Properties

Label 841.2.a.k.1.1
Level 841841
Weight 22
Character 841.1
Self dual yes
Analytic conductor 6.7156.715
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(1,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 841=292 841 = 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 841.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.715418809996.71541880999
Analytic rank: 00
Dimension: 1212
Coefficient field: 12.12.32268092290502656.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x1215x10+78x8169x6+148x436x2+1 x^{12} - 15x^{10} + 78x^{8} - 169x^{6} + 148x^{4} - 36x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 29)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.16310-2.16310 of defining polynomial
Character χ\chi == 841.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2.60244q20.439339q3+4.77269q4+2.58042q5+1.14335q6+0.0751311q77.21577q82.80698q96.71540q10+3.77836q112.09683q12+0.880995q130.195524q141.13368q15+9.23322q16+3.94108q17+7.30500q18+0.713617q19+12.3156q200.0330080q219.83294q22+1.17764q23+3.17017q24+1.65858q252.29274q26+2.55123q27+0.358578q28+2.95033q30+5.15087q319.59735q321.65998q3310.2564q34+0.193870q3513.3969q363.08751q371.85714q380.387055q3918.6197q40+6.67122q41+0.0859013q428.31364q43+18.0329q447.24320q453.06474q4610.5920q474.05651q486.99436q494.31637q501.73147q51+4.20472q52+5.55608q536.63943q54+9.74976q550.542129q560.313519q57+9.91885q595.41071q60+3.56734q6113.4048q620.210892q63+6.51010q64+2.27334q65+4.31999q66+4.93956q67+18.8096q680.517383q690.504535q70+4.90681q71+20.2545q728.90215q73+8.03505q740.728681q75+3.40587q76+0.283872q77+1.00729q78+13.1895q79+23.8256q80+7.30009q8117.3615q82+16.9864q830.157537q84+10.1697q85+21.6357q8627.2637q88+6.79655q89+18.8500q90+0.0661901q91+5.62052q922.26298q93+27.5652q94+1.84143q95+4.21649q9611.4171q97+18.2024q9810.6058q99+O(q100)q-2.60244 q^{2} -0.439339 q^{3} +4.77269 q^{4} +2.58042 q^{5} +1.14335 q^{6} +0.0751311 q^{7} -7.21577 q^{8} -2.80698 q^{9} -6.71540 q^{10} +3.77836 q^{11} -2.09683 q^{12} +0.880995 q^{13} -0.195524 q^{14} -1.13368 q^{15} +9.23322 q^{16} +3.94108 q^{17} +7.30500 q^{18} +0.713617 q^{19} +12.3156 q^{20} -0.0330080 q^{21} -9.83294 q^{22} +1.17764 q^{23} +3.17017 q^{24} +1.65858 q^{25} -2.29274 q^{26} +2.55123 q^{27} +0.358578 q^{28} +2.95033 q^{30} +5.15087 q^{31} -9.59735 q^{32} -1.65998 q^{33} -10.2564 q^{34} +0.193870 q^{35} -13.3969 q^{36} -3.08751 q^{37} -1.85714 q^{38} -0.387055 q^{39} -18.6197 q^{40} +6.67122 q^{41} +0.0859013 q^{42} -8.31364 q^{43} +18.0329 q^{44} -7.24320 q^{45} -3.06474 q^{46} -10.5920 q^{47} -4.05651 q^{48} -6.99436 q^{49} -4.31637 q^{50} -1.73147 q^{51} +4.20472 q^{52} +5.55608 q^{53} -6.63943 q^{54} +9.74976 q^{55} -0.542129 q^{56} -0.313519 q^{57} +9.91885 q^{59} -5.41071 q^{60} +3.56734 q^{61} -13.4048 q^{62} -0.210892 q^{63} +6.51010 q^{64} +2.27334 q^{65} +4.31999 q^{66} +4.93956 q^{67} +18.8096 q^{68} -0.517383 q^{69} -0.504535 q^{70} +4.90681 q^{71} +20.2545 q^{72} -8.90215 q^{73} +8.03505 q^{74} -0.728681 q^{75} +3.40587 q^{76} +0.283872 q^{77} +1.00729 q^{78} +13.1895 q^{79} +23.8256 q^{80} +7.30009 q^{81} -17.3615 q^{82} +16.9864 q^{83} -0.157537 q^{84} +10.1697 q^{85} +21.6357 q^{86} -27.2637 q^{88} +6.79655 q^{89} +18.8500 q^{90} +0.0661901 q^{91} +5.62052 q^{92} -2.26298 q^{93} +27.5652 q^{94} +1.84143 q^{95} +4.21649 q^{96} -11.4171 q^{97} +18.2024 q^{98} -10.6058 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+8q4+8q5+24q6+10q7+10q9+12q13+16q16+24q2038q22+30q23+10q248q2512q28+2q304q33+6q34+44q35+16q36+58q96+O(q100) 12 q + 8 q^{4} + 8 q^{5} + 24 q^{6} + 10 q^{7} + 10 q^{9} + 12 q^{13} + 16 q^{16} + 24 q^{20} - 38 q^{22} + 30 q^{23} + 10 q^{24} - 8 q^{25} - 12 q^{28} + 2 q^{30} - 4 q^{33} + 6 q^{34} + 44 q^{35} + 16 q^{36}+ \cdots - 58 q^{96}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.60244 −1.84020 −0.920101 0.391680i 0.871894π-0.871894\pi
−0.920101 + 0.391680i 0.871894π0.871894\pi
33 −0.439339 −0.253652 −0.126826 0.991925i 0.540479π-0.540479\pi
−0.126826 + 0.991925i 0.540479π0.540479\pi
44 4.77269 2.38635
55 2.58042 1.15400 0.577000 0.816744i 0.304223π-0.304223\pi
0.577000 + 0.816744i 0.304223π0.304223\pi
66 1.14335 0.466772
77 0.0751311 0.0283969 0.0141984 0.999899i 0.495480π-0.495480\pi
0.0141984 + 0.999899i 0.495480π0.495480\pi
88 −7.21577 −2.55116
99 −2.80698 −0.935660
1010 −6.71540 −2.12359
1111 3.77836 1.13922 0.569609 0.821916i 0.307095π-0.307095\pi
0.569609 + 0.821916i 0.307095π0.307095\pi
1212 −2.09683 −0.605302
1313 0.880995 0.244344 0.122172 0.992509i 0.461014π-0.461014\pi
0.122172 + 0.992509i 0.461014π0.461014\pi
1414 −0.195524 −0.0522560
1515 −1.13368 −0.292715
1616 9.23322 2.30830
1717 3.94108 0.955854 0.477927 0.878400i 0.341388π-0.341388\pi
0.477927 + 0.878400i 0.341388π0.341388\pi
1818 7.30500 1.72181
1919 0.713617 0.163715 0.0818574 0.996644i 0.473915π-0.473915\pi
0.0818574 + 0.996644i 0.473915π0.473915\pi
2020 12.3156 2.75385
2121 −0.0330080 −0.00720294
2222 −9.83294 −2.09639
2323 1.17764 0.245555 0.122778 0.992434i 0.460820π-0.460820\pi
0.122778 + 0.992434i 0.460820π0.460820\pi
2424 3.17017 0.647108
2525 1.65858 0.331717
2626 −2.29274 −0.449643
2727 2.55123 0.490985
2828 0.358578 0.0677648
2929 0 0
3030 2.95033 0.538655
3131 5.15087 0.925124 0.462562 0.886587i 0.346930π-0.346930\pi
0.462562 + 0.886587i 0.346930π0.346930\pi
3232 −9.59735 −1.69659
3333 −1.65998 −0.288965
3434 −10.2564 −1.75896
3535 0.193870 0.0327700
3636 −13.3969 −2.23281
3737 −3.08751 −0.507583 −0.253791 0.967259i 0.581678π-0.581678\pi
−0.253791 + 0.967259i 0.581678π0.581678\pi
3838 −1.85714 −0.301269
3939 −0.387055 −0.0619785
4040 −18.6197 −2.94404
4141 6.67122 1.04187 0.520935 0.853596i 0.325583π-0.325583\pi
0.520935 + 0.853596i 0.325583π0.325583\pi
4242 0.0859013 0.0132549
4343 −8.31364 −1.26782 −0.633909 0.773408i 0.718551π-0.718551\pi
−0.633909 + 0.773408i 0.718551π0.718551\pi
4444 18.0329 2.71857
4545 −7.24320 −1.07975
4646 −3.06474 −0.451871
4747 −10.5920 −1.54501 −0.772504 0.635010i 0.780996π-0.780996\pi
−0.772504 + 0.635010i 0.780996π0.780996\pi
4848 −4.05651 −0.585507
4949 −6.99436 −0.999194
5050 −4.31637 −0.610427
5151 −1.73147 −0.242454
5252 4.20472 0.583090
5353 5.55608 0.763186 0.381593 0.924331i 0.375376π-0.375376\pi
0.381593 + 0.924331i 0.375376π0.375376\pi
5454 −6.63943 −0.903512
5555 9.74976 1.31466
5656 −0.542129 −0.0724450
5757 −0.313519 −0.0415267
5858 0 0
5959 9.91885 1.29132 0.645662 0.763623i 0.276582π-0.276582\pi
0.645662 + 0.763623i 0.276582π0.276582\pi
6060 −5.41071 −0.698519
6161 3.56734 0.456751 0.228375 0.973573i 0.426659π-0.426659\pi
0.228375 + 0.973573i 0.426659π0.426659\pi
6262 −13.4048 −1.70242
6363 −0.210892 −0.0265698
6464 6.51010 0.813763
6565 2.27334 0.281973
6666 4.31999 0.531754
6767 4.93956 0.603464 0.301732 0.953393i 0.402435π-0.402435\pi
0.301732 + 0.953393i 0.402435π0.402435\pi
6868 18.8096 2.28100
6969 −0.517383 −0.0622856
7070 −0.504535 −0.0603035
7171 4.90681 0.582331 0.291166 0.956673i 0.405957π-0.405957\pi
0.291166 + 0.956673i 0.405957π0.405957\pi
7272 20.2545 2.38702
7373 −8.90215 −1.04192 −0.520959 0.853582i 0.674426π-0.674426\pi
−0.520959 + 0.853582i 0.674426π0.674426\pi
7474 8.03505 0.934056
7575 −0.728681 −0.0841408
7676 3.40587 0.390680
7777 0.283872 0.0323502
7878 1.00729 0.114053
7979 13.1895 1.48394 0.741969 0.670435i 0.233892π-0.233892\pi
0.741969 + 0.670435i 0.233892π0.233892\pi
8080 23.8256 2.66378
8181 7.30009 0.811121
8282 −17.3615 −1.91725
8383 16.9864 1.86450 0.932249 0.361818i 0.117844π-0.117844\pi
0.932249 + 0.361818i 0.117844π0.117844\pi
8484 −0.157537 −0.0171887
8585 10.1697 1.10306
8686 21.6357 2.33304
8787 0 0
8888 −27.2637 −2.90632
8989 6.79655 0.720433 0.360216 0.932869i 0.382703π-0.382703\pi
0.360216 + 0.932869i 0.382703π0.382703\pi
9090 18.8500 1.98696
9191 0.0661901 0.00693861
9292 5.62052 0.585980
9393 −2.26298 −0.234660
9494 27.5652 2.84313
9595 1.84143 0.188927
9696 4.21649 0.430344
9797 −11.4171 −1.15923 −0.579615 0.814890i 0.696797π-0.696797\pi
−0.579615 + 0.814890i 0.696797π0.696797\pi
9898 18.2024 1.83872
9999 −10.6058 −1.06592
100100 7.91592 0.791592
101101 9.43826 0.939142 0.469571 0.882895i 0.344409π-0.344409\pi
0.469571 + 0.882895i 0.344409π0.344409\pi
102102 4.50605 0.446165
103103 −9.18317 −0.904845 −0.452422 0.891804i 0.649440π-0.649440\pi
−0.452422 + 0.891804i 0.649440π0.649440\pi
104104 −6.35706 −0.623361
105105 −0.0851746 −0.00831219
106106 −14.4594 −1.40442
107107 −4.86820 −0.470627 −0.235313 0.971920i 0.575612π-0.575612\pi
−0.235313 + 0.971920i 0.575612π0.575612\pi
108108 12.1762 1.17166
109109 4.33423 0.415144 0.207572 0.978220i 0.433444π-0.433444\pi
0.207572 + 0.978220i 0.433444π0.433444\pi
110110 −25.3732 −2.41924
111111 1.35646 0.128750
112112 0.693702 0.0655486
113113 4.52309 0.425496 0.212748 0.977107i 0.431759π-0.431759\pi
0.212748 + 0.977107i 0.431759π0.431759\pi
114114 0.815916 0.0764175
115115 3.03881 0.283371
116116 0 0
117117 −2.47294 −0.228623
118118 −25.8132 −2.37630
119119 0.296098 0.0271433
120120 8.18037 0.746762
121121 3.27597 0.297816
122122 −9.28378 −0.840514
123123 −2.93093 −0.264273
124124 24.5835 2.20767
125125 −8.62227 −0.771199
126126 0.548833 0.0488939
127127 5.83762 0.518005 0.259003 0.965877i 0.416606π-0.416606\pi
0.259003 + 0.965877i 0.416606π0.416606\pi
128128 2.25255 0.199099
129129 3.65250 0.321585
130130 −5.91623 −0.518888
131131 −6.62441 −0.578777 −0.289389 0.957212i 0.593452π-0.593452\pi
−0.289389 + 0.957212i 0.593452π0.593452\pi
132132 −7.92257 −0.689571
133133 0.0536148 0.00464899
134134 −12.8549 −1.11050
135135 6.58326 0.566597
136136 −28.4380 −2.43853
137137 1.55881 0.133178 0.0665890 0.997780i 0.478788π-0.478788\pi
0.0665890 + 0.997780i 0.478788π0.478788\pi
138138 1.34646 0.114618
139139 10.6416 0.902607 0.451303 0.892371i 0.350959π-0.350959\pi
0.451303 + 0.892371i 0.350959π0.350959\pi
140140 0.925282 0.0782006
141141 4.65349 0.391895
142142 −12.7697 −1.07161
143143 3.32871 0.278361
144144 −25.9175 −2.15979
145145 0 0
146146 23.1673 1.91734
147147 3.07289 0.253448
148148 −14.7357 −1.21127
149149 5.43253 0.445050 0.222525 0.974927i 0.428570π-0.428570\pi
0.222525 + 0.974927i 0.428570π0.428570\pi
150150 1.89635 0.154836
151151 17.8418 1.45194 0.725971 0.687725i 0.241390π-0.241390\pi
0.725971 + 0.687725i 0.241390π0.241390\pi
152152 −5.14929 −0.417663
153153 −11.0626 −0.894354
154154 −0.738760 −0.0595310
155155 13.2914 1.06759
156156 −1.84730 −0.147902
157157 9.46360 0.755278 0.377639 0.925953i 0.376736π-0.376736\pi
0.377639 + 0.925953i 0.376736π0.376736\pi
158158 −34.3249 −2.73075
159159 −2.44100 −0.193584
160160 −24.7652 −1.95786
161161 0.0884774 0.00697300
162162 −18.9980 −1.49263
163163 10.4578 0.819116 0.409558 0.912284i 0.365683π-0.365683\pi
0.409558 + 0.912284i 0.365683π0.365683\pi
164164 31.8397 2.48626
165165 −4.28345 −0.333466
166166 −44.2060 −3.43105
167167 0.170436 0.0131888 0.00659438 0.999978i 0.497901π-0.497901\pi
0.00659438 + 0.999978i 0.497901π0.497901\pi
168168 0.238178 0.0183758
169169 −12.2238 −0.940296
170170 −26.4659 −2.02985
171171 −2.00311 −0.153182
172172 −39.6785 −3.02545
173173 −12.0694 −0.917616 −0.458808 0.888535i 0.651723π-0.651723\pi
−0.458808 + 0.888535i 0.651723π0.651723\pi
174174 0 0
175175 0.124611 0.00941973
176176 34.8864 2.62966
177177 −4.35773 −0.327547
178178 −17.6876 −1.32574
179179 −1.67483 −0.125183 −0.0625913 0.998039i 0.519936π-0.519936\pi
−0.0625913 + 0.998039i 0.519936π0.519936\pi
180180 −34.5696 −2.57666
181181 −15.3626 −1.14190 −0.570948 0.820986i 0.693424π-0.693424\pi
−0.570948 + 0.820986i 0.693424π0.693424\pi
182182 −0.172256 −0.0127685
183183 −1.56727 −0.115856
184184 −8.49758 −0.626450
185185 −7.96707 −0.585751
186186 5.88926 0.431822
187187 14.8908 1.08892
188188 −50.5526 −3.68693
189189 0.191677 0.0139424
190190 −4.79222 −0.347664
191191 20.4783 1.48176 0.740878 0.671640i 0.234410π-0.234410\pi
0.740878 + 0.671640i 0.234410π0.234410\pi
192192 −2.86014 −0.206413
193193 −3.13441 −0.225620 −0.112810 0.993617i 0.535985π-0.535985\pi
−0.112810 + 0.993617i 0.535985π0.535985\pi
194194 29.7123 2.13322
195195 −0.998767 −0.0715232
196196 −33.3819 −2.38442
197197 2.84040 0.202370 0.101185 0.994868i 0.467737π-0.467737\pi
0.101185 + 0.994868i 0.467737π0.467737\pi
198198 27.6009 1.96151
199199 −19.1189 −1.35530 −0.677652 0.735383i 0.737002π-0.737002\pi
−0.677652 + 0.735383i 0.737002π0.737002\pi
200200 −11.9680 −0.846263
201201 −2.17014 −0.153070
202202 −24.5625 −1.72821
203203 0 0
204204 −8.26378 −0.578580
205205 17.2146 1.20232
206206 23.8987 1.66510
207207 −3.30562 −0.229756
208208 8.13442 0.564021
209209 2.69630 0.186507
210210 0.221662 0.0152961
211211 17.8936 1.23184 0.615922 0.787807i 0.288784π-0.288784\pi
0.615922 + 0.787807i 0.288784π0.288784\pi
212212 26.5174 1.82123
213213 −2.15575 −0.147710
214214 12.6692 0.866049
215215 −21.4527 −1.46306
216216 −18.4091 −1.25258
217217 0.386991 0.0262706
218218 −11.2796 −0.763949
219219 3.91106 0.264285
220220 46.5326 3.13723
221221 3.47208 0.233557
222222 −3.53011 −0.236925
223223 17.7308 1.18735 0.593673 0.804707i 0.297677π-0.297677\pi
0.593673 + 0.804707i 0.297677π0.297677\pi
224224 −0.721060 −0.0481778
225225 −4.65562 −0.310374
226226 −11.7711 −0.783000
227227 22.2116 1.47424 0.737119 0.675763i 0.236186π-0.236186\pi
0.737119 + 0.675763i 0.236186π0.236186\pi
228228 −1.49633 −0.0990970
229229 −9.96812 −0.658712 −0.329356 0.944206i 0.606832π-0.606832\pi
−0.329356 + 0.944206i 0.606832π0.606832\pi
230230 −7.90832 −0.521459
231231 −0.124716 −0.00820571
232232 0 0
233233 −20.0765 −1.31525 −0.657627 0.753344i 0.728440π-0.728440\pi
−0.657627 + 0.753344i 0.728440π0.728440\pi
234234 6.43567 0.420713
235235 −27.3320 −1.78294
236236 47.3396 3.08155
237237 −5.79467 −0.376404
238238 −0.770577 −0.0499491
239239 −1.18085 −0.0763830 −0.0381915 0.999270i 0.512160π-0.512160\pi
−0.0381915 + 0.999270i 0.512160π0.512160\pi
240240 −10.4675 −0.675675
241241 11.8311 0.762110 0.381055 0.924552i 0.375561π-0.375561\pi
0.381055 + 0.924552i 0.375561π0.375561\pi
242242 −8.52552 −0.548041
243243 −10.8609 −0.696728
244244 17.0258 1.08997
245245 −18.0484 −1.15307
246246 7.62756 0.486316
247247 0.628693 0.0400028
248248 −37.1675 −2.36014
249249 −7.46278 −0.472934
250250 22.4389 1.41916
251251 −7.66497 −0.483809 −0.241904 0.970300i 0.577772π-0.577772\pi
−0.241904 + 0.970300i 0.577772π0.577772\pi
252252 −1.00652 −0.0634049
253253 4.44955 0.279741
254254 −15.1921 −0.953235
255255 −4.46793 −0.279793
256256 −18.8823 −1.18015
257257 11.3728 0.709415 0.354707 0.934977i 0.384580π-0.384580\pi
0.354707 + 0.934977i 0.384580π0.384580\pi
258258 −9.50542 −0.591782
259259 −0.231968 −0.0144138
260260 10.8500 0.672886
261261 0 0
262262 17.2396 1.06507
263263 −16.7464 −1.03263 −0.516315 0.856399i 0.672697π-0.672697\pi
−0.516315 + 0.856399i 0.672697π0.672697\pi
264264 11.9780 0.737196
265265 14.3370 0.880717
266266 −0.139529 −0.00855509
267267 −2.98599 −0.182739
268268 23.5750 1.44007
269269 −21.9337 −1.33732 −0.668660 0.743568i 0.733132π-0.733132\pi
−0.668660 + 0.743568i 0.733132π0.733132\pi
270270 −17.1325 −1.04265
271271 −6.54431 −0.397539 −0.198769 0.980046i 0.563694π-0.563694\pi
−0.198769 + 0.980046i 0.563694π0.563694\pi
272272 36.3889 2.20640
273273 −0.0290799 −0.00176000
274274 −4.05670 −0.245074
275275 6.26672 0.377898
276276 −2.46931 −0.148635
277277 21.5277 1.29347 0.646736 0.762714i 0.276134π-0.276134\pi
0.646736 + 0.762714i 0.276134π0.276134\pi
278278 −27.6941 −1.66098
279279 −14.4584 −0.865602
280280 −1.39892 −0.0836015
281281 −8.69715 −0.518828 −0.259414 0.965766i 0.583529π-0.583529\pi
−0.259414 + 0.965766i 0.583529π0.583529\pi
282282 −12.1104 −0.721166
283283 21.9887 1.30709 0.653545 0.756888i 0.273281π-0.273281\pi
0.653545 + 0.756888i 0.273281π0.273281\pi
284284 23.4187 1.38964
285285 −0.809013 −0.0479218
286286 −8.66278 −0.512241
287287 0.501216 0.0295859
288288 26.9396 1.58743
289289 −1.46785 −0.0863441
290290 0 0
291291 5.01597 0.294042
292292 −42.4872 −2.48638
293293 −2.22609 −0.130050 −0.0650249 0.997884i 0.520713π-0.520713\pi
−0.0650249 + 0.997884i 0.520713π0.520713\pi
294294 −7.99702 −0.466395
295295 25.5948 1.49019
296296 22.2787 1.29493
297297 9.63946 0.559338
298298 −14.1378 −0.818982
299299 1.03750 0.0599999
300300 −3.47777 −0.200789
301301 −0.624613 −0.0360021
302302 −46.4321 −2.67187
303303 −4.14659 −0.238216
304304 6.58898 0.377904
305305 9.20524 0.527090
306306 28.7896 1.64579
307307 −13.8760 −0.791945 −0.395972 0.918262i 0.629592π-0.629592\pi
−0.395972 + 0.918262i 0.629592π0.629592\pi
308308 1.35483 0.0771988
309309 4.03452 0.229516
310310 −34.5901 −1.96459
311311 −1.41217 −0.0800768 −0.0400384 0.999198i 0.512748π-0.512748\pi
−0.0400384 + 0.999198i 0.512748π0.512748\pi
312312 2.79290 0.158117
313313 −28.7487 −1.62497 −0.812487 0.582980i 0.801887π-0.801887\pi
−0.812487 + 0.582980i 0.801887π0.801887\pi
314314 −24.6285 −1.38986
315315 −0.544190 −0.0306616
316316 62.9496 3.54119
317317 −22.3203 −1.25363 −0.626815 0.779168i 0.715642π-0.715642\pi
−0.626815 + 0.779168i 0.715642π0.715642\pi
318318 6.35255 0.356234
319319 0 0
320320 16.7988 0.939083
321321 2.13879 0.119376
322322 −0.230257 −0.0128317
323323 2.81242 0.156487
324324 34.8411 1.93562
325325 1.46121 0.0810531
326326 −27.2157 −1.50734
327327 −1.90420 −0.105302
328328 −48.1380 −2.65798
329329 −0.795792 −0.0438734
330330 11.1474 0.613645
331331 9.34951 0.513895 0.256948 0.966425i 0.417283π-0.417283\pi
0.256948 + 0.966425i 0.417283π0.417283\pi
332332 81.0708 4.44934
333333 8.66657 0.474925
334334 −0.443550 −0.0242700
335335 12.7462 0.696397
336336 −0.304770 −0.0166266
337337 −15.4311 −0.840583 −0.420292 0.907389i 0.638072π-0.638072\pi
−0.420292 + 0.907389i 0.638072π0.638072\pi
338338 31.8118 1.73034
339339 −1.98717 −0.107928
340340 48.5367 2.63227
341341 19.4618 1.05392
342342 5.21297 0.281885
343343 −1.05141 −0.0567709
344344 59.9893 3.23441
345345 −1.33507 −0.0718776
346346 31.4098 1.68860
347347 −9.39939 −0.504586 −0.252293 0.967651i 0.581185π-0.581185\pi
−0.252293 + 0.967651i 0.581185π0.581185\pi
348348 0 0
349349 −24.5072 −1.31184 −0.655921 0.754830i 0.727720π-0.727720\pi
−0.655921 + 0.754830i 0.727720π0.727720\pi
350350 −0.324293 −0.0173342
351351 2.24762 0.119969
352352 −36.2622 −1.93278
353353 −24.1475 −1.28524 −0.642622 0.766183i 0.722153π-0.722153\pi
−0.642622 + 0.766183i 0.722153π0.722153\pi
354354 11.3407 0.602753
355355 12.6616 0.672011
356356 32.4378 1.71920
357357 −0.130087 −0.00688495
358358 4.35864 0.230361
359359 −15.2452 −0.804609 −0.402304 0.915506i 0.631791π-0.631791\pi
−0.402304 + 0.915506i 0.631791π0.631791\pi
360360 52.2653 2.75462
361361 −18.4908 −0.973197
362362 39.9803 2.10132
363363 −1.43926 −0.0755417
364364 0.315905 0.0165579
365365 −22.9713 −1.20237
366366 4.07872 0.213198
367367 −12.8020 −0.668261 −0.334130 0.942527i 0.608443π-0.608443\pi
−0.334130 + 0.942527i 0.608443π0.608443\pi
368368 10.8734 0.566816
369369 −18.7260 −0.974837
370370 20.7338 1.07790
371371 0.417434 0.0216721
372372 −10.8005 −0.559980
373373 −0.0195746 −0.00101354 −0.000506768 1.00000i 0.500161π-0.500161\pi
−0.000506768 1.00000i 0.500161π0.500161\pi
374374 −38.7525 −2.00384
375375 3.78810 0.195616
376376 76.4297 3.94156
377377 0 0
378378 −0.498827 −0.0256569
379379 −5.23573 −0.268941 −0.134471 0.990918i 0.542933π-0.542933\pi
−0.134471 + 0.990918i 0.542933π0.542933\pi
380380 8.78860 0.450845
381381 −2.56469 −0.131393
382382 −53.2935 −2.72673
383383 −0.274844 −0.0140438 −0.00702192 0.999975i 0.502235π-0.502235\pi
−0.00702192 + 0.999975i 0.502235π0.502235\pi
384384 −0.989633 −0.0505020
385385 0.732510 0.0373322
386386 8.15711 0.415186
387387 23.3362 1.18625
388388 −54.4903 −2.76633
389389 −7.53699 −0.382140 −0.191070 0.981576i 0.561196π-0.561196\pi
−0.191070 + 0.981576i 0.561196π0.561196\pi
390390 2.59923 0.131617
391391 4.64118 0.234715
392392 50.4696 2.54910
393393 2.91036 0.146808
394394 −7.39197 −0.372402
395395 34.0346 1.71246
396396 −50.6181 −2.54366
397397 16.7344 0.839877 0.419938 0.907553i 0.362052π-0.362052\pi
0.419938 + 0.907553i 0.362052π0.362052\pi
398398 49.7558 2.49403
399399 −0.0235551 −0.00117923
400400 15.3141 0.765704
401401 −8.05748 −0.402371 −0.201186 0.979553i 0.564479π-0.564479\pi
−0.201186 + 0.979553i 0.564479π0.564479\pi
402402 5.64766 0.281680
403403 4.53789 0.226049
404404 45.0459 2.24112
405405 18.8373 0.936034
406406 0 0
407407 −11.6657 −0.578247
408408 12.4939 0.618540
409409 −9.50361 −0.469923 −0.234962 0.972005i 0.575496π-0.575496\pi
−0.234962 + 0.972005i 0.575496π0.575496\pi
410410 −44.7999 −2.21251
411411 −0.684845 −0.0337809
412412 −43.8285 −2.15927
413413 0.745214 0.0366696
414414 8.60267 0.422798
415415 43.8321 2.15163
416416 −8.45522 −0.414551
417417 −4.67526 −0.228948
418418 −7.01695 −0.343210
419419 23.2480 1.13574 0.567870 0.823118i 0.307768π-0.307768\pi
0.567870 + 0.823118i 0.307768π0.307768\pi
420420 −0.406512 −0.0198358
421421 17.4532 0.850618 0.425309 0.905048i 0.360166π-0.360166\pi
0.425309 + 0.905048i 0.360166π0.360166\pi
422422 −46.5669 −2.26684
423423 29.7317 1.44560
424424 −40.0914 −1.94701
425425 6.53662 0.317073
426426 5.61022 0.271816
427427 0.268018 0.0129703
428428 −23.2344 −1.12308
429429 −1.46243 −0.0706069
430430 55.8294 2.69233
431431 −32.7850 −1.57920 −0.789598 0.613624i 0.789711π-0.789711\pi
−0.789598 + 0.613624i 0.789711π0.789711\pi
432432 23.5561 1.13334
433433 −5.02086 −0.241287 −0.120644 0.992696i 0.538496π-0.538496\pi
−0.120644 + 0.992696i 0.538496π0.538496\pi
434434 −1.00712 −0.0483433
435435 0 0
436436 20.6859 0.990677
437437 0.840384 0.0402010
438438 −10.1783 −0.486338
439439 −21.3691 −1.01989 −0.509946 0.860207i 0.670334π-0.670334\pi
−0.509946 + 0.860207i 0.670334π0.670334\pi
440440 −70.3520 −3.35390
441441 19.6330 0.934906
442442 −9.03587 −0.429793
443443 39.8292 1.89234 0.946171 0.323668i 0.104916π-0.104916\pi
0.946171 + 0.323668i 0.104916π0.104916\pi
444444 6.47397 0.307241
445445 17.5380 0.831380
446446 −46.1435 −2.18496
447447 −2.38672 −0.112888
448448 0.489111 0.0231083
449449 −9.92661 −0.468466 −0.234233 0.972181i 0.575258π-0.575258\pi
−0.234233 + 0.972181i 0.575258π0.575258\pi
450450 12.1160 0.571152
451451 25.2063 1.18692
452452 21.5873 1.01538
453453 −7.83858 −0.368289
454454 −57.8044 −2.71290
455455 0.170799 0.00800716
456456 2.26228 0.105941
457457 14.6244 0.684102 0.342051 0.939681i 0.388878π-0.388878\pi
0.342051 + 0.939681i 0.388878π0.388878\pi
458458 25.9414 1.21216
459459 10.0546 0.469310
460460 14.5033 0.676221
461461 −18.8523 −0.878037 −0.439019 0.898478i 0.644674π-0.644674\pi
−0.439019 + 0.898478i 0.644674π0.644674\pi
462462 0.324566 0.0151002
463463 −35.4987 −1.64977 −0.824883 0.565304i 0.808759π-0.808759\pi
−0.824883 + 0.565304i 0.808759π0.808759\pi
464464 0 0
465465 −5.83944 −0.270798
466466 52.2478 2.42033
467467 −6.06786 −0.280787 −0.140394 0.990096i 0.544837π-0.544837\pi
−0.140394 + 0.990096i 0.544837π0.544837\pi
468468 −11.8026 −0.545574
469469 0.371115 0.0171365
470470 71.1298 3.28097
471471 −4.15773 −0.191578
472472 −71.5721 −3.29437
473473 −31.4119 −1.44432
474474 15.0803 0.692660
475475 1.18359 0.0543070
476476 1.41319 0.0647732
477477 −15.5958 −0.714083
478478 3.07310 0.140560
479479 −3.51910 −0.160792 −0.0803958 0.996763i 0.525618π-0.525618\pi
−0.0803958 + 0.996763i 0.525618π0.525618\pi
480480 10.8803 0.496617
481481 −2.72008 −0.124025
482482 −30.7898 −1.40244
483483 −0.0388716 −0.00176872
484484 15.6352 0.710692
485485 −29.4609 −1.33775
486486 28.2649 1.28212
487487 7.87745 0.356961 0.178481 0.983943i 0.442882π-0.442882\pi
0.178481 + 0.983943i 0.442882π0.442882\pi
488488 −25.7411 −1.16524
489489 −4.59451 −0.207771
490490 46.9699 2.12188
491491 −21.8303 −0.985187 −0.492594 0.870259i 0.663951π-0.663951\pi
−0.492594 + 0.870259i 0.663951π0.663951\pi
492492 −13.9884 −0.630646
493493 0 0
494494 −1.63614 −0.0736132
495495 −27.3674 −1.23007
496496 47.5591 2.13547
497497 0.368654 0.0165364
498498 19.4214 0.870295
499499 −29.6115 −1.32559 −0.662796 0.748800i 0.730630π-0.730630\pi
−0.662796 + 0.748800i 0.730630π0.730630\pi
500500 −41.1514 −1.84035
501501 −0.0748793 −0.00334536
502502 19.9476 0.890306
503503 14.0757 0.627603 0.313802 0.949489i 0.398397π-0.398397\pi
0.313802 + 0.949489i 0.398397π0.398397\pi
504504 1.52174 0.0677839
505505 24.3547 1.08377
506506 −11.5797 −0.514779
507507 5.37041 0.238508
508508 27.8612 1.23614
509509 −28.1153 −1.24619 −0.623095 0.782146i 0.714125π-0.714125\pi
−0.623095 + 0.782146i 0.714125π0.714125\pi
510510 11.6275 0.514875
511511 −0.668828 −0.0295872
512512 44.6351 1.97261
513513 1.82060 0.0803815
514514 −29.5970 −1.30547
515515 −23.6965 −1.04419
516516 17.4323 0.767413
517517 −40.0205 −1.76010
518518 0.603682 0.0265243
519519 5.30254 0.232756
520520 −16.4039 −0.719359
521521 30.6374 1.34225 0.671125 0.741344i 0.265811π-0.265811\pi
0.671125 + 0.741344i 0.265811π0.265811\pi
522522 0 0
523523 31.1728 1.36309 0.681546 0.731775i 0.261308π-0.261308\pi
0.681546 + 0.731775i 0.261308π0.261308\pi
524524 −31.6163 −1.38116
525525 −0.0547466 −0.00238934
526526 43.5816 1.90025
527527 20.3000 0.884283
528528 −15.3269 −0.667019
529529 −21.6132 −0.939703
530530 −37.3113 −1.62070
531531 −27.8420 −1.20824
532532 0.255887 0.0110941
533533 5.87732 0.254575
534534 7.77085 0.336278
535535 −12.5620 −0.543104
536536 −35.6427 −1.53953
537537 0.735817 0.0317529
538538 57.0811 2.46094
539539 −26.4272 −1.13830
540540 31.4199 1.35210
541541 22.3769 0.962058 0.481029 0.876705i 0.340263π-0.340263\pi
0.481029 + 0.876705i 0.340263π0.340263\pi
542542 17.0312 0.731552
543543 6.74940 0.289645
544544 −37.8240 −1.62169
545545 11.1841 0.479076
546546 0.0756787 0.00323875
547547 −12.2963 −0.525752 −0.262876 0.964830i 0.584671π-0.584671\pi
−0.262876 + 0.964830i 0.584671π0.584671\pi
548548 7.43971 0.317809
549549 −10.0134 −0.427363
550550 −16.3088 −0.695408
551551 0 0
552552 3.73332 0.158901
553553 0.990943 0.0421392
554554 −56.0244 −2.38025
555555 3.50024 0.148577
556556 50.7890 2.15393
557557 6.00766 0.254553 0.127276 0.991867i 0.459377π-0.459377\pi
0.127276 + 0.991867i 0.459377π0.459377\pi
558558 37.6271 1.59288
559559 −7.32428 −0.309784
560560 1.79004 0.0756432
561561 −6.54212 −0.276208
562562 22.6338 0.954749
563563 −28.0097 −1.18047 −0.590233 0.807233i 0.700964π-0.700964\pi
−0.590233 + 0.807233i 0.700964π0.700964\pi
564564 22.2097 0.935197
565565 11.6715 0.491023
566566 −57.2241 −2.40531
567567 0.548464 0.0230333
568568 −35.4064 −1.48562
569569 34.6764 1.45371 0.726856 0.686790i 0.240981π-0.240981\pi
0.726856 + 0.686790i 0.240981π0.240981\pi
570570 2.10541 0.0881858
571571 4.37818 0.183221 0.0916106 0.995795i 0.470799π-0.470799\pi
0.0916106 + 0.995795i 0.470799π0.470799\pi
572572 15.8869 0.664266
573573 −8.99690 −0.375851
574574 −1.30439 −0.0544440
575575 1.95322 0.0814548
576576 −18.2737 −0.761406
577577 −44.8517 −1.86720 −0.933600 0.358317i 0.883351π-0.883351\pi
−0.933600 + 0.358317i 0.883351π0.883351\pi
578578 3.81999 0.158891
579579 1.37707 0.0572289
580580 0 0
581581 1.27621 0.0529459
582582 −13.0538 −0.541096
583583 20.9928 0.869434
584584 64.2359 2.65810
585585 −6.38123 −0.263831
586586 5.79327 0.239318
587587 6.40778 0.264477 0.132239 0.991218i 0.457783π-0.457783\pi
0.132239 + 0.991218i 0.457783π0.457783\pi
588588 14.6660 0.604814
589589 3.67575 0.151457
590590 −66.6090 −2.74225
591591 −1.24790 −0.0513317
592592 −28.5076 −1.17166
593593 −1.41754 −0.0582114 −0.0291057 0.999576i 0.509266π-0.509266\pi
−0.0291057 + 0.999576i 0.509266π0.509266\pi
594594 −25.0861 −1.02930
595595 0.764058 0.0313233
596596 25.9278 1.06204
597597 8.39968 0.343776
598598 −2.70002 −0.110412
599599 −37.2538 −1.52215 −0.761075 0.648663i 0.775328π-0.775328\pi
−0.761075 + 0.648663i 0.775328π0.775328\pi
600600 5.25799 0.214657
601601 25.3174 1.03272 0.516360 0.856372i 0.327287π-0.327287\pi
0.516360 + 0.856372i 0.327287π0.327287\pi
602602 1.62552 0.0662511
603603 −13.8653 −0.564637
604604 85.1533 3.46484
605605 8.45340 0.343679
606606 10.7913 0.438365
607607 29.8274 1.21066 0.605328 0.795976i 0.293042π-0.293042\pi
0.605328 + 0.795976i 0.293042π0.293042\pi
608608 −6.84883 −0.277757
609609 0 0
610610 −23.9561 −0.969953
611611 −9.33154 −0.377514
612612 −52.7982 −2.13424
613613 31.5885 1.27585 0.637923 0.770100i 0.279794π-0.279794\pi
0.637923 + 0.770100i 0.279794π0.279794\pi
614614 36.1114 1.45734
615615 −7.56303 −0.304971
616616 −2.04835 −0.0825306
617617 −19.2746 −0.775968 −0.387984 0.921666i 0.626828π-0.626828\pi
−0.387984 + 0.921666i 0.626828π0.626828\pi
618618 −10.4996 −0.422356
619619 −44.9116 −1.80515 −0.902574 0.430534i 0.858325π-0.858325\pi
−0.902574 + 0.430534i 0.858325π0.858325\pi
620620 63.4359 2.54765
621621 3.00443 0.120564
622622 3.67509 0.147358
623623 0.510632 0.0204580
624624 −3.57377 −0.143065
625625 −30.5420 −1.22168
626626 74.8168 2.99028
627627 −1.18459 −0.0473079
628628 45.1669 1.80235
629629 −12.1681 −0.485175
630630 1.41622 0.0564236
631631 −38.1217 −1.51760 −0.758800 0.651324i 0.774214π-0.774214\pi
−0.758800 + 0.651324i 0.774214π0.774214\pi
632632 −95.1725 −3.78576
633633 −7.86134 −0.312460
634634 58.0871 2.30693
635635 15.0635 0.597778
636636 −11.6501 −0.461958
637637 −6.16199 −0.244147
638638 0 0
639639 −13.7733 −0.544864
640640 5.81254 0.229761
641641 36.9753 1.46044 0.730219 0.683214i 0.239418π-0.239418\pi
0.730219 + 0.683214i 0.239418π0.239418\pi
642642 −5.56607 −0.219675
643643 −17.0863 −0.673816 −0.336908 0.941537i 0.609381π-0.609381\pi
−0.336908 + 0.941537i 0.609381π0.609381\pi
644644 0.422276 0.0166400
645645 9.42501 0.371109
646646 −7.31916 −0.287969
647647 6.19335 0.243486 0.121743 0.992562i 0.461152π-0.461152\pi
0.121743 + 0.992562i 0.461152π0.461152\pi
648648 −52.6758 −2.06930
649649 37.4769 1.47110
650650 −3.80270 −0.149154
651651 −0.170020 −0.00666361
652652 49.9117 1.95469
653653 15.7585 0.616677 0.308339 0.951277i 0.400227π-0.400227\pi
0.308339 + 0.951277i 0.400227π0.400227\pi
654654 4.95555 0.193777
655655 −17.0938 −0.667909
656656 61.5968 2.40495
657657 24.9882 0.974881
658658 2.07100 0.0807360
659659 −16.6107 −0.647059 −0.323530 0.946218i 0.604870π-0.604870\pi
−0.323530 + 0.946218i 0.604870π0.604870\pi
660660 −20.4436 −0.795765
661661 −40.0401 −1.55738 −0.778691 0.627408i 0.784116π-0.784116\pi
−0.778691 + 0.627408i 0.784116π0.784116\pi
662662 −24.3315 −0.945672
663663 −1.52542 −0.0592423
664664 −122.570 −4.75663
665665 0.138349 0.00536494
666666 −22.5542 −0.873959
667667 0 0
668668 0.813440 0.0314729
669669 −7.78985 −0.301173
670670 −33.1711 −1.28151
671671 13.4787 0.520338
672672 0.316789 0.0122204
673673 −13.2244 −0.509764 −0.254882 0.966972i 0.582037π-0.582037\pi
−0.254882 + 0.966972i 0.582037π0.582037\pi
674674 40.1584 1.54684
675675 4.23144 0.162868
676676 −58.3407 −2.24387
677677 −23.8101 −0.915095 −0.457548 0.889185i 0.651272π-0.651272\pi
−0.457548 + 0.889185i 0.651272π0.651272\pi
678678 5.17149 0.198610
679679 −0.857779 −0.0329185
680680 −73.3820 −2.81407
681681 −9.75843 −0.373944
682682 −50.6482 −1.93942
683683 28.7668 1.10073 0.550365 0.834924i 0.314489π-0.314489\pi
0.550365 + 0.834924i 0.314489π0.314489\pi
684684 −9.56022 −0.365544
685685 4.02238 0.153687
686686 2.73623 0.104470
687687 4.37938 0.167084
688688 −76.7616 −2.92651
689689 4.89488 0.186480
690690 3.47443 0.132269
691691 27.1116 1.03137 0.515686 0.856777i 0.327537π-0.327537\pi
0.515686 + 0.856777i 0.327537π0.327537\pi
692692 −57.6033 −2.18975
693693 −0.796823 −0.0302688
694694 24.4613 0.928540
695695 27.4598 1.04161
696696 0 0
697697 26.2919 0.995875
698698 63.7786 2.41406
699699 8.82037 0.333617
700700 0.594732 0.0224787
701701 −24.5115 −0.925788 −0.462894 0.886414i 0.653189π-0.653189\pi
−0.462894 + 0.886414i 0.653189π0.653189\pi
702702 −5.84930 −0.220768
703703 −2.20330 −0.0830989
704704 24.5975 0.927053
705705 12.0080 0.452247
706706 62.8425 2.36511
707707 0.709107 0.0266687
708708 −20.7981 −0.781641
709709 16.5914 0.623104 0.311552 0.950229i 0.399151π-0.399151\pi
0.311552 + 0.950229i 0.399151π0.399151\pi
710710 −32.9512 −1.23664
711711 −37.0227 −1.38846
712712 −49.0423 −1.83794
713713 6.06588 0.227169
714714 0.338544 0.0126697
715715 8.58949 0.321229
716716 −7.99344 −0.298729
717717 0.518795 0.0193747
718718 39.6746 1.48064
719719 40.5018 1.51046 0.755231 0.655458i 0.227525π-0.227525\pi
0.755231 + 0.655458i 0.227525π0.227525\pi
720720 −66.8780 −2.49240
721721 −0.689942 −0.0256948
722722 48.1211 1.79088
723723 −5.19787 −0.193311
724724 −73.3212 −2.72496
725725 0 0
726726 3.74559 0.139012
727727 −31.7298 −1.17679 −0.588397 0.808572i 0.700241π-0.700241\pi
−0.588397 + 0.808572i 0.700241π0.700241\pi
728728 −0.477613 −0.0177015
729729 −17.1286 −0.634394
730730 59.7815 2.21261
731731 −32.7648 −1.21185
732732 −7.48009 −0.276472
733733 1.48939 0.0550118 0.0275059 0.999622i 0.491243π-0.491243\pi
0.0275059 + 0.999622i 0.491243π0.491243\pi
734734 33.3165 1.22974
735735 7.92936 0.292479
736736 −11.3022 −0.416606
737737 18.6634 0.687476
738738 48.7333 1.79390
739739 −36.7246 −1.35094 −0.675468 0.737389i 0.736058π-0.736058\pi
−0.675468 + 0.737389i 0.736058π0.736058\pi
740740 −38.0244 −1.39780
741741 −0.276209 −0.0101468
742742 −1.08635 −0.0398810
743743 −31.1757 −1.14373 −0.571863 0.820349i 0.693779π-0.693779\pi
−0.571863 + 0.820349i 0.693779π0.693779\pi
744744 16.3291 0.598655
745745 14.0182 0.513588
746746 0.0509418 0.00186511
747747 −47.6805 −1.74454
748748 71.0693 2.59855
749749 −0.365753 −0.0133643
750750 −9.85829 −0.359974
751751 45.2999 1.65302 0.826509 0.562923i 0.190323π-0.190323\pi
0.826509 + 0.562923i 0.190323π0.190323\pi
752752 −97.7986 −3.56635
753753 3.36752 0.122719
754754 0 0
755755 46.0393 1.67554
756756 0.914815 0.0332715
757757 18.8863 0.686435 0.343218 0.939256i 0.388483π-0.388483\pi
0.343218 + 0.939256i 0.388483π0.388483\pi
758758 13.6257 0.494906
759759 −1.95486 −0.0709568
760760 −13.2874 −0.481983
761761 17.4270 0.631727 0.315863 0.948805i 0.397706π-0.397706\pi
0.315863 + 0.948805i 0.397706π0.397706\pi
762762 6.67446 0.241790
763763 0.325635 0.0117888
764764 97.7365 3.53598
765765 −28.5461 −1.03209
766766 0.715264 0.0258435
767767 8.73846 0.315527
768768 8.29574 0.299347
769769 27.2971 0.984357 0.492179 0.870494i 0.336201π-0.336201\pi
0.492179 + 0.870494i 0.336201π0.336201\pi
770770 −1.90631 −0.0686988
771771 −4.99650 −0.179945
772772 −14.9596 −0.538406
773773 −5.89778 −0.212128 −0.106064 0.994359i 0.533825π-0.533825\pi
−0.106064 + 0.994359i 0.533825π0.533825\pi
774774 −60.7311 −2.18294
775775 8.54316 0.306879
776776 82.3831 2.95738
777777 0.101912 0.00365609
778778 19.6146 0.703216
779779 4.76070 0.170570
780780 −4.76681 −0.170679
781781 18.5397 0.663402
782782 −12.0784 −0.431923
783783 0 0
784784 −64.5804 −2.30644
785785 24.4201 0.871591
786786 −7.57403 −0.270157
787787 −43.7976 −1.56122 −0.780609 0.625020i 0.785091π-0.785091\pi
−0.780609 + 0.625020i 0.785091π0.785091\pi
788788 13.5564 0.482925
789789 7.35736 0.261929
790790 −88.5729 −3.15128
791791 0.339825 0.0120828
792792 76.5288 2.71933
793793 3.14281 0.111604
794794 −43.5503 −1.54554
795795 −6.29881 −0.223396
796796 −91.2487 −3.23422
797797 −36.6686 −1.29887 −0.649435 0.760417i 0.724994π-0.724994\pi
−0.649435 + 0.760417i 0.724994π0.724994\pi
798798 0.0613006 0.00217002
799799 −41.7441 −1.47680
800800 −15.9180 −0.562787
801801 −19.0778 −0.674081
802802 20.9691 0.740445
803803 −33.6355 −1.18697
804804 −10.3574 −0.365278
805805 0.228309 0.00804684
806806 −11.8096 −0.415975
807807 9.63632 0.339214
808808 −68.1043 −2.39590
809809 18.7725 0.660007 0.330004 0.943980i 0.392950π-0.392950\pi
0.330004 + 0.943980i 0.392950π0.392950\pi
810810 −49.0230 −1.72249
811811 −33.9249 −1.19127 −0.595633 0.803257i 0.703099π-0.703099\pi
−0.595633 + 0.803257i 0.703099π0.703099\pi
812812 0 0
813813 2.87517 0.100837
814814 30.3593 1.06409
815815 26.9855 0.945260
816816 −15.9870 −0.559659
817817 −5.93275 −0.207561
818818 24.7326 0.864754
819819 −0.185794 −0.00649218
820820 82.1599 2.86915
821821 −12.5182 −0.436887 −0.218443 0.975850i 0.570098π-0.570098\pi
−0.218443 + 0.975850i 0.570098π0.570098\pi
822822 1.78227 0.0621637
823823 27.6813 0.964911 0.482456 0.875920i 0.339745π-0.339745\pi
0.482456 + 0.875920i 0.339745π0.339745\pi
824824 66.2636 2.30840
825825 −2.75321 −0.0958546
826826 −1.93937 −0.0674794
827827 29.5496 1.02754 0.513771 0.857928i 0.328248π-0.328248\pi
0.513771 + 0.857928i 0.328248π0.328248\pi
828828 −15.7767 −0.548278
829829 −1.28760 −0.0447203 −0.0223601 0.999750i 0.507118π-0.507118\pi
−0.0223601 + 0.999750i 0.507118π0.507118\pi
830830 −114.070 −3.95944
831831 −9.45793 −0.328092
832832 5.73537 0.198838
833833 −27.5653 −0.955083
834834 12.1671 0.421311
835835 0.439798 0.0152198
836836 12.8686 0.445070
837837 13.1411 0.454222
838838 −60.5016 −2.08999
839839 −16.3512 −0.564505 −0.282253 0.959340i 0.591082π-0.591082\pi
−0.282253 + 0.959340i 0.591082π0.591082\pi
840840 0.614600 0.0212057
841841 0 0
842842 −45.4209 −1.56531
843843 3.82099 0.131602
844844 85.4005 2.93961
845845 −31.5427 −1.08510
846846 −77.3749 −2.66020
847847 0.246127 0.00845704
848848 51.3004 1.76166
849849 −9.66047 −0.331546
850850 −17.0112 −0.583478
851851 −3.63597 −0.124640
852852 −10.2887 −0.352487
853853 51.4321 1.76100 0.880501 0.474045i 0.157207π-0.157207\pi
0.880501 + 0.474045i 0.157207π0.157207\pi
854854 −0.697500 −0.0238680
855855 −5.16887 −0.176772
856856 35.1278 1.20064
857857 −19.4262 −0.663588 −0.331794 0.943352i 0.607654π-0.607654\pi
−0.331794 + 0.943352i 0.607654π0.607654\pi
858858 3.80589 0.129931
859859 23.9218 0.816201 0.408101 0.912937i 0.366191π-0.366191\pi
0.408101 + 0.912937i 0.366191π0.366191\pi
860860 −102.387 −3.49137
861861 −0.220204 −0.00750452
862862 85.3209 2.90604
863863 −28.4361 −0.967977 −0.483989 0.875074i 0.660812π-0.660812\pi
−0.483989 + 0.875074i 0.660812π0.660812\pi
864864 −24.4851 −0.832999
865865 −31.1441 −1.05893
866866 13.0665 0.444018
867867 0.644883 0.0219014
868868 1.84699 0.0626908
869869 49.8347 1.69053
870870 0 0
871871 4.35173 0.147453
872872 −31.2748 −1.05910
873873 32.0476 1.08465
874874 −2.18705 −0.0739780
875875 −0.647800 −0.0218996
876876 18.6663 0.630675
877877 −3.71106 −0.125314 −0.0626568 0.998035i 0.519957π-0.519957\pi
−0.0626568 + 0.998035i 0.519957π0.519957\pi
878878 55.6118 1.87681
879879 0.978009 0.0329874
880880 90.0216 3.03463
881881 11.9260 0.401796 0.200898 0.979612i 0.435614π-0.435614\pi
0.200898 + 0.979612i 0.435614π0.435614\pi
882882 −51.0938 −1.72042
883883 5.89920 0.198524 0.0992619 0.995061i 0.468352π-0.468352\pi
0.0992619 + 0.995061i 0.468352π0.468352\pi
884884 16.5712 0.557348
885885 −11.2448 −0.377990
886886 −103.653 −3.48229
887887 24.5541 0.824445 0.412223 0.911083i 0.364753π-0.364753\pi
0.412223 + 0.911083i 0.364753π0.364753\pi
888888 −9.78791 −0.328461
889889 0.438587 0.0147097
890890 −45.6415 −1.52991
891891 27.5823 0.924043
892892 84.6239 2.83342
893893 −7.55866 −0.252941
894894 6.21129 0.207737
895895 −4.32177 −0.144461
896896 0.169237 0.00565380
897897 −0.455812 −0.0152191
898898 25.8334 0.862072
899899 0 0
900900 −22.2198 −0.740661
901901 21.8970 0.729494
902902 −65.5978 −2.18417
903903 0.274417 0.00913201
904904 −32.6376 −1.08551
905905 −39.6421 −1.31775
906906 20.3994 0.677726
907907 40.2160 1.33535 0.667675 0.744453i 0.267289π-0.267289\pi
0.667675 + 0.744453i 0.267289π0.267289\pi
908908 106.009 3.51804
909909 −26.4930 −0.878718
910910 −0.444493 −0.0147348
911911 13.5344 0.448415 0.224208 0.974541i 0.428021π-0.428021\pi
0.224208 + 0.974541i 0.428021π0.428021\pi
912912 −2.89479 −0.0958562
913913 64.1806 2.12407
914914 −38.0592 −1.25889
915915 −4.04422 −0.133698
916916 −47.5748 −1.57191
917917 −0.497699 −0.0164355
918918 −26.1666 −0.863625
919919 55.1125 1.81799 0.908997 0.416803i 0.136849π-0.136849\pi
0.908997 + 0.416803i 0.136849π0.136849\pi
920920 −21.9274 −0.722924
921921 6.09626 0.200879
922922 49.0619 1.61577
923923 4.32288 0.142289
924924 −0.595231 −0.0195817
925925 −5.12089 −0.168374
926926 92.3833 3.03590
927927 25.7770 0.846627
928928 0 0
929929 4.05714 0.133111 0.0665553 0.997783i 0.478799π-0.478799\pi
0.0665553 + 0.997783i 0.478799π0.478799\pi
930930 15.1968 0.498322
931931 −4.99129 −0.163583
932932 −95.8188 −3.13865
933933 0.620421 0.0203117
934934 15.7912 0.516705
935935 38.4246 1.25662
936936 17.8441 0.583254
937937 −30.1884 −0.986213 −0.493106 0.869969i 0.664139π-0.664139\pi
−0.493106 + 0.869969i 0.664139π0.664139\pi
938938 −0.965804 −0.0315346
939939 12.6304 0.412178
940940 −130.447 −4.25471
941941 −8.38002 −0.273181 −0.136590 0.990628i 0.543614π-0.543614\pi
−0.136590 + 0.990628i 0.543614π0.543614\pi
942942 10.8202 0.352542
943943 7.85630 0.255836
944944 91.5828 2.98077
945945 0.494607 0.0160896
946946 81.7476 2.65784
947947 1.82587 0.0593328 0.0296664 0.999560i 0.490556π-0.490556\pi
0.0296664 + 0.999560i 0.490556π0.490556\pi
948948 −27.6562 −0.898231
949949 −7.84275 −0.254587
950950 −3.08023 −0.0999359
951951 9.80616 0.317986
952952 −2.13657 −0.0692468
953953 46.8893 1.51889 0.759447 0.650569i 0.225470π-0.225470\pi
0.759447 + 0.650569i 0.225470π0.225470\pi
954954 40.5871 1.31406
955955 52.8426 1.70995
956956 −5.63585 −0.182276
957957 0 0
958958 9.15823 0.295889
959959 0.117115 0.00378184
960960 −7.38038 −0.238201
961961 −4.46852 −0.144146
962962 7.07884 0.228231
963963 13.6650 0.440347
964964 56.4664 1.81866
965965 −8.08810 −0.260365
966966 0.101161 0.00325480
967967 20.1580 0.648239 0.324119 0.946016i 0.394932π-0.394932\pi
0.324119 + 0.946016i 0.394932π0.394932\pi
968968 −23.6387 −0.759775
969969 −1.23561 −0.0396934
970970 76.6703 2.46174
971971 −16.9188 −0.542949 −0.271474 0.962446i 0.587511π-0.587511\pi
−0.271474 + 0.962446i 0.587511π0.587511\pi
972972 −51.8358 −1.66263
973973 0.799513 0.0256312
974974 −20.5006 −0.656881
975975 −0.641964 −0.0205593
976976 32.9380 1.05432
977977 −1.03630 −0.0331543 −0.0165772 0.999863i 0.505277π-0.505277\pi
−0.0165772 + 0.999863i 0.505277π0.505277\pi
978978 11.9569 0.382340
979979 25.6798 0.820729
980980 −86.1395 −2.75162
981981 −12.1661 −0.388434
982982 56.8120 1.81294
983983 −16.2306 −0.517676 −0.258838 0.965921i 0.583340π-0.583340\pi
−0.258838 + 0.965921i 0.583340π0.583340\pi
984984 21.1489 0.674202
985985 7.32943 0.233535
986986 0 0
987987 0.349622 0.0111286
988988 3.00056 0.0954605
989989 −9.79048 −0.311319
990990 71.2220 2.26358
991991 37.1422 1.17986 0.589930 0.807454i 0.299155π-0.299155\pi
0.589930 + 0.807454i 0.299155π0.299155\pi
992992 −49.4347 −1.56955
993993 −4.10760 −0.130351
994994 −0.959400 −0.0304303
995995 −49.3349 −1.56402
996996 −35.6175 −1.12859
997997 36.1372 1.14448 0.572238 0.820088i 0.306075π-0.306075\pi
0.572238 + 0.820088i 0.306075π0.306075\pi
998998 77.0621 2.43936
999999 −7.87695 −0.249216
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.k.1.1 12
3.2 odd 2 7569.2.a.bp.1.12 12
29.2 odd 28 841.2.e.e.236.1 12
29.3 odd 28 29.2.e.a.9.1 12
29.4 even 14 841.2.d.m.190.1 24
29.5 even 14 841.2.d.k.605.1 24
29.6 even 14 841.2.d.k.645.1 24
29.7 even 7 841.2.d.m.571.4 24
29.8 odd 28 841.2.e.a.267.1 12
29.9 even 14 841.2.d.l.574.4 24
29.10 odd 28 29.2.e.a.13.1 yes 12
29.11 odd 28 841.2.e.a.63.1 12
29.12 odd 4 841.2.b.e.840.1 12
29.13 even 14 841.2.d.l.778.4 24
29.14 odd 28 841.2.e.f.196.2 12
29.15 odd 28 841.2.e.e.196.1 12
29.16 even 7 841.2.d.l.778.1 24
29.17 odd 4 841.2.b.e.840.12 12
29.18 odd 28 841.2.e.h.63.2 12
29.19 odd 28 841.2.e.i.651.2 12
29.20 even 7 841.2.d.l.574.1 24
29.21 odd 28 841.2.e.h.267.2 12
29.22 even 14 841.2.d.m.571.1 24
29.23 even 7 841.2.d.k.645.4 24
29.24 even 7 841.2.d.k.605.4 24
29.25 even 7 841.2.d.m.190.4 24
29.26 odd 28 841.2.e.i.270.2 12
29.27 odd 28 841.2.e.f.236.2 12
29.28 even 2 inner 841.2.a.k.1.12 12
87.32 even 28 261.2.o.a.154.2 12
87.68 even 28 261.2.o.a.100.2 12
87.86 odd 2 7569.2.a.bp.1.1 12
116.3 even 28 464.2.y.d.241.1 12
116.39 even 28 464.2.y.d.129.1 12
145.3 even 28 725.2.p.a.299.1 24
145.32 even 28 725.2.p.a.299.4 24
145.39 odd 28 725.2.q.a.651.2 12
145.68 even 28 725.2.p.a.274.4 24
145.97 even 28 725.2.p.a.274.1 24
145.119 odd 28 725.2.q.a.676.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.e.a.9.1 12 29.3 odd 28
29.2.e.a.13.1 yes 12 29.10 odd 28
261.2.o.a.100.2 12 87.68 even 28
261.2.o.a.154.2 12 87.32 even 28
464.2.y.d.129.1 12 116.39 even 28
464.2.y.d.241.1 12 116.3 even 28
725.2.p.a.274.1 24 145.97 even 28
725.2.p.a.274.4 24 145.68 even 28
725.2.p.a.299.1 24 145.3 even 28
725.2.p.a.299.4 24 145.32 even 28
725.2.q.a.651.2 12 145.39 odd 28
725.2.q.a.676.2 12 145.119 odd 28
841.2.a.k.1.1 12 1.1 even 1 trivial
841.2.a.k.1.12 12 29.28 even 2 inner
841.2.b.e.840.1 12 29.12 odd 4
841.2.b.e.840.12 12 29.17 odd 4
841.2.d.k.605.1 24 29.5 even 14
841.2.d.k.605.4 24 29.24 even 7
841.2.d.k.645.1 24 29.6 even 14
841.2.d.k.645.4 24 29.23 even 7
841.2.d.l.574.1 24 29.20 even 7
841.2.d.l.574.4 24 29.9 even 14
841.2.d.l.778.1 24 29.16 even 7
841.2.d.l.778.4 24 29.13 even 14
841.2.d.m.190.1 24 29.4 even 14
841.2.d.m.190.4 24 29.25 even 7
841.2.d.m.571.1 24 29.22 even 14
841.2.d.m.571.4 24 29.7 even 7
841.2.e.a.63.1 12 29.11 odd 28
841.2.e.a.267.1 12 29.8 odd 28
841.2.e.e.196.1 12 29.15 odd 28
841.2.e.e.236.1 12 29.2 odd 28
841.2.e.f.196.2 12 29.14 odd 28
841.2.e.f.236.2 12 29.27 odd 28
841.2.e.h.63.2 12 29.18 odd 28
841.2.e.h.267.2 12 29.21 odd 28
841.2.e.i.270.2 12 29.26 odd 28
841.2.e.i.651.2 12 29.19 odd 28
7569.2.a.bp.1.1 12 87.86 odd 2
7569.2.a.bp.1.12 12 3.2 odd 2