Properties

Label 841.2.b.d.840.10
Level 841841
Weight 22
Character 841.840
Analytic conductor 6.7156.715
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(840,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.840");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 841=292 841 = 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 841.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.715418809996.71541880999
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+20x10+150x8+523x6+835x4+495x2+81 x^{12} + 20x^{10} + 150x^{8} + 523x^{6} + 835x^{4} + 495x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 840.10
Root 1.94573i1.94573i of defining polynomial
Character χ\chi == 841.840
Dual form 841.2.b.d.840.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.94573iq2+2.27154iq31.78585q43.21726q54.41979q62.53022q7+0.416673iq82.15987q96.25991iq10+1.12328iq114.05663iq12+1.54902q134.92311iq147.30813iq154.38244q164.41979iq174.20253iq18+4.91337iq19+5.74556q205.74748iq212.18560q22+2.47406q230.946487q24+5.35078q25+3.01398iq26+1.90838iq27+4.51860q28+14.2196q301.58761iq317.69368iq322.55158q33+8.59970q34+8.14037q35+3.85722q36+8.28372iq379.56008q38+3.51866iq391.34055iq4011.7882iq41+11.1830q421.88390iq432.00602iq44+6.94888q45+4.81385iq460.962649iq479.95486iq480.597997q49+10.4111iq50+10.0397q512.76633q52+1.61810q533.71318q543.61390iq551.05427iq5611.1609q5713.3686q59+13.0512iq60+1.92241iq61+3.08905q62+5.46495q63+6.20492q644.98362q654.96468iq66+3.02385q67+7.89309iq68+5.61992iq69+15.8389iq704.14265q710.899961iq723.79682iq7316.1178q74+12.1545iq758.77456iq762.84215iq776.84635q78+13.2356iq79+14.0994q8010.8146q81+22.9366q829.70833q83+10.2642iq84+14.2196iq85+3.66555q860.468042q884.87979iq89+13.5206iq903.91937q914.41831q92+3.60630q93+1.87305q9415.8076iq95+17.4765q9615.6150iq971.16354iq982.42615iq99+O(q100)q+1.94573i q^{2} +2.27154i q^{3} -1.78585 q^{4} -3.21726 q^{5} -4.41979 q^{6} -2.53022 q^{7} +0.416673i q^{8} -2.15987 q^{9} -6.25991i q^{10} +1.12328i q^{11} -4.05663i q^{12} +1.54902 q^{13} -4.92311i q^{14} -7.30813i q^{15} -4.38244 q^{16} -4.41979i q^{17} -4.20253i q^{18} +4.91337i q^{19} +5.74556 q^{20} -5.74748i q^{21} -2.18560 q^{22} +2.47406 q^{23} -0.946487 q^{24} +5.35078 q^{25} +3.01398i q^{26} +1.90838i q^{27} +4.51860 q^{28} +14.2196 q^{30} -1.58761i q^{31} -7.69368i q^{32} -2.55158 q^{33} +8.59970 q^{34} +8.14037 q^{35} +3.85722 q^{36} +8.28372i q^{37} -9.56008 q^{38} +3.51866i q^{39} -1.34055i q^{40} -11.7882i q^{41} +11.1830 q^{42} -1.88390i q^{43} -2.00602i q^{44} +6.94888 q^{45} +4.81385i q^{46} -0.962649i q^{47} -9.95486i q^{48} -0.597997 q^{49} +10.4111i q^{50} +10.0397 q^{51} -2.76633 q^{52} +1.61810 q^{53} -3.71318 q^{54} -3.61390i q^{55} -1.05427i q^{56} -11.1609 q^{57} -13.3686 q^{59} +13.0512i q^{60} +1.92241i q^{61} +3.08905 q^{62} +5.46495 q^{63} +6.20492 q^{64} -4.98362 q^{65} -4.96468i q^{66} +3.02385 q^{67} +7.89309i q^{68} +5.61992i q^{69} +15.8389i q^{70} -4.14265 q^{71} -0.899961i q^{72} -3.79682i q^{73} -16.1178 q^{74} +12.1545i q^{75} -8.77456i q^{76} -2.84215i q^{77} -6.84635 q^{78} +13.2356i q^{79} +14.0994 q^{80} -10.8146 q^{81} +22.9366 q^{82} -9.70833 q^{83} +10.2642i q^{84} +14.2196i q^{85} +3.66555 q^{86} -0.468042 q^{88} -4.87979i q^{89} +13.5206i q^{90} -3.91937 q^{91} -4.41831 q^{92} +3.60630 q^{93} +1.87305 q^{94} -15.8076i q^{95} +17.4765 q^{96} -15.6150i q^{97} -1.16354i q^{98} -2.42615i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q16q4+4q5+6q68q712q9+12q13+8q1610q20+8q2210q2320q24+12q25+10q28+52q3054q33+8q3542q3682q38++74q96+O(q100) 12 q - 16 q^{4} + 4 q^{5} + 6 q^{6} - 8 q^{7} - 12 q^{9} + 12 q^{13} + 8 q^{16} - 10 q^{20} + 8 q^{22} - 10 q^{23} - 20 q^{24} + 12 q^{25} + 10 q^{28} + 52 q^{30} - 54 q^{33} + 8 q^{35} - 42 q^{36} - 82 q^{38}+ \cdots + 74 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/841Z)×\left(\mathbb{Z}/841\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.94573i 1.37584i 0.725788 + 0.687918i 0.241475π0.241475\pi
−0.725788 + 0.687918i 0.758525π0.758525\pi
33 2.27154i 1.31147i 0.754990 + 0.655736i 0.227642π0.227642\pi
−0.754990 + 0.655736i 0.772358π0.772358\pi
44 −1.78585 −0.892926
55 −3.21726 −1.43880 −0.719402 0.694594i 0.755584π-0.755584\pi
−0.719402 + 0.694594i 0.755584π0.755584\pi
66 −4.41979 −1.80437
77 −2.53022 −0.956332 −0.478166 0.878269i 0.658698π-0.658698\pi
−0.478166 + 0.878269i 0.658698π0.658698\pi
88 0.416673i 0.147316i
99 −2.15987 −0.719958
1010 − 6.25991i − 1.97956i
1111 1.12328i 0.338683i 0.985557 + 0.169341i 0.0541641π0.0541641\pi
−0.985557 + 0.169341i 0.945836π0.945836\pi
1212 − 4.05663i − 1.17105i
1313 1.54902 0.429622 0.214811 0.976656i 0.431086π-0.431086\pi
0.214811 + 0.976656i 0.431086π0.431086\pi
1414 − 4.92311i − 1.31576i
1515 − 7.30813i − 1.88695i
1616 −4.38244 −1.09561
1717 − 4.41979i − 1.07196i −0.844232 0.535978i 0.819943π-0.819943\pi
0.844232 0.535978i 0.180057π-0.180057\pi
1818 − 4.20253i − 0.990545i
1919 4.91337i 1.12721i 0.826046 + 0.563603i 0.190585π0.190585\pi
−0.826046 + 0.563603i 0.809415π0.809415\pi
2020 5.74556 1.28475
2121 − 5.74748i − 1.25420i
2222 −2.18560 −0.465972
2323 2.47406 0.515877 0.257939 0.966161i 0.416957π-0.416957\pi
0.257939 + 0.966161i 0.416957π0.416957\pi
2424 −0.946487 −0.193201
2525 5.35078 1.07016
2626 3.01398i 0.591089i
2727 1.90838i 0.367267i
2828 4.51860 0.853934
2929 0 0
3030 14.2196 2.59613
3131 − 1.58761i − 0.285142i −0.989785 0.142571i 0.954463π-0.954463\pi
0.989785 0.142571i 0.0455370π-0.0455370\pi
3232 − 7.69368i − 1.36006i
3333 −2.55158 −0.444173
3434 8.59970 1.47484
3535 8.14037 1.37597
3636 3.85722 0.642869
3737 8.28372i 1.36183i 0.732360 + 0.680917i 0.238419π0.238419\pi
−0.732360 + 0.680917i 0.761581π0.761581\pi
3838 −9.56008 −1.55085
3939 3.51866i 0.563437i
4040 − 1.34055i − 0.211959i
4141 − 11.7882i − 1.84101i −0.390733 0.920504i 0.627778π-0.627778\pi
0.390733 0.920504i 0.372222π-0.372222\pi
4242 11.1830 1.72558
4343 − 1.88390i − 0.287292i −0.989629 0.143646i 0.954117π-0.954117\pi
0.989629 0.143646i 0.0458827π-0.0458827\pi
4444 − 2.00602i − 0.302419i
4545 6.94888 1.03588
4646 4.81385i 0.709763i
4747 − 0.962649i − 0.140417i −0.997532 0.0702084i 0.977634π-0.977634\pi
0.997532 0.0702084i 0.0223664π-0.0223664\pi
4848 − 9.95486i − 1.43686i
4949 −0.597997 −0.0854282
5050 10.4111i 1.47236i
5151 10.0397 1.40584
5252 −2.76633 −0.383621
5353 1.61810 0.222263 0.111132 0.993806i 0.464552π-0.464552\pi
0.111132 + 0.993806i 0.464552π0.464552\pi
5454 −3.71318 −0.505299
5555 − 3.61390i − 0.487298i
5656 − 1.05427i − 0.140883i
5757 −11.1609 −1.47830
5858 0 0
5959 −13.3686 −1.74045 −0.870224 0.492657i 0.836026π-0.836026\pi
−0.870224 + 0.492657i 0.836026π0.836026\pi
6060 13.0512i 1.68491i
6161 1.92241i 0.246140i 0.992398 + 0.123070i 0.0392740π0.0392740\pi
−0.992398 + 0.123070i 0.960726π0.960726\pi
6262 3.08905 0.392309
6363 5.46495 0.688519
6464 6.20492 0.775615
6565 −4.98362 −0.618141
6666 − 4.96468i − 0.611109i
6767 3.02385 0.369421 0.184711 0.982793i 0.440865π-0.440865\pi
0.184711 + 0.982793i 0.440865π0.440865\pi
6868 7.89309i 0.957177i
6969 5.61992i 0.676559i
7070 15.8389i 1.89312i
7171 −4.14265 −0.491642 −0.245821 0.969315i 0.579058π-0.579058\pi
−0.245821 + 0.969315i 0.579058π0.579058\pi
7272 − 0.899961i − 0.106061i
7373 − 3.79682i − 0.444384i −0.975003 0.222192i 0.928679π-0.928679\pi
0.975003 0.222192i 0.0713212π-0.0713212\pi
7474 −16.1178 −1.87366
7575 12.1545i 1.40348i
7676 − 8.77456i − 1.00651i
7777 − 2.84215i − 0.323893i
7878 −6.84635 −0.775197
7979 13.2356i 1.48913i 0.667552 + 0.744563i 0.267342π0.267342\pi
−0.667552 + 0.744563i 0.732658π0.732658\pi
8080 14.0994 1.57637
8181 −10.8146 −1.20162
8282 22.9366 2.53293
8383 −9.70833 −1.06563 −0.532814 0.846232i 0.678865π-0.678865\pi
−0.532814 + 0.846232i 0.678865π0.678865\pi
8484 10.2642i 1.11991i
8585 14.2196i 1.54233i
8686 3.66555 0.395267
8787 0 0
8888 −0.468042 −0.0498934
8989 − 4.87979i − 0.517257i −0.965977 0.258628i 0.916730π-0.916730\pi
0.965977 0.258628i 0.0832705π-0.0832705\pi
9090 13.5206i 1.42520i
9191 −3.91937 −0.410861
9292 −4.41831 −0.460640
9393 3.60630 0.373956
9494 1.87305 0.193190
9595 − 15.8076i − 1.62183i
9696 17.4765 1.78368
9797 − 15.6150i − 1.58546i −0.609571 0.792731i 0.708658π-0.708658\pi
0.609571 0.792731i 0.291342π-0.291342\pi
9898 − 1.16354i − 0.117535i
9999 − 2.42615i − 0.243837i
100100 −9.55570 −0.955570
101101 11.3941i 1.13376i 0.823800 + 0.566880i 0.191850π0.191850\pi
−0.823800 + 0.566880i 0.808150π0.808150\pi
102102 19.5345i 1.93421i
103103 7.38911 0.728070 0.364035 0.931385i 0.381399π-0.381399\pi
0.364035 + 0.931385i 0.381399π0.381399\pi
104104 0.645436i 0.0632902i
105105 18.4912i 1.80455i
106106 3.14838i 0.305798i
107107 −11.9202 −1.15237 −0.576183 0.817321i 0.695458π-0.695458\pi
−0.576183 + 0.817321i 0.695458π0.695458\pi
108108 − 3.40808i − 0.327942i
109109 −16.1719 −1.54898 −0.774492 0.632583i 0.781995π-0.781995\pi
−0.774492 + 0.632583i 0.781995π0.781995\pi
110110 7.03166 0.670442
111111 −18.8168 −1.78601
112112 11.0885 1.04777
113113 − 6.34816i − 0.597184i −0.954381 0.298592i 0.903483π-0.903483\pi
0.954381 0.298592i 0.0965171π-0.0965171\pi
114114 − 21.7161i − 2.03390i
115115 −7.95970 −0.742246
116116 0 0
117117 −3.34570 −0.309310
118118 − 26.0117i − 2.39457i
119119 11.1830i 1.02515i
120120 3.04510 0.277978
121121 9.73823 0.885294
122122 −3.74049 −0.338648
123123 26.7773 2.41443
124124 2.83523i 0.254611i
125125 −1.12854 −0.100940
126126 10.6333i 0.947290i
127127 17.8415i 1.58318i 0.611053 + 0.791590i 0.290746π0.290746\pi
−0.611053 + 0.791590i 0.709254π0.709254\pi
128128 − 3.31428i − 0.292943i
129129 4.27934 0.376775
130130 − 9.69675i − 0.850461i
131131 0.574730i 0.0502144i 0.999685 + 0.0251072i 0.00799272π0.00799272\pi
−0.999685 + 0.0251072i 0.992007π0.992007\pi
132132 4.55674 0.396614
133133 − 12.4319i − 1.07798i
134134 5.88358i 0.508264i
135135 − 6.13974i − 0.528425i
136136 1.84161 0.157916
137137 − 13.7829i − 1.17755i −0.808297 0.588774i 0.799611π-0.799611\pi
0.808297 0.588774i 0.200389π-0.200389\pi
138138 −10.9348 −0.930834
139139 10.6013 0.899192 0.449596 0.893232i 0.351568π-0.351568\pi
0.449596 + 0.893232i 0.351568π0.351568\pi
140140 −14.5375 −1.22864
141141 2.18669 0.184153
142142 − 8.06046i − 0.676419i
143143 1.73999i 0.145506i
144144 9.46551 0.788793
145145 0 0
146146 7.38758 0.611400
147147 − 1.35837i − 0.112037i
148148 − 14.7935i − 1.21602i
149149 −2.36656 −0.193876 −0.0969381 0.995290i 0.530905π-0.530905\pi
−0.0969381 + 0.995290i 0.530905π0.530905\pi
150150 −23.6493 −1.93096
151151 −9.74934 −0.793390 −0.396695 0.917950i 0.629843π-0.629843\pi
−0.396695 + 0.917950i 0.629843π0.629843\pi
152152 −2.04727 −0.166056
153153 9.54619i 0.771763i
154154 5.53005 0.445624
155155 5.10774i 0.410264i
156156 − 6.28381i − 0.503108i
157157 18.7547i 1.49679i 0.663252 + 0.748396i 0.269176π0.269176\pi
−0.663252 + 0.748396i 0.730824π0.730824\pi
158158 −25.7530 −2.04879
159159 3.67557i 0.291492i
160160 24.7526i 1.95686i
161161 −6.25991 −0.493350
162162 − 21.0422i − 1.65323i
163163 − 9.65226i − 0.756023i −0.925801 0.378012i 0.876608π-0.876608\pi
0.925801 0.378012i 0.123392π-0.123392\pi
164164 21.0520i 1.64388i
165165 8.20910 0.639078
166166 − 18.8898i − 1.46613i
167167 −0.464845 −0.0359708 −0.0179854 0.999838i 0.505725π-0.505725\pi
−0.0179854 + 0.999838i 0.505725π0.505725\pi
168168 2.39482 0.184764
169169 −10.6005 −0.815425
170170 −27.6675 −2.12200
171171 − 10.6123i − 0.811541i
172172 3.36437i 0.256530i
173173 22.2914 1.69478 0.847392 0.530968i 0.178172π-0.178172\pi
0.847392 + 0.530968i 0.178172π0.178172\pi
174174 0 0
175175 −13.5386 −1.02342
176176 − 4.92272i − 0.371064i
177177 − 30.3673i − 2.28255i
178178 9.49474 0.711661
179179 −7.50994 −0.561319 −0.280660 0.959807i 0.590553π-0.590553\pi
−0.280660 + 0.959807i 0.590553π0.590553\pi
180180 −12.4097 −0.924963
181181 −23.9371 −1.77923 −0.889615 0.456711i 0.849027π-0.849027\pi
−0.889615 + 0.456711i 0.849027π0.849027\pi
182182 − 7.62602i − 0.565278i
183183 −4.36683 −0.322806
184184 1.03087i 0.0759971i
185185 − 26.6509i − 1.95941i
186186 7.01688i 0.514503i
187187 4.96468 0.363053
188188 1.71915i 0.125382i
189189 − 4.82861i − 0.351229i
190190 30.7573 2.23137
191191 13.4059i 0.970016i 0.874510 + 0.485008i 0.161183π0.161183\pi
−0.874510 + 0.485008i 0.838817π0.838817\pi
192192 14.0947i 1.01720i
193193 12.7705i 0.919243i 0.888115 + 0.459622i 0.152015π0.152015\pi
−0.888115 + 0.459622i 0.847985π0.847985\pi
194194 30.3825 2.18134
195195 − 11.3205i − 0.810675i
196196 1.06794 0.0762811
197197 −4.07710 −0.290481 −0.145241 0.989396i 0.546396π-0.546396\pi
−0.145241 + 0.989396i 0.546396π0.546396\pi
198198 4.72063 0.335480
199199 16.9678 1.20282 0.601409 0.798941i 0.294606π-0.294606\pi
0.601409 + 0.798941i 0.294606π0.294606\pi
200200 2.22952i 0.157651i
201201 6.86877i 0.484486i
202202 −22.1699 −1.55987
203203 0 0
204204 −17.9294 −1.25531
205205 37.9258i 2.64885i
206206 14.3772i 1.00171i
207207 −5.34366 −0.371410
208208 −6.78850 −0.470698
209209 −5.51911 −0.381765
210210 −35.9787 −2.48277
211211 − 4.41621i − 0.304024i −0.988379 0.152012i 0.951425π-0.951425\pi
0.988379 0.152012i 0.0485753π-0.0485753\pi
212212 −2.88969 −0.198465
213213 − 9.41017i − 0.644774i
214214 − 23.1934i − 1.58547i
215215 6.06100i 0.413357i
216216 −0.795168 −0.0541044
217217 4.01699i 0.272691i
218218 − 31.4660i − 2.13115i
219219 8.62462 0.582798
220220 6.45389i 0.435121i
221221 − 6.84635i − 0.460536i
222222 − 36.6123i − 2.45725i
223223 −17.0683 −1.14298 −0.571488 0.820611i 0.693634π-0.693634\pi
−0.571488 + 0.820611i 0.693634π0.693634\pi
224224 19.4667i 1.30067i
225225 −11.5570 −0.770467
226226 12.3518 0.821628
227227 −9.78008 −0.649127 −0.324563 0.945864i 0.605217π-0.605217\pi
−0.324563 + 0.945864i 0.605217π0.605217\pi
228228 19.9317 1.32001
229229 3.43919i 0.227268i 0.993523 + 0.113634i 0.0362492π0.0362492\pi
−0.993523 + 0.113634i 0.963751π0.963751\pi
230230 − 15.4874i − 1.02121i
231231 6.45605 0.424777
232232 0 0
233233 −4.39157 −0.287702 −0.143851 0.989599i 0.545949π-0.545949\pi
−0.143851 + 0.989599i 0.545949π0.545949\pi
234234 − 6.50981i − 0.425560i
235235 3.09709i 0.202032i
236236 23.8744 1.55409
237237 −30.0652 −1.95295
238238 −21.7591 −1.41043
239239 17.6803 1.14364 0.571821 0.820378i 0.306237π-0.306237\pi
0.571821 + 0.820378i 0.306237π0.306237\pi
240240 32.0274i 2.06736i
241241 −11.4068 −0.734778 −0.367389 0.930067i 0.619748π-0.619748\pi
−0.367389 + 0.930067i 0.619748π0.619748\pi
242242 18.9479i 1.21802i
243243 − 18.8405i − 1.20862i
244244 − 3.43315i − 0.219785i
245245 1.92391 0.122914
246246 52.1014i 3.32186i
247247 7.61093i 0.484272i
248248 0.661512 0.0420061
249249 − 22.0528i − 1.39754i
250250 − 2.19583i − 0.138877i
251251 25.5356i 1.61179i 0.592056 + 0.805897i 0.298317π0.298317\pi
−0.592056 + 0.805897i 0.701683π0.701683\pi
252252 −9.75960 −0.614797
253253 2.77907i 0.174719i
254254 −34.7147 −2.17820
255255 −32.3004 −2.02273
256256 18.8585 1.17866
257257 0.178617 0.0111418 0.00557091 0.999984i 0.498227π-0.498227\pi
0.00557091 + 0.999984i 0.498227π0.498227\pi
258258 8.32643i 0.518381i
259259 − 20.9596i − 1.30237i
260260 8.90000 0.551955
261261 0 0
262262 −1.11827 −0.0690869
263263 5.63230i 0.347303i 0.984807 + 0.173651i 0.0555566π0.0555566\pi
−0.984807 + 0.173651i 0.944443π0.944443\pi
264264 − 1.06317i − 0.0654338i
265265 −5.20585 −0.319793
266266 24.1891 1.48313
267267 11.0846 0.678367
268268 −5.40014 −0.329866
269269 1.94833i 0.118792i 0.998235 + 0.0593958i 0.0189174π0.0189174\pi
−0.998235 + 0.0593958i 0.981083π0.981083\pi
270270 11.9463 0.727026
271271 17.4418i 1.05951i 0.848150 + 0.529756i 0.177716π0.177716\pi
−0.848150 + 0.529756i 0.822284π0.822284\pi
272272 19.3694i 1.17444i
273273 − 8.90298i − 0.538833i
274274 26.8177 1.62011
275275 6.01044i 0.362443i
276276 − 10.0363i − 0.604117i
277277 −15.3445 −0.921964 −0.460982 0.887409i 0.652503π-0.652503\pi
−0.460982 + 0.887409i 0.652503π0.652503\pi
278278 20.6273i 1.23714i
279279 3.42903i 0.205291i
280280 3.39187i 0.202703i
281281 −13.2112 −0.788114 −0.394057 0.919086i 0.628929π-0.628929\pi
−0.394057 + 0.919086i 0.628929π0.628929\pi
282282 4.25470i 0.253364i
283283 11.1563 0.663170 0.331585 0.943425i 0.392417π-0.392417\pi
0.331585 + 0.943425i 0.392417π0.392417\pi
284284 7.39816 0.439000
285285 35.9076 2.12698
286286 −3.38555 −0.200192
287287 29.8267i 1.76062i
288288 16.6174i 0.979188i
289289 −2.53452 −0.149090
290290 0 0
291291 35.4700 2.07929
292292 6.78056i 0.396802i
293293 − 6.80277i − 0.397422i −0.980058 0.198711i 0.936324π-0.936324\pi
0.980058 0.198711i 0.0636755π-0.0636755\pi
294294 2.64302 0.154144
295295 43.0104 2.50416
296296 −3.45160 −0.200620
297297 −2.14365 −0.124387
298298 − 4.60468i − 0.266742i
299299 3.83238 0.221632
300300 − 21.7061i − 1.25320i
301301 4.76668i 0.274747i
302302 − 18.9695i − 1.09157i
303303 −25.8822 −1.48689
304304 − 21.5325i − 1.23498i
305305 − 6.18491i − 0.354147i
306306 −18.5743 −1.06182
307307 − 16.1578i − 0.922176i −0.887354 0.461088i 0.847459π-0.847459\pi
0.887354 0.461088i 0.152541π-0.152541\pi
308308 5.07567i 0.289213i
309309 16.7846i 0.954844i
310310 −9.93827 −0.564456
311311 − 4.33954i − 0.246073i −0.992402 0.123036i 0.960737π-0.960737\pi
0.992402 0.123036i 0.0392632π-0.0392632\pi
312312 −1.46613 −0.0830033
313313 1.07340 0.0606724 0.0303362 0.999540i 0.490342π-0.490342\pi
0.0303362 + 0.999540i 0.490342π0.490342\pi
314314 −36.4916 −2.05934
315315 −17.5822 −0.990644
316316 − 23.6369i − 1.32968i
317317 − 7.79415i − 0.437763i −0.975751 0.218882i 0.929759π-0.929759\pi
0.975751 0.218882i 0.0702408π-0.0702408\pi
318318 −7.15166 −0.401045
319319 0 0
320320 −19.9629 −1.11596
321321 − 27.0771i − 1.51130i
322322 − 12.1801i − 0.678769i
323323 21.7161 1.20831
324324 19.3132 1.07296
325325 8.28848 0.459762
326326 18.7807 1.04016
327327 − 36.7350i − 2.03145i
328328 4.91183 0.271210
329329 2.43571i 0.134285i
330330 15.9727i 0.879266i
331331 9.95716i 0.547295i 0.961830 + 0.273648i 0.0882302π0.0882302\pi
−0.961830 + 0.273648i 0.911770π0.911770\pi
332332 17.3377 0.951527
333333 − 17.8918i − 0.980464i
334334 − 0.904461i − 0.0494899i
335335 −9.72850 −0.531525
336336 25.1880i 1.37412i
337337 21.3599i 1.16355i 0.813350 + 0.581774i 0.197641π0.197641\pi
−0.813350 + 0.581774i 0.802359π0.802359\pi
338338 − 20.6257i − 1.12189i
339339 14.4201 0.783191
340340 − 25.3941i − 1.37719i
341341 1.78333 0.0965728
342342 20.6486 1.11655
343343 19.2246 1.03803
344344 0.784970 0.0423227
345345 − 18.0807i − 0.973435i
346346 43.3730i 2.33174i
347347 −26.9149 −1.44487 −0.722434 0.691440i 0.756977π-0.756977\pi
−0.722434 + 0.691440i 0.756977π0.756977\pi
348348 0 0
349349 18.7783 1.00518 0.502591 0.864524i 0.332380π-0.332380\pi
0.502591 + 0.864524i 0.332380π0.332380\pi
350350 − 26.3425i − 1.40806i
351351 2.95612i 0.157786i
352352 8.64218 0.460630
353353 −29.5764 −1.57419 −0.787095 0.616831i 0.788416π-0.788416\pi
−0.787095 + 0.616831i 0.788416π0.788416\pi
354354 59.0865 3.14041
355355 13.3280 0.707376
356356 8.71458i 0.461872i
357357 −25.4026 −1.34445
358358 − 14.6123i − 0.772283i
359359 20.2837i 1.07053i 0.844683 + 0.535267i 0.179789π0.179789\pi
−0.844683 + 0.535267i 0.820211π0.820211\pi
360360 2.89541i 0.152602i
361361 −5.14124 −0.270592
362362 − 46.5750i − 2.44793i
363363 22.1207i 1.16104i
364364 6.99941 0.366869
365365 12.2154i 0.639382i
366366 − 8.49667i − 0.444128i
367367 − 16.9933i − 0.887044i −0.896263 0.443522i 0.853729π-0.853729\pi
0.896263 0.443522i 0.146271π-0.146271\pi
368368 −10.8424 −0.565200
369369 25.4610i 1.32545i
370370 51.8553 2.69583
371371 −4.09415 −0.212558
372372 −6.44033 −0.333915
373373 −10.4156 −0.539300 −0.269650 0.962958i 0.586908π-0.586908\pi
−0.269650 + 0.962958i 0.586908π0.586908\pi
374374 9.65990i 0.499502i
375375 − 2.56352i − 0.132380i
376376 0.401110 0.0206856
377377 0 0
378378 9.39515 0.483234
379379 22.8981i 1.17619i 0.808790 + 0.588097i 0.200123π0.200123\pi
−0.808790 + 0.588097i 0.799877π0.799877\pi
380380 28.2301i 1.44817i
381381 −40.5277 −2.07630
382382 −26.0842 −1.33458
383383 2.90269 0.148320 0.0741602 0.997246i 0.476372π-0.476372\pi
0.0741602 + 0.997246i 0.476372π0.476372\pi
384384 7.52849 0.384187
385385 9.14395i 0.466019i
386386 −24.8480 −1.26473
387387 4.06899i 0.206838i
388388 27.8861i 1.41570i
389389 3.15385i 0.159907i 0.996799 + 0.0799533i 0.0254771π0.0254771\pi
−0.996799 + 0.0799533i 0.974523π0.974523\pi
390390 22.0265 1.11536
391391 − 10.9348i − 0.552998i
392392 − 0.249169i − 0.0125850i
393393 −1.30552 −0.0658548
394394 − 7.93292i − 0.399655i
395395 − 42.5826i − 2.14256i
396396 4.33275i 0.217729i
397397 21.2009 1.06404 0.532021 0.846731i 0.321433π-0.321433\pi
0.532021 + 0.846731i 0.321433π0.321433\pi
398398 33.0148i 1.65488i
399399 28.2395 1.41374
400400 −23.4494 −1.17247
401401 −4.29991 −0.214728 −0.107364 0.994220i 0.534241π-0.534241\pi
−0.107364 + 0.994220i 0.534241π0.534241\pi
402402 −13.3648 −0.666573
403403 − 2.45924i − 0.122503i
404404 − 20.3483i − 1.01236i
405405 34.7933 1.72889
406406 0 0
407407 −9.30497 −0.461230
408408 4.18327i 0.207103i
409409 25.4982i 1.26081i 0.776268 + 0.630403i 0.217110π0.217110\pi
−0.776268 + 0.630403i 0.782890π0.782890\pi
410410 −73.7931 −3.64438
411411 31.3082 1.54432
412412 −13.1959 −0.650113
413413 33.8255 1.66445
414414 − 10.3973i − 0.511000i
415415 31.2343 1.53323
416416 − 11.9177i − 0.584313i
417417 24.0813i 1.17927i
418418 − 10.7387i − 0.525246i
419419 −6.74628 −0.329578 −0.164789 0.986329i 0.552694π-0.552694\pi
−0.164789 + 0.986329i 0.552694π0.552694\pi
420420 − 33.0225i − 1.61133i
421421 34.5466i 1.68370i 0.539713 + 0.841849i 0.318533π0.318533\pi
−0.539713 + 0.841849i 0.681467π0.681467\pi
422422 8.59273 0.418288
423423 2.07920i 0.101094i
424424 0.674219i 0.0327430i
425425 − 23.6493i − 1.14716i
426426 18.3096 0.887104
427427 − 4.86413i − 0.235392i
428428 21.2877 1.02898
429429 −3.95246 −0.190826
430430 −11.7930 −0.568711
431431 9.87958 0.475882 0.237941 0.971280i 0.423527π-0.423527\pi
0.237941 + 0.971280i 0.423527π0.423527\pi
432432 − 8.36333i − 0.402381i
433433 − 3.20188i − 0.153873i −0.997036 0.0769363i 0.975486π-0.975486\pi
0.997036 0.0769363i 0.0245138π-0.0245138\pi
434434 −7.81596 −0.375178
435435 0 0
436436 28.8806 1.38313
437437 12.1560i 0.581500i
438438 16.7811i 0.801834i
439439 −6.41437 −0.306141 −0.153071 0.988215i 0.548916π-0.548916\pi
−0.153071 + 0.988215i 0.548916π0.548916\pi
440440 1.50581 0.0717869
441441 1.29160 0.0615047
442442 13.3211 0.633622
443443 8.49949i 0.403823i 0.979404 + 0.201911i 0.0647153π0.0647153\pi
−0.979404 + 0.201911i 0.935285π0.935285\pi
444444 33.6040 1.59477
445445 15.6996i 0.744231i
446446 − 33.2102i − 1.57255i
447447 − 5.37573i − 0.254263i
448448 −15.6998 −0.741746
449449 16.9423i 0.799555i 0.916612 + 0.399778i 0.130913π0.130913\pi
−0.916612 + 0.399778i 0.869087π0.869087\pi
450450 − 22.4868i − 1.06004i
451451 13.2415 0.623518
452452 11.3369i 0.533242i
453453 − 22.1460i − 1.04051i
454454 − 19.0294i − 0.893092i
455455 12.6096 0.591149
456456 − 4.65045i − 0.217777i
457457 −0.505911 −0.0236655 −0.0118328 0.999930i 0.503767π-0.503767\pi
−0.0118328 + 0.999930i 0.503767π0.503767\pi
458458 −6.69173 −0.312684
459459 8.43461 0.393694
460460 14.2149 0.662771
461461 − 5.50088i − 0.256201i −0.991761 0.128101i 0.959112π-0.959112\pi
0.991761 0.128101i 0.0408881π-0.0408881\pi
462462 12.5617i 0.584424i
463463 6.56599 0.305148 0.152574 0.988292i 0.451244π-0.451244\pi
0.152574 + 0.988292i 0.451244π0.451244\pi
464464 0 0
465465 −11.6024 −0.538050
466466 − 8.54480i − 0.395830i
467467 − 4.47819i − 0.207226i −0.994618 0.103613i 0.966960π-0.966960\pi
0.994618 0.103613i 0.0330403π-0.0330403\pi
468468 5.97492 0.276191
469469 −7.65099 −0.353290
470470 −6.02610 −0.277963
471471 −42.6021 −1.96300
472472 − 5.57035i − 0.256396i
473473 2.11615 0.0973008
474474 − 58.4988i − 2.68694i
475475 26.2904i 1.20628i
476476 − 19.9712i − 0.915380i
477477 −3.49489 −0.160020
478478 34.4010i 1.57347i
479479 − 9.27693i − 0.423874i −0.977283 0.211937i 0.932023π-0.932023\pi
0.977283 0.211937i 0.0679771π-0.0679771\pi
480480 −56.2264 −2.56637
481481 12.8317i 0.585074i
482482 − 22.1946i − 1.01093i
483483 − 14.2196i − 0.647015i
484484 −17.3910 −0.790502
485485 50.2375i 2.28117i
486486 36.6586 1.66287
487487 38.0837 1.72574 0.862869 0.505428i 0.168665π-0.168665\pi
0.862869 + 0.505428i 0.168665π0.168665\pi
488488 −0.801018 −0.0362604
489489 21.9254 0.991503
490490 3.74341i 0.169110i
491491 31.5938i 1.42581i 0.701262 + 0.712904i 0.252620π0.252620\pi
−0.701262 + 0.712904i 0.747380π0.747380\pi
492492 −47.8204 −2.15591
493493 0 0
494494 −14.8088 −0.666279
495495 7.80557i 0.350834i
496496 6.95758i 0.312405i
497497 10.4818 0.470173
498498 42.9088 1.92279
499499 21.0654 0.943016 0.471508 0.881862i 0.343710π-0.343710\pi
0.471508 + 0.881862i 0.343710π0.343710\pi
500500 2.01541 0.0901318
501501 − 1.05591i − 0.0471746i
502502 −49.6853 −2.21757
503503 − 26.2365i − 1.16983i −0.811095 0.584915i 0.801128π-0.801128\pi
0.811095 0.584915i 0.198872π-0.198872\pi
504504 2.27710i 0.101430i
505505 − 36.6580i − 1.63126i
506506 −5.40732 −0.240384
507507 − 24.0795i − 1.06941i
508508 − 31.8623i − 1.41366i
509509 −20.9900 −0.930366 −0.465183 0.885215i 0.654011π-0.654011\pi
−0.465183 + 0.885215i 0.654011π0.654011\pi
510510 − 62.8477i − 2.78294i
511511 9.60679i 0.424979i
512512 30.0650i 1.32870i
513513 −9.37656 −0.413985
514514 0.347540i 0.0153293i
515515 −23.7727 −1.04755
516516 −7.64228 −0.336432
517517 1.08133 0.0475567
518518 40.7817 1.79184
519519 50.6357i 2.22266i
520520 − 2.07654i − 0.0910622i
521521 37.4112 1.63901 0.819507 0.573069i 0.194247π-0.194247\pi
0.819507 + 0.573069i 0.194247π0.194247\pi
522522 0 0
523523 17.4633 0.763618 0.381809 0.924241i 0.375301π-0.375301\pi
0.381809 + 0.924241i 0.375301π0.375301\pi
524524 − 1.02638i − 0.0448378i
525525 − 30.7535i − 1.34219i
526526 −10.9589 −0.477832
527527 −7.01688 −0.305660
528528 11.1821 0.486640
529529 −16.8790 −0.733871
530530 − 10.1292i − 0.439983i
531531 28.8746 1.25305
532532 22.2015i 0.962559i
533533 − 18.2602i − 0.790937i
534534 21.5676i 0.933323i
535535 38.3503 1.65803
536536 1.25995i 0.0544217i
537537 − 17.0591i − 0.736154i
538538 −3.79091 −0.163438
539539 − 0.671721i − 0.0289331i
540540 10.9647i 0.471845i
541541 − 5.69494i − 0.244845i −0.992478 0.122422i 0.960934π-0.960934\pi
0.992478 0.122422i 0.0390662π-0.0390662\pi
542542 −33.9369 −1.45771
543543 − 54.3740i − 2.33341i
544544 −34.0044 −1.45793
545545 52.0292 2.22868
546546 17.3228 0.741346
547547 −26.1122 −1.11648 −0.558238 0.829681i 0.688522π-0.688522\pi
−0.558238 + 0.829681i 0.688522π0.688522\pi
548548 24.6141i 1.05146i
549549 − 4.15217i − 0.177210i
550550 −11.6947 −0.498663
551551 0 0
552552 −2.34167 −0.0996680
553553 − 33.4891i − 1.42410i
554554 − 29.8563i − 1.26847i
555555 60.5385 2.56971
556556 −18.9324 −0.802912
557557 −28.6514 −1.21400 −0.606998 0.794703i 0.707627π-0.707627\pi
−0.606998 + 0.794703i 0.707627π0.707627\pi
558558 −6.67195 −0.282446
559559 − 2.91820i − 0.123427i
560560 −35.6747 −1.50753
561561 11.2774i 0.476134i
562562 − 25.7054i − 1.08432i
563563 2.23595i 0.0942341i 0.998889 + 0.0471170i 0.0150034π0.0150034\pi
−0.998889 + 0.0471170i 0.984997π0.984997\pi
564564 −3.90511 −0.164435
565565 20.4237i 0.859231i
566566 21.7070i 0.912414i
567567 27.3632 1.14915
568568 − 1.72613i − 0.0724268i
569569 14.6792i 0.615385i 0.951486 + 0.307692i 0.0995568π0.0995568\pi
−0.951486 + 0.307692i 0.900443π0.900443\pi
570570 69.8663i 2.92638i
571571 20.8600 0.872962 0.436481 0.899714i 0.356225π-0.356225\pi
0.436481 + 0.899714i 0.356225π0.356225\pi
572572 − 3.10737i − 0.129926i
573573 −30.4520 −1.27215
574574 −58.0347 −2.42232
575575 13.2381 0.552069
576576 −13.4018 −0.558410
577577 22.4919i 0.936348i 0.883636 + 0.468174i 0.155088π0.155088\pi
−0.883636 + 0.468174i 0.844912π0.844912\pi
578578 − 4.93149i − 0.205123i
579579 −29.0087 −1.20556
580580 0 0
581581 24.5642 1.01909
582582 69.0150i 2.86076i
583583 1.81759i 0.0752767i
584584 1.58203 0.0654650
585585 10.7640 0.445036
586586 13.2363 0.546788
587587 16.4960 0.680864 0.340432 0.940269i 0.389427π-0.389427\pi
0.340432 + 0.940269i 0.389427π0.389427\pi
588588 2.42585i 0.100040i
589589 7.80050 0.321414
590590 83.6865i 3.44532i
591591 − 9.26127i − 0.380958i
592592 − 36.3029i − 1.49204i
593593 45.1022 1.85212 0.926062 0.377371i 0.123172π-0.123172\pi
0.926062 + 0.377371i 0.123172π0.123172\pi
594594 − 4.17095i − 0.171136i
595595 − 35.9787i − 1.47498i
596596 4.22633 0.173117
597597 38.5431i 1.57746i
598598 7.45676i 0.304930i
599599 − 10.5711i − 0.431925i −0.976402 0.215963i 0.930711π-0.930711\pi
0.976402 0.215963i 0.0692889π-0.0692889\pi
600600 −5.06444 −0.206755
601601 0.743399i 0.0303239i 0.999885 + 0.0151619i 0.00482638π0.00482638\pi
−0.999885 + 0.0151619i 0.995174π0.995174\pi
602602 −9.27465 −0.378006
603603 −6.53113 −0.265968
604604 17.4109 0.708439
605605 −31.3305 −1.27376
606606 − 50.3597i − 2.04572i
607607 − 32.6175i − 1.32390i −0.749546 0.661952i 0.769728π-0.769728\pi
0.749546 0.661952i 0.230272π-0.230272\pi
608608 37.8019 1.53307
609609 0 0
610610 12.0342 0.487248
611611 − 1.49117i − 0.0603261i
612612 − 17.0481i − 0.689128i
613613 −15.0054 −0.606064 −0.303032 0.952980i 0.597999π-0.597999\pi
−0.303032 + 0.952980i 0.597999π0.597999\pi
614614 31.4387 1.26876
615615 −86.1497 −3.47389
616616 1.18425 0.0477147
617617 41.5249i 1.67173i 0.548936 + 0.835864i 0.315033π0.315033\pi
−0.548936 + 0.835864i 0.684967π0.684967\pi
618618 −32.6583 −1.31371
619619 − 21.3783i − 0.859268i −0.903003 0.429634i 0.858643π-0.858643\pi
0.903003 0.429634i 0.141357π-0.141357\pi
620620 − 9.12168i − 0.366335i
621621 4.72144i 0.189465i
622622 8.44356 0.338556
623623 12.3469i 0.494669i
624624 − 15.4203i − 0.617307i
625625 −23.1231 −0.924923
626626 2.08855i 0.0834752i
627627 − 12.5369i − 0.500674i
628628 − 33.4932i − 1.33652i
629629 36.6123 1.45983
630630 − 34.2101i − 1.36296i
631631 −22.2833 −0.887085 −0.443542 0.896253i 0.646278π-0.646278\pi
−0.443542 + 0.896253i 0.646278π0.646278\pi
632632 −5.51494 −0.219372
633633 10.0316 0.398719
634634 15.1653 0.602290
635635 − 57.4009i − 2.27788i
636636 − 6.56403i − 0.260281i
637637 −0.926312 −0.0367018
638638 0 0
639639 8.94760 0.353962
640640 10.6629i 0.421488i
641641 26.5934i 1.05038i 0.850986 + 0.525188i 0.176005π0.176005\pi
−0.850986 + 0.525188i 0.823995π0.823995\pi
642642 52.6846 2.07930
643643 −38.2237 −1.50740 −0.753699 0.657220i 0.771732π-0.771732\pi
−0.753699 + 0.657220i 0.771732π0.771732\pi
644644 11.1793 0.440525
645645 −13.7678 −0.542106
646646 42.2535i 1.66244i
647647 −32.8334 −1.29081 −0.645407 0.763839i 0.723312π-0.723312\pi
−0.645407 + 0.763839i 0.723312π0.723312\pi
648648 − 4.50614i − 0.177018i
649649 − 15.0168i − 0.589460i
650650 16.1271i 0.632558i
651651 −9.12473 −0.357626
652652 17.2375i 0.675073i
653653 1.30358i 0.0510131i 0.999675 + 0.0255066i 0.00811987π0.00811987\pi
−0.999675 + 0.0255066i 0.991880π0.991880\pi
654654 71.4762 2.79494
655655 − 1.84906i − 0.0722487i
656656 51.6611i 2.01703i
657657 8.20066i 0.319938i
658658 −4.73923 −0.184754
659659 − 19.7479i − 0.769267i −0.923069 0.384634i 0.874328π-0.874328\pi
0.923069 0.384634i 0.125672π-0.125672\pi
660660 −14.6602 −0.570649
661661 −42.1752 −1.64042 −0.820212 0.572059i 0.806145π-0.806145\pi
−0.820212 + 0.572059i 0.806145π0.806145\pi
662662 −19.3739 −0.752989
663663 15.5517 0.603980
664664 − 4.04520i − 0.156984i
665665 39.9967i 1.55101i
666666 34.8125 1.34896
667667 0 0
668668 0.830144 0.0321192
669669 − 38.7712i − 1.49898i
670670 − 18.9290i − 0.731291i
671671 −2.15942 −0.0833634
672672 −44.2193 −1.70579
673673 41.6873 1.60693 0.803464 0.595353i 0.202988π-0.202988\pi
0.803464 + 0.595353i 0.202988π0.202988\pi
674674 −41.5605 −1.60085
675675 10.2113i 0.393033i
676676 18.9310 0.728114
677677 24.5737i 0.944443i 0.881480 + 0.472221i 0.156548π0.156548\pi
−0.881480 + 0.472221i 0.843452π0.843452\pi
678678 28.0575i 1.07754i
679679 39.5093i 1.51623i
680680 −5.92493 −0.227211
681681 − 22.2158i − 0.851311i
682682 3.46988i 0.132868i
683683 43.1311 1.65036 0.825182 0.564867i 0.191072π-0.191072\pi
0.825182 + 0.564867i 0.191072π0.191072\pi
684684 18.9519i 0.724646i
685685 44.3431i 1.69426i
686686 37.4058i 1.42816i
687687 −7.81225 −0.298056
688688 8.25607i 0.314760i
689689 2.50648 0.0954891
690690 35.1802 1.33929
691691 −41.0599 −1.56199 −0.780996 0.624536i 0.785288π-0.785288\pi
−0.780996 + 0.624536i 0.785288π0.785288\pi
692692 −39.8091 −1.51332
693693 6.13869i 0.233190i
694694 − 52.3691i − 1.98790i
695695 −34.1072 −1.29376
696696 0 0
697697 −52.1014 −1.97348
698698 36.5375i 1.38297i
699699 − 9.97562i − 0.377313i
700700 24.1780 0.913842
701701 −1.11188 −0.0419949 −0.0209975 0.999780i 0.506684π-0.506684\pi
−0.0209975 + 0.999780i 0.506684π0.506684\pi
702702 −5.75180 −0.217088
703703 −40.7010 −1.53507
704704 6.96989i 0.262687i
705705 −7.03516 −0.264959
706706 − 57.5475i − 2.16583i
707707 − 28.8297i − 1.08425i
708708 54.2315i 2.03815i
709709 −29.9385 −1.12437 −0.562183 0.827013i 0.690038π-0.690038\pi
−0.562183 + 0.827013i 0.690038π0.690038\pi
710710 25.9326i 0.973234i
711711 − 28.5873i − 1.07211i
712712 2.03328 0.0762002
713713 − 3.92783i − 0.147099i
714714 − 49.4266i − 1.84974i
715715 − 5.59801i − 0.209354i
716716 13.4116 0.501217
717717 40.1614i 1.49986i
718718 −39.4666 −1.47288
719719 −5.03075 −0.187615 −0.0938076 0.995590i 0.529904π-0.529904\pi
−0.0938076 + 0.995590i 0.529904π0.529904\pi
720720 −30.4530 −1.13492
721721 −18.6961 −0.696277
722722 − 10.0034i − 0.372290i
723723 − 25.9110i − 0.963640i
724724 42.7481 1.58872
725725 0 0
726726 −43.0409 −1.59740
727727 0.650727i 0.0241341i 0.999927 + 0.0120671i 0.00384116π0.00384116\pi
−0.999927 + 0.0120671i 0.996159π0.996159\pi
728728 − 1.63309i − 0.0605265i
729729 10.3533 0.383455
730730 −23.7678 −0.879685
731731 −8.32643 −0.307964
732732 7.79852 0.288242
733733 − 11.3833i − 0.420451i −0.977653 0.210225i 0.932580π-0.932580\pi
0.977653 0.210225i 0.0674198π-0.0674198\pi
734734 33.0644 1.22043
735735 4.37024i 0.161199i
736736 − 19.0346i − 0.701626i
737737 3.39664i 0.125117i
738738 −49.5402 −1.82360
739739 − 19.1778i − 0.705465i −0.935724 0.352732i 0.885253π-0.885253\pi
0.935724 0.352732i 0.114747π-0.114747\pi
740740 47.5946i 1.74961i
741741 −17.2885 −0.635109
742742 − 7.96609i − 0.292444i
743743 − 32.1621i − 1.17991i −0.807436 0.589956i 0.799145π-0.799145\pi
0.807436 0.589956i 0.200855π-0.200855\pi
744744 1.50265i 0.0550898i
745745 7.61385 0.278950
746746 − 20.2659i − 0.741988i
747747 20.9688 0.767208
748748 −8.86618 −0.324180
749749 30.1606 1.10205
750750 4.98792 0.182133
751751 38.3085i 1.39790i 0.715172 + 0.698949i 0.246348π0.246348\pi
−0.715172 + 0.698949i 0.753652π0.753652\pi
752752 4.21875i 0.153842i
753753 −58.0051 −2.11382
754754 0 0
755755 31.3662 1.14153
756756 8.62318i 0.313622i
757757 − 11.3624i − 0.412975i −0.978449 0.206487i 0.933797π-0.933797\pi
0.978449 0.206487i 0.0662032π-0.0662032\pi
758758 −44.5534 −1.61825
759759 −6.31276 −0.229139
760760 6.58660 0.238921
761761 −15.6194 −0.566205 −0.283102 0.959090i 0.591364π-0.591364\pi
−0.283102 + 0.959090i 0.591364π0.591364\pi
762762 − 78.8558i − 2.85664i
763763 40.9184 1.48134
764764 − 23.9409i − 0.866153i
765765 − 30.7126i − 1.11042i
766766 5.64784i 0.204065i
767767 −20.7083 −0.747734
768768 42.8378i 1.54578i
769769 9.65324i 0.348105i 0.984736 + 0.174052i 0.0556862π0.0556862\pi
−0.984736 + 0.174052i 0.944314π0.944314\pi
770770 −17.7916 −0.641166
771771 0.405735i 0.0146122i
772772 − 22.8063i − 0.820816i
773773 15.7145i 0.565211i 0.959236 + 0.282605i 0.0911987π0.0911987\pi
−0.959236 + 0.282605i 0.908801π0.908801\pi
774774 −7.91713 −0.284576
775775 − 8.49493i − 0.305147i
776776 6.50635 0.233564
777777 47.6105 1.70802
778778 −6.13653 −0.220005
779779 57.9199 2.07519
780780 20.2167i 0.723873i
781781 − 4.65337i − 0.166511i
782782 21.2762 0.760835
783783 0 0
784784 2.62069 0.0935959
785785 − 60.3389i − 2.15359i
786786 − 2.54019i − 0.0906055i
787787 −5.12572 −0.182712 −0.0913560 0.995818i 0.529120π-0.529120\pi
−0.0913560 + 0.995818i 0.529120π0.529120\pi
788788 7.28109 0.259378
789789 −12.7940 −0.455477
790790 82.8540 2.94781
791791 16.0622i 0.571107i
792792 1.01091 0.0359212
793793 2.97787i 0.105747i
794794 41.2511i 1.46395i
795795 − 11.8253i − 0.419400i
796796 −30.3021 −1.07403
797797 − 40.5663i − 1.43693i −0.695562 0.718466i 0.744844π-0.744844\pi
0.695562 0.718466i 0.255156π-0.255156\pi
798798 54.9464i 1.94508i
799799 −4.25470 −0.150521
800800 − 41.1672i − 1.45548i
801801 10.5397i 0.372403i
802802 − 8.36646i − 0.295430i
803803 4.26491 0.150505
804804 − 12.2666i − 0.432610i
805805 20.1398 0.709834
806806 4.78501 0.168545
807807 −4.42569 −0.155792
808808 −4.74763 −0.167021
809809 − 31.0217i − 1.09066i −0.838220 0.545332i 0.816403π-0.816403\pi
0.838220 0.545332i 0.183597π-0.183597\pi
810810 67.6982i 2.37867i
811811 45.3970 1.59410 0.797052 0.603910i 0.206391π-0.206391\pi
0.797052 + 0.603910i 0.206391π0.206391\pi
812812 0 0
813813 −39.6196 −1.38952
814814 − 18.1049i − 0.634577i
815815 31.0538i 1.08777i
816816 −43.9984 −1.54025
817817 9.25630 0.323837
818818 −49.6125 −1.73466
819819 8.46534 0.295803
820820 − 67.7298i − 2.36523i
821821 26.4086 0.921665 0.460833 0.887487i 0.347551π-0.347551\pi
0.460833 + 0.887487i 0.347551π0.347551\pi
822822 60.9173i 2.12473i
823823 − 34.3735i − 1.19818i −0.800680 0.599092i 0.795528π-0.795528\pi
0.800680 0.599092i 0.204472π-0.204472\pi
824824 3.07884i 0.107257i
825825 −13.6529 −0.475334
826826 65.8153i 2.29001i
827827 40.3495i 1.40309i 0.712626 + 0.701545i 0.247506π0.247506\pi
−0.712626 + 0.701545i 0.752494π0.752494\pi
828828 9.54299 0.331642
829829 − 41.4695i − 1.44029i −0.693821 0.720147i 0.744074π-0.744074\pi
0.693821 0.720147i 0.255926π-0.255926\pi
830830 60.7733i 2.10947i
831831 − 34.8557i − 1.20913i
832832 9.61157 0.333221
833833 2.64302i 0.0915753i
834834 −46.8556 −1.62248
835835 1.49553 0.0517549
836836 9.85632 0.340888
837837 3.02975 0.104723
838838 − 13.1264i − 0.453445i
839839 − 12.9838i − 0.448250i −0.974560 0.224125i 0.928048π-0.928048\pi
0.974560 0.224125i 0.0719523π-0.0719523\pi
840840 −7.70476 −0.265840
841841 0 0
842842 −67.2183 −2.31649
843843 − 30.0097i − 1.03359i
844844 7.88669i 0.271471i
845845 34.1047 1.17324
846846 −4.04556 −0.139089
847847 −24.6399 −0.846635
848848 −7.09122 −0.243514
849849 25.3418i 0.869729i
850850 46.0151 1.57830
851851 20.4944i 0.702540i
852852 16.8052i 0.575736i
853853 − 8.15508i − 0.279225i −0.990206 0.139612i 0.955414π-0.955414\pi
0.990206 0.139612i 0.0445856π-0.0445856\pi
854854 9.46426 0.323860
855855 34.1425i 1.16765i
856856 − 4.96681i − 0.169762i
857857 −29.3691 −1.00323 −0.501615 0.865091i 0.667261π-0.667261\pi
−0.501615 + 0.865091i 0.667261π0.667261\pi
858858 − 7.69040i − 0.262546i
859859 19.4101i 0.662265i 0.943584 + 0.331133i 0.107431π0.107431\pi
−0.943584 + 0.331133i 0.892569π0.892569\pi
860860 − 10.8240i − 0.369097i
861861 −67.7525 −2.30900
862862 19.2230i 0.654736i
863863 50.6162 1.72300 0.861498 0.507760i 0.169526π-0.169526\pi
0.861498 + 0.507760i 0.169526π0.169526\pi
864864 14.6824 0.499506
865865 −71.7173 −2.43846
866866 6.22999 0.211704
867867 − 5.75726i − 0.195527i
868868 − 7.17375i − 0.243493i
869869 −14.8674 −0.504342
870870 0 0
871871 4.68401 0.158712
872872 − 6.73838i − 0.228190i
873873 33.7264i 1.14147i
874874 −23.6522 −0.800048
875875 2.85546 0.0965321
876876 −15.4023 −0.520395
877877 35.1220 1.18598 0.592992 0.805208i 0.297946π-0.297946\pi
0.592992 + 0.805208i 0.297946π0.297946\pi
878878 − 12.4806i − 0.421200i
879879 15.4527 0.521208
880880 15.8377i 0.533888i
881881 32.1831i 1.08428i 0.840289 + 0.542138i 0.182385π0.182385\pi
−0.840289 + 0.542138i 0.817615π0.817615\pi
882882 2.51310i 0.0846204i
883883 46.8381 1.57623 0.788113 0.615530i 0.211058π-0.211058\pi
0.788113 + 0.615530i 0.211058π0.211058\pi
884884 12.2266i 0.411224i
885885 97.6996i 3.28414i
886886 −16.5377 −0.555594
887887 − 6.85131i − 0.230045i −0.993363 0.115022i 0.963306π-0.963306\pi
0.993363 0.115022i 0.0366939π-0.0366939\pi
888888 − 7.84043i − 0.263108i
889889 − 45.1429i − 1.51405i
890890 −30.5471 −1.02394
891891 − 12.1478i − 0.406968i
892892 30.4814 1.02059
893893 4.72985 0.158278
894894 10.4597 0.349825
895895 24.1614 0.807628
896896 8.38584i 0.280151i
897897 8.70538i 0.290664i
898898 −32.9650 −1.10006
899899 0 0
900900 20.6391 0.687970
901901 − 7.15166i − 0.238256i
902902 25.7643i 0.857859i
903903 −10.8277 −0.360322
904904 2.64511 0.0879749
905905 77.0119 2.55996
906906 43.0900 1.43157
907907 12.2503i 0.406764i 0.979099 + 0.203382i 0.0651933π0.0651933\pi
−0.979099 + 0.203382i 0.934807π0.934807\pi
908908 17.4658 0.579622
909909 − 24.6099i − 0.816260i
910910 24.5349i 0.813324i
911911 − 19.8474i − 0.657572i −0.944404 0.328786i 0.893360π-0.893360\pi
0.944404 0.328786i 0.106640π-0.106640\pi
912912 48.9119 1.61964
913913 − 10.9052i − 0.360910i
914914 − 0.984364i − 0.0325599i
915915 14.0493 0.464454
916916 − 6.14189i − 0.202934i
917917 − 1.45419i − 0.0480217i
918918 16.4115i 0.541659i
919919 −30.5383 −1.00736 −0.503682 0.863889i 0.668022π-0.668022\pi
−0.503682 + 0.863889i 0.668022π0.668022\pi
920920 − 3.31659i − 0.109345i
921921 36.7031 1.20941
922922 10.7032 0.352491
923923 −6.41706 −0.211220
924924 −11.5296 −0.379294
925925 44.3243i 1.45737i
926926 12.7756i 0.419833i
927927 −15.9595 −0.524180
928928 0 0
929929 −8.90962 −0.292315 −0.146158 0.989261i 0.546691π-0.546691\pi
−0.146158 + 0.989261i 0.546691π0.546691\pi
930930 − 22.5751i − 0.740268i
931931 − 2.93818i − 0.0962951i
932932 7.84270 0.256896
933933 9.85742 0.322717
934934 8.71333 0.285109
935935 −15.9727 −0.522362
936936 − 1.39406i − 0.0455663i
937937 −15.3972 −0.503006 −0.251503 0.967857i 0.580925π-0.580925\pi
−0.251503 + 0.967857i 0.580925π0.580925\pi
938938 − 14.8867i − 0.486069i
939939 2.43827i 0.0795701i
940940 − 5.53095i − 0.180400i
941941 −46.5126 −1.51627 −0.758133 0.652100i 0.773888π-0.773888\pi
−0.758133 + 0.652100i 0.773888π0.773888\pi
942942 − 82.8920i − 2.70077i
943943 − 29.1647i − 0.949735i
944944 58.5872 1.90685
945945 15.5349i 0.505350i
946946 4.11746i 0.133870i
947947 31.2180i 1.01445i 0.861814 + 0.507224i 0.169328π0.169328\pi
−0.861814 + 0.507224i 0.830672π0.830672\pi
948948 53.6921 1.74384
949949 − 5.88137i − 0.190917i
950950 −51.1539 −1.65965
951951 17.7047 0.574114
952952 −4.65966 −0.151021
953953 −24.5654 −0.795752 −0.397876 0.917439i 0.630253π-0.630253\pi
−0.397876 + 0.917439i 0.630253π0.630253\pi
954954 − 6.80011i − 0.220162i
955955 − 43.1303i − 1.39566i
956956 −31.5744 −1.02119
957957 0 0
958958 18.0504 0.583181
959959 34.8736i 1.12613i
960960 − 45.3463i − 1.46355i
961961 28.4795 0.918694
962962 −24.9669 −0.804966
963963 25.7461 0.829655
964964 20.3709 0.656102
965965 − 41.0862i − 1.32261i
966966 27.6675 0.890187
967967 25.3774i 0.816082i 0.912964 + 0.408041i 0.133788π0.133788\pi
−0.912964 + 0.408041i 0.866212π0.866212\pi
968968 4.05766i 0.130418i
969969 49.3288i 1.58467i
970970 −97.7485 −3.13852
971971 − 11.0345i − 0.354115i −0.984200 0.177058i 0.943342π-0.943342\pi
0.984200 0.177058i 0.0566579π-0.0566579\pi
972972 33.6464i 1.07921i
973973 −26.8237 −0.859927
974974 74.1005i 2.37433i
975975 18.8276i 0.602965i
976976 − 8.42486i − 0.269673i
977977 −52.4730 −1.67876 −0.839380 0.543545i 0.817082π-0.817082\pi
−0.839380 + 0.543545i 0.817082π0.817082\pi
978978 42.6609i 1.36415i
979979 5.48139 0.175186
980980 −3.43583 −0.109753
981981 34.9292 1.11520
982982 −61.4729 −1.96168
983983 − 46.0772i − 1.46964i −0.678265 0.734818i 0.737268π-0.737268\pi
0.678265 0.734818i 0.262732π-0.262732\pi
984984 11.1574i 0.355685i
985985 13.1171 0.417945
986986 0 0
987987 −5.53280 −0.176111
988988 − 13.5920i − 0.432419i
989989 − 4.66088i − 0.148207i
990990 −15.1875 −0.482690
991991 −0.807143 −0.0256397 −0.0128199 0.999918i 0.504081π-0.504081\pi
−0.0128199 + 0.999918i 0.504081π0.504081\pi
992992 −12.2145 −0.387812
993993 −22.6181 −0.717762
994994 20.3947i 0.646881i
995995 −54.5900 −1.73062
996996 39.3831i 1.24790i
997997 30.6050i 0.969270i 0.874716 + 0.484635i 0.161048π0.161048\pi
−0.874716 + 0.484635i 0.838952π0.838952\pi
998998 40.9875i 1.29744i
999999 −15.8084 −0.500157
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.d.840.10 12
29.2 odd 28 841.2.d.n.605.2 36
29.3 odd 28 841.2.d.n.571.2 36
29.4 even 14 841.2.e.l.651.3 72
29.5 even 14 841.2.e.l.236.10 72
29.6 even 14 841.2.e.l.196.3 72
29.7 even 7 841.2.e.l.270.3 72
29.8 odd 28 841.2.d.o.574.2 36
29.9 even 14 841.2.e.l.267.3 72
29.10 odd 28 841.2.d.o.190.5 36
29.11 odd 28 841.2.d.n.778.5 36
29.12 odd 4 841.2.a.g.1.2 6
29.13 even 14 841.2.e.l.63.10 72
29.14 odd 28 841.2.d.n.645.2 36
29.15 odd 28 841.2.d.o.645.5 36
29.16 even 7 841.2.e.l.63.3 72
29.17 odd 4 841.2.a.h.1.5 yes 6
29.18 odd 28 841.2.d.o.778.2 36
29.19 odd 28 841.2.d.n.190.2 36
29.20 even 7 841.2.e.l.267.10 72
29.21 odd 28 841.2.d.n.574.5 36
29.22 even 14 841.2.e.l.270.10 72
29.23 even 7 841.2.e.l.196.10 72
29.24 even 7 841.2.e.l.236.3 72
29.25 even 7 841.2.e.l.651.10 72
29.26 odd 28 841.2.d.o.571.5 36
29.27 odd 28 841.2.d.o.605.5 36
29.28 even 2 inner 841.2.b.d.840.3 12
87.17 even 4 7569.2.a.y.1.2 6
87.41 even 4 7569.2.a.bc.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.g.1.2 6 29.12 odd 4
841.2.a.h.1.5 yes 6 29.17 odd 4
841.2.b.d.840.3 12 29.28 even 2 inner
841.2.b.d.840.10 12 1.1 even 1 trivial
841.2.d.n.190.2 36 29.19 odd 28
841.2.d.n.571.2 36 29.3 odd 28
841.2.d.n.574.5 36 29.21 odd 28
841.2.d.n.605.2 36 29.2 odd 28
841.2.d.n.645.2 36 29.14 odd 28
841.2.d.n.778.5 36 29.11 odd 28
841.2.d.o.190.5 36 29.10 odd 28
841.2.d.o.571.5 36 29.26 odd 28
841.2.d.o.574.2 36 29.8 odd 28
841.2.d.o.605.5 36 29.27 odd 28
841.2.d.o.645.5 36 29.15 odd 28
841.2.d.o.778.2 36 29.18 odd 28
841.2.e.l.63.3 72 29.16 even 7
841.2.e.l.63.10 72 29.13 even 14
841.2.e.l.196.3 72 29.6 even 14
841.2.e.l.196.10 72 29.23 even 7
841.2.e.l.236.3 72 29.24 even 7
841.2.e.l.236.10 72 29.5 even 14
841.2.e.l.267.3 72 29.9 even 14
841.2.e.l.267.10 72 29.20 even 7
841.2.e.l.270.3 72 29.7 even 7
841.2.e.l.270.10 72 29.22 even 14
841.2.e.l.651.3 72 29.4 even 14
841.2.e.l.651.10 72 29.25 even 7
7569.2.a.y.1.2 6 87.17 even 4
7569.2.a.bc.1.5 6 87.41 even 4