Properties

Label 8424.2.a.o
Level $8424$
Weight $2$
Character orbit 8424.a
Self dual yes
Analytic conductor $67.266$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8424,2,Mod(1,8424)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8424, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8424.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8424 = 2^{3} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8424.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.2659786627\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.9225.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 7x + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{5} + \beta_1 q^{7} + (\beta_{2} + 1) q^{11} + q^{13} + (\beta_{3} + \beta_{2} - \beta_1 + 1) q^{17} + (2 \beta_{2} - 1) q^{19} + ( - \beta_{3} + \beta_{2}) q^{23} + (\beta_{2} - 2 \beta_1 + 1) q^{25}+ \cdots + ( - \beta_{3} - 2 \beta_{2} + \cdots + 10) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} + q^{7} + 5 q^{11} + 4 q^{13} + 4 q^{17} - 2 q^{19} + q^{23} + 3 q^{25} - 5 q^{29} - 11 q^{31} + 20 q^{35} - 7 q^{37} + 13 q^{41} + 6 q^{43} + 4 q^{47} - 7 q^{49} + 8 q^{53} + q^{55} - 2 q^{59}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 10x^{2} + 7x + 19 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 6\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 6\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.69932
−1.20008
2.08128
2.81811
0 0 0 −3.69932 0 −2.69932 0 0 0
1.2 0 0 0 −2.20008 0 −1.20008 0 0 0
1.3 0 0 0 1.08128 0 2.08128 0 0 0
1.4 0 0 0 1.81811 0 2.81811 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8424.2.a.o 4
3.b odd 2 1 8424.2.a.r yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8424.2.a.o 4 1.a even 1 1 trivial
8424.2.a.r yes 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8424))\):

\( T_{5}^{4} + 3T_{5}^{3} - 7T_{5}^{2} - 12T_{5} + 16 \) Copy content Toggle raw display
\( T_{7}^{4} - T_{7}^{3} - 10T_{7}^{2} + 7T_{7} + 19 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 19 \) Copy content Toggle raw display
$11$ \( T^{4} - 5 T^{3} + \cdots - 11 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots - 164 \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 331 \) Copy content Toggle raw display
$23$ \( T^{4} - T^{3} + \cdots + 316 \) Copy content Toggle raw display
$29$ \( T^{4} + 5 T^{3} + \cdots + 139 \) Copy content Toggle raw display
$31$ \( T^{4} + 11 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{4} + 7 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{4} - 13 T^{3} + \cdots - 3716 \) Copy content Toggle raw display
$43$ \( T^{4} - 6 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( T^{4} - 8 T^{3} + \cdots + 2644 \) Copy content Toggle raw display
$59$ \( T^{4} + 2 T^{3} + \cdots + 331 \) Copy content Toggle raw display
$61$ \( T^{4} - 13 T^{3} + \cdots - 401 \) Copy content Toggle raw display
$67$ \( T^{4} + 19 T^{3} + \cdots - 16064 \) Copy content Toggle raw display
$71$ \( T^{4} - 18 T^{3} + \cdots - 2169 \) Copy content Toggle raw display
$73$ \( T^{4} - 141 T^{2} + \cdots + 1584 \) Copy content Toggle raw display
$79$ \( T^{4} + 10 T^{3} + \cdots - 4400 \) Copy content Toggle raw display
$83$ \( T^{4} - 12 T^{3} + \cdots - 7391 \) Copy content Toggle raw display
$89$ \( T^{4} - T^{3} + \cdots + 2416 \) Copy content Toggle raw display
$97$ \( T^{4} - 36 T^{3} + \cdots - 16064 \) Copy content Toggle raw display
show more
show less