Properties

Label 841.2.b.d.840.10
Level $841$
Weight $2$
Character 841.840
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(840,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.840");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 150x^{8} + 523x^{6} + 835x^{4} + 495x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 840.10
Root \(1.94573i\) of defining polynomial
Character \(\chi\) \(=\) 841.840
Dual form 841.2.b.d.840.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.94573i q^{2} +2.27154i q^{3} -1.78585 q^{4} -3.21726 q^{5} -4.41979 q^{6} -2.53022 q^{7} +0.416673i q^{8} -2.15987 q^{9} -6.25991i q^{10} +1.12328i q^{11} -4.05663i q^{12} +1.54902 q^{13} -4.92311i q^{14} -7.30813i q^{15} -4.38244 q^{16} -4.41979i q^{17} -4.20253i q^{18} +4.91337i q^{19} +5.74556 q^{20} -5.74748i q^{21} -2.18560 q^{22} +2.47406 q^{23} -0.946487 q^{24} +5.35078 q^{25} +3.01398i q^{26} +1.90838i q^{27} +4.51860 q^{28} +14.2196 q^{30} -1.58761i q^{31} -7.69368i q^{32} -2.55158 q^{33} +8.59970 q^{34} +8.14037 q^{35} +3.85722 q^{36} +8.28372i q^{37} -9.56008 q^{38} +3.51866i q^{39} -1.34055i q^{40} -11.7882i q^{41} +11.1830 q^{42} -1.88390i q^{43} -2.00602i q^{44} +6.94888 q^{45} +4.81385i q^{46} -0.962649i q^{47} -9.95486i q^{48} -0.597997 q^{49} +10.4111i q^{50} +10.0397 q^{51} -2.76633 q^{52} +1.61810 q^{53} -3.71318 q^{54} -3.61390i q^{55} -1.05427i q^{56} -11.1609 q^{57} -13.3686 q^{59} +13.0512i q^{60} +1.92241i q^{61} +3.08905 q^{62} +5.46495 q^{63} +6.20492 q^{64} -4.98362 q^{65} -4.96468i q^{66} +3.02385 q^{67} +7.89309i q^{68} +5.61992i q^{69} +15.8389i q^{70} -4.14265 q^{71} -0.899961i q^{72} -3.79682i q^{73} -16.1178 q^{74} +12.1545i q^{75} -8.77456i q^{76} -2.84215i q^{77} -6.84635 q^{78} +13.2356i q^{79} +14.0994 q^{80} -10.8146 q^{81} +22.9366 q^{82} -9.70833 q^{83} +10.2642i q^{84} +14.2196i q^{85} +3.66555 q^{86} -0.468042 q^{88} -4.87979i q^{89} +13.5206i q^{90} -3.91937 q^{91} -4.41831 q^{92} +3.60630 q^{93} +1.87305 q^{94} -15.8076i q^{95} +17.4765 q^{96} -15.6150i q^{97} -1.16354i q^{98} -2.42615i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} + 4 q^{5} + 6 q^{6} - 8 q^{7} - 12 q^{9} + 12 q^{13} + 8 q^{16} - 10 q^{20} + 8 q^{22} - 10 q^{23} - 20 q^{24} + 12 q^{25} + 10 q^{28} + 52 q^{30} - 54 q^{33} + 8 q^{35} - 42 q^{36} - 82 q^{38}+ \cdots + 74 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.94573i 1.37584i 0.725788 + 0.687918i \(0.241475\pi\)
−0.725788 + 0.687918i \(0.758525\pi\)
\(3\) 2.27154i 1.31147i 0.754990 + 0.655736i \(0.227642\pi\)
−0.754990 + 0.655736i \(0.772358\pi\)
\(4\) −1.78585 −0.892926
\(5\) −3.21726 −1.43880 −0.719402 0.694594i \(-0.755584\pi\)
−0.719402 + 0.694594i \(0.755584\pi\)
\(6\) −4.41979 −1.80437
\(7\) −2.53022 −0.956332 −0.478166 0.878269i \(-0.658698\pi\)
−0.478166 + 0.878269i \(0.658698\pi\)
\(8\) 0.416673i 0.147316i
\(9\) −2.15987 −0.719958
\(10\) − 6.25991i − 1.97956i
\(11\) 1.12328i 0.338683i 0.985557 + 0.169341i \(0.0541641\pi\)
−0.985557 + 0.169341i \(0.945836\pi\)
\(12\) − 4.05663i − 1.17105i
\(13\) 1.54902 0.429622 0.214811 0.976656i \(-0.431086\pi\)
0.214811 + 0.976656i \(0.431086\pi\)
\(14\) − 4.92311i − 1.31576i
\(15\) − 7.30813i − 1.88695i
\(16\) −4.38244 −1.09561
\(17\) − 4.41979i − 1.07196i −0.844232 0.535978i \(-0.819943\pi\)
0.844232 0.535978i \(-0.180057\pi\)
\(18\) − 4.20253i − 0.990545i
\(19\) 4.91337i 1.12721i 0.826046 + 0.563603i \(0.190585\pi\)
−0.826046 + 0.563603i \(0.809415\pi\)
\(20\) 5.74556 1.28475
\(21\) − 5.74748i − 1.25420i
\(22\) −2.18560 −0.465972
\(23\) 2.47406 0.515877 0.257939 0.966161i \(-0.416957\pi\)
0.257939 + 0.966161i \(0.416957\pi\)
\(24\) −0.946487 −0.193201
\(25\) 5.35078 1.07016
\(26\) 3.01398i 0.591089i
\(27\) 1.90838i 0.367267i
\(28\) 4.51860 0.853934
\(29\) 0 0
\(30\) 14.2196 2.59613
\(31\) − 1.58761i − 0.285142i −0.989785 0.142571i \(-0.954463\pi\)
0.989785 0.142571i \(-0.0455370\pi\)
\(32\) − 7.69368i − 1.36006i
\(33\) −2.55158 −0.444173
\(34\) 8.59970 1.47484
\(35\) 8.14037 1.37597
\(36\) 3.85722 0.642869
\(37\) 8.28372i 1.36183i 0.732360 + 0.680917i \(0.238419\pi\)
−0.732360 + 0.680917i \(0.761581\pi\)
\(38\) −9.56008 −1.55085
\(39\) 3.51866i 0.563437i
\(40\) − 1.34055i − 0.211959i
\(41\) − 11.7882i − 1.84101i −0.390733 0.920504i \(-0.627778\pi\)
0.390733 0.920504i \(-0.372222\pi\)
\(42\) 11.1830 1.72558
\(43\) − 1.88390i − 0.287292i −0.989629 0.143646i \(-0.954117\pi\)
0.989629 0.143646i \(-0.0458827\pi\)
\(44\) − 2.00602i − 0.302419i
\(45\) 6.94888 1.03588
\(46\) 4.81385i 0.709763i
\(47\) − 0.962649i − 0.140417i −0.997532 0.0702084i \(-0.977634\pi\)
0.997532 0.0702084i \(-0.0223664\pi\)
\(48\) − 9.95486i − 1.43686i
\(49\) −0.597997 −0.0854282
\(50\) 10.4111i 1.47236i
\(51\) 10.0397 1.40584
\(52\) −2.76633 −0.383621
\(53\) 1.61810 0.222263 0.111132 0.993806i \(-0.464552\pi\)
0.111132 + 0.993806i \(0.464552\pi\)
\(54\) −3.71318 −0.505299
\(55\) − 3.61390i − 0.487298i
\(56\) − 1.05427i − 0.140883i
\(57\) −11.1609 −1.47830
\(58\) 0 0
\(59\) −13.3686 −1.74045 −0.870224 0.492657i \(-0.836026\pi\)
−0.870224 + 0.492657i \(0.836026\pi\)
\(60\) 13.0512i 1.68491i
\(61\) 1.92241i 0.246140i 0.992398 + 0.123070i \(0.0392740\pi\)
−0.992398 + 0.123070i \(0.960726\pi\)
\(62\) 3.08905 0.392309
\(63\) 5.46495 0.688519
\(64\) 6.20492 0.775615
\(65\) −4.98362 −0.618141
\(66\) − 4.96468i − 0.611109i
\(67\) 3.02385 0.369421 0.184711 0.982793i \(-0.440865\pi\)
0.184711 + 0.982793i \(0.440865\pi\)
\(68\) 7.89309i 0.957177i
\(69\) 5.61992i 0.676559i
\(70\) 15.8389i 1.89312i
\(71\) −4.14265 −0.491642 −0.245821 0.969315i \(-0.579058\pi\)
−0.245821 + 0.969315i \(0.579058\pi\)
\(72\) − 0.899961i − 0.106061i
\(73\) − 3.79682i − 0.444384i −0.975003 0.222192i \(-0.928679\pi\)
0.975003 0.222192i \(-0.0713212\pi\)
\(74\) −16.1178 −1.87366
\(75\) 12.1545i 1.40348i
\(76\) − 8.77456i − 1.00651i
\(77\) − 2.84215i − 0.323893i
\(78\) −6.84635 −0.775197
\(79\) 13.2356i 1.48913i 0.667552 + 0.744563i \(0.267342\pi\)
−0.667552 + 0.744563i \(0.732658\pi\)
\(80\) 14.0994 1.57637
\(81\) −10.8146 −1.20162
\(82\) 22.9366 2.53293
\(83\) −9.70833 −1.06563 −0.532814 0.846232i \(-0.678865\pi\)
−0.532814 + 0.846232i \(0.678865\pi\)
\(84\) 10.2642i 1.11991i
\(85\) 14.2196i 1.54233i
\(86\) 3.66555 0.395267
\(87\) 0 0
\(88\) −0.468042 −0.0498934
\(89\) − 4.87979i − 0.517257i −0.965977 0.258628i \(-0.916730\pi\)
0.965977 0.258628i \(-0.0832705\pi\)
\(90\) 13.5206i 1.42520i
\(91\) −3.91937 −0.410861
\(92\) −4.41831 −0.460640
\(93\) 3.60630 0.373956
\(94\) 1.87305 0.193190
\(95\) − 15.8076i − 1.62183i
\(96\) 17.4765 1.78368
\(97\) − 15.6150i − 1.58546i −0.609571 0.792731i \(-0.708658\pi\)
0.609571 0.792731i \(-0.291342\pi\)
\(98\) − 1.16354i − 0.117535i
\(99\) − 2.42615i − 0.243837i
\(100\) −9.55570 −0.955570
\(101\) 11.3941i 1.13376i 0.823800 + 0.566880i \(0.191850\pi\)
−0.823800 + 0.566880i \(0.808150\pi\)
\(102\) 19.5345i 1.93421i
\(103\) 7.38911 0.728070 0.364035 0.931385i \(-0.381399\pi\)
0.364035 + 0.931385i \(0.381399\pi\)
\(104\) 0.645436i 0.0632902i
\(105\) 18.4912i 1.80455i
\(106\) 3.14838i 0.305798i
\(107\) −11.9202 −1.15237 −0.576183 0.817321i \(-0.695458\pi\)
−0.576183 + 0.817321i \(0.695458\pi\)
\(108\) − 3.40808i − 0.327942i
\(109\) −16.1719 −1.54898 −0.774492 0.632583i \(-0.781995\pi\)
−0.774492 + 0.632583i \(0.781995\pi\)
\(110\) 7.03166 0.670442
\(111\) −18.8168 −1.78601
\(112\) 11.0885 1.04777
\(113\) − 6.34816i − 0.597184i −0.954381 0.298592i \(-0.903483\pi\)
0.954381 0.298592i \(-0.0965171\pi\)
\(114\) − 21.7161i − 2.03390i
\(115\) −7.95970 −0.742246
\(116\) 0 0
\(117\) −3.34570 −0.309310
\(118\) − 26.0117i − 2.39457i
\(119\) 11.1830i 1.02515i
\(120\) 3.04510 0.277978
\(121\) 9.73823 0.885294
\(122\) −3.74049 −0.338648
\(123\) 26.7773 2.41443
\(124\) 2.83523i 0.254611i
\(125\) −1.12854 −0.100940
\(126\) 10.6333i 0.947290i
\(127\) 17.8415i 1.58318i 0.611053 + 0.791590i \(0.290746\pi\)
−0.611053 + 0.791590i \(0.709254\pi\)
\(128\) − 3.31428i − 0.292943i
\(129\) 4.27934 0.376775
\(130\) − 9.69675i − 0.850461i
\(131\) 0.574730i 0.0502144i 0.999685 + 0.0251072i \(0.00799272\pi\)
−0.999685 + 0.0251072i \(0.992007\pi\)
\(132\) 4.55674 0.396614
\(133\) − 12.4319i − 1.07798i
\(134\) 5.88358i 0.508264i
\(135\) − 6.13974i − 0.528425i
\(136\) 1.84161 0.157916
\(137\) − 13.7829i − 1.17755i −0.808297 0.588774i \(-0.799611\pi\)
0.808297 0.588774i \(-0.200389\pi\)
\(138\) −10.9348 −0.930834
\(139\) 10.6013 0.899192 0.449596 0.893232i \(-0.351568\pi\)
0.449596 + 0.893232i \(0.351568\pi\)
\(140\) −14.5375 −1.22864
\(141\) 2.18669 0.184153
\(142\) − 8.06046i − 0.676419i
\(143\) 1.73999i 0.145506i
\(144\) 9.46551 0.788793
\(145\) 0 0
\(146\) 7.38758 0.611400
\(147\) − 1.35837i − 0.112037i
\(148\) − 14.7935i − 1.21602i
\(149\) −2.36656 −0.193876 −0.0969381 0.995290i \(-0.530905\pi\)
−0.0969381 + 0.995290i \(0.530905\pi\)
\(150\) −23.6493 −1.93096
\(151\) −9.74934 −0.793390 −0.396695 0.917950i \(-0.629843\pi\)
−0.396695 + 0.917950i \(0.629843\pi\)
\(152\) −2.04727 −0.166056
\(153\) 9.54619i 0.771763i
\(154\) 5.53005 0.445624
\(155\) 5.10774i 0.410264i
\(156\) − 6.28381i − 0.503108i
\(157\) 18.7547i 1.49679i 0.663252 + 0.748396i \(0.269176\pi\)
−0.663252 + 0.748396i \(0.730824\pi\)
\(158\) −25.7530 −2.04879
\(159\) 3.67557i 0.291492i
\(160\) 24.7526i 1.95686i
\(161\) −6.25991 −0.493350
\(162\) − 21.0422i − 1.65323i
\(163\) − 9.65226i − 0.756023i −0.925801 0.378012i \(-0.876608\pi\)
0.925801 0.378012i \(-0.123392\pi\)
\(164\) 21.0520i 1.64388i
\(165\) 8.20910 0.639078
\(166\) − 18.8898i − 1.46613i
\(167\) −0.464845 −0.0359708 −0.0179854 0.999838i \(-0.505725\pi\)
−0.0179854 + 0.999838i \(0.505725\pi\)
\(168\) 2.39482 0.184764
\(169\) −10.6005 −0.815425
\(170\) −27.6675 −2.12200
\(171\) − 10.6123i − 0.811541i
\(172\) 3.36437i 0.256530i
\(173\) 22.2914 1.69478 0.847392 0.530968i \(-0.178172\pi\)
0.847392 + 0.530968i \(0.178172\pi\)
\(174\) 0 0
\(175\) −13.5386 −1.02342
\(176\) − 4.92272i − 0.371064i
\(177\) − 30.3673i − 2.28255i
\(178\) 9.49474 0.711661
\(179\) −7.50994 −0.561319 −0.280660 0.959807i \(-0.590553\pi\)
−0.280660 + 0.959807i \(0.590553\pi\)
\(180\) −12.4097 −0.924963
\(181\) −23.9371 −1.77923 −0.889615 0.456711i \(-0.849027\pi\)
−0.889615 + 0.456711i \(0.849027\pi\)
\(182\) − 7.62602i − 0.565278i
\(183\) −4.36683 −0.322806
\(184\) 1.03087i 0.0759971i
\(185\) − 26.6509i − 1.95941i
\(186\) 7.01688i 0.514503i
\(187\) 4.96468 0.363053
\(188\) 1.71915i 0.125382i
\(189\) − 4.82861i − 0.351229i
\(190\) 30.7573 2.23137
\(191\) 13.4059i 0.970016i 0.874510 + 0.485008i \(0.161183\pi\)
−0.874510 + 0.485008i \(0.838817\pi\)
\(192\) 14.0947i 1.01720i
\(193\) 12.7705i 0.919243i 0.888115 + 0.459622i \(0.152015\pi\)
−0.888115 + 0.459622i \(0.847985\pi\)
\(194\) 30.3825 2.18134
\(195\) − 11.3205i − 0.810675i
\(196\) 1.06794 0.0762811
\(197\) −4.07710 −0.290481 −0.145241 0.989396i \(-0.546396\pi\)
−0.145241 + 0.989396i \(0.546396\pi\)
\(198\) 4.72063 0.335480
\(199\) 16.9678 1.20282 0.601409 0.798941i \(-0.294606\pi\)
0.601409 + 0.798941i \(0.294606\pi\)
\(200\) 2.22952i 0.157651i
\(201\) 6.86877i 0.484486i
\(202\) −22.1699 −1.55987
\(203\) 0 0
\(204\) −17.9294 −1.25531
\(205\) 37.9258i 2.64885i
\(206\) 14.3772i 1.00171i
\(207\) −5.34366 −0.371410
\(208\) −6.78850 −0.470698
\(209\) −5.51911 −0.381765
\(210\) −35.9787 −2.48277
\(211\) − 4.41621i − 0.304024i −0.988379 0.152012i \(-0.951425\pi\)
0.988379 0.152012i \(-0.0485753\pi\)
\(212\) −2.88969 −0.198465
\(213\) − 9.41017i − 0.644774i
\(214\) − 23.1934i − 1.58547i
\(215\) 6.06100i 0.413357i
\(216\) −0.795168 −0.0541044
\(217\) 4.01699i 0.272691i
\(218\) − 31.4660i − 2.13115i
\(219\) 8.62462 0.582798
\(220\) 6.45389i 0.435121i
\(221\) − 6.84635i − 0.460536i
\(222\) − 36.6123i − 2.45725i
\(223\) −17.0683 −1.14298 −0.571488 0.820611i \(-0.693634\pi\)
−0.571488 + 0.820611i \(0.693634\pi\)
\(224\) 19.4667i 1.30067i
\(225\) −11.5570 −0.770467
\(226\) 12.3518 0.821628
\(227\) −9.78008 −0.649127 −0.324563 0.945864i \(-0.605217\pi\)
−0.324563 + 0.945864i \(0.605217\pi\)
\(228\) 19.9317 1.32001
\(229\) 3.43919i 0.227268i 0.993523 + 0.113634i \(0.0362492\pi\)
−0.993523 + 0.113634i \(0.963751\pi\)
\(230\) − 15.4874i − 1.02121i
\(231\) 6.45605 0.424777
\(232\) 0 0
\(233\) −4.39157 −0.287702 −0.143851 0.989599i \(-0.545949\pi\)
−0.143851 + 0.989599i \(0.545949\pi\)
\(234\) − 6.50981i − 0.425560i
\(235\) 3.09709i 0.202032i
\(236\) 23.8744 1.55409
\(237\) −30.0652 −1.95295
\(238\) −21.7591 −1.41043
\(239\) 17.6803 1.14364 0.571821 0.820378i \(-0.306237\pi\)
0.571821 + 0.820378i \(0.306237\pi\)
\(240\) 32.0274i 2.06736i
\(241\) −11.4068 −0.734778 −0.367389 0.930067i \(-0.619748\pi\)
−0.367389 + 0.930067i \(0.619748\pi\)
\(242\) 18.9479i 1.21802i
\(243\) − 18.8405i − 1.20862i
\(244\) − 3.43315i − 0.219785i
\(245\) 1.92391 0.122914
\(246\) 52.1014i 3.32186i
\(247\) 7.61093i 0.484272i
\(248\) 0.661512 0.0420061
\(249\) − 22.0528i − 1.39754i
\(250\) − 2.19583i − 0.138877i
\(251\) 25.5356i 1.61179i 0.592056 + 0.805897i \(0.298317\pi\)
−0.592056 + 0.805897i \(0.701683\pi\)
\(252\) −9.75960 −0.614797
\(253\) 2.77907i 0.174719i
\(254\) −34.7147 −2.17820
\(255\) −32.3004 −2.02273
\(256\) 18.8585 1.17866
\(257\) 0.178617 0.0111418 0.00557091 0.999984i \(-0.498227\pi\)
0.00557091 + 0.999984i \(0.498227\pi\)
\(258\) 8.32643i 0.518381i
\(259\) − 20.9596i − 1.30237i
\(260\) 8.90000 0.551955
\(261\) 0 0
\(262\) −1.11827 −0.0690869
\(263\) 5.63230i 0.347303i 0.984807 + 0.173651i \(0.0555566\pi\)
−0.984807 + 0.173651i \(0.944443\pi\)
\(264\) − 1.06317i − 0.0654338i
\(265\) −5.20585 −0.319793
\(266\) 24.1891 1.48313
\(267\) 11.0846 0.678367
\(268\) −5.40014 −0.329866
\(269\) 1.94833i 0.118792i 0.998235 + 0.0593958i \(0.0189174\pi\)
−0.998235 + 0.0593958i \(0.981083\pi\)
\(270\) 11.9463 0.727026
\(271\) 17.4418i 1.05951i 0.848150 + 0.529756i \(0.177716\pi\)
−0.848150 + 0.529756i \(0.822284\pi\)
\(272\) 19.3694i 1.17444i
\(273\) − 8.90298i − 0.538833i
\(274\) 26.8177 1.62011
\(275\) 6.01044i 0.362443i
\(276\) − 10.0363i − 0.604117i
\(277\) −15.3445 −0.921964 −0.460982 0.887409i \(-0.652503\pi\)
−0.460982 + 0.887409i \(0.652503\pi\)
\(278\) 20.6273i 1.23714i
\(279\) 3.42903i 0.205291i
\(280\) 3.39187i 0.202703i
\(281\) −13.2112 −0.788114 −0.394057 0.919086i \(-0.628929\pi\)
−0.394057 + 0.919086i \(0.628929\pi\)
\(282\) 4.25470i 0.253364i
\(283\) 11.1563 0.663170 0.331585 0.943425i \(-0.392417\pi\)
0.331585 + 0.943425i \(0.392417\pi\)
\(284\) 7.39816 0.439000
\(285\) 35.9076 2.12698
\(286\) −3.38555 −0.200192
\(287\) 29.8267i 1.76062i
\(288\) 16.6174i 0.979188i
\(289\) −2.53452 −0.149090
\(290\) 0 0
\(291\) 35.4700 2.07929
\(292\) 6.78056i 0.396802i
\(293\) − 6.80277i − 0.397422i −0.980058 0.198711i \(-0.936324\pi\)
0.980058 0.198711i \(-0.0636755\pi\)
\(294\) 2.64302 0.154144
\(295\) 43.0104 2.50416
\(296\) −3.45160 −0.200620
\(297\) −2.14365 −0.124387
\(298\) − 4.60468i − 0.266742i
\(299\) 3.83238 0.221632
\(300\) − 21.7061i − 1.25320i
\(301\) 4.76668i 0.274747i
\(302\) − 18.9695i − 1.09157i
\(303\) −25.8822 −1.48689
\(304\) − 21.5325i − 1.23498i
\(305\) − 6.18491i − 0.354147i
\(306\) −18.5743 −1.06182
\(307\) − 16.1578i − 0.922176i −0.887354 0.461088i \(-0.847459\pi\)
0.887354 0.461088i \(-0.152541\pi\)
\(308\) 5.07567i 0.289213i
\(309\) 16.7846i 0.954844i
\(310\) −9.93827 −0.564456
\(311\) − 4.33954i − 0.246073i −0.992402 0.123036i \(-0.960737\pi\)
0.992402 0.123036i \(-0.0392632\pi\)
\(312\) −1.46613 −0.0830033
\(313\) 1.07340 0.0606724 0.0303362 0.999540i \(-0.490342\pi\)
0.0303362 + 0.999540i \(0.490342\pi\)
\(314\) −36.4916 −2.05934
\(315\) −17.5822 −0.990644
\(316\) − 23.6369i − 1.32968i
\(317\) − 7.79415i − 0.437763i −0.975751 0.218882i \(-0.929759\pi\)
0.975751 0.218882i \(-0.0702408\pi\)
\(318\) −7.15166 −0.401045
\(319\) 0 0
\(320\) −19.9629 −1.11596
\(321\) − 27.0771i − 1.51130i
\(322\) − 12.1801i − 0.678769i
\(323\) 21.7161 1.20831
\(324\) 19.3132 1.07296
\(325\) 8.28848 0.459762
\(326\) 18.7807 1.04016
\(327\) − 36.7350i − 2.03145i
\(328\) 4.91183 0.271210
\(329\) 2.43571i 0.134285i
\(330\) 15.9727i 0.879266i
\(331\) 9.95716i 0.547295i 0.961830 + 0.273648i \(0.0882302\pi\)
−0.961830 + 0.273648i \(0.911770\pi\)
\(332\) 17.3377 0.951527
\(333\) − 17.8918i − 0.980464i
\(334\) − 0.904461i − 0.0494899i
\(335\) −9.72850 −0.531525
\(336\) 25.1880i 1.37412i
\(337\) 21.3599i 1.16355i 0.813350 + 0.581774i \(0.197641\pi\)
−0.813350 + 0.581774i \(0.802359\pi\)
\(338\) − 20.6257i − 1.12189i
\(339\) 14.4201 0.783191
\(340\) − 25.3941i − 1.37719i
\(341\) 1.78333 0.0965728
\(342\) 20.6486 1.11655
\(343\) 19.2246 1.03803
\(344\) 0.784970 0.0423227
\(345\) − 18.0807i − 0.973435i
\(346\) 43.3730i 2.33174i
\(347\) −26.9149 −1.44487 −0.722434 0.691440i \(-0.756977\pi\)
−0.722434 + 0.691440i \(0.756977\pi\)
\(348\) 0 0
\(349\) 18.7783 1.00518 0.502591 0.864524i \(-0.332380\pi\)
0.502591 + 0.864524i \(0.332380\pi\)
\(350\) − 26.3425i − 1.40806i
\(351\) 2.95612i 0.157786i
\(352\) 8.64218 0.460630
\(353\) −29.5764 −1.57419 −0.787095 0.616831i \(-0.788416\pi\)
−0.787095 + 0.616831i \(0.788416\pi\)
\(354\) 59.0865 3.14041
\(355\) 13.3280 0.707376
\(356\) 8.71458i 0.461872i
\(357\) −25.4026 −1.34445
\(358\) − 14.6123i − 0.772283i
\(359\) 20.2837i 1.07053i 0.844683 + 0.535267i \(0.179789\pi\)
−0.844683 + 0.535267i \(0.820211\pi\)
\(360\) 2.89541i 0.152602i
\(361\) −5.14124 −0.270592
\(362\) − 46.5750i − 2.44793i
\(363\) 22.1207i 1.16104i
\(364\) 6.99941 0.366869
\(365\) 12.2154i 0.639382i
\(366\) − 8.49667i − 0.444128i
\(367\) − 16.9933i − 0.887044i −0.896263 0.443522i \(-0.853729\pi\)
0.896263 0.443522i \(-0.146271\pi\)
\(368\) −10.8424 −0.565200
\(369\) 25.4610i 1.32545i
\(370\) 51.8553 2.69583
\(371\) −4.09415 −0.212558
\(372\) −6.44033 −0.333915
\(373\) −10.4156 −0.539300 −0.269650 0.962958i \(-0.586908\pi\)
−0.269650 + 0.962958i \(0.586908\pi\)
\(374\) 9.65990i 0.499502i
\(375\) − 2.56352i − 0.132380i
\(376\) 0.401110 0.0206856
\(377\) 0 0
\(378\) 9.39515 0.483234
\(379\) 22.8981i 1.17619i 0.808790 + 0.588097i \(0.200123\pi\)
−0.808790 + 0.588097i \(0.799877\pi\)
\(380\) 28.2301i 1.44817i
\(381\) −40.5277 −2.07630
\(382\) −26.0842 −1.33458
\(383\) 2.90269 0.148320 0.0741602 0.997246i \(-0.476372\pi\)
0.0741602 + 0.997246i \(0.476372\pi\)
\(384\) 7.52849 0.384187
\(385\) 9.14395i 0.466019i
\(386\) −24.8480 −1.26473
\(387\) 4.06899i 0.206838i
\(388\) 27.8861i 1.41570i
\(389\) 3.15385i 0.159907i 0.996799 + 0.0799533i \(0.0254771\pi\)
−0.996799 + 0.0799533i \(0.974523\pi\)
\(390\) 22.0265 1.11536
\(391\) − 10.9348i − 0.552998i
\(392\) − 0.249169i − 0.0125850i
\(393\) −1.30552 −0.0658548
\(394\) − 7.93292i − 0.399655i
\(395\) − 42.5826i − 2.14256i
\(396\) 4.33275i 0.217729i
\(397\) 21.2009 1.06404 0.532021 0.846731i \(-0.321433\pi\)
0.532021 + 0.846731i \(0.321433\pi\)
\(398\) 33.0148i 1.65488i
\(399\) 28.2395 1.41374
\(400\) −23.4494 −1.17247
\(401\) −4.29991 −0.214728 −0.107364 0.994220i \(-0.534241\pi\)
−0.107364 + 0.994220i \(0.534241\pi\)
\(402\) −13.3648 −0.666573
\(403\) − 2.45924i − 0.122503i
\(404\) − 20.3483i − 1.01236i
\(405\) 34.7933 1.72889
\(406\) 0 0
\(407\) −9.30497 −0.461230
\(408\) 4.18327i 0.207103i
\(409\) 25.4982i 1.26081i 0.776268 + 0.630403i \(0.217110\pi\)
−0.776268 + 0.630403i \(0.782890\pi\)
\(410\) −73.7931 −3.64438
\(411\) 31.3082 1.54432
\(412\) −13.1959 −0.650113
\(413\) 33.8255 1.66445
\(414\) − 10.3973i − 0.511000i
\(415\) 31.2343 1.53323
\(416\) − 11.9177i − 0.584313i
\(417\) 24.0813i 1.17927i
\(418\) − 10.7387i − 0.525246i
\(419\) −6.74628 −0.329578 −0.164789 0.986329i \(-0.552694\pi\)
−0.164789 + 0.986329i \(0.552694\pi\)
\(420\) − 33.0225i − 1.61133i
\(421\) 34.5466i 1.68370i 0.539713 + 0.841849i \(0.318533\pi\)
−0.539713 + 0.841849i \(0.681467\pi\)
\(422\) 8.59273 0.418288
\(423\) 2.07920i 0.101094i
\(424\) 0.674219i 0.0327430i
\(425\) − 23.6493i − 1.14716i
\(426\) 18.3096 0.887104
\(427\) − 4.86413i − 0.235392i
\(428\) 21.2877 1.02898
\(429\) −3.95246 −0.190826
\(430\) −11.7930 −0.568711
\(431\) 9.87958 0.475882 0.237941 0.971280i \(-0.423527\pi\)
0.237941 + 0.971280i \(0.423527\pi\)
\(432\) − 8.36333i − 0.402381i
\(433\) − 3.20188i − 0.153873i −0.997036 0.0769363i \(-0.975486\pi\)
0.997036 0.0769363i \(-0.0245138\pi\)
\(434\) −7.81596 −0.375178
\(435\) 0 0
\(436\) 28.8806 1.38313
\(437\) 12.1560i 0.581500i
\(438\) 16.7811i 0.801834i
\(439\) −6.41437 −0.306141 −0.153071 0.988215i \(-0.548916\pi\)
−0.153071 + 0.988215i \(0.548916\pi\)
\(440\) 1.50581 0.0717869
\(441\) 1.29160 0.0615047
\(442\) 13.3211 0.633622
\(443\) 8.49949i 0.403823i 0.979404 + 0.201911i \(0.0647153\pi\)
−0.979404 + 0.201911i \(0.935285\pi\)
\(444\) 33.6040 1.59477
\(445\) 15.6996i 0.744231i
\(446\) − 33.2102i − 1.57255i
\(447\) − 5.37573i − 0.254263i
\(448\) −15.6998 −0.741746
\(449\) 16.9423i 0.799555i 0.916612 + 0.399778i \(0.130913\pi\)
−0.916612 + 0.399778i \(0.869087\pi\)
\(450\) − 22.4868i − 1.06004i
\(451\) 13.2415 0.623518
\(452\) 11.3369i 0.533242i
\(453\) − 22.1460i − 1.04051i
\(454\) − 19.0294i − 0.893092i
\(455\) 12.6096 0.591149
\(456\) − 4.65045i − 0.217777i
\(457\) −0.505911 −0.0236655 −0.0118328 0.999930i \(-0.503767\pi\)
−0.0118328 + 0.999930i \(0.503767\pi\)
\(458\) −6.69173 −0.312684
\(459\) 8.43461 0.393694
\(460\) 14.2149 0.662771
\(461\) − 5.50088i − 0.256201i −0.991761 0.128101i \(-0.959112\pi\)
0.991761 0.128101i \(-0.0408881\pi\)
\(462\) 12.5617i 0.584424i
\(463\) 6.56599 0.305148 0.152574 0.988292i \(-0.451244\pi\)
0.152574 + 0.988292i \(0.451244\pi\)
\(464\) 0 0
\(465\) −11.6024 −0.538050
\(466\) − 8.54480i − 0.395830i
\(467\) − 4.47819i − 0.207226i −0.994618 0.103613i \(-0.966960\pi\)
0.994618 0.103613i \(-0.0330403\pi\)
\(468\) 5.97492 0.276191
\(469\) −7.65099 −0.353290
\(470\) −6.02610 −0.277963
\(471\) −42.6021 −1.96300
\(472\) − 5.57035i − 0.256396i
\(473\) 2.11615 0.0973008
\(474\) − 58.4988i − 2.68694i
\(475\) 26.2904i 1.20628i
\(476\) − 19.9712i − 0.915380i
\(477\) −3.49489 −0.160020
\(478\) 34.4010i 1.57347i
\(479\) − 9.27693i − 0.423874i −0.977283 0.211937i \(-0.932023\pi\)
0.977283 0.211937i \(-0.0679771\pi\)
\(480\) −56.2264 −2.56637
\(481\) 12.8317i 0.585074i
\(482\) − 22.1946i − 1.01093i
\(483\) − 14.2196i − 0.647015i
\(484\) −17.3910 −0.790502
\(485\) 50.2375i 2.28117i
\(486\) 36.6586 1.66287
\(487\) 38.0837 1.72574 0.862869 0.505428i \(-0.168665\pi\)
0.862869 + 0.505428i \(0.168665\pi\)
\(488\) −0.801018 −0.0362604
\(489\) 21.9254 0.991503
\(490\) 3.74341i 0.169110i
\(491\) 31.5938i 1.42581i 0.701262 + 0.712904i \(0.252620\pi\)
−0.701262 + 0.712904i \(0.747380\pi\)
\(492\) −47.8204 −2.15591
\(493\) 0 0
\(494\) −14.8088 −0.666279
\(495\) 7.80557i 0.350834i
\(496\) 6.95758i 0.312405i
\(497\) 10.4818 0.470173
\(498\) 42.9088 1.92279
\(499\) 21.0654 0.943016 0.471508 0.881862i \(-0.343710\pi\)
0.471508 + 0.881862i \(0.343710\pi\)
\(500\) 2.01541 0.0901318
\(501\) − 1.05591i − 0.0471746i
\(502\) −49.6853 −2.21757
\(503\) − 26.2365i − 1.16983i −0.811095 0.584915i \(-0.801128\pi\)
0.811095 0.584915i \(-0.198872\pi\)
\(504\) 2.27710i 0.101430i
\(505\) − 36.6580i − 1.63126i
\(506\) −5.40732 −0.240384
\(507\) − 24.0795i − 1.06941i
\(508\) − 31.8623i − 1.41366i
\(509\) −20.9900 −0.930366 −0.465183 0.885215i \(-0.654011\pi\)
−0.465183 + 0.885215i \(0.654011\pi\)
\(510\) − 62.8477i − 2.78294i
\(511\) 9.60679i 0.424979i
\(512\) 30.0650i 1.32870i
\(513\) −9.37656 −0.413985
\(514\) 0.347540i 0.0153293i
\(515\) −23.7727 −1.04755
\(516\) −7.64228 −0.336432
\(517\) 1.08133 0.0475567
\(518\) 40.7817 1.79184
\(519\) 50.6357i 2.22266i
\(520\) − 2.07654i − 0.0910622i
\(521\) 37.4112 1.63901 0.819507 0.573069i \(-0.194247\pi\)
0.819507 + 0.573069i \(0.194247\pi\)
\(522\) 0 0
\(523\) 17.4633 0.763618 0.381809 0.924241i \(-0.375301\pi\)
0.381809 + 0.924241i \(0.375301\pi\)
\(524\) − 1.02638i − 0.0448378i
\(525\) − 30.7535i − 1.34219i
\(526\) −10.9589 −0.477832
\(527\) −7.01688 −0.305660
\(528\) 11.1821 0.486640
\(529\) −16.8790 −0.733871
\(530\) − 10.1292i − 0.439983i
\(531\) 28.8746 1.25305
\(532\) 22.2015i 0.962559i
\(533\) − 18.2602i − 0.790937i
\(534\) 21.5676i 0.933323i
\(535\) 38.3503 1.65803
\(536\) 1.25995i 0.0544217i
\(537\) − 17.0591i − 0.736154i
\(538\) −3.79091 −0.163438
\(539\) − 0.671721i − 0.0289331i
\(540\) 10.9647i 0.471845i
\(541\) − 5.69494i − 0.244845i −0.992478 0.122422i \(-0.960934\pi\)
0.992478 0.122422i \(-0.0390662\pi\)
\(542\) −33.9369 −1.45771
\(543\) − 54.3740i − 2.33341i
\(544\) −34.0044 −1.45793
\(545\) 52.0292 2.22868
\(546\) 17.3228 0.741346
\(547\) −26.1122 −1.11648 −0.558238 0.829681i \(-0.688522\pi\)
−0.558238 + 0.829681i \(0.688522\pi\)
\(548\) 24.6141i 1.05146i
\(549\) − 4.15217i − 0.177210i
\(550\) −11.6947 −0.498663
\(551\) 0 0
\(552\) −2.34167 −0.0996680
\(553\) − 33.4891i − 1.42410i
\(554\) − 29.8563i − 1.26847i
\(555\) 60.5385 2.56971
\(556\) −18.9324 −0.802912
\(557\) −28.6514 −1.21400 −0.606998 0.794703i \(-0.707627\pi\)
−0.606998 + 0.794703i \(0.707627\pi\)
\(558\) −6.67195 −0.282446
\(559\) − 2.91820i − 0.123427i
\(560\) −35.6747 −1.50753
\(561\) 11.2774i 0.476134i
\(562\) − 25.7054i − 1.08432i
\(563\) 2.23595i 0.0942341i 0.998889 + 0.0471170i \(0.0150034\pi\)
−0.998889 + 0.0471170i \(0.984997\pi\)
\(564\) −3.90511 −0.164435
\(565\) 20.4237i 0.859231i
\(566\) 21.7070i 0.912414i
\(567\) 27.3632 1.14915
\(568\) − 1.72613i − 0.0724268i
\(569\) 14.6792i 0.615385i 0.951486 + 0.307692i \(0.0995568\pi\)
−0.951486 + 0.307692i \(0.900443\pi\)
\(570\) 69.8663i 2.92638i
\(571\) 20.8600 0.872962 0.436481 0.899714i \(-0.356225\pi\)
0.436481 + 0.899714i \(0.356225\pi\)
\(572\) − 3.10737i − 0.129926i
\(573\) −30.4520 −1.27215
\(574\) −58.0347 −2.42232
\(575\) 13.2381 0.552069
\(576\) −13.4018 −0.558410
\(577\) 22.4919i 0.936348i 0.883636 + 0.468174i \(0.155088\pi\)
−0.883636 + 0.468174i \(0.844912\pi\)
\(578\) − 4.93149i − 0.205123i
\(579\) −29.0087 −1.20556
\(580\) 0 0
\(581\) 24.5642 1.01909
\(582\) 69.0150i 2.86076i
\(583\) 1.81759i 0.0752767i
\(584\) 1.58203 0.0654650
\(585\) 10.7640 0.445036
\(586\) 13.2363 0.546788
\(587\) 16.4960 0.680864 0.340432 0.940269i \(-0.389427\pi\)
0.340432 + 0.940269i \(0.389427\pi\)
\(588\) 2.42585i 0.100040i
\(589\) 7.80050 0.321414
\(590\) 83.6865i 3.44532i
\(591\) − 9.26127i − 0.380958i
\(592\) − 36.3029i − 1.49204i
\(593\) 45.1022 1.85212 0.926062 0.377371i \(-0.123172\pi\)
0.926062 + 0.377371i \(0.123172\pi\)
\(594\) − 4.17095i − 0.171136i
\(595\) − 35.9787i − 1.47498i
\(596\) 4.22633 0.173117
\(597\) 38.5431i 1.57746i
\(598\) 7.45676i 0.304930i
\(599\) − 10.5711i − 0.431925i −0.976402 0.215963i \(-0.930711\pi\)
0.976402 0.215963i \(-0.0692889\pi\)
\(600\) −5.06444 −0.206755
\(601\) 0.743399i 0.0303239i 0.999885 + 0.0151619i \(0.00482638\pi\)
−0.999885 + 0.0151619i \(0.995174\pi\)
\(602\) −9.27465 −0.378006
\(603\) −6.53113 −0.265968
\(604\) 17.4109 0.708439
\(605\) −31.3305 −1.27376
\(606\) − 50.3597i − 2.04572i
\(607\) − 32.6175i − 1.32390i −0.749546 0.661952i \(-0.769728\pi\)
0.749546 0.661952i \(-0.230272\pi\)
\(608\) 37.8019 1.53307
\(609\) 0 0
\(610\) 12.0342 0.487248
\(611\) − 1.49117i − 0.0603261i
\(612\) − 17.0481i − 0.689128i
\(613\) −15.0054 −0.606064 −0.303032 0.952980i \(-0.597999\pi\)
−0.303032 + 0.952980i \(0.597999\pi\)
\(614\) 31.4387 1.26876
\(615\) −86.1497 −3.47389
\(616\) 1.18425 0.0477147
\(617\) 41.5249i 1.67173i 0.548936 + 0.835864i \(0.315033\pi\)
−0.548936 + 0.835864i \(0.684967\pi\)
\(618\) −32.6583 −1.31371
\(619\) − 21.3783i − 0.859268i −0.903003 0.429634i \(-0.858643\pi\)
0.903003 0.429634i \(-0.141357\pi\)
\(620\) − 9.12168i − 0.366335i
\(621\) 4.72144i 0.189465i
\(622\) 8.44356 0.338556
\(623\) 12.3469i 0.494669i
\(624\) − 15.4203i − 0.617307i
\(625\) −23.1231 −0.924923
\(626\) 2.08855i 0.0834752i
\(627\) − 12.5369i − 0.500674i
\(628\) − 33.4932i − 1.33652i
\(629\) 36.6123 1.45983
\(630\) − 34.2101i − 1.36296i
\(631\) −22.2833 −0.887085 −0.443542 0.896253i \(-0.646278\pi\)
−0.443542 + 0.896253i \(0.646278\pi\)
\(632\) −5.51494 −0.219372
\(633\) 10.0316 0.398719
\(634\) 15.1653 0.602290
\(635\) − 57.4009i − 2.27788i
\(636\) − 6.56403i − 0.260281i
\(637\) −0.926312 −0.0367018
\(638\) 0 0
\(639\) 8.94760 0.353962
\(640\) 10.6629i 0.421488i
\(641\) 26.5934i 1.05038i 0.850986 + 0.525188i \(0.176005\pi\)
−0.850986 + 0.525188i \(0.823995\pi\)
\(642\) 52.6846 2.07930
\(643\) −38.2237 −1.50740 −0.753699 0.657220i \(-0.771732\pi\)
−0.753699 + 0.657220i \(0.771732\pi\)
\(644\) 11.1793 0.440525
\(645\) −13.7678 −0.542106
\(646\) 42.2535i 1.66244i
\(647\) −32.8334 −1.29081 −0.645407 0.763839i \(-0.723312\pi\)
−0.645407 + 0.763839i \(0.723312\pi\)
\(648\) − 4.50614i − 0.177018i
\(649\) − 15.0168i − 0.589460i
\(650\) 16.1271i 0.632558i
\(651\) −9.12473 −0.357626
\(652\) 17.2375i 0.675073i
\(653\) 1.30358i 0.0510131i 0.999675 + 0.0255066i \(0.00811987\pi\)
−0.999675 + 0.0255066i \(0.991880\pi\)
\(654\) 71.4762 2.79494
\(655\) − 1.84906i − 0.0722487i
\(656\) 51.6611i 2.01703i
\(657\) 8.20066i 0.319938i
\(658\) −4.73923 −0.184754
\(659\) − 19.7479i − 0.769267i −0.923069 0.384634i \(-0.874328\pi\)
0.923069 0.384634i \(-0.125672\pi\)
\(660\) −14.6602 −0.570649
\(661\) −42.1752 −1.64042 −0.820212 0.572059i \(-0.806145\pi\)
−0.820212 + 0.572059i \(0.806145\pi\)
\(662\) −19.3739 −0.752989
\(663\) 15.5517 0.603980
\(664\) − 4.04520i − 0.156984i
\(665\) 39.9967i 1.55101i
\(666\) 34.8125 1.34896
\(667\) 0 0
\(668\) 0.830144 0.0321192
\(669\) − 38.7712i − 1.49898i
\(670\) − 18.9290i − 0.731291i
\(671\) −2.15942 −0.0833634
\(672\) −44.2193 −1.70579
\(673\) 41.6873 1.60693 0.803464 0.595353i \(-0.202988\pi\)
0.803464 + 0.595353i \(0.202988\pi\)
\(674\) −41.5605 −1.60085
\(675\) 10.2113i 0.393033i
\(676\) 18.9310 0.728114
\(677\) 24.5737i 0.944443i 0.881480 + 0.472221i \(0.156548\pi\)
−0.881480 + 0.472221i \(0.843452\pi\)
\(678\) 28.0575i 1.07754i
\(679\) 39.5093i 1.51623i
\(680\) −5.92493 −0.227211
\(681\) − 22.2158i − 0.851311i
\(682\) 3.46988i 0.132868i
\(683\) 43.1311 1.65036 0.825182 0.564867i \(-0.191072\pi\)
0.825182 + 0.564867i \(0.191072\pi\)
\(684\) 18.9519i 0.724646i
\(685\) 44.3431i 1.69426i
\(686\) 37.4058i 1.42816i
\(687\) −7.81225 −0.298056
\(688\) 8.25607i 0.314760i
\(689\) 2.50648 0.0954891
\(690\) 35.1802 1.33929
\(691\) −41.0599 −1.56199 −0.780996 0.624536i \(-0.785288\pi\)
−0.780996 + 0.624536i \(0.785288\pi\)
\(692\) −39.8091 −1.51332
\(693\) 6.13869i 0.233190i
\(694\) − 52.3691i − 1.98790i
\(695\) −34.1072 −1.29376
\(696\) 0 0
\(697\) −52.1014 −1.97348
\(698\) 36.5375i 1.38297i
\(699\) − 9.97562i − 0.377313i
\(700\) 24.1780 0.913842
\(701\) −1.11188 −0.0419949 −0.0209975 0.999780i \(-0.506684\pi\)
−0.0209975 + 0.999780i \(0.506684\pi\)
\(702\) −5.75180 −0.217088
\(703\) −40.7010 −1.53507
\(704\) 6.96989i 0.262687i
\(705\) −7.03516 −0.264959
\(706\) − 57.5475i − 2.16583i
\(707\) − 28.8297i − 1.08425i
\(708\) 54.2315i 2.03815i
\(709\) −29.9385 −1.12437 −0.562183 0.827013i \(-0.690038\pi\)
−0.562183 + 0.827013i \(0.690038\pi\)
\(710\) 25.9326i 0.973234i
\(711\) − 28.5873i − 1.07211i
\(712\) 2.03328 0.0762002
\(713\) − 3.92783i − 0.147099i
\(714\) − 49.4266i − 1.84974i
\(715\) − 5.59801i − 0.209354i
\(716\) 13.4116 0.501217
\(717\) 40.1614i 1.49986i
\(718\) −39.4666 −1.47288
\(719\) −5.03075 −0.187615 −0.0938076 0.995590i \(-0.529904\pi\)
−0.0938076 + 0.995590i \(0.529904\pi\)
\(720\) −30.4530 −1.13492
\(721\) −18.6961 −0.696277
\(722\) − 10.0034i − 0.372290i
\(723\) − 25.9110i − 0.963640i
\(724\) 42.7481 1.58872
\(725\) 0 0
\(726\) −43.0409 −1.59740
\(727\) 0.650727i 0.0241341i 0.999927 + 0.0120671i \(0.00384116\pi\)
−0.999927 + 0.0120671i \(0.996159\pi\)
\(728\) − 1.63309i − 0.0605265i
\(729\) 10.3533 0.383455
\(730\) −23.7678 −0.879685
\(731\) −8.32643 −0.307964
\(732\) 7.79852 0.288242
\(733\) − 11.3833i − 0.420451i −0.977653 0.210225i \(-0.932580\pi\)
0.977653 0.210225i \(-0.0674198\pi\)
\(734\) 33.0644 1.22043
\(735\) 4.37024i 0.161199i
\(736\) − 19.0346i − 0.701626i
\(737\) 3.39664i 0.125117i
\(738\) −49.5402 −1.82360
\(739\) − 19.1778i − 0.705465i −0.935724 0.352732i \(-0.885253\pi\)
0.935724 0.352732i \(-0.114747\pi\)
\(740\) 47.5946i 1.74961i
\(741\) −17.2885 −0.635109
\(742\) − 7.96609i − 0.292444i
\(743\) − 32.1621i − 1.17991i −0.807436 0.589956i \(-0.799145\pi\)
0.807436 0.589956i \(-0.200855\pi\)
\(744\) 1.50265i 0.0550898i
\(745\) 7.61385 0.278950
\(746\) − 20.2659i − 0.741988i
\(747\) 20.9688 0.767208
\(748\) −8.86618 −0.324180
\(749\) 30.1606 1.10205
\(750\) 4.98792 0.182133
\(751\) 38.3085i 1.39790i 0.715172 + 0.698949i \(0.246348\pi\)
−0.715172 + 0.698949i \(0.753652\pi\)
\(752\) 4.21875i 0.153842i
\(753\) −58.0051 −2.11382
\(754\) 0 0
\(755\) 31.3662 1.14153
\(756\) 8.62318i 0.313622i
\(757\) − 11.3624i − 0.412975i −0.978449 0.206487i \(-0.933797\pi\)
0.978449 0.206487i \(-0.0662032\pi\)
\(758\) −44.5534 −1.61825
\(759\) −6.31276 −0.229139
\(760\) 6.58660 0.238921
\(761\) −15.6194 −0.566205 −0.283102 0.959090i \(-0.591364\pi\)
−0.283102 + 0.959090i \(0.591364\pi\)
\(762\) − 78.8558i − 2.85664i
\(763\) 40.9184 1.48134
\(764\) − 23.9409i − 0.866153i
\(765\) − 30.7126i − 1.11042i
\(766\) 5.64784i 0.204065i
\(767\) −20.7083 −0.747734
\(768\) 42.8378i 1.54578i
\(769\) 9.65324i 0.348105i 0.984736 + 0.174052i \(0.0556862\pi\)
−0.984736 + 0.174052i \(0.944314\pi\)
\(770\) −17.7916 −0.641166
\(771\) 0.405735i 0.0146122i
\(772\) − 22.8063i − 0.820816i
\(773\) 15.7145i 0.565211i 0.959236 + 0.282605i \(0.0911987\pi\)
−0.959236 + 0.282605i \(0.908801\pi\)
\(774\) −7.91713 −0.284576
\(775\) − 8.49493i − 0.305147i
\(776\) 6.50635 0.233564
\(777\) 47.6105 1.70802
\(778\) −6.13653 −0.220005
\(779\) 57.9199 2.07519
\(780\) 20.2167i 0.723873i
\(781\) − 4.65337i − 0.166511i
\(782\) 21.2762 0.760835
\(783\) 0 0
\(784\) 2.62069 0.0935959
\(785\) − 60.3389i − 2.15359i
\(786\) − 2.54019i − 0.0906055i
\(787\) −5.12572 −0.182712 −0.0913560 0.995818i \(-0.529120\pi\)
−0.0913560 + 0.995818i \(0.529120\pi\)
\(788\) 7.28109 0.259378
\(789\) −12.7940 −0.455477
\(790\) 82.8540 2.94781
\(791\) 16.0622i 0.571107i
\(792\) 1.01091 0.0359212
\(793\) 2.97787i 0.105747i
\(794\) 41.2511i 1.46395i
\(795\) − 11.8253i − 0.419400i
\(796\) −30.3021 −1.07403
\(797\) − 40.5663i − 1.43693i −0.695562 0.718466i \(-0.744844\pi\)
0.695562 0.718466i \(-0.255156\pi\)
\(798\) 54.9464i 1.94508i
\(799\) −4.25470 −0.150521
\(800\) − 41.1672i − 1.45548i
\(801\) 10.5397i 0.372403i
\(802\) − 8.36646i − 0.295430i
\(803\) 4.26491 0.150505
\(804\) − 12.2666i − 0.432610i
\(805\) 20.1398 0.709834
\(806\) 4.78501 0.168545
\(807\) −4.42569 −0.155792
\(808\) −4.74763 −0.167021
\(809\) − 31.0217i − 1.09066i −0.838220 0.545332i \(-0.816403\pi\)
0.838220 0.545332i \(-0.183597\pi\)
\(810\) 67.6982i 2.37867i
\(811\) 45.3970 1.59410 0.797052 0.603910i \(-0.206391\pi\)
0.797052 + 0.603910i \(0.206391\pi\)
\(812\) 0 0
\(813\) −39.6196 −1.38952
\(814\) − 18.1049i − 0.634577i
\(815\) 31.0538i 1.08777i
\(816\) −43.9984 −1.54025
\(817\) 9.25630 0.323837
\(818\) −49.6125 −1.73466
\(819\) 8.46534 0.295803
\(820\) − 67.7298i − 2.36523i
\(821\) 26.4086 0.921665 0.460833 0.887487i \(-0.347551\pi\)
0.460833 + 0.887487i \(0.347551\pi\)
\(822\) 60.9173i 2.12473i
\(823\) − 34.3735i − 1.19818i −0.800680 0.599092i \(-0.795528\pi\)
0.800680 0.599092i \(-0.204472\pi\)
\(824\) 3.07884i 0.107257i
\(825\) −13.6529 −0.475334
\(826\) 65.8153i 2.29001i
\(827\) 40.3495i 1.40309i 0.712626 + 0.701545i \(0.247506\pi\)
−0.712626 + 0.701545i \(0.752494\pi\)
\(828\) 9.54299 0.331642
\(829\) − 41.4695i − 1.44029i −0.693821 0.720147i \(-0.744074\pi\)
0.693821 0.720147i \(-0.255926\pi\)
\(830\) 60.7733i 2.10947i
\(831\) − 34.8557i − 1.20913i
\(832\) 9.61157 0.333221
\(833\) 2.64302i 0.0915753i
\(834\) −46.8556 −1.62248
\(835\) 1.49553 0.0517549
\(836\) 9.85632 0.340888
\(837\) 3.02975 0.104723
\(838\) − 13.1264i − 0.453445i
\(839\) − 12.9838i − 0.448250i −0.974560 0.224125i \(-0.928048\pi\)
0.974560 0.224125i \(-0.0719523\pi\)
\(840\) −7.70476 −0.265840
\(841\) 0 0
\(842\) −67.2183 −2.31649
\(843\) − 30.0097i − 1.03359i
\(844\) 7.88669i 0.271471i
\(845\) 34.1047 1.17324
\(846\) −4.04556 −0.139089
\(847\) −24.6399 −0.846635
\(848\) −7.09122 −0.243514
\(849\) 25.3418i 0.869729i
\(850\) 46.0151 1.57830
\(851\) 20.4944i 0.702540i
\(852\) 16.8052i 0.575736i
\(853\) − 8.15508i − 0.279225i −0.990206 0.139612i \(-0.955414\pi\)
0.990206 0.139612i \(-0.0445856\pi\)
\(854\) 9.46426 0.323860
\(855\) 34.1425i 1.16765i
\(856\) − 4.96681i − 0.169762i
\(857\) −29.3691 −1.00323 −0.501615 0.865091i \(-0.667261\pi\)
−0.501615 + 0.865091i \(0.667261\pi\)
\(858\) − 7.69040i − 0.262546i
\(859\) 19.4101i 0.662265i 0.943584 + 0.331133i \(0.107431\pi\)
−0.943584 + 0.331133i \(0.892569\pi\)
\(860\) − 10.8240i − 0.369097i
\(861\) −67.7525 −2.30900
\(862\) 19.2230i 0.654736i
\(863\) 50.6162 1.72300 0.861498 0.507760i \(-0.169526\pi\)
0.861498 + 0.507760i \(0.169526\pi\)
\(864\) 14.6824 0.499506
\(865\) −71.7173 −2.43846
\(866\) 6.22999 0.211704
\(867\) − 5.75726i − 0.195527i
\(868\) − 7.17375i − 0.243493i
\(869\) −14.8674 −0.504342
\(870\) 0 0
\(871\) 4.68401 0.158712
\(872\) − 6.73838i − 0.228190i
\(873\) 33.7264i 1.14147i
\(874\) −23.6522 −0.800048
\(875\) 2.85546 0.0965321
\(876\) −15.4023 −0.520395
\(877\) 35.1220 1.18598 0.592992 0.805208i \(-0.297946\pi\)
0.592992 + 0.805208i \(0.297946\pi\)
\(878\) − 12.4806i − 0.421200i
\(879\) 15.4527 0.521208
\(880\) 15.8377i 0.533888i
\(881\) 32.1831i 1.08428i 0.840289 + 0.542138i \(0.182385\pi\)
−0.840289 + 0.542138i \(0.817615\pi\)
\(882\) 2.51310i 0.0846204i
\(883\) 46.8381 1.57623 0.788113 0.615530i \(-0.211058\pi\)
0.788113 + 0.615530i \(0.211058\pi\)
\(884\) 12.2266i 0.411224i
\(885\) 97.6996i 3.28414i
\(886\) −16.5377 −0.555594
\(887\) − 6.85131i − 0.230045i −0.993363 0.115022i \(-0.963306\pi\)
0.993363 0.115022i \(-0.0366939\pi\)
\(888\) − 7.84043i − 0.263108i
\(889\) − 45.1429i − 1.51405i
\(890\) −30.5471 −1.02394
\(891\) − 12.1478i − 0.406968i
\(892\) 30.4814 1.02059
\(893\) 4.72985 0.158278
\(894\) 10.4597 0.349825
\(895\) 24.1614 0.807628
\(896\) 8.38584i 0.280151i
\(897\) 8.70538i 0.290664i
\(898\) −32.9650 −1.10006
\(899\) 0 0
\(900\) 20.6391 0.687970
\(901\) − 7.15166i − 0.238256i
\(902\) 25.7643i 0.857859i
\(903\) −10.8277 −0.360322
\(904\) 2.64511 0.0879749
\(905\) 77.0119 2.55996
\(906\) 43.0900 1.43157
\(907\) 12.2503i 0.406764i 0.979099 + 0.203382i \(0.0651933\pi\)
−0.979099 + 0.203382i \(0.934807\pi\)
\(908\) 17.4658 0.579622
\(909\) − 24.6099i − 0.816260i
\(910\) 24.5349i 0.813324i
\(911\) − 19.8474i − 0.657572i −0.944404 0.328786i \(-0.893360\pi\)
0.944404 0.328786i \(-0.106640\pi\)
\(912\) 48.9119 1.61964
\(913\) − 10.9052i − 0.360910i
\(914\) − 0.984364i − 0.0325599i
\(915\) 14.0493 0.464454
\(916\) − 6.14189i − 0.202934i
\(917\) − 1.45419i − 0.0480217i
\(918\) 16.4115i 0.541659i
\(919\) −30.5383 −1.00736 −0.503682 0.863889i \(-0.668022\pi\)
−0.503682 + 0.863889i \(0.668022\pi\)
\(920\) − 3.31659i − 0.109345i
\(921\) 36.7031 1.20941
\(922\) 10.7032 0.352491
\(923\) −6.41706 −0.211220
\(924\) −11.5296 −0.379294
\(925\) 44.3243i 1.45737i
\(926\) 12.7756i 0.419833i
\(927\) −15.9595 −0.524180
\(928\) 0 0
\(929\) −8.90962 −0.292315 −0.146158 0.989261i \(-0.546691\pi\)
−0.146158 + 0.989261i \(0.546691\pi\)
\(930\) − 22.5751i − 0.740268i
\(931\) − 2.93818i − 0.0962951i
\(932\) 7.84270 0.256896
\(933\) 9.85742 0.322717
\(934\) 8.71333 0.285109
\(935\) −15.9727 −0.522362
\(936\) − 1.39406i − 0.0455663i
\(937\) −15.3972 −0.503006 −0.251503 0.967857i \(-0.580925\pi\)
−0.251503 + 0.967857i \(0.580925\pi\)
\(938\) − 14.8867i − 0.486069i
\(939\) 2.43827i 0.0795701i
\(940\) − 5.53095i − 0.180400i
\(941\) −46.5126 −1.51627 −0.758133 0.652100i \(-0.773888\pi\)
−0.758133 + 0.652100i \(0.773888\pi\)
\(942\) − 82.8920i − 2.70077i
\(943\) − 29.1647i − 0.949735i
\(944\) 58.5872 1.90685
\(945\) 15.5349i 0.505350i
\(946\) 4.11746i 0.133870i
\(947\) 31.2180i 1.01445i 0.861814 + 0.507224i \(0.169328\pi\)
−0.861814 + 0.507224i \(0.830672\pi\)
\(948\) 53.6921 1.74384
\(949\) − 5.88137i − 0.190917i
\(950\) −51.1539 −1.65965
\(951\) 17.7047 0.574114
\(952\) −4.65966 −0.151021
\(953\) −24.5654 −0.795752 −0.397876 0.917439i \(-0.630253\pi\)
−0.397876 + 0.917439i \(0.630253\pi\)
\(954\) − 6.80011i − 0.220162i
\(955\) − 43.1303i − 1.39566i
\(956\) −31.5744 −1.02119
\(957\) 0 0
\(958\) 18.0504 0.583181
\(959\) 34.8736i 1.12613i
\(960\) − 45.3463i − 1.46355i
\(961\) 28.4795 0.918694
\(962\) −24.9669 −0.804966
\(963\) 25.7461 0.829655
\(964\) 20.3709 0.656102
\(965\) − 41.0862i − 1.32261i
\(966\) 27.6675 0.890187
\(967\) 25.3774i 0.816082i 0.912964 + 0.408041i \(0.133788\pi\)
−0.912964 + 0.408041i \(0.866212\pi\)
\(968\) 4.05766i 0.130418i
\(969\) 49.3288i 1.58467i
\(970\) −97.7485 −3.13852
\(971\) − 11.0345i − 0.354115i −0.984200 0.177058i \(-0.943342\pi\)
0.984200 0.177058i \(-0.0566579\pi\)
\(972\) 33.6464i 1.07921i
\(973\) −26.8237 −0.859927
\(974\) 74.1005i 2.37433i
\(975\) 18.8276i 0.602965i
\(976\) − 8.42486i − 0.269673i
\(977\) −52.4730 −1.67876 −0.839380 0.543545i \(-0.817082\pi\)
−0.839380 + 0.543545i \(0.817082\pi\)
\(978\) 42.6609i 1.36415i
\(979\) 5.48139 0.175186
\(980\) −3.43583 −0.109753
\(981\) 34.9292 1.11520
\(982\) −61.4729 −1.96168
\(983\) − 46.0772i − 1.46964i −0.678265 0.734818i \(-0.737268\pi\)
0.678265 0.734818i \(-0.262732\pi\)
\(984\) 11.1574i 0.355685i
\(985\) 13.1171 0.417945
\(986\) 0 0
\(987\) −5.53280 −0.176111
\(988\) − 13.5920i − 0.432419i
\(989\) − 4.66088i − 0.148207i
\(990\) −15.1875 −0.482690
\(991\) −0.807143 −0.0256397 −0.0128199 0.999918i \(-0.504081\pi\)
−0.0128199 + 0.999918i \(0.504081\pi\)
\(992\) −12.2145 −0.387812
\(993\) −22.6181 −0.717762
\(994\) 20.3947i 0.646881i
\(995\) −54.5900 −1.73062
\(996\) 39.3831i 1.24790i
\(997\) 30.6050i 0.969270i 0.874716 + 0.484635i \(0.161048\pi\)
−0.874716 + 0.484635i \(0.838952\pi\)
\(998\) 40.9875i 1.29744i
\(999\) −15.8084 −0.500157
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.d.840.10 12
29.2 odd 28 841.2.d.n.605.2 36
29.3 odd 28 841.2.d.n.571.2 36
29.4 even 14 841.2.e.l.651.3 72
29.5 even 14 841.2.e.l.236.10 72
29.6 even 14 841.2.e.l.196.3 72
29.7 even 7 841.2.e.l.270.3 72
29.8 odd 28 841.2.d.o.574.2 36
29.9 even 14 841.2.e.l.267.3 72
29.10 odd 28 841.2.d.o.190.5 36
29.11 odd 28 841.2.d.n.778.5 36
29.12 odd 4 841.2.a.g.1.2 6
29.13 even 14 841.2.e.l.63.10 72
29.14 odd 28 841.2.d.n.645.2 36
29.15 odd 28 841.2.d.o.645.5 36
29.16 even 7 841.2.e.l.63.3 72
29.17 odd 4 841.2.a.h.1.5 yes 6
29.18 odd 28 841.2.d.o.778.2 36
29.19 odd 28 841.2.d.n.190.2 36
29.20 even 7 841.2.e.l.267.10 72
29.21 odd 28 841.2.d.n.574.5 36
29.22 even 14 841.2.e.l.270.10 72
29.23 even 7 841.2.e.l.196.10 72
29.24 even 7 841.2.e.l.236.3 72
29.25 even 7 841.2.e.l.651.10 72
29.26 odd 28 841.2.d.o.571.5 36
29.27 odd 28 841.2.d.o.605.5 36
29.28 even 2 inner 841.2.b.d.840.3 12
87.17 even 4 7569.2.a.y.1.2 6
87.41 even 4 7569.2.a.bc.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.g.1.2 6 29.12 odd 4
841.2.a.h.1.5 yes 6 29.17 odd 4
841.2.b.d.840.3 12 29.28 even 2 inner
841.2.b.d.840.10 12 1.1 even 1 trivial
841.2.d.n.190.2 36 29.19 odd 28
841.2.d.n.571.2 36 29.3 odd 28
841.2.d.n.574.5 36 29.21 odd 28
841.2.d.n.605.2 36 29.2 odd 28
841.2.d.n.645.2 36 29.14 odd 28
841.2.d.n.778.5 36 29.11 odd 28
841.2.d.o.190.5 36 29.10 odd 28
841.2.d.o.571.5 36 29.26 odd 28
841.2.d.o.574.2 36 29.8 odd 28
841.2.d.o.605.5 36 29.27 odd 28
841.2.d.o.645.5 36 29.15 odd 28
841.2.d.o.778.2 36 29.18 odd 28
841.2.e.l.63.3 72 29.16 even 7
841.2.e.l.63.10 72 29.13 even 14
841.2.e.l.196.3 72 29.6 even 14
841.2.e.l.196.10 72 29.23 even 7
841.2.e.l.236.3 72 29.24 even 7
841.2.e.l.236.10 72 29.5 even 14
841.2.e.l.267.3 72 29.9 even 14
841.2.e.l.267.10 72 29.20 even 7
841.2.e.l.270.3 72 29.7 even 7
841.2.e.l.270.10 72 29.22 even 14
841.2.e.l.651.3 72 29.4 even 14
841.2.e.l.651.10 72 29.25 even 7
7569.2.a.y.1.2 6 87.17 even 4
7569.2.a.bc.1.5 6 87.41 even 4