752\) 4.21875 0.153842
\(753\) 58.0051 2.11382
\(754\) 0 0
\(755\) 31.3662 1.14153
\(756\) −8.62318 −0.313622
\(757\) 11.3624 0.412975 0.206487 0.978449i \(-0.433797\pi\)
0.206487 + 0.978449i \(0.433797\pi\)
\(758\) 44.5534 1.61825
\(759\) 6.31276 0.229139
\(760\) −6.58660 −0.238921
\(761\) −15.6194 −0.566205 −0.283102 0.959090i \(-0.591364\pi\)
−0.283102 + 0.959090i \(0.591364\pi\)
\(762\) −78.8558 −2.85664
\(763\) −40.9184 −1.48134
\(764\) −23.9409 −0.866153
\(765\) 30.7126 1.11042
\(766\) 5.64784 0.204065
\(767\) 20.7083 0.747734
\(768\) −42.8378 −1.54578
\(769\) 9.65324 0.348105 0.174052 0.984736i \(-0.444314\pi\)
0.174052 + 0.984736i \(0.444314\pi\)
\(770\) −17.7916 −0.641166
\(771\) −0.405735 −0.0146122
\(772\) −22.8063 −0.820816
\(773\) −15.7145 −0.565211 −0.282605 0.959236i \(-0.591199\pi\)
−0.282605 + 0.959236i \(0.591199\pi\)
\(774\) −7.91713 −0.284576
\(775\) 8.49493 0.305147
\(776\) −6.50635 −0.233564
\(777\) 47.6105 1.70802
\(778\) −6.13653 −0.220005
\(779\) 57.9199 2.07519
\(780\) 20.2167 0.723873
\(781\) −4.65337 −0.166511
\(782\) −21.2762 −0.760835
\(783\) 0 0
\(784\) 2.62069 0.0935959
\(785\) 60.3389 2.15359
\(786\) 2.54019 0.0906055
\(787\) 5.12572 0.182712 0.0913560 0.995818i \(-0.470880\pi\)
0.0913560 + 0.995818i \(0.470880\pi\)
\(788\) −7.28109 −0.259378
\(789\) 12.7940 0.455477
\(790\) 82.8540 2.94781
\(791\) 16.0622 0.571107
\(792\) −1.01091 −0.0359212
\(793\) 2.97787 0.105747
\(794\) −41.2511 −1.46395
\(795\) −11.8253 −0.419400
\(796\) 30.3021 1.07403
\(797\) 40.5663 1.43693 0.718466 0.695562i \(-0.244844\pi\)
0.718466 + 0.695562i \(0.244844\pi\)
\(798\) 54.9464 1.94508
\(799\) −4.25470 −0.150521
\(800\) 41.1672 1.45548
\(801\) 10.5397 0.372403
\(802\) 8.36646 0.295430
\(803\) 4.26491 0.150505
\(804\) 12.2666 0.432610
\(805\) −20.1398 −0.709834
\(806\) 4.78501 0.168545
\(807\) −4.42569 −0.155792
\(808\) −4.74763 −0.167021
\(809\) −31.0217 −1.09066 −0.545332 0.838220i \(-0.683597\pi\)
−0.545332 + 0.838220i \(0.683597\pi\)
\(810\) 67.6982 2.37867
\(811\) −45.3970 −1.59410 −0.797052 0.603910i \(-0.793609\pi\)
−0.797052 + 0.603910i \(0.793609\pi\)
\(812\) 0 0
\(813\) −39.6196 −1.38952
\(814\) 18.1049 0.634577
\(815\) −31.0538 −1.08777
\(816\) 43.9984 1.54025
\(817\) −9.25630 −0.323837
\(818\) 49.6125 1.73466
\(819\) 8.46534 0.295803
\(820\) −67.7298 −2.36523
\(821\) −26.4086 −0.921665 −0.460833 0.887487i \(-0.652449\pi\)
−0.460833 + 0.887487i \(0.652449\pi\)
\(822\) 60.9173 2.12473
\(823\) 34.3735 1.19818 0.599092 0.800680i \(-0.295528\pi\)
0.599092 + 0.800680i \(0.295528\pi\)
\(824\) 3.07884 0.107257
\(825\) 13.6529 0.475334
\(826\) −65.8153 −2.29001
\(827\) 40.3495 1.40309 0.701545 0.712626i \(-0.252494\pi\)
0.701545 + 0.712626i \(0.252494\pi\)
\(828\) 9.54299 0.331642
\(829\) 41.4695 1.44029 0.720147 0.693821i \(-0.244074\pi\)
0.720147 + 0.693821i \(0.244074\pi\)
\(830\) 60.7733 2.10947
\(831\) 34.8557 1.20913
\(832\) 9.61157 0.333221
\(833\) −2.64302 −0.0915753
\(834\) 46.8556 1.62248
\(835\) 1.49553 0.0517549
\(836\) 9.85632 0.340888
\(837\) 3.02975 0.104723
\(838\) −13.1264 −0.453445
\(839\) −12.9838 −0.448250 −0.224125 0.974560i \(-0.571952\pi\)
−0.224125 + 0.974560i \(0.571952\pi\)
\(840\) 7.70476 0.265840
\(841\) 0 0
\(842\) −67.2183 −2.31649
\(843\) 30.0097 1.03359
\(844\) −7.88669 −0.271471
\(845\) −34.1047 −1.17324
\(846\) 4.04556 0.139089
\(847\) 24.6399 0.846635
\(848\) −7.09122 −0.243514
\(849\) 25.3418 0.869729
\(850\) −46.0151 −1.57830
\(851\) 20.4944 0.702540
\(852\) −16.8052 −0.575736
\(853\) −8.15508 −0.279225 −0.139612 0.990206i \(-0.544586\pi\)
−0.139612 + 0.990206i \(0.544586\pi\)
\(854\) −9.46426 −0.323860
\(855\) −34.1425 −1.16765
\(856\) −4.96681 −0.169762
\(857\) −29.3691 −1.00323 −0.501615 0.865091i \(-0.667261\pi\)
−0.501615 + 0.865091i \(0.667261\pi\)
\(858\) 7.69040 0.262546
\(859\) 19.4101 0.662265 0.331133 0.943584i \(-0.392569\pi\)
0.331133 + 0.943584i \(0.392569\pi\)
\(860\) 10.8240 0.369097
\(861\) −67.7525 −2.30900
\(862\) −19.2230 −0.654736
\(863\) −50.6162 −1.72300 −0.861498 0.507760i \(-0.830474\pi\)
−0.861498 + 0.507760i \(0.830474\pi\)
\(864\) 14.6824 0.499506
\(865\) −71.7173 −2.43846
\(866\) 6.22999 0.211704
\(867\) −5.75726 −0.195527
\(868\) −7.17375 −0.243493
\(869\) 14.8674 0.504342
\(870\) 0 0
\(871\) 4.68401 0.158712
\(872\) 6.73838 0.228190
\(873\) −33.7264 −1.14147
\(874\) 23.6522 0.800048
\(875\) −2.85546 −0.0965321
\(876\) 15.4023 0.520395
\(877\) 35.1220 1.18598 0.592992 0.805208i \(-0.297946\pi\)
0.592992 + 0.805208i \(0.297946\pi\)
\(878\) −12.4806 −0.421200
\(879\) −15.4527 −0.521208
\(880\) 15.8377 0.533888
\(881\) −32.1831 −1.08428 −0.542138 0.840289i \(-0.682385\pi\)
−0.542138 + 0.840289i \(0.682385\pi\)
\(882\) 2.51310 0.0846204
\(883\) −46.8381 −1.57623 −0.788113 0.615530i \(-0.788942\pi\)
−0.788113 + 0.615530i \(0.788942\pi\)
\(884\) −12.2266 −0.411224
\(885\) 97.6996 3.28414
\(886\) −16.5377 −0.555594
\(887\) 6.85131 0.230045 0.115022 0.993363i \(-0.463306\pi\)
0.115022 + 0.993363i \(0.463306\pi\)
\(888\) −7.84043 −0.263108
\(889\) 45.1429 1.51405
\(890\) −30.5471 −1.02394
\(891\) 12.1478 0.406968
\(892\) −30.4814 −1.02059
\(893\) 4.72985 0.158278
\(894\) 10.4597 0.349825
\(895\) 24.1614 0.807628
\(896\) 8.38584 0.280151
\(897\) 8.70538 0.290664
\(898\) 32.9650 1.10006
\(899\) 0 0
\(900\) 20.6391 0.687970
\(901\) 7.15166 0.238256
\(902\) −25.7643 −0.857859
\(903\) 10.8277 0.360322
\(904\) −2.64511 −0.0879749
\(905\) −77.0119 −2.55996
\(906\) 43.0900 1.43157
\(907\) 12.2503 0.406764 0.203382 0.979099i \(-0.434807\pi\)
0.203382 + 0.979099i \(0.434807\pi\)
\(908\) −17.4658 −0.579622
\(909\) −24.6099 −0.816260
\(910\) −24.5349 −0.813324
\(911\) −19.8474 −0.657572 −0.328786 0.944404i \(-0.606640\pi\)
−0.328786 + 0.944404i \(0.606640\pi\)
\(912\) −48.9119 −1.61964
\(913\) 10.9052 0.360910
\(914\) −0.984364 −0.0325599
\(915\) 14.0493 0.464454
\(916\) 6.14189 0.202934
\(917\) −1.45419 −0.0480217
\(918\) −16.4115 −0.541659
\(919\) −30.5383 −1.00736 −0.503682 0.863889i \(-0.668022\pi\)
−0.503682 + 0.863889i \(0.668022\pi\)
\(920\) 3.31659 0.109345
\(921\) −36.7031 −1.20941
\(922\) 10.7032 0.352491
\(923\) −6.41706 −0.211220
\(924\) −11.5296 −0.379294
\(925\) 44.3243 1.45737
\(926\) 12.7756 0.419833
\(927\) 15.9595 0.524180
\(928\) 0 0
\(929\) −8.90962 −0.292315 −0.146158 0.989261i \(-0.546691\pi\)
−0.146158 + 0.989261i \(0.546691\pi\)
\(930\) 22.5751 0.740268
\(931\) 2.93818 0.0962951
\(932\) −7.84270 −0.256896
\(933\) −9.85742 −0.322717
\(934\) −8.71333 −0.285109
\(935\) −15.9727 −0.522362
\(936\) −1.39406 −0.0455663
\(937\) 15.3972 0.503006 0.251503 0.967857i \(-0.419075\pi\)
0.251503 + 0.967857i \(0.419075\pi\)
\(938\) −14.8867 −0.486069
\(939\) −2.43827 −0.0795701
\(940\) −5.53095 −0.180400
\(941\) 46.5126 1.51627 0.758133 0.652100i \(-0.226112\pi\)
0.758133 + 0.652100i \(0.226112\pi\)
\(942\) 82.8920 2.70077
\(943\) −29.1647 −0.949735
\(944\) 58.5872 1.90685
\(945\) −15.5349 −0.505350
\(946\) 4.11746 0.133870
\(947\) −31.2180 −1.01445 −0.507224 0.861814i \(-0.669328\pi\)
−0.507224 + 0.861814i \(0.669328\pi\)
\(948\) 53.6921 1.74384
\(949\) 5.88137 0.190917
\(950\) 51.1539 1.65965
\(951\) 17.7047 0.574114
\(952\) −4.65966 −0.151021
\(953\) −24.5654 −0.795752 −0.397876 0.917439i \(-0.630253\pi\)
−0.397876 + 0.917439i \(0.630253\pi\)
\(954\) −6.80011 −0.220162
\(955\) −43.1303 −1.39566
\(956\) 31.5744 1.02119
\(957\) 0 0
\(958\) 18.0504 0.583181
\(959\) −34.8736 −1.12613
\(960\) 45.3463 1.46355
\(961\) −28.4795 −0.918694
\(962\) 24.9669 0.804966
\(963\) −25.7461 −0.829655
\(964\) 20.3709 0.656102
\(965\) −41.0862 −1.32261
\(966\) −27.6675 −0.890187
\(967\) 25.3774 0.816082 0.408041 0.912964i \(-0.366212\pi\)
0.408041 + 0.912964i \(0.366212\pi\)
\(968\) −4.05766 −0.130418
\(969\) 49.3288 1.58467
\(970\) 97.7485 3.13852
\(971\) 11.0345 0.354115 0.177058 0.984200i \(-0.443342\pi\)
0.177058 + 0.984200i \(0.443342\pi\)
\(972\) 33.6464 1.07921
\(973\) −26.8237 −0.859927
\(974\) −74.1005 −2.37433
\(975\) 18.8276 0.602965
\(976\) 8.42486 0.269673
\(977\) −52.4730 −1.67876 −0.839380 0.543545i \(-0.817082\pi\)
−0.839380 + 0.543545i \(0.817082\pi\)
\(978\) −42.6609 −1.36415
\(979\) −5.48139 −0.175186
\(980\) −3.43583 −0.109753
\(981\) 34.9292 1.11520
\(982\) −61.4729 −1.96168
\(983\) −46.0772 −1.46964 −0.734818 0.678265i \(-0.762732\pi\)
−0.734818 + 0.678265i \(0.762732\pi\)
\(984\) 11.1574 0.355685
\(985\) −13.1171 −0.417945
\(986\) 0 0
\(987\) −5.53280 −0.176111
\(988\) 13.5920 0.432419
\(989\) 4.66088 0.148207
\(990\) 15.1875 0.482690
\(991\) 0.807143 0.0256397 0.0128199 0.999918i \(-0.495919\pi\)
0.0128199 + 0.999918i \(0.495919\pi\)
\(992\) 12.2145 0.387812
\(993\) −22.6181 −0.717762
\(994\) 20.3947 0.646881
\(995\) 54.5900 1.73062
\(996\) 39.3831 1.24790
\(997\) −30.6050 −0.969270 −0.484635 0.874716i \(-0.661048\pi\)
−0.484635 + 0.874716i \(0.661048\pi\)
\(998\) 40.9875 1.29744
\(999\) 15.8084 0.500157
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.g.1.2 6
3.2 odd 2 7569.2.a.bc.1.5 6
29.2 odd 28 841.2.e.l.236.3 72
29.3 odd 28 841.2.e.l.270.3 72
29.4 even 14 841.2.d.n.190.2 36
29.5 even 14 841.2.d.n.605.2 36
29.6 even 14 841.2.d.n.645.2 36
29.7 even 7 841.2.d.o.571.5 36
29.8 odd 28 841.2.e.l.267.3 72
29.9 even 14 841.2.d.n.574.5 36
29.10 odd 28 841.2.e.l.651.3 72
29.11 odd 28 841.2.e.l.63.3 72
29.12 odd 4 841.2.b.d.840.3 12
29.13 even 14 841.2.d.n.778.5 36
29.14 odd 28 841.2.e.l.196.10 72
29.15 odd 28 841.2.e.l.196.3 72
29.16 even 7 841.2.d.o.778.2 36
29.17 odd 4 841.2.b.d.840.10 12
29.18 odd 28 841.2.e.l.63.10 72
29.19 odd 28 841.2.e.l.651.10 72
29.20 even 7 841.2.d.o.574.2 36
29.21 odd 28 841.2.e.l.267.10 72
29.22 even 14 841.2.d.n.571.2 36
29.23 even 7 841.2.d.o.645.5 36
29.24 even 7 841.2.d.o.605.5 36
29.25 even 7 841.2.d.o.190.5 36
29.26 odd 28 841.2.e.l.270.10 72
29.27 odd 28 841.2.e.l.236.10 72
29.28 even 2 841.2.a.h.1.5 yes 6
87.86 odd 2 7569.2.a.y.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.g.1.2 6 1.1 even 1 trivial
841.2.a.h.1.5 yes 6 29.28 even 2
841.2.b.d.840.3 12 29.12 odd 4
841.2.b.d.840.10 12 29.17 odd 4
841.2.d.n.190.2 36 29.4 even 14
841.2.d.n.571.2 36 29.22 even 14
841.2.d.n.574.5 36 29.9 even 14
841.2.d.n.605.2 36 29.5 even 14
841.2.d.n.645.2 36 29.6 even 14
841.2.d.n.778.5 36 29.13 even 14
841.2.d.o.190.5 36 29.25 even 7
841.2.d.o.571.5 36 29.7 even 7
841.2.d.o.574.2 36 29.20 even 7
841.2.d.o.605.5 36 29.24 even 7
841.2.d.o.645.5 36 29.23 even 7
841.2.d.o.778.2 36 29.16 even 7
841.2.e.l.63.3 72 29.11 odd 28
841.2.e.l.63.10 72 29.18 odd 28
841.2.e.l.196.3 72 29.15 odd 28
841.2.e.l.196.10 72 29.14 odd 28
841.2.e.l.236.3 72 29.2 odd 28
841.2.e.l.236.10 72 29.27 odd 28
841.2.e.l.267.3 72 29.8 odd 28
841.2.e.l.267.10 72 29.21 odd 28
841.2.e.l.270.3 72 29.3 odd 28
841.2.e.l.270.10 72 29.26 odd 28
841.2.e.l.651.3 72 29.10 odd 28
841.2.e.l.651.10 72 29.19 odd 28
7569.2.a.y.1.2 6 87.86 odd 2
7569.2.a.bc.1.5 6 3.2 odd 2