Properties

Label 841.2.b.e.840.12
Level $841$
Weight $2$
Character 841.840
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(840,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.840");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.7877952219361.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + 13x^{9} - 18x^{8} - 14x^{7} + 57x^{6} - 28x^{5} - 72x^{4} + 104x^{3} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 840.12
Root \(0.911180 - 1.08155i\) of defining polynomial
Character \(\chi\) \(=\) 841.840
Dual form 841.2.b.e.840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.60244i q^{2} +0.439339i q^{3} -4.77269 q^{4} -2.58042 q^{5} -1.14335 q^{6} +0.0751311 q^{7} -7.21577i q^{8} +2.80698 q^{9} -6.71540i q^{10} -3.77836i q^{11} -2.09683i q^{12} -0.880995 q^{13} +0.195524i q^{14} -1.13368i q^{15} +9.23322 q^{16} -3.94108i q^{17} +7.30500i q^{18} -0.713617i q^{19} +12.3156 q^{20} +0.0330080i q^{21} +9.83294 q^{22} +1.17764 q^{23} +3.17017 q^{24} +1.65858 q^{25} -2.29274i q^{26} +2.55123i q^{27} -0.358578 q^{28} +2.95033 q^{30} -5.15087i q^{31} +9.59735i q^{32} +1.65998 q^{33} +10.2564 q^{34} -0.193870 q^{35} -13.3969 q^{36} -3.08751i q^{37} +1.85714 q^{38} -0.387055i q^{39} +18.6197i q^{40} +6.67122i q^{41} -0.0859013 q^{42} +8.31364i q^{43} +18.0329i q^{44} -7.24320 q^{45} +3.06474i q^{46} -10.5920i q^{47} +4.05651i q^{48} -6.99436 q^{49} +4.31637i q^{50} +1.73147 q^{51} +4.20472 q^{52} +5.55608 q^{53} -6.63943 q^{54} +9.74976i q^{55} -0.542129i q^{56} +0.313519 q^{57} +9.91885 q^{59} +5.41071i q^{60} -3.56734i q^{61} +13.4048 q^{62} +0.210892 q^{63} -6.51010 q^{64} +2.27334 q^{65} +4.31999i q^{66} -4.93956 q^{67} +18.8096i q^{68} +0.517383i q^{69} -0.504535i q^{70} -4.90681 q^{71} -20.2545i q^{72} -8.90215i q^{73} +8.03505 q^{74} +0.728681i q^{75} +3.40587i q^{76} -0.283872i q^{77} +1.00729 q^{78} -13.1895i q^{79} -23.8256 q^{80} +7.30009 q^{81} -17.3615 q^{82} +16.9864 q^{83} -0.157537i q^{84} +10.1697i q^{85} -21.6357 q^{86} -27.2637 q^{88} -6.79655i q^{89} -18.8500i q^{90} -0.0661901 q^{91} -5.62052 q^{92} +2.26298 q^{93} +27.5652 q^{94} +1.84143i q^{95} -4.21649 q^{96} -11.4171i q^{97} -18.2024i q^{98} -10.6058i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{4} - 8 q^{5} - 24 q^{6} + 10 q^{7} - 10 q^{9} - 12 q^{13} + 16 q^{16} + 24 q^{20} + 38 q^{22} + 30 q^{23} + 10 q^{24} - 8 q^{25} + 12 q^{28} + 2 q^{30} + 4 q^{33} - 6 q^{34} - 44 q^{35} + 16 q^{36}+ \cdots + 58 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.60244i 1.84020i 0.391680 + 0.920101i \(0.371894\pi\)
−0.391680 + 0.920101i \(0.628106\pi\)
\(3\) 0.439339i 0.253652i 0.991925 + 0.126826i \(0.0404790\pi\)
−0.991925 + 0.126826i \(0.959521\pi\)
\(4\) −4.77269 −2.38635
\(5\) −2.58042 −1.15400 −0.577000 0.816744i \(-0.695777\pi\)
−0.577000 + 0.816744i \(0.695777\pi\)
\(6\) −1.14335 −0.466772
\(7\) 0.0751311 0.0283969 0.0141984 0.999899i \(-0.495480\pi\)
0.0141984 + 0.999899i \(0.495480\pi\)
\(8\) − 7.21577i − 2.55116i
\(9\) 2.80698 0.935660
\(10\) − 6.71540i − 2.12359i
\(11\) − 3.77836i − 1.13922i −0.821916 0.569609i \(-0.807095\pi\)
0.821916 0.569609i \(-0.192905\pi\)
\(12\) − 2.09683i − 0.605302i
\(13\) −0.880995 −0.244344 −0.122172 0.992509i \(-0.538986\pi\)
−0.122172 + 0.992509i \(0.538986\pi\)
\(14\) 0.195524i 0.0522560i
\(15\) − 1.13368i − 0.292715i
\(16\) 9.23322 2.30830
\(17\) − 3.94108i − 0.955854i −0.878400 0.477927i \(-0.841388\pi\)
0.878400 0.477927i \(-0.158612\pi\)
\(18\) 7.30500i 1.72181i
\(19\) − 0.713617i − 0.163715i −0.996644 0.0818574i \(-0.973915\pi\)
0.996644 0.0818574i \(-0.0260852\pi\)
\(20\) 12.3156 2.75385
\(21\) 0.0330080i 0.00720294i
\(22\) 9.83294 2.09639
\(23\) 1.17764 0.245555 0.122778 0.992434i \(-0.460820\pi\)
0.122778 + 0.992434i \(0.460820\pi\)
\(24\) 3.17017 0.647108
\(25\) 1.65858 0.331717
\(26\) − 2.29274i − 0.449643i
\(27\) 2.55123i 0.490985i
\(28\) −0.358578 −0.0677648
\(29\) 0 0
\(30\) 2.95033 0.538655
\(31\) − 5.15087i − 0.925124i −0.886587 0.462562i \(-0.846930\pi\)
0.886587 0.462562i \(-0.153070\pi\)
\(32\) 9.59735i 1.69659i
\(33\) 1.65998 0.288965
\(34\) 10.2564 1.75896
\(35\) −0.193870 −0.0327700
\(36\) −13.3969 −2.23281
\(37\) − 3.08751i − 0.507583i −0.967259 0.253791i \(-0.918322\pi\)
0.967259 0.253791i \(-0.0816777\pi\)
\(38\) 1.85714 0.301269
\(39\) − 0.387055i − 0.0619785i
\(40\) 18.6197i 2.94404i
\(41\) 6.67122i 1.04187i 0.853596 + 0.520935i \(0.174417\pi\)
−0.853596 + 0.520935i \(0.825583\pi\)
\(42\) −0.0859013 −0.0132549
\(43\) 8.31364i 1.26782i 0.773408 + 0.633909i \(0.218551\pi\)
−0.773408 + 0.633909i \(0.781449\pi\)
\(44\) 18.0329i 2.71857i
\(45\) −7.24320 −1.07975
\(46\) 3.06474i 0.451871i
\(47\) − 10.5920i − 1.54501i −0.635010 0.772504i \(-0.719004\pi\)
0.635010 0.772504i \(-0.280996\pi\)
\(48\) 4.05651i 0.585507i
\(49\) −6.99436 −0.999194
\(50\) 4.31637i 0.610427i
\(51\) 1.73147 0.242454
\(52\) 4.20472 0.583090
\(53\) 5.55608 0.763186 0.381593 0.924331i \(-0.375376\pi\)
0.381593 + 0.924331i \(0.375376\pi\)
\(54\) −6.63943 −0.903512
\(55\) 9.74976i 1.31466i
\(56\) − 0.542129i − 0.0724450i
\(57\) 0.313519 0.0415267
\(58\) 0 0
\(59\) 9.91885 1.29132 0.645662 0.763623i \(-0.276582\pi\)
0.645662 + 0.763623i \(0.276582\pi\)
\(60\) 5.41071i 0.698519i
\(61\) − 3.56734i − 0.456751i −0.973573 0.228375i \(-0.926659\pi\)
0.973573 0.228375i \(-0.0733413\pi\)
\(62\) 13.4048 1.70242
\(63\) 0.210892 0.0265698
\(64\) −6.51010 −0.813763
\(65\) 2.27334 0.281973
\(66\) 4.31999i 0.531754i
\(67\) −4.93956 −0.603464 −0.301732 0.953393i \(-0.597565\pi\)
−0.301732 + 0.953393i \(0.597565\pi\)
\(68\) 18.8096i 2.28100i
\(69\) 0.517383i 0.0622856i
\(70\) − 0.504535i − 0.0603035i
\(71\) −4.90681 −0.582331 −0.291166 0.956673i \(-0.594043\pi\)
−0.291166 + 0.956673i \(0.594043\pi\)
\(72\) − 20.2545i − 2.38702i
\(73\) − 8.90215i − 1.04192i −0.853582 0.520959i \(-0.825574\pi\)
0.853582 0.520959i \(-0.174426\pi\)
\(74\) 8.03505 0.934056
\(75\) 0.728681i 0.0841408i
\(76\) 3.40587i 0.390680i
\(77\) − 0.283872i − 0.0323502i
\(78\) 1.00729 0.114053
\(79\) − 13.1895i − 1.48394i −0.670435 0.741969i \(-0.733892\pi\)
0.670435 0.741969i \(-0.266108\pi\)
\(80\) −23.8256 −2.66378
\(81\) 7.30009 0.811121
\(82\) −17.3615 −1.91725
\(83\) 16.9864 1.86450 0.932249 0.361818i \(-0.117844\pi\)
0.932249 + 0.361818i \(0.117844\pi\)
\(84\) − 0.157537i − 0.0171887i
\(85\) 10.1697i 1.10306i
\(86\) −21.6357 −2.33304
\(87\) 0 0
\(88\) −27.2637 −2.90632
\(89\) − 6.79655i − 0.720433i −0.932869 0.360216i \(-0.882703\pi\)
0.932869 0.360216i \(-0.117297\pi\)
\(90\) − 18.8500i − 1.98696i
\(91\) −0.0661901 −0.00693861
\(92\) −5.62052 −0.585980
\(93\) 2.26298 0.234660
\(94\) 27.5652 2.84313
\(95\) 1.84143i 0.188927i
\(96\) −4.21649 −0.430344
\(97\) − 11.4171i − 1.15923i −0.814890 0.579615i \(-0.803203\pi\)
0.814890 0.579615i \(-0.196797\pi\)
\(98\) − 18.2024i − 1.83872i
\(99\) − 10.6058i − 1.06592i
\(100\) −7.91592 −0.791592
\(101\) − 9.43826i − 0.939142i −0.882895 0.469571i \(-0.844409\pi\)
0.882895 0.469571i \(-0.155591\pi\)
\(102\) 4.50605i 0.446165i
\(103\) −9.18317 −0.904845 −0.452422 0.891804i \(-0.649440\pi\)
−0.452422 + 0.891804i \(0.649440\pi\)
\(104\) 6.35706i 0.623361i
\(105\) − 0.0851746i − 0.00831219i
\(106\) 14.4594i 1.40442i
\(107\) −4.86820 −0.470627 −0.235313 0.971920i \(-0.575612\pi\)
−0.235313 + 0.971920i \(0.575612\pi\)
\(108\) − 12.1762i − 1.17166i
\(109\) −4.33423 −0.415144 −0.207572 0.978220i \(-0.566556\pi\)
−0.207572 + 0.978220i \(0.566556\pi\)
\(110\) −25.3732 −2.41924
\(111\) 1.35646 0.128750
\(112\) 0.693702 0.0655486
\(113\) 4.52309i 0.425496i 0.977107 + 0.212748i \(0.0682414\pi\)
−0.977107 + 0.212748i \(0.931759\pi\)
\(114\) 0.815916i 0.0764175i
\(115\) −3.03881 −0.283371
\(116\) 0 0
\(117\) −2.47294 −0.228623
\(118\) 25.8132i 2.37630i
\(119\) − 0.296098i − 0.0271433i
\(120\) −8.18037 −0.746762
\(121\) −3.27597 −0.297816
\(122\) 9.28378 0.840514
\(123\) −2.93093 −0.264273
\(124\) 24.5835i 2.20767i
\(125\) 8.62227 0.771199
\(126\) 0.548833i 0.0488939i
\(127\) − 5.83762i − 0.518005i −0.965877 0.259003i \(-0.916606\pi\)
0.965877 0.259003i \(-0.0833939\pi\)
\(128\) 2.25255i 0.199099i
\(129\) −3.65250 −0.321585
\(130\) 5.91623i 0.518888i
\(131\) − 6.62441i − 0.578777i −0.957212 0.289389i \(-0.906548\pi\)
0.957212 0.289389i \(-0.0934520\pi\)
\(132\) −7.92257 −0.689571
\(133\) − 0.0536148i − 0.00464899i
\(134\) − 12.8549i − 1.11050i
\(135\) − 6.58326i − 0.566597i
\(136\) −28.4380 −2.43853
\(137\) − 1.55881i − 0.133178i −0.997780 0.0665890i \(-0.978788\pi\)
0.997780 0.0665890i \(-0.0212116\pi\)
\(138\) −1.34646 −0.114618
\(139\) 10.6416 0.902607 0.451303 0.892371i \(-0.350959\pi\)
0.451303 + 0.892371i \(0.350959\pi\)
\(140\) 0.925282 0.0782006
\(141\) 4.65349 0.391895
\(142\) − 12.7697i − 1.07161i
\(143\) 3.32871i 0.278361i
\(144\) 25.9175 2.15979
\(145\) 0 0
\(146\) 23.1673 1.91734
\(147\) − 3.07289i − 0.253448i
\(148\) 14.7357i 1.21127i
\(149\) −5.43253 −0.445050 −0.222525 0.974927i \(-0.571430\pi\)
−0.222525 + 0.974927i \(0.571430\pi\)
\(150\) −1.89635 −0.154836
\(151\) −17.8418 −1.45194 −0.725971 0.687725i \(-0.758610\pi\)
−0.725971 + 0.687725i \(0.758610\pi\)
\(152\) −5.14929 −0.417663
\(153\) − 11.0626i − 0.894354i
\(154\) 0.738760 0.0595310
\(155\) 13.2914i 1.06759i
\(156\) 1.84730i 0.147902i
\(157\) 9.46360i 0.755278i 0.925953 + 0.377639i \(0.123264\pi\)
−0.925953 + 0.377639i \(0.876736\pi\)
\(158\) 34.3249 2.73075
\(159\) 2.44100i 0.193584i
\(160\) − 24.7652i − 1.95786i
\(161\) 0.0884774 0.00697300
\(162\) 18.9980i 1.49263i
\(163\) 10.4578i 0.819116i 0.912284 + 0.409558i \(0.134317\pi\)
−0.912284 + 0.409558i \(0.865683\pi\)
\(164\) − 31.8397i − 2.48626i
\(165\) −4.28345 −0.333466
\(166\) 44.2060i 3.43105i
\(167\) −0.170436 −0.0131888 −0.00659438 0.999978i \(-0.502099\pi\)
−0.00659438 + 0.999978i \(0.502099\pi\)
\(168\) 0.238178 0.0183758
\(169\) −12.2238 −0.940296
\(170\) −26.4659 −2.02985
\(171\) − 2.00311i − 0.153182i
\(172\) − 39.6785i − 3.02545i
\(173\) 12.0694 0.917616 0.458808 0.888535i \(-0.348277\pi\)
0.458808 + 0.888535i \(0.348277\pi\)
\(174\) 0 0
\(175\) 0.124611 0.00941973
\(176\) − 34.8864i − 2.62966i
\(177\) 4.35773i 0.327547i
\(178\) 17.6876 1.32574
\(179\) 1.67483 0.125183 0.0625913 0.998039i \(-0.480064\pi\)
0.0625913 + 0.998039i \(0.480064\pi\)
\(180\) 34.5696 2.57666
\(181\) −15.3626 −1.14190 −0.570948 0.820986i \(-0.693424\pi\)
−0.570948 + 0.820986i \(0.693424\pi\)
\(182\) − 0.172256i − 0.0127685i
\(183\) 1.56727 0.115856
\(184\) − 8.49758i − 0.626450i
\(185\) 7.96707i 0.585751i
\(186\) 5.88926i 0.431822i
\(187\) −14.8908 −1.08892
\(188\) 50.5526i 3.68693i
\(189\) 0.191677i 0.0139424i
\(190\) −4.79222 −0.347664
\(191\) − 20.4783i − 1.48176i −0.671640 0.740878i \(-0.734410\pi\)
0.671640 0.740878i \(-0.265590\pi\)
\(192\) − 2.86014i − 0.206413i
\(193\) 3.13441i 0.225620i 0.993617 + 0.112810i \(0.0359851\pi\)
−0.993617 + 0.112810i \(0.964015\pi\)
\(194\) 29.7123 2.13322
\(195\) 0.998767i 0.0715232i
\(196\) 33.3819 2.38442
\(197\) 2.84040 0.202370 0.101185 0.994868i \(-0.467737\pi\)
0.101185 + 0.994868i \(0.467737\pi\)
\(198\) 27.6009 1.96151
\(199\) −19.1189 −1.35530 −0.677652 0.735383i \(-0.737002\pi\)
−0.677652 + 0.735383i \(0.737002\pi\)
\(200\) − 11.9680i − 0.846263i
\(201\) − 2.17014i − 0.153070i
\(202\) 24.5625 1.72821
\(203\) 0 0
\(204\) −8.26378 −0.578580
\(205\) − 17.2146i − 1.20232i
\(206\) − 23.8987i − 1.66510i
\(207\) 3.30562 0.229756
\(208\) −8.13442 −0.564021
\(209\) −2.69630 −0.186507
\(210\) 0.221662 0.0152961
\(211\) 17.8936i 1.23184i 0.787807 + 0.615922i \(0.211216\pi\)
−0.787807 + 0.615922i \(0.788784\pi\)
\(212\) −26.5174 −1.82123
\(213\) − 2.15575i − 0.147710i
\(214\) − 12.6692i − 0.866049i
\(215\) − 21.4527i − 1.46306i
\(216\) 18.4091 1.25258
\(217\) − 0.386991i − 0.0262706i
\(218\) − 11.2796i − 0.763949i
\(219\) 3.91106 0.264285
\(220\) − 46.5326i − 3.13723i
\(221\) 3.47208i 0.233557i
\(222\) 3.53011i 0.236925i
\(223\) 17.7308 1.18735 0.593673 0.804707i \(-0.297677\pi\)
0.593673 + 0.804707i \(0.297677\pi\)
\(224\) 0.721060i 0.0481778i
\(225\) 4.65562 0.310374
\(226\) −11.7711 −0.783000
\(227\) 22.2116 1.47424 0.737119 0.675763i \(-0.236186\pi\)
0.737119 + 0.675763i \(0.236186\pi\)
\(228\) −1.49633 −0.0990970
\(229\) − 9.96812i − 0.658712i −0.944206 0.329356i \(-0.893168\pi\)
0.944206 0.329356i \(-0.106832\pi\)
\(230\) − 7.90832i − 0.521459i
\(231\) 0.124716 0.00820571
\(232\) 0 0
\(233\) −20.0765 −1.31525 −0.657627 0.753344i \(-0.728440\pi\)
−0.657627 + 0.753344i \(0.728440\pi\)
\(234\) − 6.43567i − 0.420713i
\(235\) 27.3320i 1.78294i
\(236\) −47.3396 −3.08155
\(237\) 5.79467 0.376404
\(238\) 0.770577 0.0499491
\(239\) −1.18085 −0.0763830 −0.0381915 0.999270i \(-0.512160\pi\)
−0.0381915 + 0.999270i \(0.512160\pi\)
\(240\) − 10.4675i − 0.675675i
\(241\) −11.8311 −0.762110 −0.381055 0.924552i \(-0.624439\pi\)
−0.381055 + 0.924552i \(0.624439\pi\)
\(242\) − 8.52552i − 0.548041i
\(243\) 10.8609i 0.696728i
\(244\) 17.0258i 1.08997i
\(245\) 18.0484 1.15307
\(246\) − 7.62756i − 0.486316i
\(247\) 0.628693i 0.0400028i
\(248\) −37.1675 −2.36014
\(249\) 7.46278i 0.472934i
\(250\) 22.4389i 1.41916i
\(251\) 7.66497i 0.483809i 0.970300 + 0.241904i \(0.0777720\pi\)
−0.970300 + 0.241904i \(0.922228\pi\)
\(252\) −1.00652 −0.0634049
\(253\) − 4.44955i − 0.279741i
\(254\) 15.1921 0.953235
\(255\) −4.46793 −0.279793
\(256\) −18.8823 −1.18015
\(257\) 11.3728 0.709415 0.354707 0.934977i \(-0.384580\pi\)
0.354707 + 0.934977i \(0.384580\pi\)
\(258\) − 9.50542i − 0.591782i
\(259\) − 0.231968i − 0.0144138i
\(260\) −10.8500 −0.672886
\(261\) 0 0
\(262\) 17.2396 1.06507
\(263\) 16.7464i 1.03263i 0.856399 + 0.516315i \(0.172697\pi\)
−0.856399 + 0.516315i \(0.827303\pi\)
\(264\) − 11.9780i − 0.737196i
\(265\) −14.3370 −0.880717
\(266\) 0.139529 0.00855509
\(267\) 2.98599 0.182739
\(268\) 23.5750 1.44007
\(269\) − 21.9337i − 1.33732i −0.743568 0.668660i \(-0.766868\pi\)
0.743568 0.668660i \(-0.233132\pi\)
\(270\) 17.1325 1.04265
\(271\) − 6.54431i − 0.397539i −0.980046 0.198769i \(-0.936306\pi\)
0.980046 0.198769i \(-0.0636945\pi\)
\(272\) − 36.3889i − 2.20640i
\(273\) − 0.0290799i − 0.00176000i
\(274\) 4.05670 0.245074
\(275\) − 6.26672i − 0.377898i
\(276\) − 2.46931i − 0.148635i
\(277\) 21.5277 1.29347 0.646736 0.762714i \(-0.276134\pi\)
0.646736 + 0.762714i \(0.276134\pi\)
\(278\) 27.6941i 1.66098i
\(279\) − 14.4584i − 0.865602i
\(280\) 1.39892i 0.0836015i
\(281\) −8.69715 −0.518828 −0.259414 0.965766i \(-0.583529\pi\)
−0.259414 + 0.965766i \(0.583529\pi\)
\(282\) 12.1104i 0.721166i
\(283\) −21.9887 −1.30709 −0.653545 0.756888i \(-0.726719\pi\)
−0.653545 + 0.756888i \(0.726719\pi\)
\(284\) 23.4187 1.38964
\(285\) −0.809013 −0.0479218
\(286\) −8.66278 −0.512241
\(287\) 0.501216i 0.0295859i
\(288\) 26.9396i 1.58743i
\(289\) 1.46785 0.0863441
\(290\) 0 0
\(291\) 5.01597 0.294042
\(292\) 42.4872i 2.48638i
\(293\) 2.22609i 0.130050i 0.997884 + 0.0650249i \(0.0207127\pi\)
−0.997884 + 0.0650249i \(0.979287\pi\)
\(294\) 7.99702 0.466395
\(295\) −25.5948 −1.49019
\(296\) −22.2787 −1.29493
\(297\) 9.63946 0.559338
\(298\) − 14.1378i − 0.818982i
\(299\) −1.03750 −0.0599999
\(300\) − 3.47777i − 0.200789i
\(301\) 0.624613i 0.0360021i
\(302\) − 46.4321i − 2.67187i
\(303\) 4.14659 0.238216
\(304\) − 6.58898i − 0.377904i
\(305\) 9.20524i 0.527090i
\(306\) 28.7896 1.64579
\(307\) 13.8760i 0.791945i 0.918262 + 0.395972i \(0.129592\pi\)
−0.918262 + 0.395972i \(0.870408\pi\)
\(308\) 1.35483i 0.0771988i
\(309\) − 4.03452i − 0.229516i
\(310\) −34.5901 −1.96459
\(311\) 1.41217i 0.0800768i 0.999198 + 0.0400384i \(0.0127480\pi\)
−0.999198 + 0.0400384i \(0.987252\pi\)
\(312\) −2.79290 −0.158117
\(313\) −28.7487 −1.62497 −0.812487 0.582980i \(-0.801887\pi\)
−0.812487 + 0.582980i \(0.801887\pi\)
\(314\) −24.6285 −1.38986
\(315\) −0.544190 −0.0306616
\(316\) 62.9496i 3.54119i
\(317\) − 22.3203i − 1.25363i −0.779168 0.626815i \(-0.784358\pi\)
0.779168 0.626815i \(-0.215642\pi\)
\(318\) −6.35255 −0.356234
\(319\) 0 0
\(320\) 16.7988 0.939083
\(321\) − 2.13879i − 0.119376i
\(322\) 0.230257i 0.0128317i
\(323\) −2.81242 −0.156487
\(324\) −34.8411 −1.93562
\(325\) −1.46121 −0.0810531
\(326\) −27.2157 −1.50734
\(327\) − 1.90420i − 0.105302i
\(328\) 48.1380 2.65798
\(329\) − 0.795792i − 0.0438734i
\(330\) − 11.1474i − 0.613645i
\(331\) 9.34951i 0.513895i 0.966425 + 0.256948i \(0.0827168\pi\)
−0.966425 + 0.256948i \(0.917283\pi\)
\(332\) −81.0708 −4.44934
\(333\) − 8.66657i − 0.474925i
\(334\) − 0.443550i − 0.0242700i
\(335\) 12.7462 0.696397
\(336\) 0.304770i 0.0166266i
\(337\) − 15.4311i − 0.840583i −0.907389 0.420292i \(-0.861928\pi\)
0.907389 0.420292i \(-0.138072\pi\)
\(338\) − 31.8118i − 1.73034i
\(339\) −1.98717 −0.107928
\(340\) − 48.5367i − 2.63227i
\(341\) −19.4618 −1.05392
\(342\) 5.21297 0.281885
\(343\) −1.05141 −0.0567709
\(344\) 59.9893 3.23441
\(345\) − 1.33507i − 0.0718776i
\(346\) 31.4098i 1.68860i
\(347\) 9.39939 0.504586 0.252293 0.967651i \(-0.418815\pi\)
0.252293 + 0.967651i \(0.418815\pi\)
\(348\) 0 0
\(349\) −24.5072 −1.31184 −0.655921 0.754830i \(-0.727720\pi\)
−0.655921 + 0.754830i \(0.727720\pi\)
\(350\) 0.324293i 0.0173342i
\(351\) − 2.24762i − 0.119969i
\(352\) 36.2622 1.93278
\(353\) 24.1475 1.28524 0.642622 0.766183i \(-0.277847\pi\)
0.642622 + 0.766183i \(0.277847\pi\)
\(354\) −11.3407 −0.602753
\(355\) 12.6616 0.672011
\(356\) 32.4378i 1.71920i
\(357\) 0.130087 0.00688495
\(358\) 4.35864i 0.230361i
\(359\) 15.2452i 0.804609i 0.915506 + 0.402304i \(0.131791\pi\)
−0.915506 + 0.402304i \(0.868209\pi\)
\(360\) 52.2653i 2.75462i
\(361\) 18.4908 0.973197
\(362\) − 39.9803i − 2.10132i
\(363\) − 1.43926i − 0.0755417i
\(364\) 0.315905 0.0165579
\(365\) 22.9713i 1.20237i
\(366\) 4.07872i 0.213198i
\(367\) 12.8020i 0.668261i 0.942527 + 0.334130i \(0.108443\pi\)
−0.942527 + 0.334130i \(0.891557\pi\)
\(368\) 10.8734 0.566816
\(369\) 18.7260i 0.974837i
\(370\) −20.7338 −1.07790
\(371\) 0.417434 0.0216721
\(372\) −10.8005 −0.559980
\(373\) −0.0195746 −0.00101354 −0.000506768 1.00000i \(-0.500161\pi\)
−0.000506768 1.00000i \(0.500161\pi\)
\(374\) − 38.7525i − 2.00384i
\(375\) 3.78810i 0.195616i
\(376\) −76.4297 −3.94156
\(377\) 0 0
\(378\) −0.498827 −0.0256569
\(379\) 5.23573i 0.268941i 0.990918 + 0.134471i \(0.0429334\pi\)
−0.990918 + 0.134471i \(0.957067\pi\)
\(380\) − 8.78860i − 0.450845i
\(381\) 2.56469 0.131393
\(382\) 53.2935 2.72673
\(383\) 0.274844 0.0140438 0.00702192 0.999975i \(-0.497765\pi\)
0.00702192 + 0.999975i \(0.497765\pi\)
\(384\) −0.989633 −0.0505020
\(385\) 0.732510i 0.0373322i
\(386\) −8.15711 −0.415186
\(387\) 23.3362i 1.18625i
\(388\) 54.4903i 2.76633i
\(389\) − 7.53699i − 0.382140i −0.981576 0.191070i \(-0.938804\pi\)
0.981576 0.191070i \(-0.0611958\pi\)
\(390\) −2.59923 −0.131617
\(391\) − 4.64118i − 0.234715i
\(392\) 50.4696i 2.54910i
\(393\) 2.91036 0.146808
\(394\) 7.39197i 0.372402i
\(395\) 34.0346i 1.71246i
\(396\) 50.6181i 2.54366i
\(397\) 16.7344 0.839877 0.419938 0.907553i \(-0.362052\pi\)
0.419938 + 0.907553i \(0.362052\pi\)
\(398\) − 49.7558i − 2.49403i
\(399\) 0.0235551 0.00117923
\(400\) 15.3141 0.765704
\(401\) −8.05748 −0.402371 −0.201186 0.979553i \(-0.564479\pi\)
−0.201186 + 0.979553i \(0.564479\pi\)
\(402\) 5.64766 0.281680
\(403\) 4.53789i 0.226049i
\(404\) 45.0459i 2.24112i
\(405\) −18.8373 −0.936034
\(406\) 0 0
\(407\) −11.6657 −0.578247
\(408\) − 12.4939i − 0.618540i
\(409\) 9.50361i 0.469923i 0.972005 + 0.234962i \(0.0754964\pi\)
−0.972005 + 0.234962i \(0.924504\pi\)
\(410\) 44.7999 2.21251
\(411\) 0.684845 0.0337809
\(412\) 43.8285 2.15927
\(413\) 0.745214 0.0366696
\(414\) 8.60267i 0.422798i
\(415\) −43.8321 −2.15163
\(416\) − 8.45522i − 0.414551i
\(417\) 4.67526i 0.228948i
\(418\) − 7.01695i − 0.343210i
\(419\) −23.2480 −1.13574 −0.567870 0.823118i \(-0.692232\pi\)
−0.567870 + 0.823118i \(0.692232\pi\)
\(420\) 0.406512i 0.0198358i
\(421\) 17.4532i 0.850618i 0.905048 + 0.425309i \(0.139834\pi\)
−0.905048 + 0.425309i \(0.860166\pi\)
\(422\) −46.5669 −2.26684
\(423\) − 29.7317i − 1.44560i
\(424\) − 40.0914i − 1.94701i
\(425\) − 6.53662i − 0.317073i
\(426\) 5.61022 0.271816
\(427\) − 0.268018i − 0.0129703i
\(428\) 23.2344 1.12308
\(429\) −1.46243 −0.0706069
\(430\) 55.8294 2.69233
\(431\) −32.7850 −1.57920 −0.789598 0.613624i \(-0.789711\pi\)
−0.789598 + 0.613624i \(0.789711\pi\)
\(432\) 23.5561i 1.13334i
\(433\) − 5.02086i − 0.241287i −0.992696 0.120644i \(-0.961504\pi\)
0.992696 0.120644i \(-0.0384958\pi\)
\(434\) 1.00712 0.0483433
\(435\) 0 0
\(436\) 20.6859 0.990677
\(437\) − 0.840384i − 0.0402010i
\(438\) 10.1783i 0.486338i
\(439\) 21.3691 1.01989 0.509946 0.860207i \(-0.329666\pi\)
0.509946 + 0.860207i \(0.329666\pi\)
\(440\) 70.3520 3.35390
\(441\) −19.6330 −0.934906
\(442\) −9.03587 −0.429793
\(443\) 39.8292i 1.89234i 0.323668 + 0.946171i \(0.395084\pi\)
−0.323668 + 0.946171i \(0.604916\pi\)
\(444\) −6.47397 −0.307241
\(445\) 17.5380i 0.831380i
\(446\) 46.1435i 2.18496i
\(447\) − 2.38672i − 0.112888i
\(448\) −0.489111 −0.0231083
\(449\) 9.92661i 0.468466i 0.972181 + 0.234233i \(0.0752578\pi\)
−0.972181 + 0.234233i \(0.924742\pi\)
\(450\) 12.1160i 0.571152i
\(451\) 25.2063 1.18692
\(452\) − 21.5873i − 1.01538i
\(453\) − 7.83858i − 0.368289i
\(454\) 57.8044i 2.71290i
\(455\) 0.170799 0.00800716
\(456\) − 2.26228i − 0.105941i
\(457\) −14.6244 −0.684102 −0.342051 0.939681i \(-0.611122\pi\)
−0.342051 + 0.939681i \(0.611122\pi\)
\(458\) 25.9414 1.21216
\(459\) 10.0546 0.469310
\(460\) 14.5033 0.676221
\(461\) − 18.8523i − 0.878037i −0.898478 0.439019i \(-0.855326\pi\)
0.898478 0.439019i \(-0.144674\pi\)
\(462\) 0.324566i 0.0151002i
\(463\) 35.4987 1.64977 0.824883 0.565304i \(-0.191241\pi\)
0.824883 + 0.565304i \(0.191241\pi\)
\(464\) 0 0
\(465\) −5.83944 −0.270798
\(466\) − 52.2478i − 2.42033i
\(467\) 6.06786i 0.280787i 0.990096 + 0.140394i \(0.0448368\pi\)
−0.990096 + 0.140394i \(0.955163\pi\)
\(468\) 11.8026 0.545574
\(469\) −0.371115 −0.0171365
\(470\) −71.1298 −3.28097
\(471\) −4.15773 −0.191578
\(472\) − 71.5721i − 3.29437i
\(473\) 31.4119 1.44432
\(474\) 15.0803i 0.692660i
\(475\) − 1.18359i − 0.0543070i
\(476\) 1.41319i 0.0647732i
\(477\) 15.5958 0.714083
\(478\) − 3.07310i − 0.140560i
\(479\) − 3.51910i − 0.160792i −0.996763 0.0803958i \(-0.974382\pi\)
0.996763 0.0803958i \(-0.0256184\pi\)
\(480\) 10.8803 0.496617
\(481\) 2.72008i 0.124025i
\(482\) − 30.7898i − 1.40244i
\(483\) 0.0388716i 0.00176872i
\(484\) 15.6352 0.710692
\(485\) 29.4609i 1.33775i
\(486\) −28.2649 −1.28212
\(487\) 7.87745 0.356961 0.178481 0.983943i \(-0.442882\pi\)
0.178481 + 0.983943i \(0.442882\pi\)
\(488\) −25.7411 −1.16524
\(489\) −4.59451 −0.207771
\(490\) 46.9699i 2.12188i
\(491\) − 21.8303i − 0.985187i −0.870259 0.492594i \(-0.836049\pi\)
0.870259 0.492594i \(-0.163951\pi\)
\(492\) 13.9884 0.630646
\(493\) 0 0
\(494\) −1.63614 −0.0736132
\(495\) 27.3674i 1.23007i
\(496\) − 47.5591i − 2.13547i
\(497\) −0.368654 −0.0165364
\(498\) −19.4214 −0.870295
\(499\) 29.6115 1.32559 0.662796 0.748800i \(-0.269370\pi\)
0.662796 + 0.748800i \(0.269370\pi\)
\(500\) −41.1514 −1.84035
\(501\) − 0.0748793i − 0.00334536i
\(502\) −19.9476 −0.890306
\(503\) 14.0757i 0.627603i 0.949489 + 0.313802i \(0.101603\pi\)
−0.949489 + 0.313802i \(0.898397\pi\)
\(504\) − 1.52174i − 0.0677839i
\(505\) 24.3547i 1.08377i
\(506\) 11.5797 0.514779
\(507\) − 5.37041i − 0.238508i
\(508\) 27.8612i 1.23614i
\(509\) −28.1153 −1.24619 −0.623095 0.782146i \(-0.714125\pi\)
−0.623095 + 0.782146i \(0.714125\pi\)
\(510\) − 11.6275i − 0.514875i
\(511\) − 0.668828i − 0.0295872i
\(512\) − 44.6351i − 1.97261i
\(513\) 1.82060 0.0803815
\(514\) 29.5970i 1.30547i
\(515\) 23.6965 1.04419
\(516\) 17.4323 0.767413
\(517\) −40.0205 −1.76010
\(518\) 0.603682 0.0265243
\(519\) 5.30254i 0.232756i
\(520\) − 16.4039i − 0.719359i
\(521\) −30.6374 −1.34225 −0.671125 0.741344i \(-0.734189\pi\)
−0.671125 + 0.741344i \(0.734189\pi\)
\(522\) 0 0
\(523\) 31.1728 1.36309 0.681546 0.731775i \(-0.261308\pi\)
0.681546 + 0.731775i \(0.261308\pi\)
\(524\) 31.6163i 1.38116i
\(525\) 0.0547466i 0.00238934i
\(526\) −43.5816 −1.90025
\(527\) −20.3000 −0.884283
\(528\) 15.3269 0.667019
\(529\) −21.6132 −0.939703
\(530\) − 37.3113i − 1.62070i
\(531\) 27.8420 1.20824
\(532\) 0.255887i 0.0110941i
\(533\) − 5.87732i − 0.254575i
\(534\) 7.77085i 0.336278i
\(535\) 12.5620 0.543104
\(536\) 35.6427i 1.53953i
\(537\) 0.735817i 0.0317529i
\(538\) 57.0811 2.46094
\(539\) 26.4272i 1.13830i
\(540\) 31.4199i 1.35210i
\(541\) − 22.3769i − 0.962058i −0.876705 0.481029i \(-0.840263\pi\)
0.876705 0.481029i \(-0.159737\pi\)
\(542\) 17.0312 0.731552
\(543\) − 6.74940i − 0.289645i
\(544\) 37.8240 1.62169
\(545\) 11.1841 0.479076
\(546\) 0.0756787 0.00323875
\(547\) −12.2963 −0.525752 −0.262876 0.964830i \(-0.584671\pi\)
−0.262876 + 0.964830i \(0.584671\pi\)
\(548\) 7.43971i 0.317809i
\(549\) − 10.0134i − 0.427363i
\(550\) 16.3088 0.695408
\(551\) 0 0
\(552\) 3.73332 0.158901
\(553\) − 0.990943i − 0.0421392i
\(554\) 56.0244i 2.38025i
\(555\) −3.50024 −0.148577
\(556\) −50.7890 −2.15393
\(557\) −6.00766 −0.254553 −0.127276 0.991867i \(-0.540623\pi\)
−0.127276 + 0.991867i \(0.540623\pi\)
\(558\) 37.6271 1.59288
\(559\) − 7.32428i − 0.309784i
\(560\) −1.79004 −0.0756432
\(561\) − 6.54212i − 0.276208i
\(562\) − 22.6338i − 0.954749i
\(563\) − 28.0097i − 1.18047i −0.807233 0.590233i \(-0.799036\pi\)
0.807233 0.590233i \(-0.200964\pi\)
\(564\) −22.2097 −0.935197
\(565\) − 11.6715i − 0.491023i
\(566\) − 57.2241i − 2.40531i
\(567\) 0.548464 0.0230333
\(568\) 35.4064i 1.48562i
\(569\) 34.6764i 1.45371i 0.686790 + 0.726856i \(0.259019\pi\)
−0.686790 + 0.726856i \(0.740981\pi\)
\(570\) − 2.10541i − 0.0881858i
\(571\) 4.37818 0.183221 0.0916106 0.995795i \(-0.470799\pi\)
0.0916106 + 0.995795i \(0.470799\pi\)
\(572\) − 15.8869i − 0.664266i
\(573\) 8.99690 0.375851
\(574\) −1.30439 −0.0544440
\(575\) 1.95322 0.0814548
\(576\) −18.2737 −0.761406
\(577\) − 44.8517i − 1.86720i −0.358317 0.933600i \(-0.616649\pi\)
0.358317 0.933600i \(-0.383351\pi\)
\(578\) 3.81999i 0.158891i
\(579\) −1.37707 −0.0572289
\(580\) 0 0
\(581\) 1.27621 0.0529459
\(582\) 13.0538i 0.541096i
\(583\) − 20.9928i − 0.869434i
\(584\) −64.2359 −2.65810
\(585\) 6.38123 0.263831
\(586\) −5.79327 −0.239318
\(587\) 6.40778 0.264477 0.132239 0.991218i \(-0.457783\pi\)
0.132239 + 0.991218i \(0.457783\pi\)
\(588\) 14.6660i 0.604814i
\(589\) −3.67575 −0.151457
\(590\) − 66.6090i − 2.74225i
\(591\) 1.24790i 0.0513317i
\(592\) − 28.5076i − 1.17166i
\(593\) 1.41754 0.0582114 0.0291057 0.999576i \(-0.490734\pi\)
0.0291057 + 0.999576i \(0.490734\pi\)
\(594\) 25.0861i 1.02930i
\(595\) 0.764058i 0.0313233i
\(596\) 25.9278 1.06204
\(597\) − 8.39968i − 0.343776i
\(598\) − 2.70002i − 0.110412i
\(599\) 37.2538i 1.52215i 0.648663 + 0.761075i \(0.275328\pi\)
−0.648663 + 0.761075i \(0.724672\pi\)
\(600\) 5.25799 0.214657
\(601\) − 25.3174i − 1.03272i −0.856372 0.516360i \(-0.827287\pi\)
0.856372 0.516360i \(-0.172713\pi\)
\(602\) −1.62552 −0.0662511
\(603\) −13.8653 −0.564637
\(604\) 85.1533 3.46484
\(605\) 8.45340 0.343679
\(606\) 10.7913i 0.438365i
\(607\) 29.8274i 1.21066i 0.795976 + 0.605328i \(0.206958\pi\)
−0.795976 + 0.605328i \(0.793042\pi\)
\(608\) 6.84883 0.277757
\(609\) 0 0
\(610\) −23.9561 −0.969953
\(611\) 9.33154i 0.377514i
\(612\) 52.7982i 2.13424i
\(613\) −31.5885 −1.27585 −0.637923 0.770100i \(-0.720206\pi\)
−0.637923 + 0.770100i \(0.720206\pi\)
\(614\) −36.1114 −1.45734
\(615\) 7.56303 0.304971
\(616\) −2.04835 −0.0825306
\(617\) − 19.2746i − 0.775968i −0.921666 0.387984i \(-0.873172\pi\)
0.921666 0.387984i \(-0.126828\pi\)
\(618\) 10.4996 0.422356
\(619\) − 44.9116i − 1.80515i −0.430534 0.902574i \(-0.641675\pi\)
0.430534 0.902574i \(-0.358325\pi\)
\(620\) − 63.4359i − 2.54765i
\(621\) 3.00443i 0.120564i
\(622\) −3.67509 −0.147358
\(623\) − 0.510632i − 0.0204580i
\(624\) − 3.57377i − 0.143065i
\(625\) −30.5420 −1.22168
\(626\) − 74.8168i − 2.99028i
\(627\) − 1.18459i − 0.0473079i
\(628\) − 45.1669i − 1.80235i
\(629\) −12.1681 −0.485175
\(630\) − 1.41622i − 0.0564236i
\(631\) 38.1217 1.51760 0.758800 0.651324i \(-0.225786\pi\)
0.758800 + 0.651324i \(0.225786\pi\)
\(632\) −95.1725 −3.78576
\(633\) −7.86134 −0.312460
\(634\) 58.0871 2.30693
\(635\) 15.0635i 0.597778i
\(636\) − 11.6501i − 0.461958i
\(637\) 6.16199 0.244147
\(638\) 0 0
\(639\) −13.7733 −0.544864
\(640\) − 5.81254i − 0.229761i
\(641\) − 36.9753i − 1.46044i −0.683214 0.730219i \(-0.739418\pi\)
0.683214 0.730219i \(-0.260582\pi\)
\(642\) 5.56607 0.219675
\(643\) 17.0863 0.673816 0.336908 0.941537i \(-0.390619\pi\)
0.336908 + 0.941537i \(0.390619\pi\)
\(644\) −0.422276 −0.0166400
\(645\) 9.42501 0.371109
\(646\) − 7.31916i − 0.287969i
\(647\) −6.19335 −0.243486 −0.121743 0.992562i \(-0.538848\pi\)
−0.121743 + 0.992562i \(0.538848\pi\)
\(648\) − 52.6758i − 2.06930i
\(649\) − 37.4769i − 1.47110i
\(650\) − 3.80270i − 0.149154i
\(651\) 0.170020 0.00666361
\(652\) − 49.9117i − 1.95469i
\(653\) 15.7585i 0.616677i 0.951277 + 0.308339i \(0.0997730\pi\)
−0.951277 + 0.308339i \(0.900227\pi\)
\(654\) 4.95555 0.193777
\(655\) 17.0938i 0.667909i
\(656\) 61.5968i 2.40495i
\(657\) − 24.9882i − 0.974881i
\(658\) 2.07100 0.0807360
\(659\) 16.6107i 0.647059i 0.946218 + 0.323530i \(0.104870\pi\)
−0.946218 + 0.323530i \(0.895130\pi\)
\(660\) 20.4436 0.795765
\(661\) −40.0401 −1.55738 −0.778691 0.627408i \(-0.784116\pi\)
−0.778691 + 0.627408i \(0.784116\pi\)
\(662\) −24.3315 −0.945672
\(663\) −1.52542 −0.0592423
\(664\) − 122.570i − 4.75663i
\(665\) 0.138349i 0.00536494i
\(666\) 22.5542 0.873959
\(667\) 0 0
\(668\) 0.813440 0.0314729
\(669\) 7.78985i 0.301173i
\(670\) 33.1711i 1.28151i
\(671\) −13.4787 −0.520338
\(672\) −0.316789 −0.0122204
\(673\) 13.2244 0.509764 0.254882 0.966972i \(-0.417963\pi\)
0.254882 + 0.966972i \(0.417963\pi\)
\(674\) 40.1584 1.54684
\(675\) 4.23144i 0.162868i
\(676\) 58.3407 2.24387
\(677\) − 23.8101i − 0.915095i −0.889185 0.457548i \(-0.848728\pi\)
0.889185 0.457548i \(-0.151272\pi\)
\(678\) − 5.17149i − 0.198610i
\(679\) − 0.857779i − 0.0329185i
\(680\) 73.3820 2.81407
\(681\) 9.75843i 0.373944i
\(682\) − 50.6482i − 1.93942i
\(683\) 28.7668 1.10073 0.550365 0.834924i \(-0.314489\pi\)
0.550365 + 0.834924i \(0.314489\pi\)
\(684\) 9.56022i 0.365544i
\(685\) 4.02238i 0.153687i
\(686\) − 2.73623i − 0.104470i
\(687\) 4.37938 0.167084
\(688\) 76.7616i 2.92651i
\(689\) −4.89488 −0.186480
\(690\) 3.47443 0.132269
\(691\) 27.1116 1.03137 0.515686 0.856777i \(-0.327537\pi\)
0.515686 + 0.856777i \(0.327537\pi\)
\(692\) −57.6033 −2.18975
\(693\) − 0.796823i − 0.0302688i
\(694\) 24.4613i 0.928540i
\(695\) −27.4598 −1.04161
\(696\) 0 0
\(697\) 26.2919 0.995875
\(698\) − 63.7786i − 2.41406i
\(699\) − 8.82037i − 0.333617i
\(700\) −0.594732 −0.0224787
\(701\) 24.5115 0.925788 0.462894 0.886414i \(-0.346811\pi\)
0.462894 + 0.886414i \(0.346811\pi\)
\(702\) 5.84930 0.220768
\(703\) −2.20330 −0.0830989
\(704\) 24.5975i 0.927053i
\(705\) −12.0080 −0.452247
\(706\) 62.8425i 2.36511i
\(707\) − 0.709107i − 0.0266687i
\(708\) − 20.7981i − 0.781641i
\(709\) −16.5914 −0.623104 −0.311552 0.950229i \(-0.600849\pi\)
−0.311552 + 0.950229i \(0.600849\pi\)
\(710\) 32.9512i 1.23664i
\(711\) − 37.0227i − 1.38846i
\(712\) −49.0423 −1.83794
\(713\) − 6.06588i − 0.227169i
\(714\) 0.338544i 0.0126697i
\(715\) − 8.58949i − 0.321229i
\(716\) −7.99344 −0.298729
\(717\) − 0.518795i − 0.0193747i
\(718\) −39.6746 −1.48064
\(719\) 40.5018 1.51046 0.755231 0.655458i \(-0.227525\pi\)
0.755231 + 0.655458i \(0.227525\pi\)
\(720\) −66.8780 −2.49240
\(721\) −0.689942 −0.0256948
\(722\) 48.1211i 1.79088i
\(723\) − 5.19787i − 0.193311i
\(724\) 73.3212 2.72496
\(725\) 0 0
\(726\) 3.74559 0.139012
\(727\) 31.7298i 1.17679i 0.808572 + 0.588397i \(0.200241\pi\)
−0.808572 + 0.588397i \(0.799759\pi\)
\(728\) 0.477613i 0.0177015i
\(729\) 17.1286 0.634394
\(730\) −59.7815 −2.21261
\(731\) 32.7648 1.21185
\(732\) −7.48009 −0.276472
\(733\) 1.48939i 0.0550118i 0.999622 + 0.0275059i \(0.00875650\pi\)
−0.999622 + 0.0275059i \(0.991243\pi\)
\(734\) −33.3165 −1.22974
\(735\) 7.92936i 0.292479i
\(736\) 11.3022i 0.416606i
\(737\) 18.6634i 0.687476i
\(738\) −48.7333 −1.79390
\(739\) 36.7246i 1.35094i 0.737389 + 0.675468i \(0.236058\pi\)
−0.737389 + 0.675468i \(0.763942\pi\)
\(740\) − 38.0244i − 1.39780i
\(741\) −0.276209 −0.0101468
\(742\) 1.08635i 0.0398810i
\(743\) − 31.1757i − 1.14373i −0.820349 0.571863i \(-0.806221\pi\)
0.820349 0.571863i \(-0.193779\pi\)
\(744\) − 16.3291i − 0.598655i
\(745\) 14.0182 0.513588
\(746\) − 0.0509418i − 0.00186511i
\(747\) 47.6805 1.74454
\(748\) 71.0693 2.59855
\(749\) −0.365753 −0.0133643
\(750\) −9.85829 −0.359974
\(751\) 45.2999i 1.65302i 0.562923 + 0.826509i \(0.309677\pi\)
−0.562923 + 0.826509i \(0.690323\pi\)
\(752\) − 97.7986i − 3.56635i
\(753\) −3.36752 −0.122719
\(754\) 0 0
\(755\) 46.0393 1.67554
\(756\) − 0.914815i − 0.0332715i
\(757\) − 18.8863i − 0.686435i −0.939256 0.343218i \(-0.888483\pi\)
0.939256 0.343218i \(-0.111517\pi\)
\(758\) −13.6257 −0.494906
\(759\) 1.95486 0.0709568
\(760\) 13.2874 0.481983
\(761\) 17.4270 0.631727 0.315863 0.948805i \(-0.397706\pi\)
0.315863 + 0.948805i \(0.397706\pi\)
\(762\) 6.67446i 0.241790i
\(763\) −0.325635 −0.0117888
\(764\) 97.7365i 3.53598i
\(765\) 28.5461i 1.03209i
\(766\) 0.715264i 0.0258435i
\(767\) −8.73846 −0.315527
\(768\) − 8.29574i − 0.299347i
\(769\) 27.2971i 0.984357i 0.870494 + 0.492179i \(0.163799\pi\)
−0.870494 + 0.492179i \(0.836201\pi\)
\(770\) −1.90631 −0.0686988
\(771\) 4.99650i 0.179945i
\(772\) − 14.9596i − 0.538406i
\(773\) 5.89778i 0.212128i 0.994359 + 0.106064i \(0.0338249\pi\)
−0.994359 + 0.106064i \(0.966175\pi\)
\(774\) −60.7311 −2.18294
\(775\) − 8.54316i − 0.306879i
\(776\) −82.3831 −2.95738
\(777\) 0.101912 0.00365609
\(778\) 19.6146 0.703216
\(779\) 4.76070 0.170570
\(780\) − 4.76681i − 0.170679i
\(781\) 18.5397i 0.663402i
\(782\) 12.0784 0.431923
\(783\) 0 0
\(784\) −64.5804 −2.30644
\(785\) − 24.4201i − 0.871591i
\(786\) 7.57403i 0.270157i
\(787\) 43.7976 1.56122 0.780609 0.625020i \(-0.214909\pi\)
0.780609 + 0.625020i \(0.214909\pi\)
\(788\) −13.5564 −0.482925
\(789\) −7.35736 −0.261929
\(790\) −88.5729 −3.15128
\(791\) 0.339825i 0.0120828i
\(792\) −76.5288 −2.71933
\(793\) 3.14281i 0.111604i
\(794\) 43.5503i 1.54554i
\(795\) − 6.29881i − 0.223396i
\(796\) 91.2487 3.23422
\(797\) 36.6686i 1.29887i 0.760417 + 0.649435i \(0.224994\pi\)
−0.760417 + 0.649435i \(0.775006\pi\)
\(798\) 0.0613006i 0.00217002i
\(799\) −41.7441 −1.47680
\(800\) 15.9180i 0.562787i
\(801\) − 19.0778i − 0.674081i
\(802\) − 20.9691i − 0.740445i
\(803\) −33.6355 −1.18697
\(804\) 10.3574i 0.365278i
\(805\) −0.228309 −0.00804684
\(806\) −11.8096 −0.415975
\(807\) 9.63632 0.339214
\(808\) −68.1043 −2.39590
\(809\) 18.7725i 0.660007i 0.943980 + 0.330004i \(0.107050\pi\)
−0.943980 + 0.330004i \(0.892950\pi\)
\(810\) − 49.0230i − 1.72249i
\(811\) 33.9249 1.19127 0.595633 0.803257i \(-0.296901\pi\)
0.595633 + 0.803257i \(0.296901\pi\)
\(812\) 0 0
\(813\) 2.87517 0.100837
\(814\) − 30.3593i − 1.06409i
\(815\) − 26.9855i − 0.945260i
\(816\) 15.9870 0.559659
\(817\) 5.93275 0.207561
\(818\) −24.7326 −0.864754
\(819\) −0.185794 −0.00649218
\(820\) 82.1599i 2.86915i
\(821\) 12.5182 0.436887 0.218443 0.975850i \(-0.429902\pi\)
0.218443 + 0.975850i \(0.429902\pi\)
\(822\) 1.78227i 0.0621637i
\(823\) − 27.6813i − 0.964911i −0.875920 0.482456i \(-0.839745\pi\)
0.875920 0.482456i \(-0.160255\pi\)
\(824\) 66.2636i 2.30840i
\(825\) 2.75321 0.0958546
\(826\) 1.93937i 0.0674794i
\(827\) 29.5496i 1.02754i 0.857928 + 0.513771i \(0.171752\pi\)
−0.857928 + 0.513771i \(0.828248\pi\)
\(828\) −15.7767 −0.548278
\(829\) 1.28760i 0.0447203i 0.999750 + 0.0223601i \(0.00711805\pi\)
−0.999750 + 0.0223601i \(0.992882\pi\)
\(830\) − 114.070i − 3.95944i
\(831\) 9.45793i 0.328092i
\(832\) 5.73537 0.198838
\(833\) 27.5653i 0.955083i
\(834\) −12.1671 −0.421311
\(835\) 0.439798 0.0152198
\(836\) 12.8686 0.445070
\(837\) 13.1411 0.454222
\(838\) − 60.5016i − 2.08999i
\(839\) − 16.3512i − 0.564505i −0.959340 0.282253i \(-0.908918\pi\)
0.959340 0.282253i \(-0.0910816\pi\)
\(840\) −0.614600 −0.0212057
\(841\) 0 0
\(842\) −45.4209 −1.56531
\(843\) − 3.82099i − 0.131602i
\(844\) − 85.4005i − 2.93961i
\(845\) 31.5427 1.08510
\(846\) 77.3749 2.66020
\(847\) −0.246127 −0.00845704
\(848\) 51.3004 1.76166
\(849\) − 9.66047i − 0.331546i
\(850\) 17.0112 0.583478
\(851\) − 3.63597i − 0.124640i
\(852\) 10.2887i 0.352487i
\(853\) 51.4321i 1.76100i 0.474045 + 0.880501i \(0.342793\pi\)
−0.474045 + 0.880501i \(0.657207\pi\)
\(854\) 0.697500 0.0238680
\(855\) 5.16887i 0.176772i
\(856\) 35.1278i 1.20064i
\(857\) −19.4262 −0.663588 −0.331794 0.943352i \(-0.607654\pi\)
−0.331794 + 0.943352i \(0.607654\pi\)
\(858\) − 3.80589i − 0.129931i
\(859\) 23.9218i 0.816201i 0.912937 + 0.408101i \(0.133809\pi\)
−0.912937 + 0.408101i \(0.866191\pi\)
\(860\) 102.387i 3.49137i
\(861\) −0.220204 −0.00750452
\(862\) − 85.3209i − 2.90604i
\(863\) 28.4361 0.967977 0.483989 0.875074i \(-0.339188\pi\)
0.483989 + 0.875074i \(0.339188\pi\)
\(864\) −24.4851 −0.832999
\(865\) −31.1441 −1.05893
\(866\) 13.0665 0.444018
\(867\) 0.644883i 0.0219014i
\(868\) 1.84699i 0.0626908i
\(869\) −49.8347 −1.69053
\(870\) 0 0
\(871\) 4.35173 0.147453
\(872\) 31.2748i 1.05910i
\(873\) − 32.0476i − 1.08465i
\(874\) 2.18705 0.0739780
\(875\) 0.647800 0.0218996
\(876\) −18.6663 −0.630675
\(877\) −3.71106 −0.125314 −0.0626568 0.998035i \(-0.519957\pi\)
−0.0626568 + 0.998035i \(0.519957\pi\)
\(878\) 55.6118i 1.87681i
\(879\) −0.978009 −0.0329874
\(880\) 90.0216i 3.03463i
\(881\) − 11.9260i − 0.401796i −0.979612 0.200898i \(-0.935614\pi\)
0.979612 0.200898i \(-0.0643860\pi\)
\(882\) − 51.0938i − 1.72042i
\(883\) −5.89920 −0.198524 −0.0992619 0.995061i \(-0.531648\pi\)
−0.0992619 + 0.995061i \(0.531648\pi\)
\(884\) − 16.5712i − 0.557348i
\(885\) − 11.2448i − 0.377990i
\(886\) −103.653 −3.48229
\(887\) − 24.5541i − 0.824445i −0.911083 0.412223i \(-0.864753\pi\)
0.911083 0.412223i \(-0.135247\pi\)
\(888\) − 9.78791i − 0.328461i
\(889\) − 0.438587i − 0.0147097i
\(890\) −45.6415 −1.52991
\(891\) − 27.5823i − 0.924043i
\(892\) −84.6239 −2.83342
\(893\) −7.55866 −0.252941
\(894\) 6.21129 0.207737
\(895\) −4.32177 −0.144461
\(896\) 0.169237i 0.00565380i
\(897\) − 0.455812i − 0.0152191i
\(898\) −25.8334 −0.862072
\(899\) 0 0
\(900\) −22.2198 −0.740661
\(901\) − 21.8970i − 0.729494i
\(902\) 65.5978i 2.18417i
\(903\) −0.274417 −0.00913201
\(904\) 32.6376 1.08551
\(905\) 39.6421 1.31775
\(906\) 20.3994 0.677726
\(907\) 40.2160i 1.33535i 0.744453 + 0.667675i \(0.232711\pi\)
−0.744453 + 0.667675i \(0.767289\pi\)
\(908\) −106.009 −3.51804
\(909\) − 26.4930i − 0.878718i
\(910\) 0.444493i 0.0147348i
\(911\) 13.5344i 0.448415i 0.974541 + 0.224208i \(0.0719794\pi\)
−0.974541 + 0.224208i \(0.928021\pi\)
\(912\) 2.89479 0.0958562
\(913\) − 64.1806i − 2.12407i
\(914\) − 38.0592i − 1.25889i
\(915\) −4.04422 −0.133698
\(916\) 47.5748i 1.57191i
\(917\) − 0.497699i − 0.0164355i
\(918\) 26.1666i 0.863625i
\(919\) 55.1125 1.81799 0.908997 0.416803i \(-0.136849\pi\)
0.908997 + 0.416803i \(0.136849\pi\)
\(920\) 21.9274i 0.722924i
\(921\) −6.09626 −0.200879
\(922\) 49.0619 1.61577
\(923\) 4.32288 0.142289
\(924\) −0.595231 −0.0195817
\(925\) − 5.12089i − 0.168374i
\(926\) 92.3833i 3.03590i
\(927\) −25.7770 −0.846627
\(928\) 0 0
\(929\) 4.05714 0.133111 0.0665553 0.997783i \(-0.478799\pi\)
0.0665553 + 0.997783i \(0.478799\pi\)
\(930\) − 15.1968i − 0.498322i
\(931\) 4.99129i 0.163583i
\(932\) 95.8188 3.13865
\(933\) −0.620421 −0.0203117
\(934\) −15.7912 −0.516705
\(935\) 38.4246 1.25662
\(936\) 17.8441i 0.583254i
\(937\) 30.1884 0.986213 0.493106 0.869969i \(-0.335861\pi\)
0.493106 + 0.869969i \(0.335861\pi\)
\(938\) − 0.965804i − 0.0315346i
\(939\) − 12.6304i − 0.412178i
\(940\) − 130.447i − 4.25471i
\(941\) 8.38002 0.273181 0.136590 0.990628i \(-0.456386\pi\)
0.136590 + 0.990628i \(0.456386\pi\)
\(942\) − 10.8202i − 0.352542i
\(943\) 7.85630i 0.255836i
\(944\) 91.5828 2.98077
\(945\) − 0.494607i − 0.0160896i
\(946\) 81.7476i 2.65784i
\(947\) − 1.82587i − 0.0593328i −0.999560 0.0296664i \(-0.990556\pi\)
0.999560 0.0296664i \(-0.00944450\pi\)
\(948\) −27.6562 −0.898231
\(949\) 7.84275i 0.254587i
\(950\) 3.08023 0.0999359
\(951\) 9.80616 0.317986
\(952\) −2.13657 −0.0692468
\(953\) 46.8893 1.51889 0.759447 0.650569i \(-0.225470\pi\)
0.759447 + 0.650569i \(0.225470\pi\)
\(954\) 40.5871i 1.31406i
\(955\) 52.8426i 1.70995i
\(956\) 5.63585 0.182276
\(957\) 0 0
\(958\) 9.15823 0.295889
\(959\) − 0.117115i − 0.00378184i
\(960\) 7.38038i 0.238201i
\(961\) 4.46852 0.144146
\(962\) −7.07884 −0.228231
\(963\) −13.6650 −0.440347
\(964\) 56.4664 1.81866
\(965\) − 8.08810i − 0.260365i
\(966\) −0.101161 −0.00325480
\(967\) 20.1580i 0.648239i 0.946016 + 0.324119i \(0.105068\pi\)
−0.946016 + 0.324119i \(0.894932\pi\)
\(968\) 23.6387i 0.759775i
\(969\) − 1.23561i − 0.0396934i
\(970\) −76.6703 −2.46174
\(971\) 16.9188i 0.542949i 0.962446 + 0.271474i \(0.0875113\pi\)
−0.962446 + 0.271474i \(0.912489\pi\)
\(972\) − 51.8358i − 1.66263i
\(973\) 0.799513 0.0256312
\(974\) 20.5006i 0.656881i
\(975\) − 0.641964i − 0.0205593i
\(976\) − 32.9380i − 1.05432i
\(977\) −1.03630 −0.0331543 −0.0165772 0.999863i \(-0.505277\pi\)
−0.0165772 + 0.999863i \(0.505277\pi\)
\(978\) − 11.9569i − 0.382340i
\(979\) −25.6798 −0.820729
\(980\) −86.1395 −2.75162
\(981\) −12.1661 −0.388434
\(982\) 56.8120 1.81294
\(983\) − 16.2306i − 0.517676i −0.965921 0.258838i \(-0.916660\pi\)
0.965921 0.258838i \(-0.0833395\pi\)
\(984\) 21.1489i 0.674202i
\(985\) −7.32943 −0.233535
\(986\) 0 0
\(987\) 0.349622 0.0111286
\(988\) − 3.00056i − 0.0954605i
\(989\) 9.79048i 0.311319i
\(990\) −71.2220 −2.26358
\(991\) −37.1422 −1.17986 −0.589930 0.807454i \(-0.700845\pi\)
−0.589930 + 0.807454i \(0.700845\pi\)
\(992\) 49.4347 1.56955
\(993\) −4.10760 −0.130351
\(994\) − 0.959400i − 0.0304303i
\(995\) 49.3349 1.56402
\(996\) − 35.6175i − 1.12859i
\(997\) − 36.1372i − 1.14448i −0.820088 0.572238i \(-0.806075\pi\)
0.820088 0.572238i \(-0.193925\pi\)
\(998\) 77.0621i 2.43936i
\(999\) 7.87695 0.249216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.e.840.12 12
29.2 odd 28 841.2.d.k.605.1 24
29.3 odd 28 841.2.d.m.571.1 24
29.4 even 14 29.2.e.a.13.1 yes 12
29.5 even 14 841.2.e.f.236.2 12
29.6 even 14 841.2.e.e.196.1 12
29.7 even 7 29.2.e.a.9.1 12
29.8 odd 28 841.2.d.l.574.1 24
29.9 even 14 841.2.e.a.267.1 12
29.10 odd 28 841.2.d.m.190.4 24
29.11 odd 28 841.2.d.l.778.4 24
29.12 odd 4 841.2.a.k.1.1 12
29.13 even 14 841.2.e.h.63.2 12
29.14 odd 28 841.2.d.k.645.1 24
29.15 odd 28 841.2.d.k.645.4 24
29.16 even 7 841.2.e.a.63.1 12
29.17 odd 4 841.2.a.k.1.12 12
29.18 odd 28 841.2.d.l.778.1 24
29.19 odd 28 841.2.d.m.190.1 24
29.20 even 7 841.2.e.h.267.2 12
29.21 odd 28 841.2.d.l.574.4 24
29.22 even 14 841.2.e.i.270.2 12
29.23 even 7 841.2.e.f.196.2 12
29.24 even 7 841.2.e.e.236.1 12
29.25 even 7 841.2.e.i.651.2 12
29.26 odd 28 841.2.d.m.571.4 24
29.27 odd 28 841.2.d.k.605.4 24
29.28 even 2 inner 841.2.b.e.840.1 12
87.17 even 4 7569.2.a.bp.1.1 12
87.41 even 4 7569.2.a.bp.1.12 12
87.62 odd 14 261.2.o.a.100.2 12
87.65 odd 14 261.2.o.a.154.2 12
116.7 odd 14 464.2.y.d.241.1 12
116.91 odd 14 464.2.y.d.129.1 12
145.4 even 14 725.2.q.a.651.2 12
145.7 odd 28 725.2.p.a.299.4 24
145.33 odd 28 725.2.p.a.274.4 24
145.62 odd 28 725.2.p.a.274.1 24
145.94 even 14 725.2.q.a.676.2 12
145.123 odd 28 725.2.p.a.299.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.e.a.9.1 12 29.7 even 7
29.2.e.a.13.1 yes 12 29.4 even 14
261.2.o.a.100.2 12 87.62 odd 14
261.2.o.a.154.2 12 87.65 odd 14
464.2.y.d.129.1 12 116.91 odd 14
464.2.y.d.241.1 12 116.7 odd 14
725.2.p.a.274.1 24 145.62 odd 28
725.2.p.a.274.4 24 145.33 odd 28
725.2.p.a.299.1 24 145.123 odd 28
725.2.p.a.299.4 24 145.7 odd 28
725.2.q.a.651.2 12 145.4 even 14
725.2.q.a.676.2 12 145.94 even 14
841.2.a.k.1.1 12 29.12 odd 4
841.2.a.k.1.12 12 29.17 odd 4
841.2.b.e.840.1 12 29.28 even 2 inner
841.2.b.e.840.12 12 1.1 even 1 trivial
841.2.d.k.605.1 24 29.2 odd 28
841.2.d.k.605.4 24 29.27 odd 28
841.2.d.k.645.1 24 29.14 odd 28
841.2.d.k.645.4 24 29.15 odd 28
841.2.d.l.574.1 24 29.8 odd 28
841.2.d.l.574.4 24 29.21 odd 28
841.2.d.l.778.1 24 29.18 odd 28
841.2.d.l.778.4 24 29.11 odd 28
841.2.d.m.190.1 24 29.19 odd 28
841.2.d.m.190.4 24 29.10 odd 28
841.2.d.m.571.1 24 29.3 odd 28
841.2.d.m.571.4 24 29.26 odd 28
841.2.e.a.63.1 12 29.16 even 7
841.2.e.a.267.1 12 29.9 even 14
841.2.e.e.196.1 12 29.6 even 14
841.2.e.e.236.1 12 29.24 even 7
841.2.e.f.196.2 12 29.23 even 7
841.2.e.f.236.2 12 29.5 even 14
841.2.e.h.63.2 12 29.13 even 14
841.2.e.h.267.2 12 29.20 even 7
841.2.e.i.270.2 12 29.22 even 14
841.2.e.i.651.2 12 29.25 even 7
7569.2.a.bp.1.1 12 87.17 even 4
7569.2.a.bp.1.12 12 87.41 even 4