Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8424,2,Mod(1,8424)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8424, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8424.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8424 = 2^{3} \cdot 3^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8424.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(67.2659786627\) |
Analytic rank: | \(1\) |
Dimension: | \(6\) |
Coefficient field: | 6.6.20396961.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{6} - 3x^{5} - 4x^{4} + 11x^{3} + 7x^{2} - 7x - 2 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 936) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.6 | ||
Root | \(2.15391\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8424.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 3.74770 | 1.67602 | 0.838011 | − | 0.545653i | \(-0.183718\pi\) | ||||
0.838011 | + | 0.545653i | \(0.183718\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −0.351433 | −0.132829 | −0.0664147 | − | 0.997792i | \(-0.521156\pi\) | ||||
−0.0664147 | + | 0.997792i | \(0.521156\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.29530 | −0.993572 | −0.496786 | − | 0.867873i | \(-0.665487\pi\) | ||||
−0.496786 | + | 0.867873i | \(0.665487\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000 | 0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 3.88461 | 0.942155 | 0.471078 | − | 0.882092i | \(-0.343865\pi\) | ||||
0.471078 | + | 0.882092i | \(0.343865\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −4.45847 | −1.02284 | −0.511421 | − | 0.859330i | \(-0.670881\pi\) | ||||
−0.511421 | + | 0.859330i | \(0.670881\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −4.66850 | −0.973450 | −0.486725 | − | 0.873555i | \(-0.661809\pi\) | ||||
−0.486725 | + | 0.873555i | \(0.661809\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 9.04525 | 1.80905 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −4.44539 | −0.825488 | −0.412744 | − | 0.910847i | \(-0.635430\pi\) | ||||
−0.412744 | + | 0.910847i | \(0.635430\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0.782066 | 0.140463 | 0.0702316 | − | 0.997531i | \(-0.477626\pi\) | ||||
0.0702316 | + | 0.997531i | \(0.477626\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −1.31707 | −0.222625 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −11.4322 | −1.87944 | −0.939721 | − | 0.341943i | \(-0.888915\pi\) | ||||
−0.939721 | + | 0.341943i | \(0.888915\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.84266 | −1.06864 | −0.534322 | − | 0.845281i | \(-0.679433\pi\) | ||||
−0.534322 | + | 0.845281i | \(0.679433\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −9.54092 | −1.45498 | −0.727488 | − | 0.686120i | \(-0.759312\pi\) | ||||
−0.727488 | + | 0.686120i | \(0.759312\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −2.06612 | −0.301375 | −0.150687 | − | 0.988581i | \(-0.548149\pi\) | ||||
−0.150687 | + | 0.988581i | \(0.548149\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −6.87649 | −0.982356 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −2.97755 | −0.408998 | −0.204499 | − | 0.978867i | \(-0.565557\pi\) | ||||
−0.204499 | + | 0.978867i | \(0.565557\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −12.3498 | −1.66525 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0.940619 | 0.122458 | 0.0612291 | − | 0.998124i | \(-0.480498\pi\) | ||||
0.0612291 | + | 0.998124i | \(0.480498\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 14.4198 | 1.84626 | 0.923130 | − | 0.384487i | \(-0.125622\pi\) | ||||
0.923130 | + | 0.384487i | \(0.125622\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 3.74770 | 0.464845 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.25497 | 0.519827 | 0.259914 | − | 0.965632i | \(-0.416306\pi\) | ||||
0.259914 | + | 0.965632i | \(0.416306\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −5.25904 | −0.624133 | −0.312067 | − | 0.950060i | \(-0.601021\pi\) | ||||
−0.312067 | + | 0.950060i | \(0.601021\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 7.09427 | 0.830322 | 0.415161 | − | 0.909748i | \(-0.363725\pi\) | ||||
0.415161 | + | 0.909748i | \(0.363725\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 1.15808 | 0.131976 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −14.2136 | −1.59915 | −0.799577 | − | 0.600564i | \(-0.794943\pi\) | ||||
−0.799577 | + | 0.600564i | \(0.794943\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −12.5543 | −1.37802 | −0.689009 | − | 0.724753i | \(-0.741954\pi\) | ||||
−0.689009 | + | 0.724753i | \(0.741954\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 14.5583 | 1.57907 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −5.56256 | −0.589631 | −0.294815 | − | 0.955554i | \(-0.595258\pi\) | ||||
−0.294815 | + | 0.955554i | \(0.595258\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −0.351433 | −0.0368402 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −16.7090 | −1.71431 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −1.70659 | −0.173278 | −0.0866391 | − | 0.996240i | \(-0.527613\pi\) | ||||
−0.0866391 | + | 0.996240i | \(0.527613\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −2.62874 | −0.261569 | −0.130784 | − | 0.991411i | \(-0.541750\pi\) | ||||
−0.130784 | + | 0.991411i | \(0.541750\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 13.5643 | 1.33653 | 0.668267 | − | 0.743921i | \(-0.267036\pi\) | ||||
0.668267 | + | 0.743921i | \(0.267036\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 3.58218 | 0.346302 | 0.173151 | − | 0.984895i | \(-0.444605\pi\) | ||||
0.173151 | + | 0.984895i | \(0.444605\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 11.1068 | 1.06384 | 0.531918 | − | 0.846796i | \(-0.321472\pi\) | ||||
0.531918 | + | 0.846796i | \(0.321472\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 2.06695 | 0.194442 | 0.0972210 | − | 0.995263i | \(-0.469005\pi\) | ||||
0.0972210 | + | 0.995263i | \(0.469005\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −17.4961 | −1.63152 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −1.36518 | −0.125146 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −0.140965 | −0.0128150 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 15.1604 | 1.35599 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −15.0773 | −1.33789 | −0.668945 | − | 0.743312i | \(-0.733254\pi\) | ||||
−0.668945 | + | 0.743312i | \(0.733254\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 13.6401 | 1.19174 | 0.595869 | − | 0.803082i | \(-0.296808\pi\) | ||||
0.595869 | + | 0.803082i | \(0.296808\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 1.56685 | 0.135863 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −6.23525 | −0.532713 | −0.266356 | − | 0.963875i | \(-0.585820\pi\) | ||||
−0.266356 | + | 0.963875i | \(0.585820\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 1.67198 | 0.141815 | 0.0709076 | − | 0.997483i | \(-0.477410\pi\) | ||||
0.0709076 | + | 0.997483i | \(0.477410\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −3.29530 | −0.275567 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −16.6600 | −1.38354 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 16.5896 | 1.35907 | 0.679536 | − | 0.733643i | \(-0.262181\pi\) | ||||
0.679536 | + | 0.733643i | \(0.262181\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −15.5999 | −1.26950 | −0.634751 | − | 0.772717i | \(-0.718897\pi\) | ||||
−0.634751 | + | 0.772717i | \(0.718897\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 2.93095 | 0.235420 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −16.3530 | −1.30511 | −0.652556 | − | 0.757741i | \(-0.726303\pi\) | ||||
−0.652556 | + | 0.757741i | \(0.726303\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 1.64067 | 0.129303 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 5.60740 | 0.439206 | 0.219603 | − | 0.975589i | \(-0.429524\pi\) | ||||
0.219603 | + | 0.975589i | \(0.429524\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −4.72887 | −0.365931 | −0.182966 | − | 0.983119i | \(-0.558570\pi\) | ||||
−0.182966 | + | 0.983119i | \(0.558570\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −16.7949 | −1.27689 | −0.638447 | − | 0.769666i | \(-0.720423\pi\) | ||||
−0.638447 | + | 0.769666i | \(0.720423\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −3.17881 | −0.240295 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 11.7878 | 0.881062 | 0.440531 | − | 0.897737i | \(-0.354790\pi\) | ||||
0.440531 | + | 0.897737i | \(0.354790\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −26.0931 | −1.93948 | −0.969742 | − | 0.244132i | \(-0.921497\pi\) | ||||
−0.969742 | + | 0.244132i | \(0.921497\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −42.8444 | −3.14999 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −12.8010 | −0.936099 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −15.8392 | −1.14608 | −0.573041 | − | 0.819527i | \(-0.694236\pi\) | ||||
−0.573041 | + | 0.819527i | \(0.694236\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 11.0744 | 0.797155 | 0.398578 | − | 0.917135i | \(-0.369504\pi\) | ||||
0.398578 | + | 0.917135i | \(0.369504\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 8.36629 | 0.596073 | 0.298037 | − | 0.954554i | \(-0.403668\pi\) | ||||
0.298037 | + | 0.954554i | \(0.403668\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 2.63356 | 0.186688 | 0.0933441 | − | 0.995634i | \(-0.470244\pi\) | ||||
0.0933441 | + | 0.995634i | \(0.470244\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 1.56226 | 0.109649 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −25.6442 | −1.79107 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 14.6920 | 1.01627 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −24.3555 | −1.67670 | −0.838351 | − | 0.545131i | \(-0.816480\pi\) | ||||
−0.838351 | + | 0.545131i | \(0.816480\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −35.7565 | −2.43857 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −0.274844 | −0.0186576 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 3.88461 | 0.261307 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 25.7203 | 1.72236 | 0.861178 | − | 0.508303i | \(-0.169727\pi\) | ||||
0.861178 | + | 0.508303i | \(0.169727\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 22.3523 | 1.48358 | 0.741788 | − | 0.670635i | \(-0.233978\pi\) | ||||
0.741788 | + | 0.670635i | \(0.233978\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 4.84045 | 0.319866 | 0.159933 | − | 0.987128i | \(-0.448872\pi\) | ||||
0.159933 | + | 0.987128i | \(0.448872\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 25.0840 | 1.64331 | 0.821655 | − | 0.569986i | \(-0.193051\pi\) | ||||
0.821655 | + | 0.569986i | \(0.193051\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −7.74321 | −0.505111 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 24.6184 | 1.59243 | 0.796217 | − | 0.605011i | \(-0.206831\pi\) | ||||
0.796217 | + | 0.605011i | \(0.206831\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −20.1819 | −1.30003 | −0.650015 | − | 0.759922i | \(-0.725237\pi\) | ||||
−0.650015 | + | 0.759922i | \(0.725237\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −25.7710 | −1.64645 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −4.45847 | −0.283685 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 26.3117 | 1.66078 | 0.830391 | − | 0.557181i | \(-0.188117\pi\) | ||||
0.830391 | + | 0.557181i | \(0.188117\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 15.3841 | 0.967192 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −9.04219 | −0.564036 | −0.282018 | − | 0.959409i | \(-0.591004\pi\) | ||||
−0.282018 | + | 0.959409i | \(0.591004\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 4.01766 | 0.249645 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −1.90602 | −0.117530 | −0.0587650 | − | 0.998272i | \(-0.518716\pi\) | ||||
−0.0587650 | + | 0.998272i | \(0.518716\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −11.1590 | −0.685490 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 13.5293 | 0.824896 | 0.412448 | − | 0.910981i | \(-0.364674\pi\) | ||||
0.412448 | + | 0.910981i | \(0.364674\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.66113 | 0.526126 | 0.263063 | − | 0.964779i | \(-0.415267\pi\) | ||||
0.263063 | + | 0.964779i | \(0.415267\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −29.8069 | −1.79742 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 25.4902 | 1.53156 | 0.765779 | − | 0.643103i | \(-0.222353\pi\) | ||||
0.765779 | + | 0.643103i | \(0.222353\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −22.7193 | −1.35532 | −0.677659 | − | 0.735376i | \(-0.737006\pi\) | ||||
−0.677659 | + | 0.735376i | \(0.737006\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0.811261 | 0.0482245 | 0.0241122 | − | 0.999709i | \(-0.492324\pi\) | ||||
0.0241122 | + | 0.999709i | \(0.492324\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 2.40474 | 0.141947 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −1.90983 | −0.112343 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 16.4591 | 0.961549 | 0.480775 | − | 0.876844i | \(-0.340355\pi\) | ||||
0.480775 | + | 0.876844i | \(0.340355\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 3.52516 | 0.205243 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −4.66850 | −0.269986 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 3.35300 | 0.193264 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 54.0409 | 3.09437 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −1.61680 | −0.0922754 | −0.0461377 | − | 0.998935i | \(-0.514691\pi\) | ||||
−0.0461377 | + | 0.998935i | \(0.514691\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 29.7730 | 1.68827 | 0.844136 | − | 0.536128i | \(-0.180114\pi\) | ||||
0.844136 | + | 0.536128i | \(0.180114\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 2.01229 | 0.113741 | 0.0568707 | − | 0.998382i | \(-0.481888\pi\) | ||||
0.0568707 | + | 0.998382i | \(0.481888\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 13.0331 | 0.732012 | 0.366006 | − | 0.930612i | \(-0.380725\pi\) | ||||
0.366006 | + | 0.930612i | \(0.380725\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 14.6489 | 0.820182 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −17.3194 | −0.963676 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 9.04525 | 0.501740 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0.726105 | 0.0400314 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 2.42161 | 0.133104 | 0.0665520 | − | 0.997783i | \(-0.478800\pi\) | ||||
0.0665520 | + | 0.997783i | \(0.478800\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 15.9464 | 0.871242 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −31.1180 | −1.69510 | −0.847552 | − | 0.530712i | \(-0.821925\pi\) | ||||
−0.847552 | + | 0.530712i | \(0.821925\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −2.57715 | −0.139560 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 4.87666 | 0.263315 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −19.7606 | −1.06081 | −0.530403 | − | 0.847745i | \(-0.677960\pi\) | ||||
−0.530403 | + | 0.847745i | \(0.677960\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 4.93903 | 0.264380 | 0.132190 | − | 0.991224i | \(-0.457799\pi\) | ||||
0.132190 | + | 0.991224i | \(0.457799\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 8.06760 | 0.429395 | 0.214698 | − | 0.976681i | \(-0.431123\pi\) | ||||
0.214698 | + | 0.976681i | \(0.431123\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −19.7093 | −1.04606 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −5.70600 | −0.301151 | −0.150576 | − | 0.988598i | \(-0.548113\pi\) | ||||
−0.150576 | + | 0.988598i | \(0.548113\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 0.877919 | 0.0462063 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 26.5872 | 1.39164 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −10.4935 | −0.547757 | −0.273879 | − | 0.961764i | \(-0.588307\pi\) | ||||
−0.273879 | + | 0.961764i | \(0.588307\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 1.04641 | 0.0543270 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −28.9262 | −1.49774 | −0.748870 | − | 0.662717i | \(-0.769403\pi\) | ||||
−0.748870 | + | 0.662717i | \(0.769403\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −4.44539 | −0.228949 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −35.6342 | −1.83040 | −0.915202 | − | 0.402995i | \(-0.867969\pi\) | ||||
−0.915202 | + | 0.402995i | \(0.867969\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −20.7302 | −1.05926 | −0.529632 | − | 0.848227i | \(-0.677670\pi\) | ||||
−0.529632 | + | 0.848227i | \(0.677670\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 4.34014 | 0.221194 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 20.1644 | 1.02238 | 0.511189 | − | 0.859468i | \(-0.329205\pi\) | ||||
0.511189 | + | 0.859468i | \(0.329205\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −18.1353 | −0.917141 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −53.2683 | −2.68022 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −2.27323 | −0.114090 | −0.0570450 | − | 0.998372i | \(-0.518168\pi\) | ||||
−0.0570450 | + | 0.998372i | \(0.518168\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 26.1927 | 1.30800 | 0.653999 | − | 0.756495i | \(-0.273090\pi\) | ||||
0.653999 | + | 0.756495i | \(0.273090\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0.782066 | 0.0389575 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 37.6726 | 1.86736 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 8.06517 | 0.398797 | 0.199399 | − | 0.979918i | \(-0.436101\pi\) | ||||
0.199399 | + | 0.979918i | \(0.436101\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −0.330565 | −0.0162660 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −47.0499 | −2.30959 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 17.4849 | 0.854191 | 0.427096 | − | 0.904207i | \(-0.359537\pi\) | ||||
0.427096 | + | 0.904207i | \(0.359537\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −20.0442 | −0.976894 | −0.488447 | − | 0.872594i | \(-0.662436\pi\) | ||||
−0.488447 | + | 0.872594i | \(0.662436\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 35.1373 | 1.70441 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −5.06759 | −0.245238 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 8.01436 | 0.386038 | 0.193019 | − | 0.981195i | \(-0.438172\pi\) | ||||
0.193019 | + | 0.981195i | \(0.438172\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −25.8390 | −1.24174 | −0.620872 | − | 0.783912i | \(-0.713221\pi\) | ||||
−0.620872 | + | 0.783912i | \(0.713221\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 20.8144 | 0.995685 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 2.44177 | 0.116539 | 0.0582697 | − | 0.998301i | \(-0.481442\pi\) | ||||
0.0582697 | + | 0.998301i | \(0.481442\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −17.4136 | −0.827343 | −0.413672 | − | 0.910426i | \(-0.635754\pi\) | ||||
−0.413672 | + | 0.910426i | \(0.635754\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −20.8468 | −0.988234 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 18.3826 | 0.867528 | 0.433764 | − | 0.901026i | \(-0.357185\pi\) | ||||
0.433764 | + | 0.901026i | \(0.357185\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 22.5486 | 1.06177 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −1.31707 | −0.0617451 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −15.9285 | −0.745104 | −0.372552 | − | 0.928011i | \(-0.621517\pi\) | ||||
−0.372552 | + | 0.928011i | \(0.621517\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 27.6294 | 1.28683 | 0.643414 | − | 0.765518i | \(-0.277517\pi\) | ||||
0.643414 | + | 0.765518i | \(0.277517\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 20.1291 | 0.935478 | 0.467739 | − | 0.883867i | \(-0.345069\pi\) | ||||
0.467739 | + | 0.883867i | \(0.345069\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −1.34267 | −0.0621315 | −0.0310657 | − | 0.999517i | \(-0.509890\pi\) | ||||
−0.0310657 | + | 0.999517i | \(0.509890\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −1.49534 | −0.0690483 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 31.4402 | 1.44562 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −40.3280 | −1.85037 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −10.3562 | −0.473188 | −0.236594 | − | 0.971609i | \(-0.576031\pi\) | ||||
−0.236594 | + | 0.971609i | \(0.576031\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −11.4322 | −0.521263 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −6.39579 | −0.290418 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 40.8998 | 1.85335 | 0.926674 | − | 0.375867i | \(-0.122655\pi\) | ||||
0.926674 | + | 0.375867i | \(0.122655\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 16.0072 | 0.722393 | 0.361197 | − | 0.932490i | \(-0.382368\pi\) | ||||
0.361197 | + | 0.932490i | \(0.382368\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −17.2686 | −0.777738 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 1.84820 | 0.0829032 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −2.36239 | −0.105755 | −0.0528775 | − | 0.998601i | \(-0.516839\pi\) | ||||
−0.0528775 | + | 0.998601i | \(0.516839\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −25.8661 | −1.15331 | −0.576655 | − | 0.816988i | \(-0.695642\pi\) | ||||
−0.576655 | + | 0.816988i | \(0.695642\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −9.85171 | −0.438395 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −20.7208 | −0.918433 | −0.459217 | − | 0.888324i | \(-0.651870\pi\) | ||||
−0.459217 | + | 0.888324i | \(0.651870\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −2.49317 | −0.110291 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 50.8351 | 2.24006 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 6.80850 | 0.299438 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −39.8677 | −1.74664 | −0.873318 | − | 0.487150i | \(-0.838036\pi\) | ||||
−0.873318 | + | 0.487150i | \(0.838036\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −12.3303 | −0.539167 | −0.269583 | − | 0.962977i | \(-0.586886\pi\) | ||||
−0.269583 | + | 0.962977i | \(0.586886\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 3.03802 | 0.132338 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −1.20510 | −0.0523957 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −6.84266 | −0.296388 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 13.4249 | 0.580411 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 22.6601 | 0.976042 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 22.9129 | 0.985104 | 0.492552 | − | 0.870283i | \(-0.336064\pi\) | ||||
0.492552 | + | 0.870283i | \(0.336064\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 41.6248 | 1.78301 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −7.49423 | −0.320430 | −0.160215 | − | 0.987082i | \(-0.551219\pi\) | ||||
−0.160215 | + | 0.987082i | \(0.551219\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 19.8196 | 0.844344 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 4.99513 | 0.212415 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −26.2053 | −1.11036 | −0.555178 | − | 0.831732i | \(-0.687350\pi\) | ||||
−0.555178 | + | 0.831732i | \(0.687350\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −9.54092 | −0.403538 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −26.0256 | −1.09685 | −0.548424 | − | 0.836200i | \(-0.684772\pi\) | ||||
−0.548424 | + | 0.836200i | \(0.684772\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 7.74630 | 0.325889 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 29.8500 | 1.25138 | 0.625689 | − | 0.780072i | \(-0.284818\pi\) | ||||
0.625689 | + | 0.780072i | \(0.284818\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 8.97421 | 0.375559 | 0.187780 | − | 0.982211i | \(-0.439871\pi\) | ||||
0.187780 | + | 0.982211i | \(0.439871\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −42.2278 | −1.76102 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −32.4990 | −1.35295 | −0.676476 | − | 0.736465i | \(-0.736494\pi\) | ||||
−0.676476 | + | 0.736465i | \(0.736494\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 4.41202 | 0.183041 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 9.81194 | 0.406369 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −14.2273 | −0.587223 | −0.293612 | − | 0.955925i | \(-0.594857\pi\) | ||||
−0.293612 | + | 0.955925i | \(0.594857\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −3.48682 | −0.143672 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −14.7975 | −0.607662 | −0.303831 | − | 0.952726i | \(-0.598266\pi\) | ||||
−0.303831 | + | 0.952726i | \(0.598266\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | −5.11629 | −0.209747 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 1.34362 | 0.0548989 | 0.0274495 | − | 0.999623i | \(-0.491261\pi\) | ||||
0.0274495 | + | 0.999623i | \(0.491261\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 28.7195 | 1.17149 | 0.585746 | − | 0.810495i | \(-0.300802\pi\) | ||||
0.585746 | + | 0.810495i | \(0.300802\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −0.528295 | −0.0214782 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −3.12460 | −0.126824 | −0.0634118 | − | 0.997987i | \(-0.520198\pi\) | ||||
−0.0634118 | + | 0.997987i | \(0.520198\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −2.06612 | −0.0835864 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 19.6800 | 0.794867 | 0.397433 | − | 0.917631i | \(-0.369901\pi\) | ||||
0.397433 | + | 0.917631i | \(0.369901\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 10.0591 | 0.404964 | 0.202482 | − | 0.979286i | \(-0.435099\pi\) | ||||
0.202482 | + | 0.979286i | \(0.435099\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −42.5605 | −1.71065 | −0.855326 | − | 0.518090i | \(-0.826643\pi\) | ||||
−0.855326 | + | 0.518090i | \(0.826643\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 1.95487 | 0.0783203 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 11.5904 | 0.463614 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −44.4096 | −1.77073 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 20.2946 | 0.807916 | 0.403958 | − | 0.914778i | \(-0.367634\pi\) | ||||
0.403958 | + | 0.914778i | \(0.367634\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −56.5051 | −2.24233 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −6.87649 | −0.272457 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 3.49158 | 0.137909 | 0.0689546 | − | 0.997620i | \(-0.478034\pi\) | ||||
0.0689546 | + | 0.997620i | \(0.478034\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −35.0558 | −1.38247 | −0.691233 | − | 0.722632i | \(-0.742932\pi\) | ||||
−0.691233 | + | 0.722632i | \(0.742932\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 44.6001 | 1.75341 | 0.876705 | − | 0.481028i | \(-0.159736\pi\) | ||||
0.876705 | + | 0.481028i | \(0.159736\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −3.09963 | −0.121671 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −11.7937 | −0.461525 | −0.230762 | − | 0.973010i | \(-0.574122\pi\) | ||||
−0.230762 | + | 0.973010i | \(0.574122\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 51.1188 | 1.99738 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −18.1674 | −0.707700 | −0.353850 | − | 0.935302i | \(-0.615128\pi\) | ||||
−0.353850 | + | 0.935302i | \(0.615128\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 4.20156 | 0.163422 | 0.0817108 | − | 0.996656i | \(-0.473962\pi\) | ||||
0.0817108 | + | 0.996656i | \(0.473962\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 5.87210 | 0.227710 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 20.7533 | 0.803571 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −47.5175 | −1.83439 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −44.4630 | −1.71392 | −0.856961 | − | 0.515382i | \(-0.827650\pi\) | ||||
−0.856961 | + | 0.515382i | \(0.827650\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 7.48675 | 0.287739 | 0.143870 | − | 0.989597i | \(-0.454045\pi\) | ||||
0.143870 | + | 0.989597i | \(0.454045\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0.599753 | 0.0230164 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 38.6166 | 1.47762 | 0.738811 | − | 0.673912i | \(-0.235387\pi\) | ||||
0.738811 | + | 0.673912i | \(0.235387\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −23.3678 | −0.892839 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −2.97755 | −0.113436 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 20.4095 | 0.776413 | 0.388206 | − | 0.921572i | \(-0.373095\pi\) | ||||
0.388206 | + | 0.921572i | \(0.373095\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 6.26606 | 0.237685 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −26.5810 | −1.00683 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −19.9987 | −0.755341 | −0.377670 | − | 0.925940i | \(-0.623275\pi\) | ||||
−0.377670 | + | 0.925940i | \(0.623275\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 50.9701 | 1.92237 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0.923826 | 0.0347440 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −13.2097 | −0.496100 | −0.248050 | − | 0.968747i | \(-0.579790\pi\) | ||||
−0.248050 | + | 0.968747i | \(0.579790\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −3.65108 | −0.136734 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −12.3498 | −0.461857 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −36.4662 | −1.35996 | −0.679979 | − | 0.733231i | \(-0.738011\pi\) | ||||
−0.679979 | + | 0.733231i | \(0.738011\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4.76696 | −0.177531 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −40.2097 | −1.49335 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 41.1655 | 1.52674 | 0.763371 | − | 0.645960i | \(-0.223543\pi\) | ||||
0.763371 | + | 0.645960i | \(0.223543\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −37.0627 | −1.37081 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −29.5029 | −1.08971 | −0.544857 | − | 0.838529i | \(-0.683416\pi\) | ||||
−0.544857 | + | 0.838529i | \(0.683416\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −14.0214 | −0.516486 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 44.3622 | 1.63189 | 0.815945 | − | 0.578129i | \(-0.196217\pi\) | ||||
0.815945 | + | 0.578129i | \(0.196217\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −10.1590 | −0.372697 | −0.186349 | − | 0.982484i | \(-0.559665\pi\) | ||||
−0.186349 | + | 0.982484i | \(0.559665\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 62.1728 | 2.27783 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −1.25890 | −0.0459991 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 7.62962 | 0.278409 | 0.139204 | − | 0.990264i | \(-0.455545\pi\) | ||||
0.139204 | + | 0.990264i | \(0.455545\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −58.4637 | −2.12771 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 49.6248 | 1.80364 | 0.901822 | − | 0.432107i | \(-0.142230\pi\) | ||||
0.901822 | + | 0.432107i | \(0.142230\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −19.7198 | −0.714841 | −0.357421 | − | 0.933944i | \(-0.616344\pi\) | ||||
−0.357421 | + | 0.933944i | \(0.616344\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −3.90329 | −0.141309 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0.940619 | 0.0339638 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −51.3471 | −1.85162 | −0.925812 | − | 0.377984i | \(-0.876618\pi\) | ||||
−0.925812 | + | 0.377984i | \(0.876618\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −1.28424 | −0.0461910 | −0.0230955 | − | 0.999733i | \(-0.507352\pi\) | ||||
−0.0230955 | + | 0.999733i | \(0.507352\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 7.07399 | 0.254105 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 30.5078 | 1.09305 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 17.3301 | 0.620121 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −61.2861 | −2.18740 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −0.0261866 | −0.000933451 0 | −0.000466726 | − | 1.00000i | \(-0.500149\pi\) | ||||
−0.000466726 | 1.00000i | \(0.500149\pi\) | ||||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −0.726395 | −0.0258276 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 14.4198 | 0.512061 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −14.9734 | −0.530384 | −0.265192 | − | 0.964196i | \(-0.585435\pi\) | ||||
−0.265192 | + | 0.964196i | \(0.585435\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −8.02607 | −0.283942 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −23.3778 | −0.824985 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 6.14873 | 0.216714 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 41.1952 | 1.44834 | 0.724172 | − | 0.689619i | \(-0.242222\pi\) | ||||
0.724172 | + | 0.689619i | \(0.242222\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −49.0285 | −1.72162 | −0.860811 | − | 0.508924i | \(-0.830043\pi\) | ||||
−0.860811 | + | 0.508924i | \(0.830043\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 21.0149 | 0.736118 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 42.5379 | 1.48821 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −9.77995 | −0.341323 | −0.170661 | − | 0.985330i | \(-0.554590\pi\) | ||||
−0.170661 | + | 0.985330i | \(0.554590\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −35.2008 | −1.22702 | −0.613512 | − | 0.789686i | \(-0.710244\pi\) | ||||
−0.613512 | + | 0.789686i | \(0.710244\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −4.45020 | −0.154749 | −0.0773743 | − | 0.997002i | \(-0.524654\pi\) | ||||
−0.0773743 | + | 0.997002i | \(0.524654\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 31.8398 | 1.10584 | 0.552921 | − | 0.833234i | \(-0.313513\pi\) | ||||
0.552921 | + | 0.833234i | \(0.313513\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −26.7125 | −0.925532 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −17.7224 | −0.613309 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −54.1699 | −1.87015 | −0.935076 | − | 0.354448i | \(-0.884669\pi\) | ||||
−0.935076 | + | 0.354448i | \(0.884669\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −9.23851 | −0.318569 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 3.74770 | 0.128925 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0.0495398 | 0.00170221 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 53.3712 | 1.82954 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −40.7048 | −1.39371 | −0.696853 | − | 0.717214i | \(-0.745417\pi\) | ||||
−0.696853 | + | 0.717214i | \(0.745417\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 2.60350 | 0.0889338 | 0.0444669 | − | 0.999011i | \(-0.485841\pi\) | ||||
0.0444669 | + | 0.999011i | \(0.485841\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −16.4524 | −0.561347 | −0.280674 | − | 0.959803i | \(-0.590558\pi\) | ||||
−0.280674 | + | 0.959803i | \(0.590558\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 18.2597 | 0.621566 | 0.310783 | − | 0.950481i | \(-0.399409\pi\) | ||||
0.310783 | + | 0.950481i | \(0.399409\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −62.9423 | −2.14010 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 46.8381 | 1.58887 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 4.25497 | 0.144174 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −5.32787 | −0.180115 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −42.6740 | −1.44100 | −0.720498 | − | 0.693457i | \(-0.756087\pi\) | ||||
−0.720498 | + | 0.693457i | \(0.756087\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 26.5618 | 0.894890 | 0.447445 | − | 0.894311i | \(-0.352334\pi\) | ||||
0.447445 | + | 0.894311i | \(0.352334\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 47.3009 | 1.59180 | 0.795900 | − | 0.605428i | \(-0.206998\pi\) | ||||
0.795900 | + | 0.605428i | \(0.206998\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −42.6762 | −1.43293 | −0.716464 | − | 0.697624i | \(-0.754241\pi\) | ||||
−0.716464 | + | 0.697624i | \(0.754241\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 5.29865 | 0.177711 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 9.21174 | 0.308259 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 44.1772 | 1.47668 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −3.47659 | −0.115951 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −11.5666 | −0.385340 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −97.7891 | −3.25062 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −40.3848 | −1.34095 | −0.670477 | − | 0.741930i | \(-0.733910\pi\) | ||||
−0.670477 | + | 0.741930i | \(0.733910\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −53.2907 | −1.76560 | −0.882799 | − | 0.469750i | \(-0.844344\pi\) | ||||
−0.882799 | + | 0.469750i | \(0.844344\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 41.3704 | 1.36916 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −4.79357 | −0.158298 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −5.72441 | −0.188831 | −0.0944155 | − | 0.995533i | \(-0.530098\pi\) | ||||
−0.0944155 | + | 0.995533i | \(0.530098\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −5.25904 | −0.173103 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −103.407 | −3.40001 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 4.72533 | 0.155033 | 0.0775165 | − | 0.996991i | \(-0.475301\pi\) | ||||
0.0775165 | + | 0.996991i | \(0.475301\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 30.6586 | 1.00480 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −47.9742 | −1.56892 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −1.19269 | −0.0389635 | −0.0194818 | − | 0.999810i | \(-0.506202\pi\) | ||||
−0.0194818 | + | 0.999810i | \(0.506202\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 42.5472 | 1.38700 | 0.693500 | − | 0.720457i | \(-0.256068\pi\) | ||||
0.693500 | + | 0.720457i | \(0.256068\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 31.9450 | 1.04027 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −19.1494 | −0.622272 | −0.311136 | − | 0.950365i | \(-0.600709\pi\) | ||||
−0.311136 | + | 0.950365i | \(0.600709\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 7.09427 | 0.230290 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 42.6090 | 1.38024 | 0.690120 | − | 0.723695i | \(-0.257558\pi\) | ||||
0.690120 | + | 0.723695i | \(0.257558\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −59.3604 | −1.92086 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 2.19127 | 0.0707599 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.3884 | −0.980270 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 41.5037 | 1.33605 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −22.4484 | −0.721893 | −0.360947 | − | 0.932587i | \(-0.617546\pi\) | ||||
−0.360947 | + | 0.932587i | \(0.617546\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 36.1977 | 1.16164 | 0.580820 | − | 0.814032i | \(-0.302732\pi\) | ||||
0.580820 | + | 0.814032i | \(0.302732\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −0.587588 | −0.0188372 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −5.12812 | −0.164063 | −0.0820316 | − | 0.996630i | \(-0.526141\pi\) | ||||
−0.0820316 | + | 0.996630i | \(0.526141\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 18.3303 | 0.585840 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −25.5444 | −0.814738 | −0.407369 | − | 0.913264i | \(-0.633554\pi\) | ||||
−0.407369 | + | 0.913264i | \(0.633554\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 31.3543 | 0.999032 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 44.5418 | 1.41635 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −6.62586 | −0.210477 | −0.105239 | − | 0.994447i | \(-0.533561\pi\) | ||||
−0.105239 | + | 0.994447i | \(0.533561\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 9.86979 | 0.312894 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −18.9208 | −0.599228 | −0.299614 | − | 0.954060i | \(-0.596858\pi\) | ||||
−0.299614 | + | 0.954060i | \(0.596858\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 8424.2.a.v.1.6 | 6 | ||
3.2 | odd | 2 | 8424.2.a.u.1.1 | 6 | |||
9.2 | odd | 6 | 2808.2.q.d.1873.6 | 12 | |||
9.4 | even | 3 | 936.2.q.d.313.5 | ✓ | 12 | ||
9.5 | odd | 6 | 2808.2.q.d.937.6 | 12 | |||
9.7 | even | 3 | 936.2.q.d.625.5 | yes | 12 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
936.2.q.d.313.5 | ✓ | 12 | 9.4 | even | 3 | ||
936.2.q.d.625.5 | yes | 12 | 9.7 | even | 3 | ||
2808.2.q.d.937.6 | 12 | 9.5 | odd | 6 | |||
2808.2.q.d.1873.6 | 12 | 9.2 | odd | 6 | |||
8424.2.a.u.1.1 | 6 | 3.2 | odd | 2 | |||
8424.2.a.v.1.6 | 6 | 1.1 | even | 1 | trivial |