Properties

Label 8424.2.a.n
Level 84248424
Weight 22
Character orbit 8424.a
Self dual yes
Analytic conductor 67.26667.266
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8424,2,Mod(1,8424)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8424, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8424.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8424=233413 8424 = 2^{3} \cdot 3^{4} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8424.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 67.265978662767.2659786627
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+1)q5βq7+(β2)q11q13+(2β4)q17+(2β1)q19+(β+1)q23+(2β1)q25+9q29+(2β+2)q31+(β3)q35++(3β1)q97+O(q100) q + (\beta + 1) q^{5} - \beta q^{7} + (\beta - 2) q^{11} - q^{13} + ( - 2 \beta - 4) q^{17} + (2 \beta - 1) q^{19} + ( - \beta + 1) q^{23} + (2 \beta - 1) q^{25} + 9 q^{29} + ( - 2 \beta + 2) q^{31} + ( - \beta - 3) q^{35} + \cdots + ( - 3 \beta - 1) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q54q112q138q172q19+2q232q25+18q29+4q316q35+12q376q414q438q49+2q53+2q5516q59+20q61+2q97+O(q100) 2 q + 2 q^{5} - 4 q^{11} - 2 q^{13} - 8 q^{17} - 2 q^{19} + 2 q^{23} - 2 q^{25} + 18 q^{29} + 4 q^{31} - 6 q^{35} + 12 q^{37} - 6 q^{41} - 4 q^{43} - 8 q^{49} + 2 q^{53} + 2 q^{55} - 16 q^{59} + 20 q^{61}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.73205
1.73205
0 0 0 −0.732051 0 1.73205 0 0 0
1.2 0 0 0 2.73205 0 −1.73205 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8424.2.a.n yes 2
3.b odd 2 1 8424.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8424.2.a.j 2 3.b odd 2 1
8424.2.a.n yes 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8424))S_{2}^{\mathrm{new}}(\Gamma_0(8424)):

T522T52 T_{5}^{2} - 2T_{5} - 2 Copy content Toggle raw display
T723 T_{7}^{2} - 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T22T2 T^{2} - 2T - 2 Copy content Toggle raw display
77 T23 T^{2} - 3 Copy content Toggle raw display
1111 T2+4T+1 T^{2} + 4T + 1 Copy content Toggle raw display
1313 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1717 T2+8T+4 T^{2} + 8T + 4 Copy content Toggle raw display
1919 T2+2T11 T^{2} + 2T - 11 Copy content Toggle raw display
2323 T22T2 T^{2} - 2T - 2 Copy content Toggle raw display
2929 (T9)2 (T - 9)^{2} Copy content Toggle raw display
3131 T24T8 T^{2} - 4T - 8 Copy content Toggle raw display
3737 T212T+24 T^{2} - 12T + 24 Copy content Toggle raw display
4141 T2+6T18 T^{2} + 6T - 18 Copy content Toggle raw display
4343 T2+4T44 T^{2} + 4T - 44 Copy content Toggle raw display
4747 T2108 T^{2} - 108 Copy content Toggle raw display
5353 T22T47 T^{2} - 2T - 47 Copy content Toggle raw display
5959 T2+16T+37 T^{2} + 16T + 37 Copy content Toggle raw display
6161 T220T+73 T^{2} - 20T + 73 Copy content Toggle raw display
6767 T2+8T+4 T^{2} + 8T + 4 Copy content Toggle raw display
7171 T210T23 T^{2} - 10T - 23 Copy content Toggle raw display
7373 T2+4T8 T^{2} + 4T - 8 Copy content Toggle raw display
7979 T22T74 T^{2} - 2T - 74 Copy content Toggle raw display
8383 T2+8T59 T^{2} + 8T - 59 Copy content Toggle raw display
8989 T2+18T+6 T^{2} + 18T + 6 Copy content Toggle raw display
9797 T2+2T26 T^{2} + 2T - 26 Copy content Toggle raw display
show more
show less