Properties

Label 845.2.a.m.1.1
Level $845$
Weight $2$
Character 845.1
Self dual yes
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4752.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 3x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.49551\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.49551 q^{2} +0.0947876 q^{3} +0.236543 q^{4} -1.00000 q^{5} -0.141756 q^{6} +4.82684 q^{7} +2.63726 q^{8} -2.99102 q^{9} +1.49551 q^{10} -1.06939 q^{11} +0.0224214 q^{12} -7.21857 q^{14} -0.0947876 q^{15} -4.41713 q^{16} +3.55889 q^{17} +4.47309 q^{18} +5.73205 q^{19} -0.236543 q^{20} +0.457524 q^{21} +1.59928 q^{22} -7.08580 q^{23} +0.249980 q^{24} +1.00000 q^{25} -0.567874 q^{27} +1.14176 q^{28} +1.47309 q^{29} +0.141756 q^{30} -1.46410 q^{31} +1.33133 q^{32} -0.101365 q^{33} -5.32235 q^{34} -4.82684 q^{35} -0.707504 q^{36} -0.0253983 q^{37} -8.57233 q^{38} -2.63726 q^{40} +0.267949 q^{41} -0.684231 q^{42} +3.55889 q^{43} -0.252957 q^{44} +2.99102 q^{45} +10.5969 q^{46} +6.51793 q^{47} -0.418689 q^{48} +16.2984 q^{49} -1.49551 q^{50} +0.337339 q^{51} +0.991015 q^{53} +0.849260 q^{54} +1.06939 q^{55} +12.7296 q^{56} +0.543327 q^{57} -2.20301 q^{58} +8.72307 q^{59} -0.0224214 q^{60} +6.33734 q^{61} +2.18958 q^{62} -14.4371 q^{63} +6.84325 q^{64} +0.151592 q^{66} +5.17316 q^{67} +0.841831 q^{68} -0.671646 q^{69} +7.21857 q^{70} -7.76488 q^{71} -7.88809 q^{72} +10.1088 q^{73} +0.0379833 q^{74} +0.0947876 q^{75} +1.35588 q^{76} -5.16177 q^{77} +8.78347 q^{79} +4.41713 q^{80} +8.91922 q^{81} -0.400720 q^{82} -0.725474 q^{83} +0.108224 q^{84} -3.55889 q^{85} -5.32235 q^{86} +0.139630 q^{87} -2.82026 q^{88} +13.5065 q^{89} -4.47309 q^{90} -1.67610 q^{92} -0.138779 q^{93} -9.74761 q^{94} -5.73205 q^{95} +0.126194 q^{96} -3.43870 q^{97} -24.3743 q^{98} +3.19856 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{5} - 4 q^{6} + 10 q^{7} + 6 q^{8} + 4 q^{9} - 2 q^{10} - 10 q^{12} + 2 q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{17} + 20 q^{18} + 16 q^{19} - 2 q^{20} + 4 q^{21} + 12 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.49551 −1.05748 −0.528742 0.848783i \(-0.677336\pi\)
−0.528742 + 0.848783i \(0.677336\pi\)
\(3\) 0.0947876 0.0547256 0.0273628 0.999626i \(-0.491289\pi\)
0.0273628 + 0.999626i \(0.491289\pi\)
\(4\) 0.236543 0.118272
\(5\) −1.00000 −0.447214
\(6\) −0.141756 −0.0578715
\(7\) 4.82684 1.82437 0.912187 0.409775i \(-0.134393\pi\)
0.912187 + 0.409775i \(0.134393\pi\)
\(8\) 2.63726 0.932413
\(9\) −2.99102 −0.997005
\(10\) 1.49551 0.472921
\(11\) −1.06939 −0.322433 −0.161217 0.986919i \(-0.551542\pi\)
−0.161217 + 0.986919i \(0.551542\pi\)
\(12\) 0.0224214 0.00647249
\(13\) 0 0
\(14\) −7.21857 −1.92924
\(15\) −0.0947876 −0.0244740
\(16\) −4.41713 −1.10428
\(17\) 3.55889 0.863157 0.431579 0.902075i \(-0.357957\pi\)
0.431579 + 0.902075i \(0.357957\pi\)
\(18\) 4.47309 1.05432
\(19\) 5.73205 1.31502 0.657511 0.753445i \(-0.271609\pi\)
0.657511 + 0.753445i \(0.271609\pi\)
\(20\) −0.236543 −0.0528927
\(21\) 0.457524 0.0998400
\(22\) 1.59928 0.340968
\(23\) −7.08580 −1.47749 −0.738746 0.673984i \(-0.764582\pi\)
−0.738746 + 0.673984i \(0.764582\pi\)
\(24\) 0.249980 0.0510269
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −0.567874 −0.109287
\(28\) 1.14176 0.215772
\(29\) 1.47309 0.273545 0.136773 0.990602i \(-0.456327\pi\)
0.136773 + 0.990602i \(0.456327\pi\)
\(30\) 0.141756 0.0258809
\(31\) −1.46410 −0.262960 −0.131480 0.991319i \(-0.541973\pi\)
−0.131480 + 0.991319i \(0.541973\pi\)
\(32\) 1.33133 0.235348
\(33\) −0.101365 −0.0176454
\(34\) −5.32235 −0.912775
\(35\) −4.82684 −0.815885
\(36\) −0.707504 −0.117917
\(37\) −0.0253983 −0.00417545 −0.00208772 0.999998i \(-0.500665\pi\)
−0.00208772 + 0.999998i \(0.500665\pi\)
\(38\) −8.57233 −1.39061
\(39\) 0 0
\(40\) −2.63726 −0.416988
\(41\) 0.267949 0.0418466 0.0209233 0.999781i \(-0.493339\pi\)
0.0209233 + 0.999781i \(0.493339\pi\)
\(42\) −0.684231 −0.105579
\(43\) 3.55889 0.542726 0.271363 0.962477i \(-0.412526\pi\)
0.271363 + 0.962477i \(0.412526\pi\)
\(44\) −0.252957 −0.0381347
\(45\) 2.99102 0.445874
\(46\) 10.5969 1.56242
\(47\) 6.51793 0.950738 0.475369 0.879787i \(-0.342315\pi\)
0.475369 + 0.879787i \(0.342315\pi\)
\(48\) −0.418689 −0.0604326
\(49\) 16.2984 2.32834
\(50\) −1.49551 −0.211497
\(51\) 0.337339 0.0472368
\(52\) 0 0
\(53\) 0.991015 0.136126 0.0680632 0.997681i \(-0.478318\pi\)
0.0680632 + 0.997681i \(0.478318\pi\)
\(54\) 0.849260 0.115570
\(55\) 1.06939 0.144196
\(56\) 12.7296 1.70107
\(57\) 0.543327 0.0719655
\(58\) −2.20301 −0.289270
\(59\) 8.72307 1.13565 0.567823 0.823151i \(-0.307786\pi\)
0.567823 + 0.823151i \(0.307786\pi\)
\(60\) −0.0224214 −0.00289458
\(61\) 6.33734 0.811413 0.405707 0.914003i \(-0.367026\pi\)
0.405707 + 0.914003i \(0.367026\pi\)
\(62\) 2.18958 0.278076
\(63\) −14.4371 −1.81891
\(64\) 6.84325 0.855406
\(65\) 0 0
\(66\) 0.151592 0.0186597
\(67\) 5.17316 0.632002 0.316001 0.948759i \(-0.397660\pi\)
0.316001 + 0.948759i \(0.397660\pi\)
\(68\) 0.841831 0.102087
\(69\) −0.671646 −0.0808567
\(70\) 7.21857 0.862785
\(71\) −7.76488 −0.921521 −0.460761 0.887524i \(-0.652423\pi\)
−0.460761 + 0.887524i \(0.652423\pi\)
\(72\) −7.88809 −0.929621
\(73\) 10.1088 1.18314 0.591572 0.806252i \(-0.298507\pi\)
0.591572 + 0.806252i \(0.298507\pi\)
\(74\) 0.0379833 0.00441547
\(75\) 0.0947876 0.0109451
\(76\) 1.35588 0.155530
\(77\) −5.16177 −0.588238
\(78\) 0 0
\(79\) 8.78347 0.988218 0.494109 0.869400i \(-0.335494\pi\)
0.494109 + 0.869400i \(0.335494\pi\)
\(80\) 4.41713 0.493851
\(81\) 8.91922 0.991024
\(82\) −0.400720 −0.0442521
\(83\) −0.725474 −0.0796311 −0.0398155 0.999207i \(-0.512677\pi\)
−0.0398155 + 0.999207i \(0.512677\pi\)
\(84\) 0.108224 0.0118082
\(85\) −3.55889 −0.386016
\(86\) −5.32235 −0.573923
\(87\) 0.139630 0.0149699
\(88\) −2.82026 −0.300641
\(89\) 13.5065 1.43169 0.715845 0.698259i \(-0.246042\pi\)
0.715845 + 0.698259i \(0.246042\pi\)
\(90\) −4.47309 −0.471505
\(91\) 0 0
\(92\) −1.67610 −0.174745
\(93\) −0.138779 −0.0143907
\(94\) −9.74761 −1.00539
\(95\) −5.73205 −0.588096
\(96\) 0.126194 0.0128796
\(97\) −3.43870 −0.349147 −0.174574 0.984644i \(-0.555855\pi\)
−0.174574 + 0.984644i \(0.555855\pi\)
\(98\) −24.3743 −2.46218
\(99\) 3.19856 0.321467
\(100\) 0.236543 0.0236543
\(101\) 2.85527 0.284110 0.142055 0.989859i \(-0.454629\pi\)
0.142055 + 0.989859i \(0.454629\pi\)
\(102\) −0.504492 −0.0499522
\(103\) −5.54488 −0.546354 −0.273177 0.961964i \(-0.588074\pi\)
−0.273177 + 0.961964i \(0.588074\pi\)
\(104\) 0 0
\(105\) −0.457524 −0.0446498
\(106\) −1.48207 −0.143951
\(107\) −4.44111 −0.429338 −0.214669 0.976687i \(-0.568867\pi\)
−0.214669 + 0.976687i \(0.568867\pi\)
\(108\) −0.134327 −0.0129256
\(109\) 13.7804 1.31993 0.659963 0.751298i \(-0.270572\pi\)
0.659963 + 0.751298i \(0.270572\pi\)
\(110\) −1.59928 −0.152485
\(111\) −0.00240744 −0.000228504 0
\(112\) −21.3208 −2.01463
\(113\) −8.04399 −0.756715 −0.378358 0.925660i \(-0.623511\pi\)
−0.378358 + 0.925660i \(0.623511\pi\)
\(114\) −0.812550 −0.0761023
\(115\) 7.08580 0.660755
\(116\) 0.348448 0.0323526
\(117\) 0 0
\(118\) −13.0454 −1.20093
\(119\) 17.1782 1.57472
\(120\) −0.249980 −0.0228199
\(121\) −9.85641 −0.896037
\(122\) −9.47754 −0.858056
\(123\) 0.0253983 0.00229008
\(124\) −0.346323 −0.0311007
\(125\) −1.00000 −0.0894427
\(126\) 21.5909 1.92347
\(127\) 0.706653 0.0627053 0.0313526 0.999508i \(-0.490019\pi\)
0.0313526 + 0.999508i \(0.490019\pi\)
\(128\) −12.8968 −1.13993
\(129\) 0.337339 0.0297010
\(130\) 0 0
\(131\) 6.26554 0.547423 0.273711 0.961812i \(-0.411749\pi\)
0.273711 + 0.961812i \(0.411749\pi\)
\(132\) −0.0239772 −0.00208694
\(133\) 27.6677 2.39909
\(134\) −7.73650 −0.668332
\(135\) 0.567874 0.0488748
\(136\) 9.38573 0.804820
\(137\) 16.3058 1.39310 0.696549 0.717509i \(-0.254718\pi\)
0.696549 + 0.717509i \(0.254718\pi\)
\(138\) 1.00445 0.0855046
\(139\) −6.82528 −0.578913 −0.289456 0.957191i \(-0.593475\pi\)
−0.289456 + 0.957191i \(0.593475\pi\)
\(140\) −1.14176 −0.0964960
\(141\) 0.617819 0.0520297
\(142\) 11.6124 0.974494
\(143\) 0 0
\(144\) 13.2117 1.10098
\(145\) −1.47309 −0.122333
\(146\) −15.1178 −1.25116
\(147\) 1.54488 0.127420
\(148\) −0.00600778 −0.000493837 0
\(149\) −8.43955 −0.691395 −0.345698 0.938346i \(-0.612358\pi\)
−0.345698 + 0.938346i \(0.612358\pi\)
\(150\) −0.141756 −0.0115743
\(151\) −1.37017 −0.111503 −0.0557513 0.998445i \(-0.517755\pi\)
−0.0557513 + 0.998445i \(0.517755\pi\)
\(152\) 15.1169 1.22614
\(153\) −10.6447 −0.860572
\(154\) 7.71947 0.622052
\(155\) 1.46410 0.117599
\(156\) 0 0
\(157\) 11.9700 0.955311 0.477656 0.878547i \(-0.341487\pi\)
0.477656 + 0.878547i \(0.341487\pi\)
\(158\) −13.1357 −1.04502
\(159\) 0.0939360 0.00744961
\(160\) −1.33133 −0.105251
\(161\) −34.2020 −2.69550
\(162\) −13.3388 −1.04799
\(163\) −22.5713 −1.76792 −0.883962 0.467559i \(-0.845134\pi\)
−0.883962 + 0.467559i \(0.845134\pi\)
\(164\) 0.0633815 0.00494927
\(165\) 0.101365 0.00789124
\(166\) 1.08495 0.0842085
\(167\) 8.19700 0.634303 0.317152 0.948375i \(-0.397274\pi\)
0.317152 + 0.948375i \(0.397274\pi\)
\(168\) 1.20661 0.0930922
\(169\) 0 0
\(170\) 5.32235 0.408205
\(171\) −17.1447 −1.31108
\(172\) 0.841831 0.0641890
\(173\) −9.16772 −0.697009 −0.348505 0.937307i \(-0.613310\pi\)
−0.348505 + 0.937307i \(0.613310\pi\)
\(174\) −0.208818 −0.0158305
\(175\) 4.82684 0.364875
\(176\) 4.72364 0.356057
\(177\) 0.826838 0.0621490
\(178\) −20.1991 −1.51399
\(179\) −10.0370 −0.750200 −0.375100 0.926984i \(-0.622392\pi\)
−0.375100 + 0.926984i \(0.622392\pi\)
\(180\) 0.707504 0.0527342
\(181\) 17.0238 1.26537 0.632686 0.774408i \(-0.281952\pi\)
0.632686 + 0.774408i \(0.281952\pi\)
\(182\) 0 0
\(183\) 0.600701 0.0444051
\(184\) −18.6871 −1.37763
\(185\) 0.0253983 0.00186732
\(186\) 0.207545 0.0152179
\(187\) −3.80584 −0.278310
\(188\) 1.54177 0.112445
\(189\) −2.74104 −0.199381
\(190\) 8.57233 0.621902
\(191\) −3.87741 −0.280559 −0.140280 0.990112i \(-0.544800\pi\)
−0.140280 + 0.990112i \(0.544800\pi\)
\(192\) 0.648655 0.0468127
\(193\) 1.25394 0.0902608 0.0451304 0.998981i \(-0.485630\pi\)
0.0451304 + 0.998981i \(0.485630\pi\)
\(194\) 5.14261 0.369218
\(195\) 0 0
\(196\) 3.85527 0.275376
\(197\) −15.2820 −1.08879 −0.544397 0.838828i \(-0.683242\pi\)
−0.544397 + 0.838828i \(0.683242\pi\)
\(198\) −4.78347 −0.339946
\(199\) −13.2296 −0.937822 −0.468911 0.883246i \(-0.655353\pi\)
−0.468911 + 0.883246i \(0.655353\pi\)
\(200\) 2.63726 0.186483
\(201\) 0.490352 0.0345867
\(202\) −4.27007 −0.300441
\(203\) 7.11035 0.499049
\(204\) 0.0797951 0.00558678
\(205\) −0.267949 −0.0187144
\(206\) 8.29242 0.577760
\(207\) 21.1937 1.47307
\(208\) 0 0
\(209\) −6.12979 −0.424007
\(210\) 0.684231 0.0472164
\(211\) −4.81042 −0.331163 −0.165582 0.986196i \(-0.552950\pi\)
−0.165582 + 0.986196i \(0.552950\pi\)
\(212\) 0.234418 0.0160999
\(213\) −0.736014 −0.0504309
\(214\) 6.64172 0.454018
\(215\) −3.55889 −0.242714
\(216\) −1.49763 −0.101901
\(217\) −7.06698 −0.479738
\(218\) −20.6088 −1.39580
\(219\) 0.958188 0.0647484
\(220\) 0.252957 0.0170543
\(221\) 0 0
\(222\) 0.00360034 0.000241639 0
\(223\) 14.7132 0.985271 0.492635 0.870236i \(-0.336034\pi\)
0.492635 + 0.870236i \(0.336034\pi\)
\(224\) 6.42612 0.429363
\(225\) −2.99102 −0.199401
\(226\) 12.0299 0.800214
\(227\) 14.9028 0.989134 0.494567 0.869140i \(-0.335327\pi\)
0.494567 + 0.869140i \(0.335327\pi\)
\(228\) 0.128520 0.00851147
\(229\) −19.3074 −1.27587 −0.637933 0.770092i \(-0.720210\pi\)
−0.637933 + 0.770092i \(0.720210\pi\)
\(230\) −10.5969 −0.698737
\(231\) −0.489272 −0.0321917
\(232\) 3.88492 0.255057
\(233\) −21.1937 −1.38845 −0.694224 0.719759i \(-0.744252\pi\)
−0.694224 + 0.719759i \(0.744252\pi\)
\(234\) 0 0
\(235\) −6.51793 −0.425183
\(236\) 2.06338 0.134315
\(237\) 0.832564 0.0540808
\(238\) −25.6901 −1.66524
\(239\) −14.8971 −0.963612 −0.481806 0.876278i \(-0.660019\pi\)
−0.481806 + 0.876278i \(0.660019\pi\)
\(240\) 0.418689 0.0270263
\(241\) 9.39168 0.604971 0.302486 0.953154i \(-0.402184\pi\)
0.302486 + 0.953154i \(0.402184\pi\)
\(242\) 14.7403 0.947544
\(243\) 2.54905 0.163522
\(244\) 1.49905 0.0959671
\(245\) −16.2984 −1.04126
\(246\) −0.0379833 −0.00242173
\(247\) 0 0
\(248\) −3.86122 −0.245188
\(249\) −0.0687659 −0.00435786
\(250\) 1.49551 0.0945842
\(251\) 11.3163 0.714281 0.357140 0.934051i \(-0.383752\pi\)
0.357140 + 0.934051i \(0.383752\pi\)
\(252\) −3.41501 −0.215125
\(253\) 7.57748 0.476392
\(254\) −1.05680 −0.0663098
\(255\) −0.337339 −0.0211250
\(256\) 5.60076 0.350047
\(257\) −26.5319 −1.65502 −0.827508 0.561453i \(-0.810242\pi\)
−0.827508 + 0.561453i \(0.810242\pi\)
\(258\) −0.504492 −0.0314083
\(259\) −0.122593 −0.00761758
\(260\) 0 0
\(261\) −4.40602 −0.272726
\(262\) −9.37017 −0.578891
\(263\) −14.1408 −0.871957 −0.435979 0.899957i \(-0.643598\pi\)
−0.435979 + 0.899957i \(0.643598\pi\)
\(264\) −0.267326 −0.0164528
\(265\) −0.991015 −0.0608776
\(266\) −41.3772 −2.53700
\(267\) 1.28025 0.0783502
\(268\) 1.22368 0.0747479
\(269\) 24.7745 1.51053 0.755264 0.655421i \(-0.227509\pi\)
0.755264 + 0.655421i \(0.227509\pi\)
\(270\) −0.849260 −0.0516843
\(271\) 18.7171 1.13698 0.568492 0.822689i \(-0.307527\pi\)
0.568492 + 0.822689i \(0.307527\pi\)
\(272\) −15.7201 −0.953170
\(273\) 0 0
\(274\) −24.3854 −1.47318
\(275\) −1.06939 −0.0644866
\(276\) −0.158873 −0.00956305
\(277\) −22.6647 −1.36179 −0.680893 0.732382i \(-0.738408\pi\)
−0.680893 + 0.732382i \(0.738408\pi\)
\(278\) 10.2073 0.612191
\(279\) 4.37915 0.262173
\(280\) −12.7296 −0.760742
\(281\) −27.8384 −1.66070 −0.830351 0.557241i \(-0.811860\pi\)
−0.830351 + 0.557241i \(0.811860\pi\)
\(282\) −0.923953 −0.0550206
\(283\) 7.92007 0.470799 0.235400 0.971899i \(-0.424360\pi\)
0.235400 + 0.971899i \(0.424360\pi\)
\(284\) −1.83673 −0.108990
\(285\) −0.543327 −0.0321839
\(286\) 0 0
\(287\) 1.29335 0.0763439
\(288\) −3.98203 −0.234643
\(289\) −4.33431 −0.254959
\(290\) 2.20301 0.129365
\(291\) −0.325946 −0.0191073
\(292\) 2.39117 0.139932
\(293\) −0.272971 −0.0159471 −0.00797356 0.999968i \(-0.502538\pi\)
−0.00797356 + 0.999968i \(0.502538\pi\)
\(294\) −2.31038 −0.134744
\(295\) −8.72307 −0.507877
\(296\) −0.0669819 −0.00389324
\(297\) 0.607278 0.0352379
\(298\) 12.6214 0.731139
\(299\) 0 0
\(300\) 0.0224214 0.00129450
\(301\) 17.1782 0.990134
\(302\) 2.04909 0.117912
\(303\) 0.270644 0.0155481
\(304\) −25.3192 −1.45216
\(305\) −6.33734 −0.362875
\(306\) 15.9192 0.910041
\(307\) 6.85224 0.391078 0.195539 0.980696i \(-0.437354\pi\)
0.195539 + 0.980696i \(0.437354\pi\)
\(308\) −1.22098 −0.0695719
\(309\) −0.525586 −0.0298995
\(310\) −2.18958 −0.124360
\(311\) 10.6447 0.603605 0.301803 0.953370i \(-0.402412\pi\)
0.301803 + 0.953370i \(0.402412\pi\)
\(312\) 0 0
\(313\) 17.8236 1.00745 0.503724 0.863865i \(-0.331963\pi\)
0.503724 + 0.863865i \(0.331963\pi\)
\(314\) −17.9012 −1.01023
\(315\) 14.4371 0.813441
\(316\) 2.07767 0.116878
\(317\) 8.17161 0.458963 0.229482 0.973313i \(-0.426297\pi\)
0.229482 + 0.973313i \(0.426297\pi\)
\(318\) −0.140482 −0.00787784
\(319\) −1.57530 −0.0882000
\(320\) −6.84325 −0.382549
\(321\) −0.420962 −0.0234958
\(322\) 51.1494 2.85044
\(323\) 20.3997 1.13507
\(324\) 2.10978 0.117210
\(325\) 0 0
\(326\) 33.7556 1.86955
\(327\) 1.30621 0.0722338
\(328\) 0.706653 0.0390184
\(329\) 31.4610 1.73450
\(330\) −0.151592 −0.00834486
\(331\) 24.9395 1.37080 0.685400 0.728167i \(-0.259627\pi\)
0.685400 + 0.728167i \(0.259627\pi\)
\(332\) −0.171606 −0.00941809
\(333\) 0.0759666 0.00416294
\(334\) −12.2587 −0.670765
\(335\) −5.17316 −0.282640
\(336\) −2.02095 −0.110252
\(337\) −19.6057 −1.06799 −0.533996 0.845487i \(-0.679310\pi\)
−0.533996 + 0.845487i \(0.679310\pi\)
\(338\) 0 0
\(339\) −0.762471 −0.0414117
\(340\) −0.841831 −0.0456547
\(341\) 1.56569 0.0847871
\(342\) 25.6400 1.38645
\(343\) 44.8817 2.42339
\(344\) 9.38573 0.506045
\(345\) 0.671646 0.0361602
\(346\) 13.7104 0.737076
\(347\) 17.0810 0.916955 0.458478 0.888706i \(-0.348395\pi\)
0.458478 + 0.888706i \(0.348395\pi\)
\(348\) 0.0330286 0.00177052
\(349\) −28.3719 −1.51871 −0.759357 0.650674i \(-0.774486\pi\)
−0.759357 + 0.650674i \(0.774486\pi\)
\(350\) −7.21857 −0.385849
\(351\) 0 0
\(352\) −1.42371 −0.0758840
\(353\) 21.2520 1.13113 0.565564 0.824704i \(-0.308658\pi\)
0.565564 + 0.824704i \(0.308658\pi\)
\(354\) −1.23654 −0.0657215
\(355\) 7.76488 0.412117
\(356\) 3.19488 0.169328
\(357\) 1.62828 0.0861776
\(358\) 15.0104 0.793325
\(359\) 32.6519 1.72330 0.861650 0.507502i \(-0.169431\pi\)
0.861650 + 0.507502i \(0.169431\pi\)
\(360\) 7.88809 0.415739
\(361\) 13.8564 0.729285
\(362\) −25.4593 −1.33811
\(363\) −0.934265 −0.0490362
\(364\) 0 0
\(365\) −10.1088 −0.529118
\(366\) −0.898353 −0.0469577
\(367\) −5.91837 −0.308936 −0.154468 0.987998i \(-0.549366\pi\)
−0.154468 + 0.987998i \(0.549366\pi\)
\(368\) 31.2989 1.63157
\(369\) −0.801440 −0.0417213
\(370\) −0.0379833 −0.00197466
\(371\) 4.78347 0.248345
\(372\) −0.0328271 −0.00170201
\(373\) −13.3185 −0.689607 −0.344803 0.938675i \(-0.612054\pi\)
−0.344803 + 0.938675i \(0.612054\pi\)
\(374\) 5.69166 0.294309
\(375\) −0.0947876 −0.00489481
\(376\) 17.1895 0.886480
\(377\) 0 0
\(378\) 4.09924 0.210842
\(379\) 25.4186 1.30566 0.652832 0.757503i \(-0.273581\pi\)
0.652832 + 0.757503i \(0.273581\pi\)
\(380\) −1.35588 −0.0695550
\(381\) 0.0669819 0.00343159
\(382\) 5.79869 0.296687
\(383\) −10.8268 −0.553226 −0.276613 0.960981i \(-0.589212\pi\)
−0.276613 + 0.960981i \(0.589212\pi\)
\(384\) −1.22246 −0.0623832
\(385\) 5.16177 0.263068
\(386\) −1.87528 −0.0954493
\(387\) −10.6447 −0.541100
\(388\) −0.813402 −0.0412942
\(389\) −23.0370 −1.16802 −0.584011 0.811746i \(-0.698518\pi\)
−0.584011 + 0.811746i \(0.698518\pi\)
\(390\) 0 0
\(391\) −25.2176 −1.27531
\(392\) 42.9831 2.17097
\(393\) 0.593896 0.0299581
\(394\) 22.8543 1.15138
\(395\) −8.78347 −0.441944
\(396\) 0.756597 0.0380205
\(397\) 21.0864 1.05830 0.529149 0.848529i \(-0.322511\pi\)
0.529149 + 0.848529i \(0.322511\pi\)
\(398\) 19.7850 0.991731
\(399\) 2.62255 0.131292
\(400\) −4.41713 −0.220857
\(401\) −19.7769 −0.987611 −0.493805 0.869572i \(-0.664395\pi\)
−0.493805 + 0.869572i \(0.664395\pi\)
\(402\) −0.733324 −0.0365749
\(403\) 0 0
\(404\) 0.675394 0.0336021
\(405\) −8.91922 −0.443200
\(406\) −10.6336 −0.527736
\(407\) 0.0271606 0.00134630
\(408\) 0.889650 0.0440443
\(409\) −31.8809 −1.57641 −0.788204 0.615414i \(-0.788989\pi\)
−0.788204 + 0.615414i \(0.788989\pi\)
\(410\) 0.400720 0.0197902
\(411\) 1.54559 0.0762382
\(412\) −1.31160 −0.0646181
\(413\) 42.1048 2.07184
\(414\) −31.6954 −1.55774
\(415\) 0.725474 0.0356121
\(416\) 0 0
\(417\) −0.646952 −0.0316814
\(418\) 9.16715 0.448380
\(419\) 30.7296 1.50124 0.750621 0.660733i \(-0.229755\pi\)
0.750621 + 0.660733i \(0.229755\pi\)
\(420\) −0.108224 −0.00528080
\(421\) 17.9820 0.876391 0.438195 0.898880i \(-0.355618\pi\)
0.438195 + 0.898880i \(0.355618\pi\)
\(422\) 7.19403 0.350200
\(423\) −19.4952 −0.947890
\(424\) 2.61357 0.126926
\(425\) 3.55889 0.172631
\(426\) 1.10071 0.0533298
\(427\) 30.5893 1.48032
\(428\) −1.05051 −0.0507785
\(429\) 0 0
\(430\) 5.32235 0.256666
\(431\) 4.89949 0.236000 0.118000 0.993014i \(-0.462352\pi\)
0.118000 + 0.993014i \(0.462352\pi\)
\(432\) 2.50837 0.120684
\(433\) −19.2394 −0.924588 −0.462294 0.886727i \(-0.652974\pi\)
−0.462294 + 0.886727i \(0.652974\pi\)
\(434\) 10.5687 0.507315
\(435\) −0.139630 −0.00669476
\(436\) 3.25967 0.156110
\(437\) −40.6162 −1.94294
\(438\) −1.43298 −0.0684703
\(439\) −8.55974 −0.408534 −0.204267 0.978915i \(-0.565481\pi\)
−0.204267 + 0.978915i \(0.565481\pi\)
\(440\) 2.82026 0.134451
\(441\) −48.7487 −2.32137
\(442\) 0 0
\(443\) −37.9652 −1.80378 −0.901891 0.431965i \(-0.857821\pi\)
−0.901891 + 0.431965i \(0.857821\pi\)
\(444\) −0.000569463 0 −2.70255e−5 0
\(445\) −13.5065 −0.640271
\(446\) −22.0037 −1.04191
\(447\) −0.799965 −0.0378370
\(448\) 33.0313 1.56058
\(449\) −26.7062 −1.26035 −0.630173 0.776455i \(-0.717016\pi\)
−0.630173 + 0.776455i \(0.717016\pi\)
\(450\) 4.47309 0.210863
\(451\) −0.286542 −0.0134927
\(452\) −1.90275 −0.0894979
\(453\) −0.129875 −0.00610205
\(454\) −22.2873 −1.04599
\(455\) 0 0
\(456\) 1.43290 0.0671016
\(457\) −4.27127 −0.199801 −0.0999007 0.994997i \(-0.531853\pi\)
−0.0999007 + 0.994997i \(0.531853\pi\)
\(458\) 28.8743 1.34921
\(459\) −2.02100 −0.0943322
\(460\) 1.67610 0.0781485
\(461\) 20.6423 0.961407 0.480704 0.876883i \(-0.340381\pi\)
0.480704 + 0.876883i \(0.340381\pi\)
\(462\) 0.731710 0.0340422
\(463\) −32.1040 −1.49200 −0.745999 0.665947i \(-0.768028\pi\)
−0.745999 + 0.665947i \(0.768028\pi\)
\(464\) −6.50682 −0.302071
\(465\) 0.138779 0.00643571
\(466\) 31.6954 1.46826
\(467\) 23.3774 1.08178 0.540888 0.841095i \(-0.318088\pi\)
0.540888 + 0.841095i \(0.318088\pi\)
\(468\) 0 0
\(469\) 24.9700 1.15301
\(470\) 9.74761 0.449624
\(471\) 1.13461 0.0522800
\(472\) 23.0050 1.05889
\(473\) −3.80584 −0.174993
\(474\) −1.24511 −0.0571896
\(475\) 5.73205 0.263005
\(476\) 4.06338 0.186245
\(477\) −2.96414 −0.135719
\(478\) 22.2787 1.01900
\(479\) −5.17534 −0.236467 −0.118234 0.992986i \(-0.537723\pi\)
−0.118234 + 0.992986i \(0.537723\pi\)
\(480\) −0.126194 −0.00575992
\(481\) 0 0
\(482\) −14.0453 −0.639747
\(483\) −3.24193 −0.147513
\(484\) −2.33147 −0.105976
\(485\) 3.43870 0.156143
\(486\) −3.81213 −0.172922
\(487\) −30.7729 −1.39445 −0.697227 0.716850i \(-0.745583\pi\)
−0.697227 + 0.716850i \(0.745583\pi\)
\(488\) 16.7132 0.756572
\(489\) −2.13948 −0.0967508
\(490\) 24.3743 1.10112
\(491\) 35.7983 1.61556 0.807778 0.589487i \(-0.200670\pi\)
0.807778 + 0.589487i \(0.200670\pi\)
\(492\) 0.00600778 0.000270852 0
\(493\) 5.24255 0.236113
\(494\) 0 0
\(495\) −3.19856 −0.143765
\(496\) 6.46713 0.290383
\(497\) −37.4798 −1.68120
\(498\) 0.102840 0.00460837
\(499\) 28.8971 1.29361 0.646805 0.762655i \(-0.276105\pi\)
0.646805 + 0.762655i \(0.276105\pi\)
\(500\) −0.236543 −0.0105785
\(501\) 0.776974 0.0347126
\(502\) −16.9237 −0.755340
\(503\) −7.86321 −0.350603 −0.175302 0.984515i \(-0.556090\pi\)
−0.175302 + 0.984515i \(0.556090\pi\)
\(504\) −38.0746 −1.69598
\(505\) −2.85527 −0.127058
\(506\) −11.3322 −0.503777
\(507\) 0 0
\(508\) 0.167154 0.00741625
\(509\) −28.0113 −1.24158 −0.620790 0.783977i \(-0.713188\pi\)
−0.620790 + 0.783977i \(0.713188\pi\)
\(510\) 0.504492 0.0223393
\(511\) 48.7935 2.15850
\(512\) 17.4176 0.769757
\(513\) −3.25508 −0.143715
\(514\) 39.6787 1.75015
\(515\) 5.54488 0.244337
\(516\) 0.0797951 0.00351278
\(517\) −6.97020 −0.306549
\(518\) 0.183339 0.00805546
\(519\) −0.868986 −0.0381443
\(520\) 0 0
\(521\) −37.5609 −1.64557 −0.822786 0.568351i \(-0.807581\pi\)
−0.822786 + 0.568351i \(0.807581\pi\)
\(522\) 6.58924 0.288403
\(523\) −45.3106 −1.98129 −0.990647 0.136450i \(-0.956431\pi\)
−0.990647 + 0.136450i \(0.956431\pi\)
\(524\) 1.48207 0.0647446
\(525\) 0.457524 0.0199680
\(526\) 21.1476 0.922080
\(527\) −5.21058 −0.226976
\(528\) 0.447742 0.0194855
\(529\) 27.2086 1.18298
\(530\) 1.48207 0.0643770
\(531\) −26.0908 −1.13225
\(532\) 6.54460 0.283744
\(533\) 0 0
\(534\) −1.91463 −0.0828540
\(535\) 4.44111 0.192006
\(536\) 13.6430 0.589287
\(537\) −0.951383 −0.0410552
\(538\) −37.0504 −1.59736
\(539\) −17.4293 −0.750733
\(540\) 0.134327 0.00578050
\(541\) 19.7445 0.848882 0.424441 0.905456i \(-0.360471\pi\)
0.424441 + 0.905456i \(0.360471\pi\)
\(542\) −27.9916 −1.20234
\(543\) 1.61365 0.0692483
\(544\) 4.73806 0.203143
\(545\) −13.7804 −0.590289
\(546\) 0 0
\(547\) −11.8312 −0.505867 −0.252934 0.967484i \(-0.581395\pi\)
−0.252934 + 0.967484i \(0.581395\pi\)
\(548\) 3.85702 0.164764
\(549\) −18.9551 −0.808983
\(550\) 1.59928 0.0681935
\(551\) 8.44381 0.359718
\(552\) −1.77131 −0.0753919
\(553\) 42.3964 1.80288
\(554\) 33.8952 1.44007
\(555\) 0.00240744 0.000102190 0
\(556\) −1.61447 −0.0684689
\(557\) −4.04621 −0.171443 −0.0857217 0.996319i \(-0.527320\pi\)
−0.0857217 + 0.996319i \(0.527320\pi\)
\(558\) −6.54905 −0.277244
\(559\) 0 0
\(560\) 21.3208 0.900968
\(561\) −0.360746 −0.0152307
\(562\) 41.6326 1.75617
\(563\) 3.89926 0.164334 0.0821671 0.996619i \(-0.473816\pi\)
0.0821671 + 0.996619i \(0.473816\pi\)
\(564\) 0.146141 0.00615364
\(565\) 8.04399 0.338413
\(566\) −11.8445 −0.497863
\(567\) 43.0516 1.80800
\(568\) −20.4780 −0.859239
\(569\) −17.3356 −0.726744 −0.363372 0.931644i \(-0.618375\pi\)
−0.363372 + 0.931644i \(0.618375\pi\)
\(570\) 0.812550 0.0340340
\(571\) 29.5118 1.23503 0.617515 0.786559i \(-0.288140\pi\)
0.617515 + 0.786559i \(0.288140\pi\)
\(572\) 0 0
\(573\) −0.367530 −0.0153538
\(574\) −1.93421 −0.0807324
\(575\) −7.08580 −0.295498
\(576\) −20.4683 −0.852845
\(577\) −28.3684 −1.18099 −0.590496 0.807041i \(-0.701068\pi\)
−0.590496 + 0.807041i \(0.701068\pi\)
\(578\) 6.48199 0.269615
\(579\) 0.118858 0.00493958
\(580\) −0.348448 −0.0144685
\(581\) −3.50174 −0.145277
\(582\) 0.487455 0.0202057
\(583\) −1.05978 −0.0438917
\(584\) 26.6595 1.10318
\(585\) 0 0
\(586\) 0.408230 0.0168638
\(587\) −34.3877 −1.41933 −0.709667 0.704538i \(-0.751154\pi\)
−0.709667 + 0.704538i \(0.751154\pi\)
\(588\) 0.365432 0.0150701
\(589\) −8.39230 −0.345799
\(590\) 13.0454 0.537071
\(591\) −1.44854 −0.0595850
\(592\) 0.112187 0.00461088
\(593\) −5.47612 −0.224877 −0.112439 0.993659i \(-0.535866\pi\)
−0.112439 + 0.993659i \(0.535866\pi\)
\(594\) −0.908189 −0.0372635
\(595\) −17.1782 −0.704237
\(596\) −1.99632 −0.0817724
\(597\) −1.25400 −0.0513229
\(598\) 0 0
\(599\) 38.6039 1.57731 0.788657 0.614833i \(-0.210777\pi\)
0.788657 + 0.614833i \(0.210777\pi\)
\(600\) 0.249980 0.0102054
\(601\) 6.57896 0.268361 0.134181 0.990957i \(-0.457160\pi\)
0.134181 + 0.990957i \(0.457160\pi\)
\(602\) −25.6901 −1.04705
\(603\) −15.4730 −0.630109
\(604\) −0.324103 −0.0131876
\(605\) 9.85641 0.400720
\(606\) −0.404750 −0.0164418
\(607\) −16.7664 −0.680525 −0.340263 0.940330i \(-0.610516\pi\)
−0.340263 + 0.940330i \(0.610516\pi\)
\(608\) 7.63126 0.309488
\(609\) 0.673973 0.0273108
\(610\) 9.47754 0.383734
\(611\) 0 0
\(612\) −2.51793 −0.101781
\(613\) −28.7789 −1.16237 −0.581184 0.813772i \(-0.697410\pi\)
−0.581184 + 0.813772i \(0.697410\pi\)
\(614\) −10.2476 −0.413558
\(615\) −0.0253983 −0.00102416
\(616\) −13.6129 −0.548481
\(617\) 37.3291 1.50281 0.751406 0.659840i \(-0.229376\pi\)
0.751406 + 0.659840i \(0.229376\pi\)
\(618\) 0.786018 0.0316183
\(619\) −12.7535 −0.512606 −0.256303 0.966597i \(-0.582504\pi\)
−0.256303 + 0.966597i \(0.582504\pi\)
\(620\) 0.346323 0.0139087
\(621\) 4.02384 0.161471
\(622\) −15.9192 −0.638303
\(623\) 65.1939 2.61194
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −26.6553 −1.06536
\(627\) −0.581028 −0.0232040
\(628\) 2.83143 0.112986
\(629\) −0.0903896 −0.00360407
\(630\) −21.5909 −0.860201
\(631\) −28.7242 −1.14349 −0.571746 0.820430i \(-0.693734\pi\)
−0.571746 + 0.820430i \(0.693734\pi\)
\(632\) 23.1643 0.921427
\(633\) −0.455969 −0.0181231
\(634\) −12.2207 −0.485346
\(635\) −0.706653 −0.0280427
\(636\) 0.0222199 0.000881077 0
\(637\) 0 0
\(638\) 2.35588 0.0932701
\(639\) 23.2249 0.918762
\(640\) 12.8968 0.509791
\(641\) −22.3970 −0.884630 −0.442315 0.896860i \(-0.645843\pi\)
−0.442315 + 0.896860i \(0.645843\pi\)
\(642\) 0.629552 0.0248464
\(643\) 14.1642 0.558581 0.279290 0.960207i \(-0.409901\pi\)
0.279290 + 0.960207i \(0.409901\pi\)
\(644\) −8.09025 −0.318801
\(645\) −0.337339 −0.0132827
\(646\) −30.5080 −1.20032
\(647\) −23.6097 −0.928193 −0.464096 0.885785i \(-0.653621\pi\)
−0.464096 + 0.885785i \(0.653621\pi\)
\(648\) 23.5223 0.924044
\(649\) −9.32835 −0.366170
\(650\) 0 0
\(651\) −0.669862 −0.0262540
\(652\) −5.33910 −0.209095
\(653\) 33.2765 1.30221 0.651105 0.758987i \(-0.274306\pi\)
0.651105 + 0.758987i \(0.274306\pi\)
\(654\) −1.95345 −0.0763861
\(655\) −6.26554 −0.244815
\(656\) −1.18357 −0.0462105
\(657\) −30.2356 −1.17960
\(658\) −47.0502 −1.83421
\(659\) 23.0908 0.899491 0.449745 0.893157i \(-0.351515\pi\)
0.449745 + 0.893157i \(0.351515\pi\)
\(660\) 0.0239772 0.000933310 0
\(661\) 13.4365 0.522620 0.261310 0.965255i \(-0.415845\pi\)
0.261310 + 0.965255i \(0.415845\pi\)
\(662\) −37.2972 −1.44960
\(663\) 0 0
\(664\) −1.91326 −0.0742491
\(665\) −27.6677 −1.07291
\(666\) −0.113609 −0.00440224
\(667\) −10.4380 −0.404161
\(668\) 1.93895 0.0750200
\(669\) 1.39463 0.0539196
\(670\) 7.73650 0.298887
\(671\) −6.77708 −0.261626
\(672\) 0.609116 0.0234972
\(673\) −1.94524 −0.0749835 −0.0374918 0.999297i \(-0.511937\pi\)
−0.0374918 + 0.999297i \(0.511937\pi\)
\(674\) 29.3205 1.12938
\(675\) −0.567874 −0.0218575
\(676\) 0 0
\(677\) 24.8683 0.955768 0.477884 0.878423i \(-0.341404\pi\)
0.477884 + 0.878423i \(0.341404\pi\)
\(678\) 1.14028 0.0437922
\(679\) −16.5981 −0.636975
\(680\) −9.38573 −0.359926
\(681\) 1.41260 0.0541310
\(682\) −2.34151 −0.0896610
\(683\) 14.6221 0.559500 0.279750 0.960073i \(-0.409748\pi\)
0.279750 + 0.960073i \(0.409748\pi\)
\(684\) −4.05545 −0.155064
\(685\) −16.3058 −0.623013
\(686\) −67.1210 −2.56269
\(687\) −1.83010 −0.0698226
\(688\) −15.7201 −0.599323
\(689\) 0 0
\(690\) −1.00445 −0.0382388
\(691\) 3.52451 0.134079 0.0670393 0.997750i \(-0.478645\pi\)
0.0670393 + 0.997750i \(0.478645\pi\)
\(692\) −2.16856 −0.0824364
\(693\) 15.4389 0.586477
\(694\) −25.5447 −0.969665
\(695\) 6.82528 0.258898
\(696\) 0.368242 0.0139582
\(697\) 0.953601 0.0361202
\(698\) 42.4304 1.60602
\(699\) −2.00890 −0.0759837
\(700\) 1.14176 0.0431543
\(701\) −1.53457 −0.0579599 −0.0289800 0.999580i \(-0.509226\pi\)
−0.0289800 + 0.999580i \(0.509226\pi\)
\(702\) 0 0
\(703\) −0.145584 −0.00549081
\(704\) −7.31810 −0.275811
\(705\) −0.617819 −0.0232684
\(706\) −31.7825 −1.19615
\(707\) 13.7819 0.518322
\(708\) 0.195583 0.00735046
\(709\) −14.0052 −0.525978 −0.262989 0.964799i \(-0.584708\pi\)
−0.262989 + 0.964799i \(0.584708\pi\)
\(710\) −11.6124 −0.435807
\(711\) −26.2715 −0.985258
\(712\) 35.6203 1.33493
\(713\) 10.3743 0.388522
\(714\) −2.43510 −0.0911314
\(715\) 0 0
\(716\) −2.37418 −0.0887274
\(717\) −1.41206 −0.0527343
\(718\) −48.8312 −1.82236
\(719\) 22.4761 0.838218 0.419109 0.907936i \(-0.362343\pi\)
0.419109 + 0.907936i \(0.362343\pi\)
\(720\) −13.2117 −0.492372
\(721\) −26.7643 −0.996753
\(722\) −20.7224 −0.771206
\(723\) 0.890215 0.0331074
\(724\) 4.02687 0.149658
\(725\) 1.47309 0.0547091
\(726\) 1.39720 0.0518550
\(727\) −10.3421 −0.383566 −0.191783 0.981437i \(-0.561427\pi\)
−0.191783 + 0.981437i \(0.561427\pi\)
\(728\) 0 0
\(729\) −26.5160 −0.982075
\(730\) 15.1178 0.559534
\(731\) 12.6657 0.468458
\(732\) 0.142092 0.00525186
\(733\) −27.3533 −1.01032 −0.505159 0.863026i \(-0.668566\pi\)
−0.505159 + 0.863026i \(0.668566\pi\)
\(734\) 8.85096 0.326695
\(735\) −1.54488 −0.0569839
\(736\) −9.43355 −0.347725
\(737\) −5.53212 −0.203778
\(738\) 1.19856 0.0441196
\(739\) 13.4517 0.494827 0.247413 0.968910i \(-0.420419\pi\)
0.247413 + 0.968910i \(0.420419\pi\)
\(740\) 0.00600778 0.000220851 0
\(741\) 0 0
\(742\) −7.15372 −0.262621
\(743\) −16.3926 −0.601388 −0.300694 0.953721i \(-0.597218\pi\)
−0.300694 + 0.953721i \(0.597218\pi\)
\(744\) −0.365996 −0.0134181
\(745\) 8.43955 0.309201
\(746\) 19.9179 0.729248
\(747\) 2.16990 0.0793926
\(748\) −0.900245 −0.0329162
\(749\) −21.4365 −0.783274
\(750\) 0.141756 0.00517618
\(751\) −27.6655 −1.00953 −0.504764 0.863257i \(-0.668421\pi\)
−0.504764 + 0.863257i \(0.668421\pi\)
\(752\) −28.7906 −1.04988
\(753\) 1.07265 0.0390895
\(754\) 0 0
\(755\) 1.37017 0.0498654
\(756\) −0.648373 −0.0235811
\(757\) 22.9978 0.835870 0.417935 0.908477i \(-0.362754\pi\)
0.417935 + 0.908477i \(0.362754\pi\)
\(758\) −38.0136 −1.38072
\(759\) 0.718251 0.0260709
\(760\) −15.1169 −0.548349
\(761\) −7.66442 −0.277835 −0.138918 0.990304i \(-0.544362\pi\)
−0.138918 + 0.990304i \(0.544362\pi\)
\(762\) −0.100172 −0.00362885
\(763\) 66.5160 2.40804
\(764\) −0.917174 −0.0331822
\(765\) 10.6447 0.384860
\(766\) 16.1916 0.585027
\(767\) 0 0
\(768\) 0.530882 0.0191566
\(769\) −7.23095 −0.260755 −0.130377 0.991464i \(-0.541619\pi\)
−0.130377 + 0.991464i \(0.541619\pi\)
\(770\) −7.71947 −0.278190
\(771\) −2.51490 −0.0905718
\(772\) 0.296612 0.0106753
\(773\) −33.5995 −1.20849 −0.604246 0.796798i \(-0.706525\pi\)
−0.604246 + 0.796798i \(0.706525\pi\)
\(774\) 15.9192 0.572204
\(775\) −1.46410 −0.0525921
\(776\) −9.06877 −0.325550
\(777\) −0.0116203 −0.000416877 0
\(778\) 34.4520 1.23516
\(779\) 1.53590 0.0550293
\(780\) 0 0
\(781\) 8.30368 0.297129
\(782\) 37.7131 1.34862
\(783\) −0.836527 −0.0298950
\(784\) −71.9921 −2.57115
\(785\) −11.9700 −0.427228
\(786\) −0.888175 −0.0316802
\(787\) −2.97168 −0.105929 −0.0529645 0.998596i \(-0.516867\pi\)
−0.0529645 + 0.998596i \(0.516867\pi\)
\(788\) −3.61484 −0.128773
\(789\) −1.34037 −0.0477184
\(790\) 13.1357 0.467349
\(791\) −38.8270 −1.38053
\(792\) 8.43544 0.299740
\(793\) 0 0
\(794\) −31.5349 −1.11913
\(795\) −0.0939360 −0.00333156
\(796\) −3.12937 −0.110918
\(797\) −22.5751 −0.799650 −0.399825 0.916591i \(-0.630929\pi\)
−0.399825 + 0.916591i \(0.630929\pi\)
\(798\) −3.92205 −0.138839
\(799\) 23.1966 0.820636
\(800\) 1.33133 0.0470696
\(801\) −40.3983 −1.42740
\(802\) 29.5765 1.04438
\(803\) −10.8102 −0.381485
\(804\) 0.115989 0.00409063
\(805\) 34.2020 1.20546
\(806\) 0 0
\(807\) 2.34831 0.0826646
\(808\) 7.53009 0.264908
\(809\) 13.6584 0.480204 0.240102 0.970748i \(-0.422819\pi\)
0.240102 + 0.970748i \(0.422819\pi\)
\(810\) 13.3388 0.468676
\(811\) 14.1147 0.495636 0.247818 0.968807i \(-0.420287\pi\)
0.247818 + 0.968807i \(0.420287\pi\)
\(812\) 1.68190 0.0590233
\(813\) 1.77415 0.0622222
\(814\) −0.0406189 −0.00142369
\(815\) 22.5713 0.790640
\(816\) −1.49007 −0.0521629
\(817\) 20.3997 0.713696
\(818\) 47.6781 1.66703
\(819\) 0 0
\(820\) −0.0633815 −0.00221338
\(821\) 1.58562 0.0553383 0.0276692 0.999617i \(-0.491192\pi\)
0.0276692 + 0.999617i \(0.491192\pi\)
\(822\) −2.31144 −0.0806206
\(823\) 18.5648 0.647127 0.323563 0.946206i \(-0.395119\pi\)
0.323563 + 0.946206i \(0.395119\pi\)
\(824\) −14.6233 −0.509427
\(825\) −0.101365 −0.00352907
\(826\) −62.9681 −2.19094
\(827\) 9.01023 0.313316 0.156658 0.987653i \(-0.449928\pi\)
0.156658 + 0.987653i \(0.449928\pi\)
\(828\) 5.01324 0.174222
\(829\) 47.1177 1.63647 0.818233 0.574887i \(-0.194954\pi\)
0.818233 + 0.574887i \(0.194954\pi\)
\(830\) −1.08495 −0.0376592
\(831\) −2.14833 −0.0745247
\(832\) 0 0
\(833\) 58.0041 2.00972
\(834\) 0.967522 0.0335025
\(835\) −8.19700 −0.283669
\(836\) −1.44996 −0.0501479
\(837\) 0.831425 0.0287383
\(838\) −45.9564 −1.58754
\(839\) −53.4766 −1.84622 −0.923108 0.384541i \(-0.874360\pi\)
−0.923108 + 0.384541i \(0.874360\pi\)
\(840\) −1.20661 −0.0416321
\(841\) −26.8300 −0.925173
\(842\) −26.8923 −0.926769
\(843\) −2.63874 −0.0908830
\(844\) −1.13787 −0.0391672
\(845\) 0 0
\(846\) 29.1553 1.00238
\(847\) −47.5753 −1.63471
\(848\) −4.37745 −0.150322
\(849\) 0.750724 0.0257648
\(850\) −5.32235 −0.182555
\(851\) 0.179967 0.00616919
\(852\) −0.174099 −0.00596454
\(853\) 27.7756 0.951019 0.475510 0.879711i \(-0.342264\pi\)
0.475510 + 0.879711i \(0.342264\pi\)
\(854\) −45.7465 −1.56541
\(855\) 17.1447 0.586335
\(856\) −11.7124 −0.400321
\(857\) 53.6917 1.83407 0.917037 0.398801i \(-0.130574\pi\)
0.917037 + 0.398801i \(0.130574\pi\)
\(858\) 0 0
\(859\) 2.08958 0.0712955 0.0356477 0.999364i \(-0.488651\pi\)
0.0356477 + 0.999364i \(0.488651\pi\)
\(860\) −0.841831 −0.0287062
\(861\) 0.122593 0.00417797
\(862\) −7.32722 −0.249566
\(863\) 1.75413 0.0597113 0.0298557 0.999554i \(-0.490495\pi\)
0.0298557 + 0.999554i \(0.490495\pi\)
\(864\) −0.756028 −0.0257206
\(865\) 9.16772 0.311712
\(866\) 28.7727 0.977737
\(867\) −0.410839 −0.0139528
\(868\) −1.67165 −0.0567394
\(869\) −9.39295 −0.318634
\(870\) 0.208818 0.00707960
\(871\) 0 0
\(872\) 36.3426 1.23072
\(873\) 10.2852 0.348102
\(874\) 60.7418 2.05462
\(875\) −4.82684 −0.163177
\(876\) 0.226653 0.00765789
\(877\) −21.5672 −0.728272 −0.364136 0.931346i \(-0.618636\pi\)
−0.364136 + 0.931346i \(0.618636\pi\)
\(878\) 12.8012 0.432018
\(879\) −0.0258742 −0.000872716 0
\(880\) −4.72364 −0.159234
\(881\) 25.0263 0.843158 0.421579 0.906792i \(-0.361476\pi\)
0.421579 + 0.906792i \(0.361476\pi\)
\(882\) 72.9040 2.45481
\(883\) −48.7832 −1.64169 −0.820843 0.571154i \(-0.806496\pi\)
−0.820843 + 0.571154i \(0.806496\pi\)
\(884\) 0 0
\(885\) −0.826838 −0.0277939
\(886\) 56.7772 1.90747
\(887\) −33.7933 −1.13467 −0.567334 0.823488i \(-0.692025\pi\)
−0.567334 + 0.823488i \(0.692025\pi\)
\(888\) −0.00634905 −0.000213060 0
\(889\) 3.41090 0.114398
\(890\) 20.1991 0.677076
\(891\) −9.53812 −0.319539
\(892\) 3.48031 0.116530
\(893\) 37.3611 1.25024
\(894\) 1.19635 0.0400121
\(895\) 10.0370 0.335500
\(896\) −62.2508 −2.07965
\(897\) 0 0
\(898\) 39.9394 1.33279
\(899\) −2.15675 −0.0719316
\(900\) −0.707504 −0.0235835
\(901\) 3.52691 0.117499
\(902\) 0.428526 0.0142683
\(903\) 1.62828 0.0541857
\(904\) −21.2141 −0.705571
\(905\) −17.0238 −0.565892
\(906\) 0.194229 0.00645281
\(907\) −34.6270 −1.14977 −0.574885 0.818234i \(-0.694953\pi\)
−0.574885 + 0.818234i \(0.694953\pi\)
\(908\) 3.52516 0.116986
\(909\) −8.54015 −0.283259
\(910\) 0 0
\(911\) 31.1865 1.03326 0.516628 0.856210i \(-0.327187\pi\)
0.516628 + 0.856210i \(0.327187\pi\)
\(912\) −2.39995 −0.0794703
\(913\) 0.775814 0.0256757
\(914\) 6.38771 0.211287
\(915\) −0.600701 −0.0198586
\(916\) −4.56702 −0.150899
\(917\) 30.2428 0.998704
\(918\) 3.02242 0.0997548
\(919\) −51.9220 −1.71275 −0.856374 0.516356i \(-0.827288\pi\)
−0.856374 + 0.516356i \(0.827288\pi\)
\(920\) 18.6871 0.616096
\(921\) 0.649507 0.0214020
\(922\) −30.8707 −1.01667
\(923\) 0 0
\(924\) −0.115734 −0.00380736
\(925\) −0.0253983 −0.000835090 0
\(926\) 48.0117 1.57776
\(927\) 16.5848 0.544717
\(928\) 1.96117 0.0643784
\(929\) −20.4915 −0.672304 −0.336152 0.941808i \(-0.609126\pi\)
−0.336152 + 0.941808i \(0.609126\pi\)
\(930\) −0.207545 −0.00680565
\(931\) 93.4231 3.06182
\(932\) −5.01324 −0.164214
\(933\) 1.00898 0.0330327
\(934\) −34.9610 −1.14396
\(935\) 3.80584 0.124464
\(936\) 0 0
\(937\) −39.6806 −1.29631 −0.648154 0.761510i \(-0.724459\pi\)
−0.648154 + 0.761510i \(0.724459\pi\)
\(938\) −37.3428 −1.21929
\(939\) 1.68945 0.0551333
\(940\) −1.54177 −0.0502870
\(941\) 19.6189 0.639557 0.319779 0.947492i \(-0.396391\pi\)
0.319779 + 0.947492i \(0.396391\pi\)
\(942\) −1.69682 −0.0552853
\(943\) −1.89864 −0.0618281
\(944\) −38.5309 −1.25408
\(945\) 2.74104 0.0891659
\(946\) 5.69166 0.185052
\(947\) −57.2124 −1.85915 −0.929576 0.368631i \(-0.879827\pi\)
−0.929576 + 0.368631i \(0.879827\pi\)
\(948\) 0.196937 0.00639623
\(949\) 0 0
\(950\) −8.57233 −0.278123
\(951\) 0.774567 0.0251170
\(952\) 45.3034 1.46829
\(953\) 27.4770 0.890066 0.445033 0.895514i \(-0.353192\pi\)
0.445033 + 0.895514i \(0.353192\pi\)
\(954\) 4.43290 0.143520
\(955\) 3.87741 0.125470
\(956\) −3.52380 −0.113968
\(957\) −0.149319 −0.00482680
\(958\) 7.73976 0.250060
\(959\) 78.7055 2.54153
\(960\) −0.648655 −0.0209353
\(961\) −28.8564 −0.930852
\(962\) 0 0
\(963\) 13.2834 0.428053
\(964\) 2.22154 0.0715509
\(965\) −1.25394 −0.0403659
\(966\) 4.84833 0.155992
\(967\) 10.3643 0.333293 0.166647 0.986017i \(-0.446706\pi\)
0.166647 + 0.986017i \(0.446706\pi\)
\(968\) −25.9939 −0.835477
\(969\) 1.93364 0.0621175
\(970\) −5.14261 −0.165119
\(971\) 41.7515 1.33987 0.669935 0.742420i \(-0.266322\pi\)
0.669935 + 0.742420i \(0.266322\pi\)
\(972\) 0.602961 0.0193400
\(973\) −32.9445 −1.05615
\(974\) 46.0212 1.47461
\(975\) 0 0
\(976\) −27.9929 −0.896030
\(977\) 13.7938 0.441303 0.220652 0.975353i \(-0.429182\pi\)
0.220652 + 0.975353i \(0.429182\pi\)
\(978\) 3.19961 0.102312
\(979\) −14.4437 −0.461624
\(980\) −3.85527 −0.123152
\(981\) −41.2175 −1.31597
\(982\) −53.5367 −1.70842
\(983\) −37.9997 −1.21200 −0.606002 0.795463i \(-0.707227\pi\)
−0.606002 + 0.795463i \(0.707227\pi\)
\(984\) 0.0669819 0.00213530
\(985\) 15.2820 0.486924
\(986\) −7.84028 −0.249685
\(987\) 2.98211 0.0949217
\(988\) 0 0
\(989\) −25.2176 −0.801873
\(990\) 4.78347 0.152029
\(991\) −52.5530 −1.66940 −0.834700 0.550705i \(-0.814359\pi\)
−0.834700 + 0.550705i \(0.814359\pi\)
\(992\) −1.94920 −0.0618873
\(993\) 2.36396 0.0750179
\(994\) 56.0513 1.77784
\(995\) 13.2296 0.419407
\(996\) −0.0162661 −0.000515411 0
\(997\) 18.5899 0.588749 0.294375 0.955690i \(-0.404889\pi\)
0.294375 + 0.955690i \(0.404889\pi\)
\(998\) −43.2158 −1.36797
\(999\) 0.0144230 0.000456324 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.m.1.1 4
3.2 odd 2 7605.2.a.cf.1.4 4
5.4 even 2 4225.2.a.bi.1.4 4
13.2 odd 12 845.2.m.g.316.1 8
13.3 even 3 845.2.e.m.191.4 8
13.4 even 6 845.2.e.n.146.1 8
13.5 odd 4 845.2.c.g.506.7 8
13.6 odd 12 65.2.m.a.36.4 8
13.7 odd 12 845.2.m.g.361.1 8
13.8 odd 4 845.2.c.g.506.2 8
13.9 even 3 845.2.e.m.146.4 8
13.10 even 6 845.2.e.n.191.1 8
13.11 odd 12 65.2.m.a.56.4 yes 8
13.12 even 2 845.2.a.l.1.4 4
39.11 even 12 585.2.bu.c.316.1 8
39.32 even 12 585.2.bu.c.361.1 8
39.38 odd 2 7605.2.a.cj.1.1 4
52.11 even 12 1040.2.da.b.641.3 8
52.19 even 12 1040.2.da.b.881.3 8
65.19 odd 12 325.2.n.d.101.1 8
65.24 odd 12 325.2.n.d.251.1 8
65.32 even 12 325.2.m.b.49.4 8
65.37 even 12 325.2.m.c.199.1 8
65.58 even 12 325.2.m.c.49.1 8
65.63 even 12 325.2.m.b.199.4 8
65.64 even 2 4225.2.a.bl.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.m.a.36.4 8 13.6 odd 12
65.2.m.a.56.4 yes 8 13.11 odd 12
325.2.m.b.49.4 8 65.32 even 12
325.2.m.b.199.4 8 65.63 even 12
325.2.m.c.49.1 8 65.58 even 12
325.2.m.c.199.1 8 65.37 even 12
325.2.n.d.101.1 8 65.19 odd 12
325.2.n.d.251.1 8 65.24 odd 12
585.2.bu.c.316.1 8 39.11 even 12
585.2.bu.c.361.1 8 39.32 even 12
845.2.a.l.1.4 4 13.12 even 2
845.2.a.m.1.1 4 1.1 even 1 trivial
845.2.c.g.506.2 8 13.8 odd 4
845.2.c.g.506.7 8 13.5 odd 4
845.2.e.m.146.4 8 13.9 even 3
845.2.e.m.191.4 8 13.3 even 3
845.2.e.n.146.1 8 13.4 even 6
845.2.e.n.191.1 8 13.10 even 6
845.2.m.g.316.1 8 13.2 odd 12
845.2.m.g.361.1 8 13.7 odd 12
1040.2.da.b.641.3 8 52.11 even 12
1040.2.da.b.881.3 8 52.19 even 12
4225.2.a.bi.1.4 4 5.4 even 2
4225.2.a.bl.1.1 4 65.64 even 2
7605.2.a.cf.1.4 4 3.2 odd 2
7605.2.a.cj.1.1 4 39.38 odd 2