Properties

Label 8424.2.a.o.1.1
Level $8424$
Weight $2$
Character 8424.1
Self dual yes
Analytic conductor $67.266$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8424,2,Mod(1,8424)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8424, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8424.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8424 = 2^{3} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8424.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.2659786627\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.9225.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 7x + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.69932\) of defining polynomial
Character \(\chi\) \(=\) 8424.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.69932 q^{5} -2.69932 q^{7} +3.28630 q^{11} +1.00000 q^{13} +1.51348 q^{17} +3.57261 q^{19} +6.75844 q^{23} +8.68493 q^{25} -7.75844 q^{29} -10.1715 q^{31} +9.98562 q^{35} -9.68493 q^{37} -9.67055 q^{41} +6.08609 q^{43} +0.486518 q^{47} +0.286303 q^{49} +5.95865 q^{53} -12.1571 q^{55} +3.57261 q^{59} +2.12671 q^{61} -3.69932 q^{65} -4.25414 q^{67} +4.89953 q^{71} -2.33951 q^{73} -8.87077 q^{77} -4.43998 q^{79} -16.9425 q^{83} -5.59885 q^{85} +7.78540 q^{89} -2.69932 q^{91} -13.2162 q^{95} +15.2982 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} + q^{7} + 5 q^{11} + 4 q^{13} + 4 q^{17} - 2 q^{19} + q^{23} + 3 q^{25} - 5 q^{29} - 11 q^{31} + 20 q^{35} - 7 q^{37} + 13 q^{41} + 6 q^{43} + 4 q^{47} - 7 q^{49} + 8 q^{53} + q^{55} - 2 q^{59}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.69932 −1.65438 −0.827192 0.561919i \(-0.810063\pi\)
−0.827192 + 0.561919i \(0.810063\pi\)
\(6\) 0 0
\(7\) −2.69932 −1.02025 −0.510123 0.860102i \(-0.670400\pi\)
−0.510123 + 0.860102i \(0.670400\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.28630 0.990857 0.495429 0.868649i \(-0.335011\pi\)
0.495429 + 0.868649i \(0.335011\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.51348 0.367073 0.183537 0.983013i \(-0.441245\pi\)
0.183537 + 0.983013i \(0.441245\pi\)
\(18\) 0 0
\(19\) 3.57261 0.819612 0.409806 0.912173i \(-0.365596\pi\)
0.409806 + 0.912173i \(0.365596\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.75844 1.40923 0.704616 0.709589i \(-0.251119\pi\)
0.704616 + 0.709589i \(0.251119\pi\)
\(24\) 0 0
\(25\) 8.68493 1.73699
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.75844 −1.44071 −0.720353 0.693608i \(-0.756020\pi\)
−0.720353 + 0.693608i \(0.756020\pi\)
\(30\) 0 0
\(31\) −10.1715 −1.82685 −0.913423 0.407011i \(-0.866571\pi\)
−0.913423 + 0.407011i \(0.866571\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.98562 1.68788
\(36\) 0 0
\(37\) −9.68493 −1.59219 −0.796097 0.605170i \(-0.793105\pi\)
−0.796097 + 0.605170i \(0.793105\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.67055 −1.51029 −0.755143 0.655560i \(-0.772433\pi\)
−0.755143 + 0.655560i \(0.772433\pi\)
\(42\) 0 0
\(43\) 6.08609 0.928120 0.464060 0.885804i \(-0.346392\pi\)
0.464060 + 0.885804i \(0.346392\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.486518 0.0709660 0.0354830 0.999370i \(-0.488703\pi\)
0.0354830 + 0.999370i \(0.488703\pi\)
\(48\) 0 0
\(49\) 0.286303 0.0409004
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.95865 0.818484 0.409242 0.912426i \(-0.365793\pi\)
0.409242 + 0.912426i \(0.365793\pi\)
\(54\) 0 0
\(55\) −12.1571 −1.63926
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.57261 0.465114 0.232557 0.972583i \(-0.425291\pi\)
0.232557 + 0.972583i \(0.425291\pi\)
\(60\) 0 0
\(61\) 2.12671 0.272297 0.136149 0.990688i \(-0.456528\pi\)
0.136149 + 0.990688i \(0.456528\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.69932 −0.458844
\(66\) 0 0
\(67\) −4.25414 −0.519726 −0.259863 0.965645i \(-0.583677\pi\)
−0.259863 + 0.965645i \(0.583677\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.89953 0.581467 0.290734 0.956804i \(-0.406101\pi\)
0.290734 + 0.956804i \(0.406101\pi\)
\(72\) 0 0
\(73\) −2.33951 −0.273819 −0.136909 0.990584i \(-0.543717\pi\)
−0.136909 + 0.990584i \(0.543717\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.87077 −1.01092
\(78\) 0 0
\(79\) −4.43998 −0.499536 −0.249768 0.968306i \(-0.580354\pi\)
−0.249768 + 0.968306i \(0.580354\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −16.9425 −1.85968 −0.929839 0.367967i \(-0.880054\pi\)
−0.929839 + 0.367967i \(0.880054\pi\)
\(84\) 0 0
\(85\) −5.59885 −0.607280
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.78540 0.825251 0.412625 0.910901i \(-0.364612\pi\)
0.412625 + 0.910901i \(0.364612\pi\)
\(90\) 0 0
\(91\) −2.69932 −0.282965
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −13.2162 −1.35595
\(96\) 0 0
\(97\) 15.2982 1.55329 0.776646 0.629937i \(-0.216919\pi\)
0.776646 + 0.629937i \(0.216919\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.8708 1.47970 0.739848 0.672774i \(-0.234897\pi\)
0.739848 + 0.672774i \(0.234897\pi\)
\(102\) 0 0
\(103\) −7.71370 −0.760053 −0.380027 0.924976i \(-0.624085\pi\)
−0.380027 + 0.924976i \(0.624085\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.0979 1.45957 0.729787 0.683675i \(-0.239619\pi\)
0.729787 + 0.683675i \(0.239619\pi\)
\(108\) 0 0
\(109\) −17.0160 −1.62983 −0.814917 0.579577i \(-0.803218\pi\)
−0.814917 + 0.579577i \(0.803218\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.88515 −0.271412 −0.135706 0.990749i \(-0.543330\pi\)
−0.135706 + 0.990749i \(0.543330\pi\)
\(114\) 0 0
\(115\) −25.0016 −2.33141
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.08536 −0.374505
\(120\) 0 0
\(121\) −0.200216 −0.0182014
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −13.6317 −1.21926
\(126\) 0 0
\(127\) 10.3717 0.920337 0.460168 0.887832i \(-0.347789\pi\)
0.460168 + 0.887832i \(0.347789\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.9180 −1.21602 −0.608012 0.793928i \(-0.708033\pi\)
−0.608012 + 0.793928i \(0.708033\pi\)
\(132\) 0 0
\(133\) −9.64359 −0.836205
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.94680 0.508069 0.254035 0.967195i \(-0.418242\pi\)
0.254035 + 0.967195i \(0.418242\pi\)
\(138\) 0 0
\(139\) −11.2450 −0.953785 −0.476892 0.878962i \(-0.658237\pi\)
−0.476892 + 0.878962i \(0.658237\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.28630 0.274814
\(144\) 0 0
\(145\) 28.7009 2.38348
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.19175 0.753018 0.376509 0.926413i \(-0.377124\pi\)
0.376509 + 0.926413i \(0.377124\pi\)
\(150\) 0 0
\(151\) 8.35981 0.680312 0.340156 0.940369i \(-0.389520\pi\)
0.340156 + 0.940369i \(0.389520\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 37.6274 3.02231
\(156\) 0 0
\(157\) −18.8715 −1.50611 −0.753054 0.657958i \(-0.771420\pi\)
−0.753054 + 0.657958i \(0.771420\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −18.2432 −1.43776
\(162\) 0 0
\(163\) 10.7973 0.845707 0.422853 0.906198i \(-0.361029\pi\)
0.422853 + 0.906198i \(0.361029\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.87077 0.686441 0.343220 0.939255i \(-0.388482\pi\)
0.343220 + 0.939255i \(0.388482\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.445172 0.0338458 0.0169229 0.999857i \(-0.494613\pi\)
0.0169229 + 0.999857i \(0.494613\pi\)
\(174\) 0 0
\(175\) −23.4434 −1.77215
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 23.5379 1.75931 0.879653 0.475615i \(-0.157775\pi\)
0.879653 + 0.475615i \(0.157775\pi\)
\(180\) 0 0
\(181\) −22.8420 −1.69783 −0.848916 0.528527i \(-0.822744\pi\)
−0.848916 + 0.528527i \(0.822744\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 35.8276 2.63410
\(186\) 0 0
\(187\) 4.97376 0.363717
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.65797 0.337039 0.168519 0.985698i \(-0.446101\pi\)
0.168519 + 0.985698i \(0.446101\pi\)
\(192\) 0 0
\(193\) −12.5870 −0.906031 −0.453016 0.891503i \(-0.649652\pi\)
−0.453016 + 0.891503i \(0.649652\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.8833 −1.20289 −0.601444 0.798915i \(-0.705408\pi\)
−0.601444 + 0.798915i \(0.705408\pi\)
\(198\) 0 0
\(199\) 1.73814 0.123213 0.0616067 0.998101i \(-0.480378\pi\)
0.0616067 + 0.998101i \(0.480378\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 20.9425 1.46987
\(204\) 0 0
\(205\) 35.7744 2.49859
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.7407 0.812119
\(210\) 0 0
\(211\) 18.4678 1.27138 0.635688 0.771946i \(-0.280716\pi\)
0.635688 + 0.771946i \(0.280716\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −22.5144 −1.53547
\(216\) 0 0
\(217\) 27.4560 1.86383
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.51348 0.101808
\(222\) 0 0
\(223\) −21.7829 −1.45869 −0.729345 0.684146i \(-0.760175\pi\)
−0.729345 + 0.684146i \(0.760175\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3665 0.688047 0.344023 0.938961i \(-0.388210\pi\)
0.344023 + 0.938961i \(0.388210\pi\)
\(228\) 0 0
\(229\) 21.5735 1.42562 0.712808 0.701359i \(-0.247423\pi\)
0.712808 + 0.701359i \(0.247423\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.9417 0.978866 0.489433 0.872041i \(-0.337204\pi\)
0.489433 + 0.872041i \(0.337204\pi\)
\(234\) 0 0
\(235\) −1.79978 −0.117405
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.4696 1.19470 0.597350 0.801981i \(-0.296220\pi\)
0.597350 + 0.801981i \(0.296220\pi\)
\(240\) 0 0
\(241\) −1.81756 −0.117079 −0.0585397 0.998285i \(-0.518644\pi\)
−0.0585397 + 0.998285i \(0.518644\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.05912 −0.0676649
\(246\) 0 0
\(247\) 3.57261 0.227319
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.1858 0.895402 0.447701 0.894183i \(-0.352243\pi\)
0.447701 + 0.894183i \(0.352243\pi\)
\(252\) 0 0
\(253\) 22.2103 1.39635
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.83014 −0.114161 −0.0570806 0.998370i \(-0.518179\pi\)
−0.0570806 + 0.998370i \(0.518179\pi\)
\(258\) 0 0
\(259\) 26.1427 1.62443
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.185833 −0.0114590 −0.00572949 0.999984i \(-0.501824\pi\)
−0.00572949 + 0.999984i \(0.501824\pi\)
\(264\) 0 0
\(265\) −22.0429 −1.35409
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 29.0023 1.76830 0.884151 0.467201i \(-0.154737\pi\)
0.884151 + 0.467201i \(0.154737\pi\)
\(270\) 0 0
\(271\) 3.89773 0.236770 0.118385 0.992968i \(-0.462228\pi\)
0.118385 + 0.992968i \(0.462228\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 28.5413 1.72111
\(276\) 0 0
\(277\) 29.1039 1.74868 0.874341 0.485312i \(-0.161294\pi\)
0.874341 + 0.485312i \(0.161294\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.05985 0.0632251 0.0316125 0.999500i \(-0.489936\pi\)
0.0316125 + 0.999500i \(0.489936\pi\)
\(282\) 0 0
\(283\) 10.6502 0.633092 0.316546 0.948577i \(-0.397477\pi\)
0.316546 + 0.948577i \(0.397477\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.1039 1.54086
\(288\) 0 0
\(289\) −14.7094 −0.865257
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.5726 0.734499 0.367250 0.930122i \(-0.380299\pi\)
0.367250 + 0.930122i \(0.380299\pi\)
\(294\) 0 0
\(295\) −13.2162 −0.769476
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.75844 0.390851
\(300\) 0 0
\(301\) −16.4283 −0.946910
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.86737 −0.450484
\(306\) 0 0
\(307\) −13.6233 −0.777522 −0.388761 0.921339i \(-0.627097\pi\)
−0.388761 + 0.921339i \(0.627097\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.1427 −0.688549 −0.344274 0.938869i \(-0.611875\pi\)
−0.344274 + 0.938869i \(0.611875\pi\)
\(312\) 0 0
\(313\) −1.11825 −0.0632070 −0.0316035 0.999500i \(-0.510061\pi\)
−0.0316035 + 0.999500i \(0.510061\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.0067 0.562030 0.281015 0.959703i \(-0.409329\pi\)
0.281015 + 0.959703i \(0.409329\pi\)
\(318\) 0 0
\(319\) −25.4966 −1.42753
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.40707 0.300858
\(324\) 0 0
\(325\) 8.68493 0.481753
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.31327 −0.0724027
\(330\) 0 0
\(331\) 10.7399 0.590320 0.295160 0.955448i \(-0.404627\pi\)
0.295160 + 0.955448i \(0.404627\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.7374 0.859827
\(336\) 0 0
\(337\) 30.1350 1.64156 0.820778 0.571247i \(-0.193540\pi\)
0.820778 + 0.571247i \(0.193540\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −33.4265 −1.81014
\(342\) 0 0
\(343\) 18.1224 0.978517
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.7913 −1.22350 −0.611751 0.791050i \(-0.709535\pi\)
−0.611751 + 0.791050i \(0.709535\pi\)
\(348\) 0 0
\(349\) 20.7728 1.11194 0.555972 0.831201i \(-0.312346\pi\)
0.555972 + 0.831201i \(0.312346\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −22.1527 −1.17907 −0.589536 0.807742i \(-0.700689\pi\)
−0.589536 + 0.807742i \(0.700689\pi\)
\(354\) 0 0
\(355\) −18.1249 −0.961970
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.28450 −0.490017 −0.245009 0.969521i \(-0.578791\pi\)
−0.245009 + 0.969521i \(0.578791\pi\)
\(360\) 0 0
\(361\) −6.23649 −0.328236
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.65457 0.453001
\(366\) 0 0
\(367\) 7.38425 0.385455 0.192727 0.981252i \(-0.438267\pi\)
0.192727 + 0.981252i \(0.438267\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.0843 −0.835055
\(372\) 0 0
\(373\) 3.49658 0.181046 0.0905229 0.995894i \(-0.471146\pi\)
0.0905229 + 0.995894i \(0.471146\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.75844 −0.399580
\(378\) 0 0
\(379\) −24.6891 −1.26819 −0.634096 0.773255i \(-0.718627\pi\)
−0.634096 + 0.773255i \(0.718627\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.3488 −0.988680 −0.494340 0.869269i \(-0.664590\pi\)
−0.494340 + 0.869269i \(0.664590\pi\)
\(384\) 0 0
\(385\) 32.8158 1.67245
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.2831 0.774882 0.387441 0.921895i \(-0.373359\pi\)
0.387441 + 0.921895i \(0.373359\pi\)
\(390\) 0 0
\(391\) 10.2288 0.517291
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.4249 0.826425
\(396\) 0 0
\(397\) 33.7751 1.69513 0.847563 0.530695i \(-0.178069\pi\)
0.847563 + 0.530695i \(0.178069\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0633 0.902036 0.451018 0.892515i \(-0.351061\pi\)
0.451018 + 0.892515i \(0.351061\pi\)
\(402\) 0 0
\(403\) −10.1715 −0.506676
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −31.8276 −1.57764
\(408\) 0 0
\(409\) 21.1486 1.04573 0.522866 0.852415i \(-0.324863\pi\)
0.522866 + 0.852415i \(0.324863\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.64359 −0.474530
\(414\) 0 0
\(415\) 62.6755 3.07662
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 40.0379 1.95598 0.977990 0.208654i \(-0.0669082\pi\)
0.977990 + 0.208654i \(0.0669082\pi\)
\(420\) 0 0
\(421\) −2.24243 −0.109290 −0.0546448 0.998506i \(-0.517403\pi\)
−0.0546448 + 0.998506i \(0.517403\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.1445 0.637601
\(426\) 0 0
\(427\) −5.74066 −0.277810
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.7541 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(432\) 0 0
\(433\) 26.4223 1.26978 0.634889 0.772604i \(-0.281046\pi\)
0.634889 + 0.772604i \(0.281046\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.1452 1.15502
\(438\) 0 0
\(439\) −0.408874 −0.0195145 −0.00975724 0.999952i \(-0.503106\pi\)
−0.00975724 + 0.999952i \(0.503106\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.2820 1.05865 0.529324 0.848420i \(-0.322445\pi\)
0.529324 + 0.848420i \(0.322445\pi\)
\(444\) 0 0
\(445\) −28.8007 −1.36528
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.0573 1.13534 0.567668 0.823258i \(-0.307846\pi\)
0.567668 + 0.823258i \(0.307846\pi\)
\(450\) 0 0
\(451\) −31.7804 −1.49648
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.98562 0.468133
\(456\) 0 0
\(457\) −4.98042 −0.232974 −0.116487 0.993192i \(-0.537163\pi\)
−0.116487 + 0.993192i \(0.537163\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 38.9551 1.81432 0.907159 0.420788i \(-0.138247\pi\)
0.907159 + 0.420788i \(0.138247\pi\)
\(462\) 0 0
\(463\) −10.4418 −0.485271 −0.242635 0.970118i \(-0.578012\pi\)
−0.242635 + 0.970118i \(0.578012\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.3876 −0.526957 −0.263479 0.964665i \(-0.584870\pi\)
−0.263479 + 0.964665i \(0.584870\pi\)
\(468\) 0 0
\(469\) 11.4833 0.530248
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.0007 0.919634
\(474\) 0 0
\(475\) 31.0278 1.42365
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −18.6377 −0.851577 −0.425788 0.904823i \(-0.640003\pi\)
−0.425788 + 0.904823i \(0.640003\pi\)
\(480\) 0 0
\(481\) −9.68493 −0.441595
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −56.5927 −2.56974
\(486\) 0 0
\(487\) 21.1849 0.959980 0.479990 0.877274i \(-0.340640\pi\)
0.479990 + 0.877274i \(0.340640\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −40.1664 −1.81268 −0.906342 0.422544i \(-0.861137\pi\)
−0.906342 + 0.422544i \(0.861137\pi\)
\(492\) 0 0
\(493\) −11.7423 −0.528845
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.2254 −0.593239
\(498\) 0 0
\(499\) 14.1409 0.633033 0.316516 0.948587i \(-0.397487\pi\)
0.316516 + 0.948587i \(0.397487\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.72808 0.0770513 0.0385256 0.999258i \(-0.487734\pi\)
0.0385256 + 0.999258i \(0.487734\pi\)
\(504\) 0 0
\(505\) −55.0117 −2.44799
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 39.8808 1.76769 0.883843 0.467783i \(-0.154947\pi\)
0.883843 + 0.467783i \(0.154947\pi\)
\(510\) 0 0
\(511\) 6.31507 0.279362
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 28.5354 1.25742
\(516\) 0 0
\(517\) 1.59885 0.0703172
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.714420 0.0312993 0.0156497 0.999878i \(-0.495018\pi\)
0.0156497 + 0.999878i \(0.495018\pi\)
\(522\) 0 0
\(523\) −33.0109 −1.44347 −0.721734 0.692171i \(-0.756654\pi\)
−0.721734 + 0.692171i \(0.756654\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.3943 −0.670586
\(528\) 0 0
\(529\) 22.6765 0.985934
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.67055 −0.418878
\(534\) 0 0
\(535\) −55.8521 −2.41470
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.940877 0.0405264
\(540\) 0 0
\(541\) −4.57855 −0.196847 −0.0984235 0.995145i \(-0.531380\pi\)
−0.0984235 + 0.995145i \(0.531380\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 62.9475 2.69637
\(546\) 0 0
\(547\) 14.3141 0.612028 0.306014 0.952027i \(-0.401005\pi\)
0.306014 + 0.952027i \(0.401005\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −27.7178 −1.18082
\(552\) 0 0
\(553\) 11.9849 0.509650
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.6022 0.830574 0.415287 0.909691i \(-0.363681\pi\)
0.415287 + 0.909691i \(0.363681\pi\)
\(558\) 0 0
\(559\) 6.08609 0.257414
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.443371 0.0186859 0.00934294 0.999956i \(-0.497026\pi\)
0.00934294 + 0.999956i \(0.497026\pi\)
\(564\) 0 0
\(565\) 10.6731 0.449020
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.2288 1.35110 0.675550 0.737314i \(-0.263906\pi\)
0.675550 + 0.737314i \(0.263906\pi\)
\(570\) 0 0
\(571\) 7.93169 0.331931 0.165965 0.986132i \(-0.446926\pi\)
0.165965 + 0.986132i \(0.446926\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 58.6966 2.44782
\(576\) 0 0
\(577\) 26.7769 1.11474 0.557369 0.830265i \(-0.311811\pi\)
0.557369 + 0.830265i \(0.311811\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 45.7331 1.89733
\(582\) 0 0
\(583\) 19.5819 0.811001
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.50916 −0.309936 −0.154968 0.987919i \(-0.549527\pi\)
−0.154968 + 0.987919i \(0.549527\pi\)
\(588\) 0 0
\(589\) −36.3386 −1.49731
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.3530 0.507275 0.253638 0.967299i \(-0.418373\pi\)
0.253638 + 0.967299i \(0.418373\pi\)
\(594\) 0 0
\(595\) 15.1131 0.619575
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −33.1797 −1.35569 −0.677843 0.735207i \(-0.737085\pi\)
−0.677843 + 0.735207i \(0.737085\pi\)
\(600\) 0 0
\(601\) −21.9898 −0.896981 −0.448490 0.893788i \(-0.648038\pi\)
−0.448490 + 0.893788i \(0.648038\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.740661 0.0301122
\(606\) 0 0
\(607\) 19.6799 0.798782 0.399391 0.916781i \(-0.369222\pi\)
0.399391 + 0.916781i \(0.369222\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.486518 0.0196824
\(612\) 0 0
\(613\) −7.39431 −0.298653 −0.149327 0.988788i \(-0.547711\pi\)
−0.149327 + 0.988788i \(0.547711\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −41.5507 −1.67277 −0.836383 0.548145i \(-0.815334\pi\)
−0.836383 + 0.548145i \(0.815334\pi\)
\(618\) 0 0
\(619\) 5.88695 0.236616 0.118308 0.992977i \(-0.462253\pi\)
0.118308 + 0.992977i \(0.462253\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −21.0153 −0.841958
\(624\) 0 0
\(625\) 7.00340 0.280136
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14.6580 −0.584452
\(630\) 0 0
\(631\) −2.73992 −0.109074 −0.0545372 0.998512i \(-0.517368\pi\)
−0.0545372 + 0.998512i \(0.517368\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −38.3681 −1.52259
\(636\) 0 0
\(637\) 0.286303 0.0113437
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.3116 −0.723265 −0.361633 0.932321i \(-0.617781\pi\)
−0.361633 + 0.932321i \(0.617781\pi\)
\(642\) 0 0
\(643\) 36.1324 1.42492 0.712462 0.701710i \(-0.247580\pi\)
0.712462 + 0.701710i \(0.247580\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.594707 0.0233803 0.0116902 0.999932i \(-0.496279\pi\)
0.0116902 + 0.999932i \(0.496279\pi\)
\(648\) 0 0
\(649\) 11.7407 0.460861
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.30843 0.0512027 0.0256013 0.999672i \(-0.491850\pi\)
0.0256013 + 0.999672i \(0.491850\pi\)
\(654\) 0 0
\(655\) 51.4872 2.01177
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.6459 1.73916 0.869579 0.493794i \(-0.164390\pi\)
0.869579 + 0.493794i \(0.164390\pi\)
\(660\) 0 0
\(661\) −38.4036 −1.49373 −0.746864 0.664977i \(-0.768441\pi\)
−0.746864 + 0.664977i \(0.768441\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 35.6747 1.38340
\(666\) 0 0
\(667\) −52.4349 −2.03029
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.98901 0.269808
\(672\) 0 0
\(673\) −22.9173 −0.883397 −0.441699 0.897163i \(-0.645624\pi\)
−0.441699 + 0.897163i \(0.645624\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.1064 0.388420 0.194210 0.980960i \(-0.437786\pi\)
0.194210 + 0.980960i \(0.437786\pi\)
\(678\) 0 0
\(679\) −41.2946 −1.58474
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0818 −0.462296 −0.231148 0.972919i \(-0.574248\pi\)
−0.231148 + 0.972919i \(0.574248\pi\)
\(684\) 0 0
\(685\) −21.9991 −0.840541
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.95865 0.227007
\(690\) 0 0
\(691\) 6.36719 0.242219 0.121110 0.992639i \(-0.461355\pi\)
0.121110 + 0.992639i \(0.461355\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 41.5986 1.57793
\(696\) 0 0
\(697\) −14.6362 −0.554386
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.6030 0.513778 0.256889 0.966441i \(-0.417303\pi\)
0.256889 + 0.966441i \(0.417303\pi\)
\(702\) 0 0
\(703\) −34.6004 −1.30498
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −40.1409 −1.50965
\(708\) 0 0
\(709\) −5.97051 −0.224227 −0.112114 0.993695i \(-0.535762\pi\)
−0.112114 + 0.993695i \(0.535762\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −68.7431 −2.57445
\(714\) 0 0
\(715\) −12.1571 −0.454649
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.09527 0.0408468 0.0204234 0.999791i \(-0.493499\pi\)
0.0204234 + 0.999791i \(0.493499\pi\)
\(720\) 0 0
\(721\) 20.8217 0.775441
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −67.3815 −2.50249
\(726\) 0 0
\(727\) −5.09056 −0.188798 −0.0943992 0.995534i \(-0.530093\pi\)
−0.0943992 + 0.995534i \(0.530093\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.21118 0.340688
\(732\) 0 0
\(733\) 8.90617 0.328957 0.164478 0.986381i \(-0.447406\pi\)
0.164478 + 0.986381i \(0.447406\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.9804 −0.514975
\(738\) 0 0
\(739\) −7.99480 −0.294094 −0.147047 0.989130i \(-0.546977\pi\)
−0.147047 + 0.989130i \(0.546977\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.5530 0.900763 0.450382 0.892836i \(-0.351288\pi\)
0.450382 + 0.892836i \(0.351288\pi\)
\(744\) 0 0
\(745\) −34.0032 −1.24578
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −40.7541 −1.48912
\(750\) 0 0
\(751\) −17.4315 −0.636085 −0.318042 0.948076i \(-0.603025\pi\)
−0.318042 + 0.948076i \(0.603025\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −30.9256 −1.12550
\(756\) 0 0
\(757\) 21.3041 0.774310 0.387155 0.922015i \(-0.373458\pi\)
0.387155 + 0.922015i \(0.373458\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28.3470 −1.02758 −0.513789 0.857916i \(-0.671759\pi\)
−0.513789 + 0.857916i \(0.671759\pi\)
\(762\) 0 0
\(763\) 45.9315 1.66283
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.57261 0.128999
\(768\) 0 0
\(769\) −8.65025 −0.311936 −0.155968 0.987762i \(-0.549850\pi\)
−0.155968 + 0.987762i \(0.549850\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.3715 −1.59593 −0.797965 0.602703i \(-0.794090\pi\)
−0.797965 + 0.602703i \(0.794090\pi\)
\(774\) 0 0
\(775\) −88.3384 −3.17321
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −34.5491 −1.23785
\(780\) 0 0
\(781\) 16.1013 0.576151
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 69.8116 2.49168
\(786\) 0 0
\(787\) −44.3438 −1.58068 −0.790342 0.612665i \(-0.790097\pi\)
−0.790342 + 0.612665i \(0.790097\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.78793 0.276907
\(792\) 0 0
\(793\) 2.12671 0.0755217
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.3244 −0.542818 −0.271409 0.962464i \(-0.587490\pi\)
−0.271409 + 0.962464i \(0.587490\pi\)
\(798\) 0 0
\(799\) 0.736336 0.0260497
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.68833 −0.271315
\(804\) 0 0
\(805\) 67.4872 2.37861
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.4610 −0.438105 −0.219053 0.975713i \(-0.570297\pi\)
−0.219053 + 0.975713i \(0.570297\pi\)
\(810\) 0 0
\(811\) −4.53453 −0.159229 −0.0796144 0.996826i \(-0.525369\pi\)
−0.0796144 + 0.996826i \(0.525369\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −39.9425 −1.39912
\(816\) 0 0
\(817\) 21.7432 0.760698
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.1519 0.703304 0.351652 0.936131i \(-0.385620\pi\)
0.351652 + 0.936131i \(0.385620\pi\)
\(822\) 0 0
\(823\) −35.6317 −1.24204 −0.621022 0.783793i \(-0.713282\pi\)
−0.621022 + 0.783793i \(0.713282\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 54.0235 1.87858 0.939291 0.343122i \(-0.111485\pi\)
0.939291 + 0.343122i \(0.111485\pi\)
\(828\) 0 0
\(829\) 42.1874 1.46523 0.732615 0.680643i \(-0.238300\pi\)
0.732615 + 0.680643i \(0.238300\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.433314 0.0150134
\(834\) 0 0
\(835\) −32.8158 −1.13564
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −56.8783 −1.96366 −0.981829 0.189770i \(-0.939226\pi\)
−0.981829 + 0.189770i \(0.939226\pi\)
\(840\) 0 0
\(841\) 31.1934 1.07563
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.69932 −0.127260
\(846\) 0 0
\(847\) 0.540445 0.0185699
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −65.4550 −2.24377
\(852\) 0 0
\(853\) −29.6452 −1.01503 −0.507516 0.861642i \(-0.669436\pi\)
−0.507516 + 0.861642i \(0.669436\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.50756 0.119816 0.0599080 0.998204i \(-0.480919\pi\)
0.0599080 + 0.998204i \(0.480919\pi\)
\(858\) 0 0
\(859\) −45.5337 −1.55359 −0.776795 0.629753i \(-0.783156\pi\)
−0.776795 + 0.629753i \(0.783156\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 13.7009 0.466384 0.233192 0.972431i \(-0.425083\pi\)
0.233192 + 0.972431i \(0.425083\pi\)
\(864\) 0 0
\(865\) −1.64683 −0.0559940
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −14.5911 −0.494969
\(870\) 0 0
\(871\) −4.25414 −0.144146
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 36.7963 1.24394
\(876\) 0 0
\(877\) 22.2180 0.750248 0.375124 0.926975i \(-0.377600\pi\)
0.375124 + 0.926975i \(0.377600\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.8007 1.03770 0.518850 0.854865i \(-0.326360\pi\)
0.518850 + 0.854865i \(0.326360\pi\)
\(882\) 0 0
\(883\) 7.46354 0.251168 0.125584 0.992083i \(-0.459919\pi\)
0.125584 + 0.992083i \(0.459919\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 39.0327 1.31059 0.655295 0.755373i \(-0.272544\pi\)
0.655295 + 0.755373i \(0.272544\pi\)
\(888\) 0 0
\(889\) −27.9964 −0.938969
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.73814 0.0581646
\(894\) 0 0
\(895\) −87.0742 −2.91057
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 78.9146 2.63195
\(900\) 0 0
\(901\) 9.01831 0.300444
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 84.4998 2.80887
\(906\) 0 0
\(907\) −30.1763 −1.00199 −0.500994 0.865451i \(-0.667032\pi\)
−0.500994 + 0.865451i \(0.667032\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.0877 −0.831192 −0.415596 0.909549i \(-0.636427\pi\)
−0.415596 + 0.909549i \(0.636427\pi\)
\(912\) 0 0
\(913\) −55.6781 −1.84268
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 37.5692 1.24064
\(918\) 0 0
\(919\) −55.7058 −1.83756 −0.918782 0.394765i \(-0.870826\pi\)
−0.918782 + 0.394765i \(0.870826\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.89953 0.161270
\(924\) 0 0
\(925\) −84.1130 −2.76562
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.634974 −0.0208328 −0.0104164 0.999946i \(-0.503316\pi\)
−0.0104164 + 0.999946i \(0.503316\pi\)
\(930\) 0 0
\(931\) 1.02285 0.0335224
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18.3995 −0.601728
\(936\) 0 0
\(937\) 22.1079 0.722232 0.361116 0.932521i \(-0.382396\pi\)
0.361116 + 0.932521i \(0.382396\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 51.9171 1.69245 0.846225 0.532826i \(-0.178870\pi\)
0.846225 + 0.532826i \(0.178870\pi\)
\(942\) 0 0
\(943\) −65.3578 −2.12834
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.7608 −1.19456 −0.597282 0.802031i \(-0.703753\pi\)
−0.597282 + 0.802031i \(0.703753\pi\)
\(948\) 0 0
\(949\) −2.33951 −0.0759436
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −7.77534 −0.251868 −0.125934 0.992039i \(-0.540193\pi\)
−0.125934 + 0.992039i \(0.540193\pi\)
\(954\) 0 0
\(955\) −17.2313 −0.557592
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.0523 −0.518355
\(960\) 0 0
\(961\) 72.4584 2.33737
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 46.5632 1.49892
\(966\) 0 0
\(967\) 50.4450 1.62220 0.811100 0.584907i \(-0.198869\pi\)
0.811100 + 0.584907i \(0.198869\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.6628 0.759376 0.379688 0.925115i \(-0.376031\pi\)
0.379688 + 0.925115i \(0.376031\pi\)
\(972\) 0 0
\(973\) 30.3537 0.973094
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.8370 1.59443 0.797213 0.603698i \(-0.206307\pi\)
0.797213 + 0.603698i \(0.206307\pi\)
\(978\) 0 0
\(979\) 25.5852 0.817706
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.6427 −0.530820 −0.265410 0.964136i \(-0.585507\pi\)
−0.265410 + 0.964136i \(0.585507\pi\)
\(984\) 0 0
\(985\) 62.4568 1.99004
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 41.1324 1.30794
\(990\) 0 0
\(991\) 16.9096 0.537150 0.268575 0.963259i \(-0.413447\pi\)
0.268575 + 0.963259i \(0.413447\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.42992 −0.203842
\(996\) 0 0
\(997\) −50.7245 −1.60646 −0.803230 0.595669i \(-0.796887\pi\)
−0.803230 + 0.595669i \(0.796887\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8424.2.a.o.1.1 4
3.2 odd 2 8424.2.a.r.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8424.2.a.o.1.1 4 1.1 even 1 trivial
8424.2.a.r.1.4 yes 4 3.2 odd 2