Properties

Label 8424.2.a.v.1.6
Level $8424$
Weight $2$
Character 8424.1
Self dual yes
Analytic conductor $67.266$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8424,2,Mod(1,8424)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8424, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8424.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8424 = 2^{3} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8424.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.2659786627\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.20396961.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 11x^{3} + 7x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 936)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.15391\) of defining polynomial
Character \(\chi\) \(=\) 8424.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.74770 q^{5} -0.351433 q^{7} -3.29530 q^{11} +1.00000 q^{13} +3.88461 q^{17} -4.45847 q^{19} -4.66850 q^{23} +9.04525 q^{25} -4.44539 q^{29} +0.782066 q^{31} -1.31707 q^{35} -11.4322 q^{37} -6.84266 q^{41} -9.54092 q^{43} -2.06612 q^{47} -6.87649 q^{49} -2.97755 q^{53} -12.3498 q^{55} +0.940619 q^{59} +14.4198 q^{61} +3.74770 q^{65} +4.25497 q^{67} -5.25904 q^{71} +7.09427 q^{73} +1.15808 q^{77} -14.2136 q^{79} -12.5543 q^{83} +14.5583 q^{85} -5.56256 q^{89} -0.351433 q^{91} -16.7090 q^{95} -1.70659 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{5} - 2 q^{7} + q^{11} + 6 q^{13} + 6 q^{17} - 7 q^{19} - 19 q^{23} - 5 q^{25} + 2 q^{29} - 8 q^{31} + q^{35} - 17 q^{37} + 2 q^{41} - 15 q^{43} + 9 q^{47} - 12 q^{49} + 16 q^{53} - 5 q^{55}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.74770 1.67602 0.838011 0.545653i \(-0.183718\pi\)
0.838011 + 0.545653i \(0.183718\pi\)
\(6\) 0 0
\(7\) −0.351433 −0.132829 −0.0664147 0.997792i \(-0.521156\pi\)
−0.0664147 + 0.997792i \(0.521156\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.29530 −0.993572 −0.496786 0.867873i \(-0.665487\pi\)
−0.496786 + 0.867873i \(0.665487\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.88461 0.942155 0.471078 0.882092i \(-0.343865\pi\)
0.471078 + 0.882092i \(0.343865\pi\)
\(18\) 0 0
\(19\) −4.45847 −1.02284 −0.511421 0.859330i \(-0.670881\pi\)
−0.511421 + 0.859330i \(0.670881\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.66850 −0.973450 −0.486725 0.873555i \(-0.661809\pi\)
−0.486725 + 0.873555i \(0.661809\pi\)
\(24\) 0 0
\(25\) 9.04525 1.80905
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.44539 −0.825488 −0.412744 0.910847i \(-0.635430\pi\)
−0.412744 + 0.910847i \(0.635430\pi\)
\(30\) 0 0
\(31\) 0.782066 0.140463 0.0702316 0.997531i \(-0.477626\pi\)
0.0702316 + 0.997531i \(0.477626\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.31707 −0.222625
\(36\) 0 0
\(37\) −11.4322 −1.87944 −0.939721 0.341943i \(-0.888915\pi\)
−0.939721 + 0.341943i \(0.888915\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.84266 −1.06864 −0.534322 0.845281i \(-0.679433\pi\)
−0.534322 + 0.845281i \(0.679433\pi\)
\(42\) 0 0
\(43\) −9.54092 −1.45498 −0.727488 0.686120i \(-0.759312\pi\)
−0.727488 + 0.686120i \(0.759312\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.06612 −0.301375 −0.150687 0.988581i \(-0.548149\pi\)
−0.150687 + 0.988581i \(0.548149\pi\)
\(48\) 0 0
\(49\) −6.87649 −0.982356
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.97755 −0.408998 −0.204499 0.978867i \(-0.565557\pi\)
−0.204499 + 0.978867i \(0.565557\pi\)
\(54\) 0 0
\(55\) −12.3498 −1.66525
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.940619 0.122458 0.0612291 0.998124i \(-0.480498\pi\)
0.0612291 + 0.998124i \(0.480498\pi\)
\(60\) 0 0
\(61\) 14.4198 1.84626 0.923130 0.384487i \(-0.125622\pi\)
0.923130 + 0.384487i \(0.125622\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.74770 0.464845
\(66\) 0 0
\(67\) 4.25497 0.519827 0.259914 0.965632i \(-0.416306\pi\)
0.259914 + 0.965632i \(0.416306\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.25904 −0.624133 −0.312067 0.950060i \(-0.601021\pi\)
−0.312067 + 0.950060i \(0.601021\pi\)
\(72\) 0 0
\(73\) 7.09427 0.830322 0.415161 0.909748i \(-0.363725\pi\)
0.415161 + 0.909748i \(0.363725\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.15808 0.131976
\(78\) 0 0
\(79\) −14.2136 −1.59915 −0.799577 0.600564i \(-0.794943\pi\)
−0.799577 + 0.600564i \(0.794943\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.5543 −1.37802 −0.689009 0.724753i \(-0.741954\pi\)
−0.689009 + 0.724753i \(0.741954\pi\)
\(84\) 0 0
\(85\) 14.5583 1.57907
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.56256 −0.589631 −0.294815 0.955554i \(-0.595258\pi\)
−0.294815 + 0.955554i \(0.595258\pi\)
\(90\) 0 0
\(91\) −0.351433 −0.0368402
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.7090 −1.71431
\(96\) 0 0
\(97\) −1.70659 −0.173278 −0.0866391 0.996240i \(-0.527613\pi\)
−0.0866391 + 0.996240i \(0.527613\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.62874 −0.261569 −0.130784 0.991411i \(-0.541750\pi\)
−0.130784 + 0.991411i \(0.541750\pi\)
\(102\) 0 0
\(103\) 13.5643 1.33653 0.668267 0.743921i \(-0.267036\pi\)
0.668267 + 0.743921i \(0.267036\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.58218 0.346302 0.173151 0.984895i \(-0.444605\pi\)
0.173151 + 0.984895i \(0.444605\pi\)
\(108\) 0 0
\(109\) 11.1068 1.06384 0.531918 0.846796i \(-0.321472\pi\)
0.531918 + 0.846796i \(0.321472\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.06695 0.194442 0.0972210 0.995263i \(-0.469005\pi\)
0.0972210 + 0.995263i \(0.469005\pi\)
\(114\) 0 0
\(115\) −17.4961 −1.63152
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.36518 −0.125146
\(120\) 0 0
\(121\) −0.140965 −0.0128150
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 15.1604 1.35599
\(126\) 0 0
\(127\) −15.0773 −1.33789 −0.668945 0.743312i \(-0.733254\pi\)
−0.668945 + 0.743312i \(0.733254\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.6401 1.19174 0.595869 0.803082i \(-0.296808\pi\)
0.595869 + 0.803082i \(0.296808\pi\)
\(132\) 0 0
\(133\) 1.56685 0.135863
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.23525 −0.532713 −0.266356 0.963875i \(-0.585820\pi\)
−0.266356 + 0.963875i \(0.585820\pi\)
\(138\) 0 0
\(139\) 1.67198 0.141815 0.0709076 0.997483i \(-0.477410\pi\)
0.0709076 + 0.997483i \(0.477410\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.29530 −0.275567
\(144\) 0 0
\(145\) −16.6600 −1.38354
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.5896 1.35907 0.679536 0.733643i \(-0.262181\pi\)
0.679536 + 0.733643i \(0.262181\pi\)
\(150\) 0 0
\(151\) −15.5999 −1.26950 −0.634751 0.772717i \(-0.718897\pi\)
−0.634751 + 0.772717i \(0.718897\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.93095 0.235420
\(156\) 0 0
\(157\) −16.3530 −1.30511 −0.652556 0.757741i \(-0.726303\pi\)
−0.652556 + 0.757741i \(0.726303\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.64067 0.129303
\(162\) 0 0
\(163\) 5.60740 0.439206 0.219603 0.975589i \(-0.429524\pi\)
0.219603 + 0.975589i \(0.429524\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.72887 −0.365931 −0.182966 0.983119i \(-0.558570\pi\)
−0.182966 + 0.983119i \(0.558570\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.7949 −1.27689 −0.638447 0.769666i \(-0.720423\pi\)
−0.638447 + 0.769666i \(0.720423\pi\)
\(174\) 0 0
\(175\) −3.17881 −0.240295
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.7878 0.881062 0.440531 0.897737i \(-0.354790\pi\)
0.440531 + 0.897737i \(0.354790\pi\)
\(180\) 0 0
\(181\) −26.0931 −1.93948 −0.969742 0.244132i \(-0.921497\pi\)
−0.969742 + 0.244132i \(0.921497\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −42.8444 −3.14999
\(186\) 0 0
\(187\) −12.8010 −0.936099
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.8392 −1.14608 −0.573041 0.819527i \(-0.694236\pi\)
−0.573041 + 0.819527i \(0.694236\pi\)
\(192\) 0 0
\(193\) 11.0744 0.797155 0.398578 0.917135i \(-0.369504\pi\)
0.398578 + 0.917135i \(0.369504\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.36629 0.596073 0.298037 0.954554i \(-0.403668\pi\)
0.298037 + 0.954554i \(0.403668\pi\)
\(198\) 0 0
\(199\) 2.63356 0.186688 0.0933441 0.995634i \(-0.470244\pi\)
0.0933441 + 0.995634i \(0.470244\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.56226 0.109649
\(204\) 0 0
\(205\) −25.6442 −1.79107
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 14.6920 1.01627
\(210\) 0 0
\(211\) −24.3555 −1.67670 −0.838351 0.545131i \(-0.816480\pi\)
−0.838351 + 0.545131i \(0.816480\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −35.7565 −2.43857
\(216\) 0 0
\(217\) −0.274844 −0.0186576
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.88461 0.261307
\(222\) 0 0
\(223\) 25.7203 1.72236 0.861178 0.508303i \(-0.169727\pi\)
0.861178 + 0.508303i \(0.169727\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.3523 1.48358 0.741788 0.670635i \(-0.233978\pi\)
0.741788 + 0.670635i \(0.233978\pi\)
\(228\) 0 0
\(229\) 4.84045 0.319866 0.159933 0.987128i \(-0.448872\pi\)
0.159933 + 0.987128i \(0.448872\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 25.0840 1.64331 0.821655 0.569986i \(-0.193051\pi\)
0.821655 + 0.569986i \(0.193051\pi\)
\(234\) 0 0
\(235\) −7.74321 −0.505111
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.6184 1.59243 0.796217 0.605011i \(-0.206831\pi\)
0.796217 + 0.605011i \(0.206831\pi\)
\(240\) 0 0
\(241\) −20.1819 −1.30003 −0.650015 0.759922i \(-0.725237\pi\)
−0.650015 + 0.759922i \(0.725237\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −25.7710 −1.64645
\(246\) 0 0
\(247\) −4.45847 −0.283685
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.3117 1.66078 0.830391 0.557181i \(-0.188117\pi\)
0.830391 + 0.557181i \(0.188117\pi\)
\(252\) 0 0
\(253\) 15.3841 0.967192
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.04219 −0.564036 −0.282018 0.959409i \(-0.591004\pi\)
−0.282018 + 0.959409i \(0.591004\pi\)
\(258\) 0 0
\(259\) 4.01766 0.249645
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.90602 −0.117530 −0.0587650 0.998272i \(-0.518716\pi\)
−0.0587650 + 0.998272i \(0.518716\pi\)
\(264\) 0 0
\(265\) −11.1590 −0.685490
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.5293 0.824896 0.412448 0.910981i \(-0.364674\pi\)
0.412448 + 0.910981i \(0.364674\pi\)
\(270\) 0 0
\(271\) 8.66113 0.526126 0.263063 0.964779i \(-0.415267\pi\)
0.263063 + 0.964779i \(0.415267\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −29.8069 −1.79742
\(276\) 0 0
\(277\) 25.4902 1.53156 0.765779 0.643103i \(-0.222353\pi\)
0.765779 + 0.643103i \(0.222353\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.7193 −1.35532 −0.677659 0.735376i \(-0.737006\pi\)
−0.677659 + 0.735376i \(0.737006\pi\)
\(282\) 0 0
\(283\) 0.811261 0.0482245 0.0241122 0.999709i \(-0.492324\pi\)
0.0241122 + 0.999709i \(0.492324\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.40474 0.141947
\(288\) 0 0
\(289\) −1.90983 −0.112343
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.4591 0.961549 0.480775 0.876844i \(-0.340355\pi\)
0.480775 + 0.876844i \(0.340355\pi\)
\(294\) 0 0
\(295\) 3.52516 0.205243
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.66850 −0.269986
\(300\) 0 0
\(301\) 3.35300 0.193264
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 54.0409 3.09437
\(306\) 0 0
\(307\) −1.61680 −0.0922754 −0.0461377 0.998935i \(-0.514691\pi\)
−0.0461377 + 0.998935i \(0.514691\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 29.7730 1.68827 0.844136 0.536128i \(-0.180114\pi\)
0.844136 + 0.536128i \(0.180114\pi\)
\(312\) 0 0
\(313\) 2.01229 0.113741 0.0568707 0.998382i \(-0.481888\pi\)
0.0568707 + 0.998382i \(0.481888\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.0331 0.732012 0.366006 0.930612i \(-0.380725\pi\)
0.366006 + 0.930612i \(0.380725\pi\)
\(318\) 0 0
\(319\) 14.6489 0.820182
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −17.3194 −0.963676
\(324\) 0 0
\(325\) 9.04525 0.501740
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.726105 0.0400314
\(330\) 0 0
\(331\) 2.42161 0.133104 0.0665520 0.997783i \(-0.478800\pi\)
0.0665520 + 0.997783i \(0.478800\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.9464 0.871242
\(336\) 0 0
\(337\) −31.1180 −1.69510 −0.847552 0.530712i \(-0.821925\pi\)
−0.847552 + 0.530712i \(0.821925\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.57715 −0.139560
\(342\) 0 0
\(343\) 4.87666 0.263315
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.7606 −1.06081 −0.530403 0.847745i \(-0.677960\pi\)
−0.530403 + 0.847745i \(0.677960\pi\)
\(348\) 0 0
\(349\) 4.93903 0.264380 0.132190 0.991224i \(-0.457799\pi\)
0.132190 + 0.991224i \(0.457799\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.06760 0.429395 0.214698 0.976681i \(-0.431123\pi\)
0.214698 + 0.976681i \(0.431123\pi\)
\(354\) 0 0
\(355\) −19.7093 −1.04606
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.70600 −0.301151 −0.150576 0.988598i \(-0.548113\pi\)
−0.150576 + 0.988598i \(0.548113\pi\)
\(360\) 0 0
\(361\) 0.877919 0.0462063
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.5872 1.39164
\(366\) 0 0
\(367\) −10.4935 −0.547757 −0.273879 0.961764i \(-0.588307\pi\)
−0.273879 + 0.961764i \(0.588307\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.04641 0.0543270
\(372\) 0 0
\(373\) −28.9262 −1.49774 −0.748870 0.662717i \(-0.769403\pi\)
−0.748870 + 0.662717i \(0.769403\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.44539 −0.228949
\(378\) 0 0
\(379\) −35.6342 −1.83040 −0.915202 0.402995i \(-0.867969\pi\)
−0.915202 + 0.402995i \(0.867969\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.7302 −1.05926 −0.529632 0.848227i \(-0.677670\pi\)
−0.529632 + 0.848227i \(0.677670\pi\)
\(384\) 0 0
\(385\) 4.34014 0.221194
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.1644 1.02238 0.511189 0.859468i \(-0.329205\pi\)
0.511189 + 0.859468i \(0.329205\pi\)
\(390\) 0 0
\(391\) −18.1353 −0.917141
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −53.2683 −2.68022
\(396\) 0 0
\(397\) −2.27323 −0.114090 −0.0570450 0.998372i \(-0.518168\pi\)
−0.0570450 + 0.998372i \(0.518168\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.1927 1.30800 0.653999 0.756495i \(-0.273090\pi\)
0.653999 + 0.756495i \(0.273090\pi\)
\(402\) 0 0
\(403\) 0.782066 0.0389575
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 37.6726 1.86736
\(408\) 0 0
\(409\) 8.06517 0.398797 0.199399 0.979918i \(-0.436101\pi\)
0.199399 + 0.979918i \(0.436101\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.330565 −0.0162660
\(414\) 0 0
\(415\) −47.0499 −2.30959
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.4849 0.854191 0.427096 0.904207i \(-0.359537\pi\)
0.427096 + 0.904207i \(0.359537\pi\)
\(420\) 0 0
\(421\) −20.0442 −0.976894 −0.488447 0.872594i \(-0.662436\pi\)
−0.488447 + 0.872594i \(0.662436\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 35.1373 1.70441
\(426\) 0 0
\(427\) −5.06759 −0.245238
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.01436 0.386038 0.193019 0.981195i \(-0.438172\pi\)
0.193019 + 0.981195i \(0.438172\pi\)
\(432\) 0 0
\(433\) −25.8390 −1.24174 −0.620872 0.783912i \(-0.713221\pi\)
−0.620872 + 0.783912i \(0.713221\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.8144 0.995685
\(438\) 0 0
\(439\) 2.44177 0.116539 0.0582697 0.998301i \(-0.481442\pi\)
0.0582697 + 0.998301i \(0.481442\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.4136 −0.827343 −0.413672 0.910426i \(-0.635754\pi\)
−0.413672 + 0.910426i \(0.635754\pi\)
\(444\) 0 0
\(445\) −20.8468 −0.988234
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.3826 0.867528 0.433764 0.901026i \(-0.357185\pi\)
0.433764 + 0.901026i \(0.357185\pi\)
\(450\) 0 0
\(451\) 22.5486 1.06177
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.31707 −0.0617451
\(456\) 0 0
\(457\) −15.9285 −0.745104 −0.372552 0.928011i \(-0.621517\pi\)
−0.372552 + 0.928011i \(0.621517\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 27.6294 1.28683 0.643414 0.765518i \(-0.277517\pi\)
0.643414 + 0.765518i \(0.277517\pi\)
\(462\) 0 0
\(463\) 20.1291 0.935478 0.467739 0.883867i \(-0.345069\pi\)
0.467739 + 0.883867i \(0.345069\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.34267 −0.0621315 −0.0310657 0.999517i \(-0.509890\pi\)
−0.0310657 + 0.999517i \(0.509890\pi\)
\(468\) 0 0
\(469\) −1.49534 −0.0690483
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 31.4402 1.44562
\(474\) 0 0
\(475\) −40.3280 −1.85037
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.3562 −0.473188 −0.236594 0.971609i \(-0.576031\pi\)
−0.236594 + 0.971609i \(0.576031\pi\)
\(480\) 0 0
\(481\) −11.4322 −0.521263
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.39579 −0.290418
\(486\) 0 0
\(487\) 40.8998 1.85335 0.926674 0.375867i \(-0.122655\pi\)
0.926674 + 0.375867i \(0.122655\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.0072 0.722393 0.361197 0.932490i \(-0.382368\pi\)
0.361197 + 0.932490i \(0.382368\pi\)
\(492\) 0 0
\(493\) −17.2686 −0.777738
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.84820 0.0829032
\(498\) 0 0
\(499\) −2.36239 −0.105755 −0.0528775 0.998601i \(-0.516839\pi\)
−0.0528775 + 0.998601i \(0.516839\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −25.8661 −1.15331 −0.576655 0.816988i \(-0.695642\pi\)
−0.576655 + 0.816988i \(0.695642\pi\)
\(504\) 0 0
\(505\) −9.85171 −0.438395
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.7208 −0.918433 −0.459217 0.888324i \(-0.651870\pi\)
−0.459217 + 0.888324i \(0.651870\pi\)
\(510\) 0 0
\(511\) −2.49317 −0.110291
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 50.8351 2.24006
\(516\) 0 0
\(517\) 6.80850 0.299438
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.8677 −1.74664 −0.873318 0.487150i \(-0.838036\pi\)
−0.873318 + 0.487150i \(0.838036\pi\)
\(522\) 0 0
\(523\) −12.3303 −0.539167 −0.269583 0.962977i \(-0.586886\pi\)
−0.269583 + 0.962977i \(0.586886\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.03802 0.132338
\(528\) 0 0
\(529\) −1.20510 −0.0523957
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.84266 −0.296388
\(534\) 0 0
\(535\) 13.4249 0.580411
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 22.6601 0.976042
\(540\) 0 0
\(541\) 22.9129 0.985104 0.492552 0.870283i \(-0.336064\pi\)
0.492552 + 0.870283i \(0.336064\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 41.6248 1.78301
\(546\) 0 0
\(547\) −7.49423 −0.320430 −0.160215 0.987082i \(-0.551219\pi\)
−0.160215 + 0.987082i \(0.551219\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.8196 0.844344
\(552\) 0 0
\(553\) 4.99513 0.212415
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −26.2053 −1.11036 −0.555178 0.831732i \(-0.687350\pi\)
−0.555178 + 0.831732i \(0.687350\pi\)
\(558\) 0 0
\(559\) −9.54092 −0.403538
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −26.0256 −1.09685 −0.548424 0.836200i \(-0.684772\pi\)
−0.548424 + 0.836200i \(0.684772\pi\)
\(564\) 0 0
\(565\) 7.74630 0.325889
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 29.8500 1.25138 0.625689 0.780072i \(-0.284818\pi\)
0.625689 + 0.780072i \(0.284818\pi\)
\(570\) 0 0
\(571\) 8.97421 0.375559 0.187780 0.982211i \(-0.439871\pi\)
0.187780 + 0.982211i \(0.439871\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −42.2278 −1.76102
\(576\) 0 0
\(577\) −32.4990 −1.35295 −0.676476 0.736465i \(-0.736494\pi\)
−0.676476 + 0.736465i \(0.736494\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.41202 0.183041
\(582\) 0 0
\(583\) 9.81194 0.406369
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.2273 −0.587223 −0.293612 0.955925i \(-0.594857\pi\)
−0.293612 + 0.955925i \(0.594857\pi\)
\(588\) 0 0
\(589\) −3.48682 −0.143672
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.7975 −0.607662 −0.303831 0.952726i \(-0.598266\pi\)
−0.303831 + 0.952726i \(0.598266\pi\)
\(594\) 0 0
\(595\) −5.11629 −0.209747
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.34362 0.0548989 0.0274495 0.999623i \(-0.491261\pi\)
0.0274495 + 0.999623i \(0.491261\pi\)
\(600\) 0 0
\(601\) 28.7195 1.17149 0.585746 0.810495i \(-0.300802\pi\)
0.585746 + 0.810495i \(0.300802\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.528295 −0.0214782
\(606\) 0 0
\(607\) −3.12460 −0.126824 −0.0634118 0.997987i \(-0.520198\pi\)
−0.0634118 + 0.997987i \(0.520198\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.06612 −0.0835864
\(612\) 0 0
\(613\) 19.6800 0.794867 0.397433 0.917631i \(-0.369901\pi\)
0.397433 + 0.917631i \(0.369901\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.0591 0.404964 0.202482 0.979286i \(-0.435099\pi\)
0.202482 + 0.979286i \(0.435099\pi\)
\(618\) 0 0
\(619\) −42.5605 −1.71065 −0.855326 0.518090i \(-0.826643\pi\)
−0.855326 + 0.518090i \(0.826643\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.95487 0.0783203
\(624\) 0 0
\(625\) 11.5904 0.463614
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −44.4096 −1.77073
\(630\) 0 0
\(631\) 20.2946 0.807916 0.403958 0.914778i \(-0.367634\pi\)
0.403958 + 0.914778i \(0.367634\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −56.5051 −2.24233
\(636\) 0 0
\(637\) −6.87649 −0.272457
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.49158 0.137909 0.0689546 0.997620i \(-0.478034\pi\)
0.0689546 + 0.997620i \(0.478034\pi\)
\(642\) 0 0
\(643\) −35.0558 −1.38247 −0.691233 0.722632i \(-0.742932\pi\)
−0.691233 + 0.722632i \(0.742932\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.6001 1.75341 0.876705 0.481028i \(-0.159736\pi\)
0.876705 + 0.481028i \(0.159736\pi\)
\(648\) 0 0
\(649\) −3.09963 −0.121671
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.7937 −0.461525 −0.230762 0.973010i \(-0.574122\pi\)
−0.230762 + 0.973010i \(0.574122\pi\)
\(654\) 0 0
\(655\) 51.1188 1.99738
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.1674 −0.707700 −0.353850 0.935302i \(-0.615128\pi\)
−0.353850 + 0.935302i \(0.615128\pi\)
\(660\) 0 0
\(661\) 4.20156 0.163422 0.0817108 0.996656i \(-0.473962\pi\)
0.0817108 + 0.996656i \(0.473962\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.87210 0.227710
\(666\) 0 0
\(667\) 20.7533 0.803571
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −47.5175 −1.83439
\(672\) 0 0
\(673\) −44.4630 −1.71392 −0.856961 0.515382i \(-0.827650\pi\)
−0.856961 + 0.515382i \(0.827650\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.48675 0.287739 0.143870 0.989597i \(-0.454045\pi\)
0.143870 + 0.989597i \(0.454045\pi\)
\(678\) 0 0
\(679\) 0.599753 0.0230164
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 38.6166 1.47762 0.738811 0.673912i \(-0.235387\pi\)
0.738811 + 0.673912i \(0.235387\pi\)
\(684\) 0 0
\(685\) −23.3678 −0.892839
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.97755 −0.113436
\(690\) 0 0
\(691\) 20.4095 0.776413 0.388206 0.921572i \(-0.373095\pi\)
0.388206 + 0.921572i \(0.373095\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.26606 0.237685
\(696\) 0 0
\(697\) −26.5810 −1.00683
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.9987 −0.755341 −0.377670 0.925940i \(-0.623275\pi\)
−0.377670 + 0.925940i \(0.623275\pi\)
\(702\) 0 0
\(703\) 50.9701 1.92237
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.923826 0.0347440
\(708\) 0 0
\(709\) −13.2097 −0.496100 −0.248050 0.968747i \(-0.579790\pi\)
−0.248050 + 0.968747i \(0.579790\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.65108 −0.136734
\(714\) 0 0
\(715\) −12.3498 −0.461857
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −36.4662 −1.35996 −0.679979 0.733231i \(-0.738011\pi\)
−0.679979 + 0.733231i \(0.738011\pi\)
\(720\) 0 0
\(721\) −4.76696 −0.177531
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −40.2097 −1.49335
\(726\) 0 0
\(727\) 41.1655 1.52674 0.763371 0.645960i \(-0.223543\pi\)
0.763371 + 0.645960i \(0.223543\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −37.0627 −1.37081
\(732\) 0 0
\(733\) −29.5029 −1.08971 −0.544857 0.838529i \(-0.683416\pi\)
−0.544857 + 0.838529i \(0.683416\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.0214 −0.516486
\(738\) 0 0
\(739\) 44.3622 1.63189 0.815945 0.578129i \(-0.196217\pi\)
0.815945 + 0.578129i \(0.196217\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.1590 −0.372697 −0.186349 0.982484i \(-0.559665\pi\)
−0.186349 + 0.982484i \(0.559665\pi\)
\(744\) 0 0
\(745\) 62.1728 2.27783
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.25890 −0.0459991
\(750\) 0 0
\(751\) 7.62962 0.278409 0.139204 0.990264i \(-0.455545\pi\)
0.139204 + 0.990264i \(0.455545\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −58.4637 −2.12771
\(756\) 0 0
\(757\) 49.6248 1.80364 0.901822 0.432107i \(-0.142230\pi\)
0.901822 + 0.432107i \(0.142230\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.7198 −0.714841 −0.357421 0.933944i \(-0.616344\pi\)
−0.357421 + 0.933944i \(0.616344\pi\)
\(762\) 0 0
\(763\) −3.90329 −0.141309
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.940619 0.0339638
\(768\) 0 0
\(769\) −51.3471 −1.85162 −0.925812 0.377984i \(-0.876618\pi\)
−0.925812 + 0.377984i \(0.876618\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.28424 −0.0461910 −0.0230955 0.999733i \(-0.507352\pi\)
−0.0230955 + 0.999733i \(0.507352\pi\)
\(774\) 0 0
\(775\) 7.07399 0.254105
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 30.5078 1.09305
\(780\) 0 0
\(781\) 17.3301 0.620121
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −61.2861 −2.18740
\(786\) 0 0
\(787\) −0.0261866 −0.000933451 0 −0.000466726 1.00000i \(-0.500149\pi\)
−0.000466726 1.00000i \(0.500149\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.726395 −0.0258276
\(792\) 0 0
\(793\) 14.4198 0.512061
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.9734 −0.530384 −0.265192 0.964196i \(-0.585435\pi\)
−0.265192 + 0.964196i \(0.585435\pi\)
\(798\) 0 0
\(799\) −8.02607 −0.283942
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −23.3778 −0.824985
\(804\) 0 0
\(805\) 6.14873 0.216714
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 41.1952 1.44834 0.724172 0.689619i \(-0.242222\pi\)
0.724172 + 0.689619i \(0.242222\pi\)
\(810\) 0 0
\(811\) −49.0285 −1.72162 −0.860811 0.508924i \(-0.830043\pi\)
−0.860811 + 0.508924i \(0.830043\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 21.0149 0.736118
\(816\) 0 0
\(817\) 42.5379 1.48821
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.77995 −0.341323 −0.170661 0.985330i \(-0.554590\pi\)
−0.170661 + 0.985330i \(0.554590\pi\)
\(822\) 0 0
\(823\) −35.2008 −1.22702 −0.613512 0.789686i \(-0.710244\pi\)
−0.613512 + 0.789686i \(0.710244\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.45020 −0.154749 −0.0773743 0.997002i \(-0.524654\pi\)
−0.0773743 + 0.997002i \(0.524654\pi\)
\(828\) 0 0
\(829\) 31.8398 1.10584 0.552921 0.833234i \(-0.313513\pi\)
0.552921 + 0.833234i \(0.313513\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −26.7125 −0.925532
\(834\) 0 0
\(835\) −17.7224 −0.613309
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −54.1699 −1.87015 −0.935076 0.354448i \(-0.884669\pi\)
−0.935076 + 0.354448i \(0.884669\pi\)
\(840\) 0 0
\(841\) −9.23851 −0.318569
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.74770 0.128925
\(846\) 0 0
\(847\) 0.0495398 0.00170221
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 53.3712 1.82954
\(852\) 0 0
\(853\) −40.7048 −1.39371 −0.696853 0.717214i \(-0.745417\pi\)
−0.696853 + 0.717214i \(0.745417\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.60350 0.0889338 0.0444669 0.999011i \(-0.485841\pi\)
0.0444669 + 0.999011i \(0.485841\pi\)
\(858\) 0 0
\(859\) −16.4524 −0.561347 −0.280674 0.959803i \(-0.590558\pi\)
−0.280674 + 0.959803i \(0.590558\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.2597 0.621566 0.310783 0.950481i \(-0.399409\pi\)
0.310783 + 0.950481i \(0.399409\pi\)
\(864\) 0 0
\(865\) −62.9423 −2.14010
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 46.8381 1.58887
\(870\) 0 0
\(871\) 4.25497 0.144174
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.32787 −0.180115
\(876\) 0 0
\(877\) −42.6740 −1.44100 −0.720498 0.693457i \(-0.756087\pi\)
−0.720498 + 0.693457i \(0.756087\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.5618 0.894890 0.447445 0.894311i \(-0.352334\pi\)
0.447445 + 0.894311i \(0.352334\pi\)
\(882\) 0 0
\(883\) 47.3009 1.59180 0.795900 0.605428i \(-0.206998\pi\)
0.795900 + 0.605428i \(0.206998\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −42.6762 −1.43293 −0.716464 0.697624i \(-0.754241\pi\)
−0.716464 + 0.697624i \(0.754241\pi\)
\(888\) 0 0
\(889\) 5.29865 0.177711
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.21174 0.308259
\(894\) 0 0
\(895\) 44.1772 1.47668
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.47659 −0.115951
\(900\) 0 0
\(901\) −11.5666 −0.385340
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −97.7891 −3.25062
\(906\) 0 0
\(907\) −40.3848 −1.34095 −0.670477 0.741930i \(-0.733910\pi\)
−0.670477 + 0.741930i \(0.733910\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −53.2907 −1.76560 −0.882799 0.469750i \(-0.844344\pi\)
−0.882799 + 0.469750i \(0.844344\pi\)
\(912\) 0 0
\(913\) 41.3704 1.36916
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.79357 −0.158298
\(918\) 0 0
\(919\) −5.72441 −0.188831 −0.0944155 0.995533i \(-0.530098\pi\)
−0.0944155 + 0.995533i \(0.530098\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.25904 −0.173103
\(924\) 0 0
\(925\) −103.407 −3.40001
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.72533 0.155033 0.0775165 0.996991i \(-0.475301\pi\)
0.0775165 + 0.996991i \(0.475301\pi\)
\(930\) 0 0
\(931\) 30.6586 1.00480
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −47.9742 −1.56892
\(936\) 0 0
\(937\) −1.19269 −0.0389635 −0.0194818 0.999810i \(-0.506202\pi\)
−0.0194818 + 0.999810i \(0.506202\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.5472 1.38700 0.693500 0.720457i \(-0.256068\pi\)
0.693500 + 0.720457i \(0.256068\pi\)
\(942\) 0 0
\(943\) 31.9450 1.04027
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.1494 −0.622272 −0.311136 0.950365i \(-0.600709\pi\)
−0.311136 + 0.950365i \(0.600709\pi\)
\(948\) 0 0
\(949\) 7.09427 0.230290
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42.6090 1.38024 0.690120 0.723695i \(-0.257558\pi\)
0.690120 + 0.723695i \(0.257558\pi\)
\(954\) 0 0
\(955\) −59.3604 −1.92086
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.19127 0.0707599
\(960\) 0 0
\(961\) −30.3884 −0.980270
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41.5037 1.33605
\(966\) 0 0
\(967\) −22.4484 −0.721893 −0.360947 0.932587i \(-0.617546\pi\)
−0.360947 + 0.932587i \(0.617546\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.1977 1.16164 0.580820 0.814032i \(-0.302732\pi\)
0.580820 + 0.814032i \(0.302732\pi\)
\(972\) 0 0
\(973\) −0.587588 −0.0188372
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.12812 −0.164063 −0.0820316 0.996630i \(-0.526141\pi\)
−0.0820316 + 0.996630i \(0.526141\pi\)
\(978\) 0 0
\(979\) 18.3303 0.585840
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.5444 −0.814738 −0.407369 0.913264i \(-0.633554\pi\)
−0.407369 + 0.913264i \(0.633554\pi\)
\(984\) 0 0
\(985\) 31.3543 0.999032
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 44.5418 1.41635
\(990\) 0 0
\(991\) −6.62586 −0.210477 −0.105239 0.994447i \(-0.533561\pi\)
−0.105239 + 0.994447i \(0.533561\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.86979 0.312894
\(996\) 0 0
\(997\) −18.9208 −0.599228 −0.299614 0.954060i \(-0.596858\pi\)
−0.299614 + 0.954060i \(0.596858\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8424.2.a.v.1.6 6
3.2 odd 2 8424.2.a.u.1.1 6
9.2 odd 6 2808.2.q.d.1873.6 12
9.4 even 3 936.2.q.d.313.5 12
9.5 odd 6 2808.2.q.d.937.6 12
9.7 even 3 936.2.q.d.625.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.d.313.5 12 9.4 even 3
936.2.q.d.625.5 yes 12 9.7 even 3
2808.2.q.d.937.6 12 9.5 odd 6
2808.2.q.d.1873.6 12 9.2 odd 6
8424.2.a.u.1.1 6 3.2 odd 2
8424.2.a.v.1.6 6 1.1 even 1 trivial