Properties

Label 841.2.a.k.1.1
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.12.32268092290502656.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 78x^{8} - 169x^{6} + 148x^{4} - 36x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.16310\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.60244 q^{2} -0.439339 q^{3} +4.77269 q^{4} +2.58042 q^{5} +1.14335 q^{6} +0.0751311 q^{7} -7.21577 q^{8} -2.80698 q^{9} -6.71540 q^{10} +3.77836 q^{11} -2.09683 q^{12} +0.880995 q^{13} -0.195524 q^{14} -1.13368 q^{15} +9.23322 q^{16} +3.94108 q^{17} +7.30500 q^{18} +0.713617 q^{19} +12.3156 q^{20} -0.0330080 q^{21} -9.83294 q^{22} +1.17764 q^{23} +3.17017 q^{24} +1.65858 q^{25} -2.29274 q^{26} +2.55123 q^{27} +0.358578 q^{28} +2.95033 q^{30} +5.15087 q^{31} -9.59735 q^{32} -1.65998 q^{33} -10.2564 q^{34} +0.193870 q^{35} -13.3969 q^{36} -3.08751 q^{37} -1.85714 q^{38} -0.387055 q^{39} -18.6197 q^{40} +6.67122 q^{41} +0.0859013 q^{42} -8.31364 q^{43} +18.0329 q^{44} -7.24320 q^{45} -3.06474 q^{46} -10.5920 q^{47} -4.05651 q^{48} -6.99436 q^{49} -4.31637 q^{50} -1.73147 q^{51} +4.20472 q^{52} +5.55608 q^{53} -6.63943 q^{54} +9.74976 q^{55} -0.542129 q^{56} -0.313519 q^{57} +9.91885 q^{59} -5.41071 q^{60} +3.56734 q^{61} -13.4048 q^{62} -0.210892 q^{63} +6.51010 q^{64} +2.27334 q^{65} +4.31999 q^{66} +4.93956 q^{67} +18.8096 q^{68} -0.517383 q^{69} -0.504535 q^{70} +4.90681 q^{71} +20.2545 q^{72} -8.90215 q^{73} +8.03505 q^{74} -0.728681 q^{75} +3.40587 q^{76} +0.283872 q^{77} +1.00729 q^{78} +13.1895 q^{79} +23.8256 q^{80} +7.30009 q^{81} -17.3615 q^{82} +16.9864 q^{83} -0.157537 q^{84} +10.1697 q^{85} +21.6357 q^{86} -27.2637 q^{88} +6.79655 q^{89} +18.8500 q^{90} +0.0661901 q^{91} +5.62052 q^{92} -2.26298 q^{93} +27.5652 q^{94} +1.84143 q^{95} +4.21649 q^{96} -11.4171 q^{97} +18.2024 q^{98} -10.6058 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} + 8 q^{5} + 24 q^{6} + 10 q^{7} + 10 q^{9} + 12 q^{13} + 16 q^{16} + 24 q^{20} - 38 q^{22} + 30 q^{23} + 10 q^{24} - 8 q^{25} - 12 q^{28} + 2 q^{30} - 4 q^{33} + 6 q^{34} + 44 q^{35} + 16 q^{36}+ \cdots - 58 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.60244 −1.84020 −0.920101 0.391680i \(-0.871894\pi\)
−0.920101 + 0.391680i \(0.871894\pi\)
\(3\) −0.439339 −0.253652 −0.126826 0.991925i \(-0.540479\pi\)
−0.126826 + 0.991925i \(0.540479\pi\)
\(4\) 4.77269 2.38635
\(5\) 2.58042 1.15400 0.577000 0.816744i \(-0.304223\pi\)
0.577000 + 0.816744i \(0.304223\pi\)
\(6\) 1.14335 0.466772
\(7\) 0.0751311 0.0283969 0.0141984 0.999899i \(-0.495480\pi\)
0.0141984 + 0.999899i \(0.495480\pi\)
\(8\) −7.21577 −2.55116
\(9\) −2.80698 −0.935660
\(10\) −6.71540 −2.12359
\(11\) 3.77836 1.13922 0.569609 0.821916i \(-0.307095\pi\)
0.569609 + 0.821916i \(0.307095\pi\)
\(12\) −2.09683 −0.605302
\(13\) 0.880995 0.244344 0.122172 0.992509i \(-0.461014\pi\)
0.122172 + 0.992509i \(0.461014\pi\)
\(14\) −0.195524 −0.0522560
\(15\) −1.13368 −0.292715
\(16\) 9.23322 2.30830
\(17\) 3.94108 0.955854 0.477927 0.878400i \(-0.341388\pi\)
0.477927 + 0.878400i \(0.341388\pi\)
\(18\) 7.30500 1.72181
\(19\) 0.713617 0.163715 0.0818574 0.996644i \(-0.473915\pi\)
0.0818574 + 0.996644i \(0.473915\pi\)
\(20\) 12.3156 2.75385
\(21\) −0.0330080 −0.00720294
\(22\) −9.83294 −2.09639
\(23\) 1.17764 0.245555 0.122778 0.992434i \(-0.460820\pi\)
0.122778 + 0.992434i \(0.460820\pi\)
\(24\) 3.17017 0.647108
\(25\) 1.65858 0.331717
\(26\) −2.29274 −0.449643
\(27\) 2.55123 0.490985
\(28\) 0.358578 0.0677648
\(29\) 0 0
\(30\) 2.95033 0.538655
\(31\) 5.15087 0.925124 0.462562 0.886587i \(-0.346930\pi\)
0.462562 + 0.886587i \(0.346930\pi\)
\(32\) −9.59735 −1.69659
\(33\) −1.65998 −0.288965
\(34\) −10.2564 −1.75896
\(35\) 0.193870 0.0327700
\(36\) −13.3969 −2.23281
\(37\) −3.08751 −0.507583 −0.253791 0.967259i \(-0.581678\pi\)
−0.253791 + 0.967259i \(0.581678\pi\)
\(38\) −1.85714 −0.301269
\(39\) −0.387055 −0.0619785
\(40\) −18.6197 −2.94404
\(41\) 6.67122 1.04187 0.520935 0.853596i \(-0.325583\pi\)
0.520935 + 0.853596i \(0.325583\pi\)
\(42\) 0.0859013 0.0132549
\(43\) −8.31364 −1.26782 −0.633909 0.773408i \(-0.718551\pi\)
−0.633909 + 0.773408i \(0.718551\pi\)
\(44\) 18.0329 2.71857
\(45\) −7.24320 −1.07975
\(46\) −3.06474 −0.451871
\(47\) −10.5920 −1.54501 −0.772504 0.635010i \(-0.780996\pi\)
−0.772504 + 0.635010i \(0.780996\pi\)
\(48\) −4.05651 −0.585507
\(49\) −6.99436 −0.999194
\(50\) −4.31637 −0.610427
\(51\) −1.73147 −0.242454
\(52\) 4.20472 0.583090
\(53\) 5.55608 0.763186 0.381593 0.924331i \(-0.375376\pi\)
0.381593 + 0.924331i \(0.375376\pi\)
\(54\) −6.63943 −0.903512
\(55\) 9.74976 1.31466
\(56\) −0.542129 −0.0724450
\(57\) −0.313519 −0.0415267
\(58\) 0 0
\(59\) 9.91885 1.29132 0.645662 0.763623i \(-0.276582\pi\)
0.645662 + 0.763623i \(0.276582\pi\)
\(60\) −5.41071 −0.698519
\(61\) 3.56734 0.456751 0.228375 0.973573i \(-0.426659\pi\)
0.228375 + 0.973573i \(0.426659\pi\)
\(62\) −13.4048 −1.70242
\(63\) −0.210892 −0.0265698
\(64\) 6.51010 0.813763
\(65\) 2.27334 0.281973
\(66\) 4.31999 0.531754
\(67\) 4.93956 0.603464 0.301732 0.953393i \(-0.402435\pi\)
0.301732 + 0.953393i \(0.402435\pi\)
\(68\) 18.8096 2.28100
\(69\) −0.517383 −0.0622856
\(70\) −0.504535 −0.0603035
\(71\) 4.90681 0.582331 0.291166 0.956673i \(-0.405957\pi\)
0.291166 + 0.956673i \(0.405957\pi\)
\(72\) 20.2545 2.38702
\(73\) −8.90215 −1.04192 −0.520959 0.853582i \(-0.674426\pi\)
−0.520959 + 0.853582i \(0.674426\pi\)
\(74\) 8.03505 0.934056
\(75\) −0.728681 −0.0841408
\(76\) 3.40587 0.390680
\(77\) 0.283872 0.0323502
\(78\) 1.00729 0.114053
\(79\) 13.1895 1.48394 0.741969 0.670435i \(-0.233892\pi\)
0.741969 + 0.670435i \(0.233892\pi\)
\(80\) 23.8256 2.66378
\(81\) 7.30009 0.811121
\(82\) −17.3615 −1.91725
\(83\) 16.9864 1.86450 0.932249 0.361818i \(-0.117844\pi\)
0.932249 + 0.361818i \(0.117844\pi\)
\(84\) −0.157537 −0.0171887
\(85\) 10.1697 1.10306
\(86\) 21.6357 2.33304
\(87\) 0 0
\(88\) −27.2637 −2.90632
\(89\) 6.79655 0.720433 0.360216 0.932869i \(-0.382703\pi\)
0.360216 + 0.932869i \(0.382703\pi\)
\(90\) 18.8500 1.98696
\(91\) 0.0661901 0.00693861
\(92\) 5.62052 0.585980
\(93\) −2.26298 −0.234660
\(94\) 27.5652 2.84313
\(95\) 1.84143 0.188927
\(96\) 4.21649 0.430344
\(97\) −11.4171 −1.15923 −0.579615 0.814890i \(-0.696797\pi\)
−0.579615 + 0.814890i \(0.696797\pi\)
\(98\) 18.2024 1.83872
\(99\) −10.6058 −1.06592
\(100\) 7.91592 0.791592
\(101\) 9.43826 0.939142 0.469571 0.882895i \(-0.344409\pi\)
0.469571 + 0.882895i \(0.344409\pi\)
\(102\) 4.50605 0.446165
\(103\) −9.18317 −0.904845 −0.452422 0.891804i \(-0.649440\pi\)
−0.452422 + 0.891804i \(0.649440\pi\)
\(104\) −6.35706 −0.623361
\(105\) −0.0851746 −0.00831219
\(106\) −14.4594 −1.40442
\(107\) −4.86820 −0.470627 −0.235313 0.971920i \(-0.575612\pi\)
−0.235313 + 0.971920i \(0.575612\pi\)
\(108\) 12.1762 1.17166
\(109\) 4.33423 0.415144 0.207572 0.978220i \(-0.433444\pi\)
0.207572 + 0.978220i \(0.433444\pi\)
\(110\) −25.3732 −2.41924
\(111\) 1.35646 0.128750
\(112\) 0.693702 0.0655486
\(113\) 4.52309 0.425496 0.212748 0.977107i \(-0.431759\pi\)
0.212748 + 0.977107i \(0.431759\pi\)
\(114\) 0.815916 0.0764175
\(115\) 3.03881 0.283371
\(116\) 0 0
\(117\) −2.47294 −0.228623
\(118\) −25.8132 −2.37630
\(119\) 0.296098 0.0271433
\(120\) 8.18037 0.746762
\(121\) 3.27597 0.297816
\(122\) −9.28378 −0.840514
\(123\) −2.93093 −0.264273
\(124\) 24.5835 2.20767
\(125\) −8.62227 −0.771199
\(126\) 0.548833 0.0488939
\(127\) 5.83762 0.518005 0.259003 0.965877i \(-0.416606\pi\)
0.259003 + 0.965877i \(0.416606\pi\)
\(128\) 2.25255 0.199099
\(129\) 3.65250 0.321585
\(130\) −5.91623 −0.518888
\(131\) −6.62441 −0.578777 −0.289389 0.957212i \(-0.593452\pi\)
−0.289389 + 0.957212i \(0.593452\pi\)
\(132\) −7.92257 −0.689571
\(133\) 0.0536148 0.00464899
\(134\) −12.8549 −1.11050
\(135\) 6.58326 0.566597
\(136\) −28.4380 −2.43853
\(137\) 1.55881 0.133178 0.0665890 0.997780i \(-0.478788\pi\)
0.0665890 + 0.997780i \(0.478788\pi\)
\(138\) 1.34646 0.114618
\(139\) 10.6416 0.902607 0.451303 0.892371i \(-0.350959\pi\)
0.451303 + 0.892371i \(0.350959\pi\)
\(140\) 0.925282 0.0782006
\(141\) 4.65349 0.391895
\(142\) −12.7697 −1.07161
\(143\) 3.32871 0.278361
\(144\) −25.9175 −2.15979
\(145\) 0 0
\(146\) 23.1673 1.91734
\(147\) 3.07289 0.253448
\(148\) −14.7357 −1.21127
\(149\) 5.43253 0.445050 0.222525 0.974927i \(-0.428570\pi\)
0.222525 + 0.974927i \(0.428570\pi\)
\(150\) 1.89635 0.154836
\(151\) 17.8418 1.45194 0.725971 0.687725i \(-0.241390\pi\)
0.725971 + 0.687725i \(0.241390\pi\)
\(152\) −5.14929 −0.417663
\(153\) −11.0626 −0.894354
\(154\) −0.738760 −0.0595310
\(155\) 13.2914 1.06759
\(156\) −1.84730 −0.147902
\(157\) 9.46360 0.755278 0.377639 0.925953i \(-0.376736\pi\)
0.377639 + 0.925953i \(0.376736\pi\)
\(158\) −34.3249 −2.73075
\(159\) −2.44100 −0.193584
\(160\) −24.7652 −1.95786
\(161\) 0.0884774 0.00697300
\(162\) −18.9980 −1.49263
\(163\) 10.4578 0.819116 0.409558 0.912284i \(-0.365683\pi\)
0.409558 + 0.912284i \(0.365683\pi\)
\(164\) 31.8397 2.48626
\(165\) −4.28345 −0.333466
\(166\) −44.2060 −3.43105
\(167\) 0.170436 0.0131888 0.00659438 0.999978i \(-0.497901\pi\)
0.00659438 + 0.999978i \(0.497901\pi\)
\(168\) 0.238178 0.0183758
\(169\) −12.2238 −0.940296
\(170\) −26.4659 −2.02985
\(171\) −2.00311 −0.153182
\(172\) −39.6785 −3.02545
\(173\) −12.0694 −0.917616 −0.458808 0.888535i \(-0.651723\pi\)
−0.458808 + 0.888535i \(0.651723\pi\)
\(174\) 0 0
\(175\) 0.124611 0.00941973
\(176\) 34.8864 2.62966
\(177\) −4.35773 −0.327547
\(178\) −17.6876 −1.32574
\(179\) −1.67483 −0.125183 −0.0625913 0.998039i \(-0.519936\pi\)
−0.0625913 + 0.998039i \(0.519936\pi\)
\(180\) −34.5696 −2.57666
\(181\) −15.3626 −1.14190 −0.570948 0.820986i \(-0.693424\pi\)
−0.570948 + 0.820986i \(0.693424\pi\)
\(182\) −0.172256 −0.0127685
\(183\) −1.56727 −0.115856
\(184\) −8.49758 −0.626450
\(185\) −7.96707 −0.585751
\(186\) 5.88926 0.431822
\(187\) 14.8908 1.08892
\(188\) −50.5526 −3.68693
\(189\) 0.191677 0.0139424
\(190\) −4.79222 −0.347664
\(191\) 20.4783 1.48176 0.740878 0.671640i \(-0.234410\pi\)
0.740878 + 0.671640i \(0.234410\pi\)
\(192\) −2.86014 −0.206413
\(193\) −3.13441 −0.225620 −0.112810 0.993617i \(-0.535985\pi\)
−0.112810 + 0.993617i \(0.535985\pi\)
\(194\) 29.7123 2.13322
\(195\) −0.998767 −0.0715232
\(196\) −33.3819 −2.38442
\(197\) 2.84040 0.202370 0.101185 0.994868i \(-0.467737\pi\)
0.101185 + 0.994868i \(0.467737\pi\)
\(198\) 27.6009 1.96151
\(199\) −19.1189 −1.35530 −0.677652 0.735383i \(-0.737002\pi\)
−0.677652 + 0.735383i \(0.737002\pi\)
\(200\) −11.9680 −0.846263
\(201\) −2.17014 −0.153070
\(202\) −24.5625 −1.72821
\(203\) 0 0
\(204\) −8.26378 −0.578580
\(205\) 17.2146 1.20232
\(206\) 23.8987 1.66510
\(207\) −3.30562 −0.229756
\(208\) 8.13442 0.564021
\(209\) 2.69630 0.186507
\(210\) 0.221662 0.0152961
\(211\) 17.8936 1.23184 0.615922 0.787807i \(-0.288784\pi\)
0.615922 + 0.787807i \(0.288784\pi\)
\(212\) 26.5174 1.82123
\(213\) −2.15575 −0.147710
\(214\) 12.6692 0.866049
\(215\) −21.4527 −1.46306
\(216\) −18.4091 −1.25258
\(217\) 0.386991 0.0262706
\(218\) −11.2796 −0.763949
\(219\) 3.91106 0.264285
\(220\) 46.5326 3.13723
\(221\) 3.47208 0.233557
\(222\) −3.53011 −0.236925
\(223\) 17.7308 1.18735 0.593673 0.804707i \(-0.297677\pi\)
0.593673 + 0.804707i \(0.297677\pi\)
\(224\) −0.721060 −0.0481778
\(225\) −4.65562 −0.310374
\(226\) −11.7711 −0.783000
\(227\) 22.2116 1.47424 0.737119 0.675763i \(-0.236186\pi\)
0.737119 + 0.675763i \(0.236186\pi\)
\(228\) −1.49633 −0.0990970
\(229\) −9.96812 −0.658712 −0.329356 0.944206i \(-0.606832\pi\)
−0.329356 + 0.944206i \(0.606832\pi\)
\(230\) −7.90832 −0.521459
\(231\) −0.124716 −0.00820571
\(232\) 0 0
\(233\) −20.0765 −1.31525 −0.657627 0.753344i \(-0.728440\pi\)
−0.657627 + 0.753344i \(0.728440\pi\)
\(234\) 6.43567 0.420713
\(235\) −27.3320 −1.78294
\(236\) 47.3396 3.08155
\(237\) −5.79467 −0.376404
\(238\) −0.770577 −0.0499491
\(239\) −1.18085 −0.0763830 −0.0381915 0.999270i \(-0.512160\pi\)
−0.0381915 + 0.999270i \(0.512160\pi\)
\(240\) −10.4675 −0.675675
\(241\) 11.8311 0.762110 0.381055 0.924552i \(-0.375561\pi\)
0.381055 + 0.924552i \(0.375561\pi\)
\(242\) −8.52552 −0.548041
\(243\) −10.8609 −0.696728
\(244\) 17.0258 1.08997
\(245\) −18.0484 −1.15307
\(246\) 7.62756 0.486316
\(247\) 0.628693 0.0400028
\(248\) −37.1675 −2.36014
\(249\) −7.46278 −0.472934
\(250\) 22.4389 1.41916
\(251\) −7.66497 −0.483809 −0.241904 0.970300i \(-0.577772\pi\)
−0.241904 + 0.970300i \(0.577772\pi\)
\(252\) −1.00652 −0.0634049
\(253\) 4.44955 0.279741
\(254\) −15.1921 −0.953235
\(255\) −4.46793 −0.279793
\(256\) −18.8823 −1.18015
\(257\) 11.3728 0.709415 0.354707 0.934977i \(-0.384580\pi\)
0.354707 + 0.934977i \(0.384580\pi\)
\(258\) −9.50542 −0.591782
\(259\) −0.231968 −0.0144138
\(260\) 10.8500 0.672886
\(261\) 0 0
\(262\) 17.2396 1.06507
\(263\) −16.7464 −1.03263 −0.516315 0.856399i \(-0.672697\pi\)
−0.516315 + 0.856399i \(0.672697\pi\)
\(264\) 11.9780 0.737196
\(265\) 14.3370 0.880717
\(266\) −0.139529 −0.00855509
\(267\) −2.98599 −0.182739
\(268\) 23.5750 1.44007
\(269\) −21.9337 −1.33732 −0.668660 0.743568i \(-0.733132\pi\)
−0.668660 + 0.743568i \(0.733132\pi\)
\(270\) −17.1325 −1.04265
\(271\) −6.54431 −0.397539 −0.198769 0.980046i \(-0.563694\pi\)
−0.198769 + 0.980046i \(0.563694\pi\)
\(272\) 36.3889 2.20640
\(273\) −0.0290799 −0.00176000
\(274\) −4.05670 −0.245074
\(275\) 6.26672 0.377898
\(276\) −2.46931 −0.148635
\(277\) 21.5277 1.29347 0.646736 0.762714i \(-0.276134\pi\)
0.646736 + 0.762714i \(0.276134\pi\)
\(278\) −27.6941 −1.66098
\(279\) −14.4584 −0.865602
\(280\) −1.39892 −0.0836015
\(281\) −8.69715 −0.518828 −0.259414 0.965766i \(-0.583529\pi\)
−0.259414 + 0.965766i \(0.583529\pi\)
\(282\) −12.1104 −0.721166
\(283\) 21.9887 1.30709 0.653545 0.756888i \(-0.273281\pi\)
0.653545 + 0.756888i \(0.273281\pi\)
\(284\) 23.4187 1.38964
\(285\) −0.809013 −0.0479218
\(286\) −8.66278 −0.512241
\(287\) 0.501216 0.0295859
\(288\) 26.9396 1.58743
\(289\) −1.46785 −0.0863441
\(290\) 0 0
\(291\) 5.01597 0.294042
\(292\) −42.4872 −2.48638
\(293\) −2.22609 −0.130050 −0.0650249 0.997884i \(-0.520713\pi\)
−0.0650249 + 0.997884i \(0.520713\pi\)
\(294\) −7.99702 −0.466395
\(295\) 25.5948 1.49019
\(296\) 22.2787 1.29493
\(297\) 9.63946 0.559338
\(298\) −14.1378 −0.818982
\(299\) 1.03750 0.0599999
\(300\) −3.47777 −0.200789
\(301\) −0.624613 −0.0360021
\(302\) −46.4321 −2.67187
\(303\) −4.14659 −0.238216
\(304\) 6.58898 0.377904
\(305\) 9.20524 0.527090
\(306\) 28.7896 1.64579
\(307\) −13.8760 −0.791945 −0.395972 0.918262i \(-0.629592\pi\)
−0.395972 + 0.918262i \(0.629592\pi\)
\(308\) 1.35483 0.0771988
\(309\) 4.03452 0.229516
\(310\) −34.5901 −1.96459
\(311\) −1.41217 −0.0800768 −0.0400384 0.999198i \(-0.512748\pi\)
−0.0400384 + 0.999198i \(0.512748\pi\)
\(312\) 2.79290 0.158117
\(313\) −28.7487 −1.62497 −0.812487 0.582980i \(-0.801887\pi\)
−0.812487 + 0.582980i \(0.801887\pi\)
\(314\) −24.6285 −1.38986
\(315\) −0.544190 −0.0306616
\(316\) 62.9496 3.54119
\(317\) −22.3203 −1.25363 −0.626815 0.779168i \(-0.715642\pi\)
−0.626815 + 0.779168i \(0.715642\pi\)
\(318\) 6.35255 0.356234
\(319\) 0 0
\(320\) 16.7988 0.939083
\(321\) 2.13879 0.119376
\(322\) −0.230257 −0.0128317
\(323\) 2.81242 0.156487
\(324\) 34.8411 1.93562
\(325\) 1.46121 0.0810531
\(326\) −27.2157 −1.50734
\(327\) −1.90420 −0.105302
\(328\) −48.1380 −2.65798
\(329\) −0.795792 −0.0438734
\(330\) 11.1474 0.613645
\(331\) 9.34951 0.513895 0.256948 0.966425i \(-0.417283\pi\)
0.256948 + 0.966425i \(0.417283\pi\)
\(332\) 81.0708 4.44934
\(333\) 8.66657 0.474925
\(334\) −0.443550 −0.0242700
\(335\) 12.7462 0.696397
\(336\) −0.304770 −0.0166266
\(337\) −15.4311 −0.840583 −0.420292 0.907389i \(-0.638072\pi\)
−0.420292 + 0.907389i \(0.638072\pi\)
\(338\) 31.8118 1.73034
\(339\) −1.98717 −0.107928
\(340\) 48.5367 2.63227
\(341\) 19.4618 1.05392
\(342\) 5.21297 0.281885
\(343\) −1.05141 −0.0567709
\(344\) 59.9893 3.23441
\(345\) −1.33507 −0.0718776
\(346\) 31.4098 1.68860
\(347\) −9.39939 −0.504586 −0.252293 0.967651i \(-0.581185\pi\)
−0.252293 + 0.967651i \(0.581185\pi\)
\(348\) 0 0
\(349\) −24.5072 −1.31184 −0.655921 0.754830i \(-0.727720\pi\)
−0.655921 + 0.754830i \(0.727720\pi\)
\(350\) −0.324293 −0.0173342
\(351\) 2.24762 0.119969
\(352\) −36.2622 −1.93278
\(353\) −24.1475 −1.28524 −0.642622 0.766183i \(-0.722153\pi\)
−0.642622 + 0.766183i \(0.722153\pi\)
\(354\) 11.3407 0.602753
\(355\) 12.6616 0.672011
\(356\) 32.4378 1.71920
\(357\) −0.130087 −0.00688495
\(358\) 4.35864 0.230361
\(359\) −15.2452 −0.804609 −0.402304 0.915506i \(-0.631791\pi\)
−0.402304 + 0.915506i \(0.631791\pi\)
\(360\) 52.2653 2.75462
\(361\) −18.4908 −0.973197
\(362\) 39.9803 2.10132
\(363\) −1.43926 −0.0755417
\(364\) 0.315905 0.0165579
\(365\) −22.9713 −1.20237
\(366\) 4.07872 0.213198
\(367\) −12.8020 −0.668261 −0.334130 0.942527i \(-0.608443\pi\)
−0.334130 + 0.942527i \(0.608443\pi\)
\(368\) 10.8734 0.566816
\(369\) −18.7260 −0.974837
\(370\) 20.7338 1.07790
\(371\) 0.417434 0.0216721
\(372\) −10.8005 −0.559980
\(373\) −0.0195746 −0.00101354 −0.000506768 1.00000i \(-0.500161\pi\)
−0.000506768 1.00000i \(0.500161\pi\)
\(374\) −38.7525 −2.00384
\(375\) 3.78810 0.195616
\(376\) 76.4297 3.94156
\(377\) 0 0
\(378\) −0.498827 −0.0256569
\(379\) −5.23573 −0.268941 −0.134471 0.990918i \(-0.542933\pi\)
−0.134471 + 0.990918i \(0.542933\pi\)
\(380\) 8.78860 0.450845
\(381\) −2.56469 −0.131393
\(382\) −53.2935 −2.72673
\(383\) −0.274844 −0.0140438 −0.00702192 0.999975i \(-0.502235\pi\)
−0.00702192 + 0.999975i \(0.502235\pi\)
\(384\) −0.989633 −0.0505020
\(385\) 0.732510 0.0373322
\(386\) 8.15711 0.415186
\(387\) 23.3362 1.18625
\(388\) −54.4903 −2.76633
\(389\) −7.53699 −0.382140 −0.191070 0.981576i \(-0.561196\pi\)
−0.191070 + 0.981576i \(0.561196\pi\)
\(390\) 2.59923 0.131617
\(391\) 4.64118 0.234715
\(392\) 50.4696 2.54910
\(393\) 2.91036 0.146808
\(394\) −7.39197 −0.372402
\(395\) 34.0346 1.71246
\(396\) −50.6181 −2.54366
\(397\) 16.7344 0.839877 0.419938 0.907553i \(-0.362052\pi\)
0.419938 + 0.907553i \(0.362052\pi\)
\(398\) 49.7558 2.49403
\(399\) −0.0235551 −0.00117923
\(400\) 15.3141 0.765704
\(401\) −8.05748 −0.402371 −0.201186 0.979553i \(-0.564479\pi\)
−0.201186 + 0.979553i \(0.564479\pi\)
\(402\) 5.64766 0.281680
\(403\) 4.53789 0.226049
\(404\) 45.0459 2.24112
\(405\) 18.8373 0.936034
\(406\) 0 0
\(407\) −11.6657 −0.578247
\(408\) 12.4939 0.618540
\(409\) −9.50361 −0.469923 −0.234962 0.972005i \(-0.575496\pi\)
−0.234962 + 0.972005i \(0.575496\pi\)
\(410\) −44.7999 −2.21251
\(411\) −0.684845 −0.0337809
\(412\) −43.8285 −2.15927
\(413\) 0.745214 0.0366696
\(414\) 8.60267 0.422798
\(415\) 43.8321 2.15163
\(416\) −8.45522 −0.414551
\(417\) −4.67526 −0.228948
\(418\) −7.01695 −0.343210
\(419\) 23.2480 1.13574 0.567870 0.823118i \(-0.307768\pi\)
0.567870 + 0.823118i \(0.307768\pi\)
\(420\) −0.406512 −0.0198358
\(421\) 17.4532 0.850618 0.425309 0.905048i \(-0.360166\pi\)
0.425309 + 0.905048i \(0.360166\pi\)
\(422\) −46.5669 −2.26684
\(423\) 29.7317 1.44560
\(424\) −40.0914 −1.94701
\(425\) 6.53662 0.317073
\(426\) 5.61022 0.271816
\(427\) 0.268018 0.0129703
\(428\) −23.2344 −1.12308
\(429\) −1.46243 −0.0706069
\(430\) 55.8294 2.69233
\(431\) −32.7850 −1.57920 −0.789598 0.613624i \(-0.789711\pi\)
−0.789598 + 0.613624i \(0.789711\pi\)
\(432\) 23.5561 1.13334
\(433\) −5.02086 −0.241287 −0.120644 0.992696i \(-0.538496\pi\)
−0.120644 + 0.992696i \(0.538496\pi\)
\(434\) −1.00712 −0.0483433
\(435\) 0 0
\(436\) 20.6859 0.990677
\(437\) 0.840384 0.0402010
\(438\) −10.1783 −0.486338
\(439\) −21.3691 −1.01989 −0.509946 0.860207i \(-0.670334\pi\)
−0.509946 + 0.860207i \(0.670334\pi\)
\(440\) −70.3520 −3.35390
\(441\) 19.6330 0.934906
\(442\) −9.03587 −0.429793
\(443\) 39.8292 1.89234 0.946171 0.323668i \(-0.104916\pi\)
0.946171 + 0.323668i \(0.104916\pi\)
\(444\) 6.47397 0.307241
\(445\) 17.5380 0.831380
\(446\) −46.1435 −2.18496
\(447\) −2.38672 −0.112888
\(448\) 0.489111 0.0231083
\(449\) −9.92661 −0.468466 −0.234233 0.972181i \(-0.575258\pi\)
−0.234233 + 0.972181i \(0.575258\pi\)
\(450\) 12.1160 0.571152
\(451\) 25.2063 1.18692
\(452\) 21.5873 1.01538
\(453\) −7.83858 −0.368289
\(454\) −57.8044 −2.71290
\(455\) 0.170799 0.00800716
\(456\) 2.26228 0.105941
\(457\) 14.6244 0.684102 0.342051 0.939681i \(-0.388878\pi\)
0.342051 + 0.939681i \(0.388878\pi\)
\(458\) 25.9414 1.21216
\(459\) 10.0546 0.469310
\(460\) 14.5033 0.676221
\(461\) −18.8523 −0.878037 −0.439019 0.898478i \(-0.644674\pi\)
−0.439019 + 0.898478i \(0.644674\pi\)
\(462\) 0.324566 0.0151002
\(463\) −35.4987 −1.64977 −0.824883 0.565304i \(-0.808759\pi\)
−0.824883 + 0.565304i \(0.808759\pi\)
\(464\) 0 0
\(465\) −5.83944 −0.270798
\(466\) 52.2478 2.42033
\(467\) −6.06786 −0.280787 −0.140394 0.990096i \(-0.544837\pi\)
−0.140394 + 0.990096i \(0.544837\pi\)
\(468\) −11.8026 −0.545574
\(469\) 0.371115 0.0171365
\(470\) 71.1298 3.28097
\(471\) −4.15773 −0.191578
\(472\) −71.5721 −3.29437
\(473\) −31.4119 −1.44432
\(474\) 15.0803 0.692660
\(475\) 1.18359 0.0543070
\(476\) 1.41319 0.0647732
\(477\) −15.5958 −0.714083
\(478\) 3.07310 0.140560
\(479\) −3.51910 −0.160792 −0.0803958 0.996763i \(-0.525618\pi\)
−0.0803958 + 0.996763i \(0.525618\pi\)
\(480\) 10.8803 0.496617
\(481\) −2.72008 −0.124025
\(482\) −30.7898 −1.40244
\(483\) −0.0388716 −0.00176872
\(484\) 15.6352 0.710692
\(485\) −29.4609 −1.33775
\(486\) 28.2649 1.28212
\(487\) 7.87745 0.356961 0.178481 0.983943i \(-0.442882\pi\)
0.178481 + 0.983943i \(0.442882\pi\)
\(488\) −25.7411 −1.16524
\(489\) −4.59451 −0.207771
\(490\) 46.9699 2.12188
\(491\) −21.8303 −0.985187 −0.492594 0.870259i \(-0.663951\pi\)
−0.492594 + 0.870259i \(0.663951\pi\)
\(492\) −13.9884 −0.630646
\(493\) 0 0
\(494\) −1.63614 −0.0736132
\(495\) −27.3674 −1.23007
\(496\) 47.5591 2.13547
\(497\) 0.368654 0.0165364
\(498\) 19.4214 0.870295
\(499\) −29.6115 −1.32559 −0.662796 0.748800i \(-0.730630\pi\)
−0.662796 + 0.748800i \(0.730630\pi\)
\(500\) −41.1514 −1.84035
\(501\) −0.0748793 −0.00334536
\(502\) 19.9476 0.890306
\(503\) 14.0757 0.627603 0.313802 0.949489i \(-0.398397\pi\)
0.313802 + 0.949489i \(0.398397\pi\)
\(504\) 1.52174 0.0677839
\(505\) 24.3547 1.08377
\(506\) −11.5797 −0.514779
\(507\) 5.37041 0.238508
\(508\) 27.8612 1.23614
\(509\) −28.1153 −1.24619 −0.623095 0.782146i \(-0.714125\pi\)
−0.623095 + 0.782146i \(0.714125\pi\)
\(510\) 11.6275 0.514875
\(511\) −0.668828 −0.0295872
\(512\) 44.6351 1.97261
\(513\) 1.82060 0.0803815
\(514\) −29.5970 −1.30547
\(515\) −23.6965 −1.04419
\(516\) 17.4323 0.767413
\(517\) −40.0205 −1.76010
\(518\) 0.603682 0.0265243
\(519\) 5.30254 0.232756
\(520\) −16.4039 −0.719359
\(521\) 30.6374 1.34225 0.671125 0.741344i \(-0.265811\pi\)
0.671125 + 0.741344i \(0.265811\pi\)
\(522\) 0 0
\(523\) 31.1728 1.36309 0.681546 0.731775i \(-0.261308\pi\)
0.681546 + 0.731775i \(0.261308\pi\)
\(524\) −31.6163 −1.38116
\(525\) −0.0547466 −0.00238934
\(526\) 43.5816 1.90025
\(527\) 20.3000 0.884283
\(528\) −15.3269 −0.667019
\(529\) −21.6132 −0.939703
\(530\) −37.3113 −1.62070
\(531\) −27.8420 −1.20824
\(532\) 0.255887 0.0110941
\(533\) 5.87732 0.254575
\(534\) 7.77085 0.336278
\(535\) −12.5620 −0.543104
\(536\) −35.6427 −1.53953
\(537\) 0.735817 0.0317529
\(538\) 57.0811 2.46094
\(539\) −26.4272 −1.13830
\(540\) 31.4199 1.35210
\(541\) 22.3769 0.962058 0.481029 0.876705i \(-0.340263\pi\)
0.481029 + 0.876705i \(0.340263\pi\)
\(542\) 17.0312 0.731552
\(543\) 6.74940 0.289645
\(544\) −37.8240 −1.62169
\(545\) 11.1841 0.479076
\(546\) 0.0756787 0.00323875
\(547\) −12.2963 −0.525752 −0.262876 0.964830i \(-0.584671\pi\)
−0.262876 + 0.964830i \(0.584671\pi\)
\(548\) 7.43971 0.317809
\(549\) −10.0134 −0.427363
\(550\) −16.3088 −0.695408
\(551\) 0 0
\(552\) 3.73332 0.158901
\(553\) 0.990943 0.0421392
\(554\) −56.0244 −2.38025
\(555\) 3.50024 0.148577
\(556\) 50.7890 2.15393
\(557\) 6.00766 0.254553 0.127276 0.991867i \(-0.459377\pi\)
0.127276 + 0.991867i \(0.459377\pi\)
\(558\) 37.6271 1.59288
\(559\) −7.32428 −0.309784
\(560\) 1.79004 0.0756432
\(561\) −6.54212 −0.276208
\(562\) 22.6338 0.954749
\(563\) −28.0097 −1.18047 −0.590233 0.807233i \(-0.700964\pi\)
−0.590233 + 0.807233i \(0.700964\pi\)
\(564\) 22.2097 0.935197
\(565\) 11.6715 0.491023
\(566\) −57.2241 −2.40531
\(567\) 0.548464 0.0230333
\(568\) −35.4064 −1.48562
\(569\) 34.6764 1.45371 0.726856 0.686790i \(-0.240981\pi\)
0.726856 + 0.686790i \(0.240981\pi\)
\(570\) 2.10541 0.0881858
\(571\) 4.37818 0.183221 0.0916106 0.995795i \(-0.470799\pi\)
0.0916106 + 0.995795i \(0.470799\pi\)
\(572\) 15.8869 0.664266
\(573\) −8.99690 −0.375851
\(574\) −1.30439 −0.0544440
\(575\) 1.95322 0.0814548
\(576\) −18.2737 −0.761406
\(577\) −44.8517 −1.86720 −0.933600 0.358317i \(-0.883351\pi\)
−0.933600 + 0.358317i \(0.883351\pi\)
\(578\) 3.81999 0.158891
\(579\) 1.37707 0.0572289
\(580\) 0 0
\(581\) 1.27621 0.0529459
\(582\) −13.0538 −0.541096
\(583\) 20.9928 0.869434
\(584\) 64.2359 2.65810
\(585\) −6.38123 −0.263831
\(586\) 5.79327 0.239318
\(587\) 6.40778 0.264477 0.132239 0.991218i \(-0.457783\pi\)
0.132239 + 0.991218i \(0.457783\pi\)
\(588\) 14.6660 0.604814
\(589\) 3.67575 0.151457
\(590\) −66.6090 −2.74225
\(591\) −1.24790 −0.0513317
\(592\) −28.5076 −1.17166
\(593\) −1.41754 −0.0582114 −0.0291057 0.999576i \(-0.509266\pi\)
−0.0291057 + 0.999576i \(0.509266\pi\)
\(594\) −25.0861 −1.02930
\(595\) 0.764058 0.0313233
\(596\) 25.9278 1.06204
\(597\) 8.39968 0.343776
\(598\) −2.70002 −0.110412
\(599\) −37.2538 −1.52215 −0.761075 0.648663i \(-0.775328\pi\)
−0.761075 + 0.648663i \(0.775328\pi\)
\(600\) 5.25799 0.214657
\(601\) 25.3174 1.03272 0.516360 0.856372i \(-0.327287\pi\)
0.516360 + 0.856372i \(0.327287\pi\)
\(602\) 1.62552 0.0662511
\(603\) −13.8653 −0.564637
\(604\) 85.1533 3.46484
\(605\) 8.45340 0.343679
\(606\) 10.7913 0.438365
\(607\) 29.8274 1.21066 0.605328 0.795976i \(-0.293042\pi\)
0.605328 + 0.795976i \(0.293042\pi\)
\(608\) −6.84883 −0.277757
\(609\) 0 0
\(610\) −23.9561 −0.969953
\(611\) −9.33154 −0.377514
\(612\) −52.7982 −2.13424
\(613\) 31.5885 1.27585 0.637923 0.770100i \(-0.279794\pi\)
0.637923 + 0.770100i \(0.279794\pi\)
\(614\) 36.1114 1.45734
\(615\) −7.56303 −0.304971
\(616\) −2.04835 −0.0825306
\(617\) −19.2746 −0.775968 −0.387984 0.921666i \(-0.626828\pi\)
−0.387984 + 0.921666i \(0.626828\pi\)
\(618\) −10.4996 −0.422356
\(619\) −44.9116 −1.80515 −0.902574 0.430534i \(-0.858325\pi\)
−0.902574 + 0.430534i \(0.858325\pi\)
\(620\) 63.4359 2.54765
\(621\) 3.00443 0.120564
\(622\) 3.67509 0.147358
\(623\) 0.510632 0.0204580
\(624\) −3.57377 −0.143065
\(625\) −30.5420 −1.22168
\(626\) 74.8168 2.99028
\(627\) −1.18459 −0.0473079
\(628\) 45.1669 1.80235
\(629\) −12.1681 −0.485175
\(630\) 1.41622 0.0564236
\(631\) −38.1217 −1.51760 −0.758800 0.651324i \(-0.774214\pi\)
−0.758800 + 0.651324i \(0.774214\pi\)
\(632\) −95.1725 −3.78576
\(633\) −7.86134 −0.312460
\(634\) 58.0871 2.30693
\(635\) 15.0635 0.597778
\(636\) −11.6501 −0.461958
\(637\) −6.16199 −0.244147
\(638\) 0 0
\(639\) −13.7733 −0.544864
\(640\) 5.81254 0.229761
\(641\) 36.9753 1.46044 0.730219 0.683214i \(-0.239418\pi\)
0.730219 + 0.683214i \(0.239418\pi\)
\(642\) −5.56607 −0.219675
\(643\) −17.0863 −0.673816 −0.336908 0.941537i \(-0.609381\pi\)
−0.336908 + 0.941537i \(0.609381\pi\)
\(644\) 0.422276 0.0166400
\(645\) 9.42501 0.371109
\(646\) −7.31916 −0.287969
\(647\) 6.19335 0.243486 0.121743 0.992562i \(-0.461152\pi\)
0.121743 + 0.992562i \(0.461152\pi\)
\(648\) −52.6758 −2.06930
\(649\) 37.4769 1.47110
\(650\) −3.80270 −0.149154
\(651\) −0.170020 −0.00666361
\(652\) 49.9117 1.95469
\(653\) 15.7585 0.616677 0.308339 0.951277i \(-0.400227\pi\)
0.308339 + 0.951277i \(0.400227\pi\)
\(654\) 4.95555 0.193777
\(655\) −17.0938 −0.667909
\(656\) 61.5968 2.40495
\(657\) 24.9882 0.974881
\(658\) 2.07100 0.0807360
\(659\) −16.6107 −0.647059 −0.323530 0.946218i \(-0.604870\pi\)
−0.323530 + 0.946218i \(0.604870\pi\)
\(660\) −20.4436 −0.795765
\(661\) −40.0401 −1.55738 −0.778691 0.627408i \(-0.784116\pi\)
−0.778691 + 0.627408i \(0.784116\pi\)
\(662\) −24.3315 −0.945672
\(663\) −1.52542 −0.0592423
\(664\) −122.570 −4.75663
\(665\) 0.138349 0.00536494
\(666\) −22.5542 −0.873959
\(667\) 0 0
\(668\) 0.813440 0.0314729
\(669\) −7.78985 −0.301173
\(670\) −33.1711 −1.28151
\(671\) 13.4787 0.520338
\(672\) 0.316789 0.0122204
\(673\) −13.2244 −0.509764 −0.254882 0.966972i \(-0.582037\pi\)
−0.254882 + 0.966972i \(0.582037\pi\)
\(674\) 40.1584 1.54684
\(675\) 4.23144 0.162868
\(676\) −58.3407 −2.24387
\(677\) −23.8101 −0.915095 −0.457548 0.889185i \(-0.651272\pi\)
−0.457548 + 0.889185i \(0.651272\pi\)
\(678\) 5.17149 0.198610
\(679\) −0.857779 −0.0329185
\(680\) −73.3820 −2.81407
\(681\) −9.75843 −0.373944
\(682\) −50.6482 −1.93942
\(683\) 28.7668 1.10073 0.550365 0.834924i \(-0.314489\pi\)
0.550365 + 0.834924i \(0.314489\pi\)
\(684\) −9.56022 −0.365544
\(685\) 4.02238 0.153687
\(686\) 2.73623 0.104470
\(687\) 4.37938 0.167084
\(688\) −76.7616 −2.92651
\(689\) 4.89488 0.186480
\(690\) 3.47443 0.132269
\(691\) 27.1116 1.03137 0.515686 0.856777i \(-0.327537\pi\)
0.515686 + 0.856777i \(0.327537\pi\)
\(692\) −57.6033 −2.18975
\(693\) −0.796823 −0.0302688
\(694\) 24.4613 0.928540
\(695\) 27.4598 1.04161
\(696\) 0 0
\(697\) 26.2919 0.995875
\(698\) 63.7786 2.41406
\(699\) 8.82037 0.333617
\(700\) 0.594732 0.0224787
\(701\) −24.5115 −0.925788 −0.462894 0.886414i \(-0.653189\pi\)
−0.462894 + 0.886414i \(0.653189\pi\)
\(702\) −5.84930 −0.220768
\(703\) −2.20330 −0.0830989
\(704\) 24.5975 0.927053
\(705\) 12.0080 0.452247
\(706\) 62.8425 2.36511
\(707\) 0.709107 0.0266687
\(708\) −20.7981 −0.781641
\(709\) 16.5914 0.623104 0.311552 0.950229i \(-0.399151\pi\)
0.311552 + 0.950229i \(0.399151\pi\)
\(710\) −32.9512 −1.23664
\(711\) −37.0227 −1.38846
\(712\) −49.0423 −1.83794
\(713\) 6.06588 0.227169
\(714\) 0.338544 0.0126697
\(715\) 8.58949 0.321229
\(716\) −7.99344 −0.298729
\(717\) 0.518795 0.0193747
\(718\) 39.6746 1.48064
\(719\) 40.5018 1.51046 0.755231 0.655458i \(-0.227525\pi\)
0.755231 + 0.655458i \(0.227525\pi\)
\(720\) −66.8780 −2.49240
\(721\) −0.689942 −0.0256948
\(722\) 48.1211 1.79088
\(723\) −5.19787 −0.193311
\(724\) −73.3212 −2.72496
\(725\) 0 0
\(726\) 3.74559 0.139012
\(727\) −31.7298 −1.17679 −0.588397 0.808572i \(-0.700241\pi\)
−0.588397 + 0.808572i \(0.700241\pi\)
\(728\) −0.477613 −0.0177015
\(729\) −17.1286 −0.634394
\(730\) 59.7815 2.21261
\(731\) −32.7648 −1.21185
\(732\) −7.48009 −0.276472
\(733\) 1.48939 0.0550118 0.0275059 0.999622i \(-0.491243\pi\)
0.0275059 + 0.999622i \(0.491243\pi\)
\(734\) 33.3165 1.22974
\(735\) 7.92936 0.292479
\(736\) −11.3022 −0.416606
\(737\) 18.6634 0.687476
\(738\) 48.7333 1.79390
\(739\) −36.7246 −1.35094 −0.675468 0.737389i \(-0.736058\pi\)
−0.675468 + 0.737389i \(0.736058\pi\)
\(740\) −38.0244 −1.39780
\(741\) −0.276209 −0.0101468
\(742\) −1.08635 −0.0398810
\(743\) −31.1757 −1.14373 −0.571863 0.820349i \(-0.693779\pi\)
−0.571863 + 0.820349i \(0.693779\pi\)
\(744\) 16.3291 0.598655
\(745\) 14.0182 0.513588
\(746\) 0.0509418 0.00186511
\(747\) −47.6805 −1.74454
\(748\) 71.0693 2.59855
\(749\) −0.365753 −0.0133643
\(750\) −9.85829 −0.359974
\(751\) 45.2999 1.65302 0.826509 0.562923i \(-0.190323\pi\)
0.826509 + 0.562923i \(0.190323\pi\)
\(752\) −97.7986 −3.56635
\(753\) 3.36752 0.122719
\(754\) 0 0
\(755\) 46.0393 1.67554
\(756\) 0.914815 0.0332715
\(757\) 18.8863 0.686435 0.343218 0.939256i \(-0.388483\pi\)
0.343218 + 0.939256i \(0.388483\pi\)
\(758\) 13.6257 0.494906
\(759\) −1.95486 −0.0709568
\(760\) −13.2874 −0.481983
\(761\) 17.4270 0.631727 0.315863 0.948805i \(-0.397706\pi\)
0.315863 + 0.948805i \(0.397706\pi\)
\(762\) 6.67446 0.241790
\(763\) 0.325635 0.0117888
\(764\) 97.7365 3.53598
\(765\) −28.5461 −1.03209
\(766\) 0.715264 0.0258435
\(767\) 8.73846 0.315527
\(768\) 8.29574 0.299347
\(769\) 27.2971 0.984357 0.492179 0.870494i \(-0.336201\pi\)
0.492179 + 0.870494i \(0.336201\pi\)
\(770\) −1.90631 −0.0686988
\(771\) −4.99650 −0.179945
\(772\) −14.9596 −0.538406
\(773\) −5.89778 −0.212128 −0.106064 0.994359i \(-0.533825\pi\)
−0.106064 + 0.994359i \(0.533825\pi\)
\(774\) −60.7311 −2.18294
\(775\) 8.54316 0.306879
\(776\) 82.3831 2.95738
\(777\) 0.101912 0.00365609
\(778\) 19.6146 0.703216
\(779\) 4.76070 0.170570
\(780\) −4.76681 −0.170679
\(781\) 18.5397 0.663402
\(782\) −12.0784 −0.431923
\(783\) 0 0
\(784\) −64.5804 −2.30644
\(785\) 24.4201 0.871591
\(786\) −7.57403 −0.270157
\(787\) −43.7976 −1.56122 −0.780609 0.625020i \(-0.785091\pi\)
−0.780609 + 0.625020i \(0.785091\pi\)
\(788\) 13.5564 0.482925
\(789\) 7.35736 0.261929
\(790\) −88.5729 −3.15128
\(791\) 0.339825 0.0120828
\(792\) 76.5288 2.71933
\(793\) 3.14281 0.111604
\(794\) −43.5503 −1.54554
\(795\) −6.29881 −0.223396
\(796\) −91.2487 −3.23422
\(797\) −36.6686 −1.29887 −0.649435 0.760417i \(-0.724994\pi\)
−0.649435 + 0.760417i \(0.724994\pi\)
\(798\) 0.0613006 0.00217002
\(799\) −41.7441 −1.47680
\(800\) −15.9180 −0.562787
\(801\) −19.0778 −0.674081
\(802\) 20.9691 0.740445
\(803\) −33.6355 −1.18697
\(804\) −10.3574 −0.365278
\(805\) 0.228309 0.00804684
\(806\) −11.8096 −0.415975
\(807\) 9.63632 0.339214
\(808\) −68.1043 −2.39590
\(809\) 18.7725 0.660007 0.330004 0.943980i \(-0.392950\pi\)
0.330004 + 0.943980i \(0.392950\pi\)
\(810\) −49.0230 −1.72249
\(811\) −33.9249 −1.19127 −0.595633 0.803257i \(-0.703099\pi\)
−0.595633 + 0.803257i \(0.703099\pi\)
\(812\) 0 0
\(813\) 2.87517 0.100837
\(814\) 30.3593 1.06409
\(815\) 26.9855 0.945260
\(816\) −15.9870 −0.559659
\(817\) −5.93275 −0.207561
\(818\) 24.7326 0.864754
\(819\) −0.185794 −0.00649218
\(820\) 82.1599 2.86915
\(821\) −12.5182 −0.436887 −0.218443 0.975850i \(-0.570098\pi\)
−0.218443 + 0.975850i \(0.570098\pi\)
\(822\) 1.78227 0.0621637
\(823\) 27.6813 0.964911 0.482456 0.875920i \(-0.339745\pi\)
0.482456 + 0.875920i \(0.339745\pi\)
\(824\) 66.2636 2.30840
\(825\) −2.75321 −0.0958546
\(826\) −1.93937 −0.0674794
\(827\) 29.5496 1.02754 0.513771 0.857928i \(-0.328248\pi\)
0.513771 + 0.857928i \(0.328248\pi\)
\(828\) −15.7767 −0.548278
\(829\) −1.28760 −0.0447203 −0.0223601 0.999750i \(-0.507118\pi\)
−0.0223601 + 0.999750i \(0.507118\pi\)
\(830\) −114.070 −3.95944
\(831\) −9.45793 −0.328092
\(832\) 5.73537 0.198838
\(833\) −27.5653 −0.955083
\(834\) 12.1671 0.421311
\(835\) 0.439798 0.0152198
\(836\) 12.8686 0.445070
\(837\) 13.1411 0.454222
\(838\) −60.5016 −2.08999
\(839\) −16.3512 −0.564505 −0.282253 0.959340i \(-0.591082\pi\)
−0.282253 + 0.959340i \(0.591082\pi\)
\(840\) 0.614600 0.0212057
\(841\) 0 0
\(842\) −45.4209 −1.56531
\(843\) 3.82099 0.131602
\(844\) 85.4005 2.93961
\(845\) −31.5427 −1.08510
\(846\) −77.3749 −2.66020
\(847\) 0.246127 0.00845704
\(848\) 51.3004 1.76166
\(849\) −9.66047 −0.331546
\(850\) −17.0112 −0.583478
\(851\) −3.63597 −0.124640
\(852\) −10.2887 −0.352487
\(853\) 51.4321 1.76100 0.880501 0.474045i \(-0.157207\pi\)
0.880501 + 0.474045i \(0.157207\pi\)
\(854\) −0.697500 −0.0238680
\(855\) −5.16887 −0.176772
\(856\) 35.1278 1.20064
\(857\) −19.4262 −0.663588 −0.331794 0.943352i \(-0.607654\pi\)
−0.331794 + 0.943352i \(0.607654\pi\)
\(858\) 3.80589 0.129931
\(859\) 23.9218 0.816201 0.408101 0.912937i \(-0.366191\pi\)
0.408101 + 0.912937i \(0.366191\pi\)
\(860\) −102.387 −3.49137
\(861\) −0.220204 −0.00750452
\(862\) 85.3209 2.90604
\(863\) −28.4361 −0.967977 −0.483989 0.875074i \(-0.660812\pi\)
−0.483989 + 0.875074i \(0.660812\pi\)
\(864\) −24.4851 −0.832999
\(865\) −31.1441 −1.05893
\(866\) 13.0665 0.444018
\(867\) 0.644883 0.0219014
\(868\) 1.84699 0.0626908
\(869\) 49.8347 1.69053
\(870\) 0 0
\(871\) 4.35173 0.147453
\(872\) −31.2748 −1.05910
\(873\) 32.0476 1.08465
\(874\) −2.18705 −0.0739780
\(875\) −0.647800 −0.0218996
\(876\) 18.6663 0.630675
\(877\) −3.71106 −0.125314 −0.0626568 0.998035i \(-0.519957\pi\)
−0.0626568 + 0.998035i \(0.519957\pi\)
\(878\) 55.6118 1.87681
\(879\) 0.978009 0.0329874
\(880\) 90.0216 3.03463
\(881\) 11.9260 0.401796 0.200898 0.979612i \(-0.435614\pi\)
0.200898 + 0.979612i \(0.435614\pi\)
\(882\) −51.0938 −1.72042
\(883\) 5.89920 0.198524 0.0992619 0.995061i \(-0.468352\pi\)
0.0992619 + 0.995061i \(0.468352\pi\)
\(884\) 16.5712 0.557348
\(885\) −11.2448 −0.377990
\(886\) −103.653 −3.48229
\(887\) 24.5541 0.824445 0.412223 0.911083i \(-0.364753\pi\)
0.412223 + 0.911083i \(0.364753\pi\)
\(888\) −9.78791 −0.328461
\(889\) 0.438587 0.0147097
\(890\) −45.6415 −1.52991
\(891\) 27.5823 0.924043
\(892\) 84.6239 2.83342
\(893\) −7.55866 −0.252941
\(894\) 6.21129 0.207737
\(895\) −4.32177 −0.144461
\(896\) 0.169237 0.00565380
\(897\) −0.455812 −0.0152191
\(898\) 25.8334 0.862072
\(899\) 0 0
\(900\) −22.2198 −0.740661
\(901\) 21.8970 0.729494
\(902\) −65.5978 −2.18417
\(903\) 0.274417 0.00913201
\(904\) −32.6376 −1.08551
\(905\) −39.6421 −1.31775
\(906\) 20.3994 0.677726
\(907\) 40.2160 1.33535 0.667675 0.744453i \(-0.267289\pi\)
0.667675 + 0.744453i \(0.267289\pi\)
\(908\) 106.009 3.51804
\(909\) −26.4930 −0.878718
\(910\) −0.444493 −0.0147348
\(911\) 13.5344 0.448415 0.224208 0.974541i \(-0.428021\pi\)
0.224208 + 0.974541i \(0.428021\pi\)
\(912\) −2.89479 −0.0958562
\(913\) 64.1806 2.12407
\(914\) −38.0592 −1.25889
\(915\) −4.04422 −0.133698
\(916\) −47.5748 −1.57191
\(917\) −0.497699 −0.0164355
\(918\) −26.1666 −0.863625
\(919\) 55.1125 1.81799 0.908997 0.416803i \(-0.136849\pi\)
0.908997 + 0.416803i \(0.136849\pi\)
\(920\) −21.9274 −0.722924
\(921\) 6.09626 0.200879
\(922\) 49.0619 1.61577
\(923\) 4.32288 0.142289
\(924\) −0.595231 −0.0195817
\(925\) −5.12089 −0.168374
\(926\) 92.3833 3.03590
\(927\) 25.7770 0.846627
\(928\) 0 0
\(929\) 4.05714 0.133111 0.0665553 0.997783i \(-0.478799\pi\)
0.0665553 + 0.997783i \(0.478799\pi\)
\(930\) 15.1968 0.498322
\(931\) −4.99129 −0.163583
\(932\) −95.8188 −3.13865
\(933\) 0.620421 0.0203117
\(934\) 15.7912 0.516705
\(935\) 38.4246 1.25662
\(936\) 17.8441 0.583254
\(937\) −30.1884 −0.986213 −0.493106 0.869969i \(-0.664139\pi\)
−0.493106 + 0.869969i \(0.664139\pi\)
\(938\) −0.965804 −0.0315346
\(939\) 12.6304 0.412178
\(940\) −130.447 −4.25471
\(941\) −8.38002 −0.273181 −0.136590 0.990628i \(-0.543614\pi\)
−0.136590 + 0.990628i \(0.543614\pi\)
\(942\) 10.8202 0.352542
\(943\) 7.85630 0.255836
\(944\) 91.5828 2.98077
\(945\) 0.494607 0.0160896
\(946\) 81.7476 2.65784
\(947\) 1.82587 0.0593328 0.0296664 0.999560i \(-0.490556\pi\)
0.0296664 + 0.999560i \(0.490556\pi\)
\(948\) −27.6562 −0.898231
\(949\) −7.84275 −0.254587
\(950\) −3.08023 −0.0999359
\(951\) 9.80616 0.317986
\(952\) −2.13657 −0.0692468
\(953\) 46.8893 1.51889 0.759447 0.650569i \(-0.225470\pi\)
0.759447 + 0.650569i \(0.225470\pi\)
\(954\) 40.5871 1.31406
\(955\) 52.8426 1.70995
\(956\) −5.63585 −0.182276
\(957\) 0 0
\(958\) 9.15823 0.295889
\(959\) 0.117115 0.00378184
\(960\) −7.38038 −0.238201
\(961\) −4.46852 −0.144146
\(962\) 7.07884 0.228231
\(963\) 13.6650 0.440347
\(964\) 56.4664 1.81866
\(965\) −8.08810 −0.260365
\(966\) 0.101161 0.00325480
\(967\) 20.1580 0.648239 0.324119 0.946016i \(-0.394932\pi\)
0.324119 + 0.946016i \(0.394932\pi\)
\(968\) −23.6387 −0.759775
\(969\) −1.23561 −0.0396934
\(970\) 76.6703 2.46174
\(971\) −16.9188 −0.542949 −0.271474 0.962446i \(-0.587511\pi\)
−0.271474 + 0.962446i \(0.587511\pi\)
\(972\) −51.8358 −1.66263
\(973\) 0.799513 0.0256312
\(974\) −20.5006 −0.656881
\(975\) −0.641964 −0.0205593
\(976\) 32.9380 1.05432
\(977\) −1.03630 −0.0331543 −0.0165772 0.999863i \(-0.505277\pi\)
−0.0165772 + 0.999863i \(0.505277\pi\)
\(978\) 11.9569 0.382340
\(979\) 25.6798 0.820729
\(980\) −86.1395 −2.75162
\(981\) −12.1661 −0.388434
\(982\) 56.8120 1.81294
\(983\) −16.2306 −0.517676 −0.258838 0.965921i \(-0.583340\pi\)
−0.258838 + 0.965921i \(0.583340\pi\)
\(984\) 21.1489 0.674202
\(985\) 7.32943 0.233535
\(986\) 0 0
\(987\) 0.349622 0.0111286
\(988\) 3.00056 0.0954605
\(989\) −9.79048 −0.311319
\(990\) 71.2220 2.26358
\(991\) 37.1422 1.17986 0.589930 0.807454i \(-0.299155\pi\)
0.589930 + 0.807454i \(0.299155\pi\)
\(992\) −49.4347 −1.56955
\(993\) −4.10760 −0.130351
\(994\) −0.959400 −0.0304303
\(995\) −49.3349 −1.56402
\(996\) −35.6175 −1.12859
\(997\) 36.1372 1.14448 0.572238 0.820088i \(-0.306075\pi\)
0.572238 + 0.820088i \(0.306075\pi\)
\(998\) 77.0621 2.43936
\(999\) −7.87695 −0.249216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.k.1.1 12
3.2 odd 2 7569.2.a.bp.1.12 12
29.2 odd 28 841.2.e.e.236.1 12
29.3 odd 28 29.2.e.a.9.1 12
29.4 even 14 841.2.d.m.190.1 24
29.5 even 14 841.2.d.k.605.1 24
29.6 even 14 841.2.d.k.645.1 24
29.7 even 7 841.2.d.m.571.4 24
29.8 odd 28 841.2.e.a.267.1 12
29.9 even 14 841.2.d.l.574.4 24
29.10 odd 28 29.2.e.a.13.1 yes 12
29.11 odd 28 841.2.e.a.63.1 12
29.12 odd 4 841.2.b.e.840.1 12
29.13 even 14 841.2.d.l.778.4 24
29.14 odd 28 841.2.e.f.196.2 12
29.15 odd 28 841.2.e.e.196.1 12
29.16 even 7 841.2.d.l.778.1 24
29.17 odd 4 841.2.b.e.840.12 12
29.18 odd 28 841.2.e.h.63.2 12
29.19 odd 28 841.2.e.i.651.2 12
29.20 even 7 841.2.d.l.574.1 24
29.21 odd 28 841.2.e.h.267.2 12
29.22 even 14 841.2.d.m.571.1 24
29.23 even 7 841.2.d.k.645.4 24
29.24 even 7 841.2.d.k.605.4 24
29.25 even 7 841.2.d.m.190.4 24
29.26 odd 28 841.2.e.i.270.2 12
29.27 odd 28 841.2.e.f.236.2 12
29.28 even 2 inner 841.2.a.k.1.12 12
87.32 even 28 261.2.o.a.154.2 12
87.68 even 28 261.2.o.a.100.2 12
87.86 odd 2 7569.2.a.bp.1.1 12
116.3 even 28 464.2.y.d.241.1 12
116.39 even 28 464.2.y.d.129.1 12
145.3 even 28 725.2.p.a.299.1 24
145.32 even 28 725.2.p.a.299.4 24
145.39 odd 28 725.2.q.a.651.2 12
145.68 even 28 725.2.p.a.274.4 24
145.97 even 28 725.2.p.a.274.1 24
145.119 odd 28 725.2.q.a.676.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.e.a.9.1 12 29.3 odd 28
29.2.e.a.13.1 yes 12 29.10 odd 28
261.2.o.a.100.2 12 87.68 even 28
261.2.o.a.154.2 12 87.32 even 28
464.2.y.d.129.1 12 116.39 even 28
464.2.y.d.241.1 12 116.3 even 28
725.2.p.a.274.1 24 145.97 even 28
725.2.p.a.274.4 24 145.68 even 28
725.2.p.a.299.1 24 145.3 even 28
725.2.p.a.299.4 24 145.32 even 28
725.2.q.a.651.2 12 145.39 odd 28
725.2.q.a.676.2 12 145.119 odd 28
841.2.a.k.1.1 12 1.1 even 1 trivial
841.2.a.k.1.12 12 29.28 even 2 inner
841.2.b.e.840.1 12 29.12 odd 4
841.2.b.e.840.12 12 29.17 odd 4
841.2.d.k.605.1 24 29.5 even 14
841.2.d.k.605.4 24 29.24 even 7
841.2.d.k.645.1 24 29.6 even 14
841.2.d.k.645.4 24 29.23 even 7
841.2.d.l.574.1 24 29.20 even 7
841.2.d.l.574.4 24 29.9 even 14
841.2.d.l.778.1 24 29.16 even 7
841.2.d.l.778.4 24 29.13 even 14
841.2.d.m.190.1 24 29.4 even 14
841.2.d.m.190.4 24 29.25 even 7
841.2.d.m.571.1 24 29.22 even 14
841.2.d.m.571.4 24 29.7 even 7
841.2.e.a.63.1 12 29.11 odd 28
841.2.e.a.267.1 12 29.8 odd 28
841.2.e.e.196.1 12 29.15 odd 28
841.2.e.e.236.1 12 29.2 odd 28
841.2.e.f.196.2 12 29.14 odd 28
841.2.e.f.236.2 12 29.27 odd 28
841.2.e.h.63.2 12 29.18 odd 28
841.2.e.h.267.2 12 29.21 odd 28
841.2.e.i.270.2 12 29.26 odd 28
841.2.e.i.651.2 12 29.19 odd 28
7569.2.a.bp.1.1 12 87.86 odd 2
7569.2.a.bp.1.12 12 3.2 odd 2