Properties

Label 845.2.f.d.437.10
Level $845$
Weight $2$
Character 845.437
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(408,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.408");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.10
Root \(2.25081i\) of defining polynomial
Character \(\chi\) \(=\) 845.437
Dual form 845.2.f.d.408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.25081i q^{2} +(1.40490 - 1.40490i) q^{3} -3.06613 q^{4} +(-0.247944 + 2.22228i) q^{5} +(3.16216 + 3.16216i) q^{6} +1.27718 q^{7} -2.39966i q^{8} -0.947480i q^{9} +(-5.00192 - 0.558075i) q^{10} +(-3.86239 + 3.86239i) q^{11} +(-4.30760 + 4.30760i) q^{12} +2.87469i q^{14} +(2.77374 + 3.47041i) q^{15} -0.731101 q^{16} +(2.27799 - 2.27799i) q^{17} +2.13259 q^{18} +(0.861676 - 0.861676i) q^{19} +(0.760230 - 6.81380i) q^{20} +(1.79431 - 1.79431i) q^{21} +(-8.69350 - 8.69350i) q^{22} +(0.117133 + 0.117133i) q^{23} +(-3.37127 - 3.37127i) q^{24} +(-4.87705 - 1.10200i) q^{25} +(2.88358 + 2.88358i) q^{27} -3.91601 q^{28} +9.71181i q^{29} +(-7.81123 + 6.24315i) q^{30} +(-0.233305 - 0.233305i) q^{31} -6.44488i q^{32} +10.8525i q^{33} +(5.12732 + 5.12732i) q^{34} +(-0.316670 + 2.83826i) q^{35} +2.90510i q^{36} -1.32163 q^{37} +(1.93947 + 1.93947i) q^{38} +(5.33270 + 0.594981i) q^{40} +(-0.354016 - 0.354016i) q^{41} +(4.03865 + 4.03865i) q^{42} +(4.71126 + 4.71126i) q^{43} +(11.8426 - 11.8426i) q^{44} +(2.10556 + 0.234922i) q^{45} +(-0.263643 + 0.263643i) q^{46} -3.20027 q^{47} +(-1.02712 + 1.02712i) q^{48} -5.36880 q^{49} +(2.48039 - 10.9773i) q^{50} -6.40069i q^{51} +(4.49845 - 4.49845i) q^{53} +(-6.49039 + 6.49039i) q^{54} +(-7.62565 - 9.54097i) q^{55} -3.06480i q^{56} -2.42113i q^{57} -21.8594 q^{58} +(0.00162606 + 0.00162606i) q^{59} +(-8.50465 - 10.6407i) q^{60} +1.39199 q^{61} +(0.525123 - 0.525123i) q^{62} -1.21011i q^{63} +13.0440 q^{64} -24.4270 q^{66} -6.07436i q^{67} +(-6.98462 + 6.98462i) q^{68} +0.329120 q^{69} +(-6.38837 - 0.712764i) q^{70} +(8.59633 + 8.59633i) q^{71} -2.27363 q^{72} +7.34614i q^{73} -2.97474i q^{74} +(-8.39996 + 5.30355i) q^{75} +(-2.64201 + 2.64201i) q^{76} +(-4.93298 + 4.93298i) q^{77} -11.1774i q^{79} +(0.181272 - 1.62471i) q^{80} +10.9447 q^{81} +(0.796822 - 0.796822i) q^{82} -2.65539 q^{83} +(-5.50160 + 5.50160i) q^{84} +(4.49752 + 5.62715i) q^{85} +(-10.6041 + 10.6041i) q^{86} +(13.6441 + 13.6441i) q^{87} +(9.26841 + 9.26841i) q^{88} +(5.09904 + 5.09904i) q^{89} +(-0.528764 + 4.73922i) q^{90} +(-0.359145 - 0.359145i) q^{92} -0.655538 q^{93} -7.20320i q^{94} +(1.70124 + 2.12853i) q^{95} +(-9.05440 - 9.05440i) q^{96} -4.18070i q^{97} -12.0841i q^{98} +(3.65954 + 3.65954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} - 12 q^{4} - 4 q^{6} - 4 q^{7} - 8 q^{10} - 8 q^{11} - 24 q^{12} - 28 q^{15} + 4 q^{16} - 14 q^{17} - 4 q^{19} + 12 q^{20} - 4 q^{21} - 32 q^{22} + 8 q^{23} + 4 q^{24} + 18 q^{25} + 4 q^{27}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.25081i 1.59156i 0.605585 + 0.795780i \(0.292939\pi\)
−0.605585 + 0.795780i \(0.707061\pi\)
\(3\) 1.40490 1.40490i 0.811119 0.811119i −0.173683 0.984802i \(-0.555567\pi\)
0.984802 + 0.173683i \(0.0555668\pi\)
\(4\) −3.06613 −1.53307
\(5\) −0.247944 + 2.22228i −0.110884 + 0.993833i
\(6\) 3.16216 + 3.16216i 1.29094 + 1.29094i
\(7\) 1.27718 0.482730 0.241365 0.970434i \(-0.422405\pi\)
0.241365 + 0.970434i \(0.422405\pi\)
\(8\) 2.39966i 0.848406i
\(9\) 0.947480i 0.315827i
\(10\) −5.00192 0.558075i −1.58175 0.176479i
\(11\) −3.86239 + 3.86239i −1.16455 + 1.16455i −0.181088 + 0.983467i \(0.557962\pi\)
−0.983467 + 0.181088i \(0.942038\pi\)
\(12\) −4.30760 + 4.30760i −1.24350 + 1.24350i
\(13\) 0 0
\(14\) 2.87469i 0.768294i
\(15\) 2.77374 + 3.47041i 0.716177 + 0.896057i
\(16\) −0.731101 −0.182775
\(17\) 2.27799 2.27799i 0.552494 0.552494i −0.374666 0.927160i \(-0.622243\pi\)
0.927160 + 0.374666i \(0.122243\pi\)
\(18\) 2.13259 0.502657
\(19\) 0.861676 0.861676i 0.197682 0.197682i −0.601324 0.799006i \(-0.705360\pi\)
0.799006 + 0.601324i \(0.205360\pi\)
\(20\) 0.760230 6.81380i 0.169993 1.52361i
\(21\) 1.79431 1.79431i 0.391551 0.391551i
\(22\) −8.69350 8.69350i −1.85346 1.85346i
\(23\) 0.117133 + 0.117133i 0.0244239 + 0.0244239i 0.719213 0.694789i \(-0.244502\pi\)
−0.694789 + 0.719213i \(0.744502\pi\)
\(24\) −3.37127 3.37127i −0.688158 0.688158i
\(25\) −4.87705 1.10200i −0.975409 0.220401i
\(26\) 0 0
\(27\) 2.88358 + 2.88358i 0.554946 + 0.554946i
\(28\) −3.91601 −0.740057
\(29\) 9.71181i 1.80344i 0.432322 + 0.901719i \(0.357694\pi\)
−0.432322 + 0.901719i \(0.642306\pi\)
\(30\) −7.81123 + 6.24315i −1.42613 + 1.13984i
\(31\) −0.233305 0.233305i −0.0419027 0.0419027i 0.685845 0.727748i \(-0.259433\pi\)
−0.727748 + 0.685845i \(0.759433\pi\)
\(32\) 6.44488i 1.13930i
\(33\) 10.8525i 1.88918i
\(34\) 5.12732 + 5.12732i 0.879328 + 0.879328i
\(35\) −0.316670 + 2.83826i −0.0535271 + 0.479753i
\(36\) 2.90510i 0.484183i
\(37\) −1.32163 −0.217275 −0.108638 0.994081i \(-0.534649\pi\)
−0.108638 + 0.994081i \(0.534649\pi\)
\(38\) 1.93947 + 1.93947i 0.314623 + 0.314623i
\(39\) 0 0
\(40\) 5.33270 + 0.594981i 0.843175 + 0.0940747i
\(41\) −0.354016 0.354016i −0.0552880 0.0552880i 0.678922 0.734210i \(-0.262447\pi\)
−0.734210 + 0.678922i \(0.762447\pi\)
\(42\) 4.03865 + 4.03865i 0.623178 + 0.623178i
\(43\) 4.71126 + 4.71126i 0.718460 + 0.718460i 0.968290 0.249830i \(-0.0803747\pi\)
−0.249830 + 0.968290i \(0.580375\pi\)
\(44\) 11.8426 11.8426i 1.78534 1.78534i
\(45\) 2.10556 + 0.234922i 0.313879 + 0.0350201i
\(46\) −0.263643 + 0.263643i −0.0388721 + 0.0388721i
\(47\) −3.20027 −0.466808 −0.233404 0.972380i \(-0.574986\pi\)
−0.233404 + 0.972380i \(0.574986\pi\)
\(48\) −1.02712 + 1.02712i −0.148252 + 0.148252i
\(49\) −5.36880 −0.766972
\(50\) 2.48039 10.9773i 0.350781 1.55242i
\(51\) 6.40069i 0.896276i
\(52\) 0 0
\(53\) 4.49845 4.49845i 0.617909 0.617909i −0.327086 0.944995i \(-0.606067\pi\)
0.944995 + 0.327086i \(0.106067\pi\)
\(54\) −6.49039 + 6.49039i −0.883230 + 0.883230i
\(55\) −7.62565 9.54097i −1.02824 1.28650i
\(56\) 3.06480i 0.409551i
\(57\) 2.42113i 0.320687i
\(58\) −21.8594 −2.87028
\(59\) 0.00162606 + 0.00162606i 0.000211694 + 0.000211694i 0.707213 0.707001i \(-0.249952\pi\)
−0.707001 + 0.707213i \(0.749952\pi\)
\(60\) −8.50465 10.6407i −1.09795 1.37371i
\(61\) 1.39199 0.178226 0.0891128 0.996022i \(-0.471597\pi\)
0.0891128 + 0.996022i \(0.471597\pi\)
\(62\) 0.525123 0.525123i 0.0666907 0.0666907i
\(63\) 1.21011i 0.152459i
\(64\) 13.0440 1.63050
\(65\) 0 0
\(66\) −24.4270 −3.00675
\(67\) 6.07436i 0.742101i −0.928613 0.371050i \(-0.878998\pi\)
0.928613 0.371050i \(-0.121002\pi\)
\(68\) −6.98462 + 6.98462i −0.847009 + 0.847009i
\(69\) 0.329120 0.0396213
\(70\) −6.38837 0.712764i −0.763557 0.0851916i
\(71\) 8.59633 + 8.59633i 1.02020 + 1.02020i 0.999792 + 0.0204050i \(0.00649556\pi\)
0.0204050 + 0.999792i \(0.493504\pi\)
\(72\) −2.27363 −0.267949
\(73\) 7.34614i 0.859801i 0.902876 + 0.429901i \(0.141451\pi\)
−0.902876 + 0.429901i \(0.858549\pi\)
\(74\) 2.97474i 0.345806i
\(75\) −8.39996 + 5.30355i −0.969944 + 0.612402i
\(76\) −2.64201 + 2.64201i −0.303060 + 0.303060i
\(77\) −4.93298 + 4.93298i −0.562166 + 0.562166i
\(78\) 0 0
\(79\) 11.1774i 1.25756i −0.777584 0.628779i \(-0.783555\pi\)
0.777584 0.628779i \(-0.216445\pi\)
\(80\) 0.181272 1.62471i 0.0202669 0.181648i
\(81\) 10.9447 1.21608
\(82\) 0.796822 0.796822i 0.0879943 0.0879943i
\(83\) −2.65539 −0.291467 −0.145733 0.989324i \(-0.546554\pi\)
−0.145733 + 0.989324i \(0.546554\pi\)
\(84\) −5.50160 + 5.50160i −0.600274 + 0.600274i
\(85\) 4.49752 + 5.62715i 0.487824 + 0.610350i
\(86\) −10.6041 + 10.6041i −1.14347 + 1.14347i
\(87\) 13.6441 + 13.6441i 1.46280 + 1.46280i
\(88\) 9.26841 + 9.26841i 0.988016 + 0.988016i
\(89\) 5.09904 + 5.09904i 0.540497 + 0.540497i 0.923675 0.383178i \(-0.125170\pi\)
−0.383178 + 0.923675i \(0.625170\pi\)
\(90\) −0.528764 + 4.73922i −0.0557367 + 0.499558i
\(91\) 0 0
\(92\) −0.359145 0.359145i −0.0374434 0.0374434i
\(93\) −0.655538 −0.0679762
\(94\) 7.20320i 0.742953i
\(95\) 1.70124 + 2.12853i 0.174543 + 0.218383i
\(96\) −9.05440 9.05440i −0.924111 0.924111i
\(97\) 4.18070i 0.424486i −0.977217 0.212243i \(-0.931923\pi\)
0.977217 0.212243i \(-0.0680768\pi\)
\(98\) 12.0841i 1.22068i
\(99\) 3.65954 + 3.65954i 0.367797 + 0.367797i
\(100\) 14.9537 + 3.37888i 1.49537 + 0.337888i
\(101\) 8.62930i 0.858647i −0.903151 0.429323i \(-0.858752\pi\)
0.903151 0.429323i \(-0.141248\pi\)
\(102\) 14.4067 1.42648
\(103\) 1.07603 + 1.07603i 0.106025 + 0.106025i 0.758129 0.652104i \(-0.226114\pi\)
−0.652104 + 0.758129i \(0.726114\pi\)
\(104\) 0 0
\(105\) 3.54258 + 4.43236i 0.345720 + 0.432554i
\(106\) 10.1251 + 10.1251i 0.983440 + 0.983440i
\(107\) 10.2713 + 10.2713i 0.992966 + 0.992966i 0.999975 0.00700981i \(-0.00223131\pi\)
−0.00700981 + 0.999975i \(0.502231\pi\)
\(108\) −8.84144 8.84144i −0.850768 0.850768i
\(109\) 4.72405 4.72405i 0.452481 0.452481i −0.443696 0.896177i \(-0.646333\pi\)
0.896177 + 0.443696i \(0.146333\pi\)
\(110\) 21.4749 17.1639i 2.04755 1.63651i
\(111\) −1.85676 + 1.85676i −0.176236 + 0.176236i
\(112\) −0.933751 −0.0882311
\(113\) 8.05734 8.05734i 0.757971 0.757971i −0.217982 0.975953i \(-0.569947\pi\)
0.975953 + 0.217982i \(0.0699474\pi\)
\(114\) 5.44951 0.510393
\(115\) −0.289344 + 0.231259i −0.0269815 + 0.0215651i
\(116\) 29.7777i 2.76479i
\(117\) 0 0
\(118\) −0.00365994 + 0.00365994i −0.000336925 + 0.000336925i
\(119\) 2.90941 2.90941i 0.266705 0.266705i
\(120\) 8.32780 6.65602i 0.760220 0.607609i
\(121\) 18.8361i 1.71238i
\(122\) 3.13309i 0.283657i
\(123\) −0.994714 −0.0896903
\(124\) 0.715342 + 0.715342i 0.0642396 + 0.0642396i
\(125\) 3.65819 10.5649i 0.327199 0.944956i
\(126\) 2.72372 0.242648
\(127\) 0.370894 0.370894i 0.0329115 0.0329115i −0.690460 0.723371i \(-0.742592\pi\)
0.723371 + 0.690460i \(0.242592\pi\)
\(128\) 16.4697i 1.45573i
\(129\) 13.2377 1.16551
\(130\) 0 0
\(131\) 5.09883 0.445486 0.222743 0.974877i \(-0.428499\pi\)
0.222743 + 0.974877i \(0.428499\pi\)
\(132\) 33.2753i 2.89624i
\(133\) 1.10052 1.10052i 0.0954271 0.0954271i
\(134\) 13.6722 1.18110
\(135\) −7.12309 + 5.69316i −0.613058 + 0.489989i
\(136\) −5.46639 5.46639i −0.468739 0.468739i
\(137\) −3.80346 −0.324952 −0.162476 0.986713i \(-0.551948\pi\)
−0.162476 + 0.986713i \(0.551948\pi\)
\(138\) 0.740785i 0.0630598i
\(139\) 1.47821i 0.125380i 0.998033 + 0.0626902i \(0.0199680\pi\)
−0.998033 + 0.0626902i \(0.980032\pi\)
\(140\) 0.970953 8.70248i 0.0820605 0.735493i
\(141\) −4.49606 + 4.49606i −0.378637 + 0.378637i
\(142\) −19.3487 + 19.3487i −1.62371 + 1.62371i
\(143\) 0 0
\(144\) 0.692704i 0.0577253i
\(145\) −21.5824 2.40799i −1.79232 0.199973i
\(146\) −16.5347 −1.36843
\(147\) −7.54262 + 7.54262i −0.622105 + 0.622105i
\(148\) 4.05230 0.333097
\(149\) 12.1736 12.1736i 0.997302 0.997302i −0.00269418 0.999996i \(-0.500858\pi\)
0.999996 + 0.00269418i \(0.000857587\pi\)
\(150\) −11.9373 18.9067i −0.974675 1.54372i
\(151\) 10.0539 10.0539i 0.818178 0.818178i −0.167666 0.985844i \(-0.553623\pi\)
0.985844 + 0.167666i \(0.0536230\pi\)
\(152\) −2.06773 2.06773i −0.167715 0.167715i
\(153\) −2.15835 2.15835i −0.174492 0.174492i
\(154\) −11.1032 11.1032i −0.894721 0.894721i
\(155\) 0.576314 0.460621i 0.0462907 0.0369980i
\(156\) 0 0
\(157\) 3.07230 + 3.07230i 0.245196 + 0.245196i 0.818996 0.573799i \(-0.194531\pi\)
−0.573799 + 0.818996i \(0.694531\pi\)
\(158\) 25.1582 2.00148
\(159\) 12.6397i 1.00240i
\(160\) 14.3223 + 1.59797i 1.13228 + 0.126331i
\(161\) 0.149600 + 0.149600i 0.0117902 + 0.0117902i
\(162\) 24.6345i 1.93547i
\(163\) 9.20501i 0.720992i 0.932761 + 0.360496i \(0.117393\pi\)
−0.932761 + 0.360496i \(0.882607\pi\)
\(164\) 1.08546 + 1.08546i 0.0847602 + 0.0847602i
\(165\) −24.1174 2.69082i −1.87753 0.209480i
\(166\) 5.97677i 0.463887i
\(167\) 12.6387 0.978014 0.489007 0.872280i \(-0.337359\pi\)
0.489007 + 0.872280i \(0.337359\pi\)
\(168\) −4.30574 4.30574i −0.332195 0.332195i
\(169\) 0 0
\(170\) −12.6656 + 10.1230i −0.971409 + 0.776402i
\(171\) −0.816421 0.816421i −0.0624333 0.0624333i
\(172\) −14.4453 14.4453i −1.10145 1.10145i
\(173\) 9.69831 + 9.69831i 0.737349 + 0.737349i 0.972064 0.234716i \(-0.0754159\pi\)
−0.234716 + 0.972064i \(0.575416\pi\)
\(174\) −30.7103 + 30.7103i −2.32814 + 2.32814i
\(175\) −6.22889 1.40746i −0.470860 0.106394i
\(176\) 2.82380 2.82380i 0.212852 0.212852i
\(177\) 0.00456889 0.000343419
\(178\) −11.4770 + 11.4770i −0.860234 + 0.860234i
\(179\) 12.6425 0.944946 0.472473 0.881345i \(-0.343361\pi\)
0.472473 + 0.881345i \(0.343361\pi\)
\(180\) −6.45594 0.720302i −0.481197 0.0536882i
\(181\) 8.16619i 0.606988i −0.952833 0.303494i \(-0.901847\pi\)
0.952833 0.303494i \(-0.0981533\pi\)
\(182\) 0 0
\(183\) 1.95560 1.95560i 0.144562 0.144562i
\(184\) 0.281079 0.281079i 0.0207214 0.0207214i
\(185\) 0.327691 2.93704i 0.0240923 0.215935i
\(186\) 1.47549i 0.108188i
\(187\) 17.5970i 1.28682i
\(188\) 9.81246 0.715647
\(189\) 3.68287 + 3.68287i 0.267889 + 0.267889i
\(190\) −4.79091 + 3.82916i −0.347569 + 0.277796i
\(191\) −14.7538 −1.06755 −0.533775 0.845626i \(-0.679227\pi\)
−0.533775 + 0.845626i \(0.679227\pi\)
\(192\) 18.3255 18.3255i 1.32253 1.32253i
\(193\) 15.0969i 1.08670i −0.839507 0.543349i \(-0.817156\pi\)
0.839507 0.543349i \(-0.182844\pi\)
\(194\) 9.40995 0.675595
\(195\) 0 0
\(196\) 16.4614 1.17582
\(197\) 15.3715i 1.09518i 0.836748 + 0.547588i \(0.184454\pi\)
−0.836748 + 0.547588i \(0.815546\pi\)
\(198\) −8.23691 + 8.23691i −0.585372 + 0.585372i
\(199\) −11.4562 −0.812109 −0.406054 0.913849i \(-0.633096\pi\)
−0.406054 + 0.913849i \(0.633096\pi\)
\(200\) −2.64443 + 11.7032i −0.186989 + 0.827544i
\(201\) −8.53385 8.53385i −0.601932 0.601932i
\(202\) 19.4229 1.36659
\(203\) 12.4038i 0.870574i
\(204\) 19.6254i 1.37405i
\(205\) 0.874499 0.698946i 0.0610777 0.0488165i
\(206\) −2.42194 + 2.42194i −0.168745 + 0.168745i
\(207\) 0.110981 0.110981i 0.00771372 0.00771372i
\(208\) 0 0
\(209\) 6.65626i 0.460423i
\(210\) −9.97638 + 7.97366i −0.688435 + 0.550234i
\(211\) 3.18391 0.219189 0.109595 0.993976i \(-0.465045\pi\)
0.109595 + 0.993976i \(0.465045\pi\)
\(212\) −13.7928 + 13.7928i −0.947295 + 0.947295i
\(213\) 24.1539 1.65500
\(214\) −23.1187 + 23.1187i −1.58037 + 1.58037i
\(215\) −11.6379 + 9.30159i −0.793695 + 0.634363i
\(216\) 6.91961 6.91961i 0.470820 0.470820i
\(217\) −0.297973 0.297973i −0.0202277 0.0202277i
\(218\) 10.6329 + 10.6329i 0.720152 + 0.720152i
\(219\) 10.3206 + 10.3206i 0.697401 + 0.697401i
\(220\) 23.3813 + 29.2539i 1.57636 + 1.97230i
\(221\) 0 0
\(222\) −4.17921 4.17921i −0.280490 0.280490i
\(223\) 11.8775 0.795375 0.397688 0.917521i \(-0.369813\pi\)
0.397688 + 0.917521i \(0.369813\pi\)
\(224\) 8.23130i 0.549977i
\(225\) −1.04413 + 4.62090i −0.0696084 + 0.308060i
\(226\) 18.1355 + 18.1355i 1.20636 + 1.20636i
\(227\) 27.6666i 1.83630i 0.396236 + 0.918149i \(0.370316\pi\)
−0.396236 + 0.918149i \(0.629684\pi\)
\(228\) 7.42352i 0.491634i
\(229\) −12.9000 12.9000i −0.852455 0.852455i 0.137980 0.990435i \(-0.455939\pi\)
−0.990435 + 0.137980i \(0.955939\pi\)
\(230\) −0.520520 0.651258i −0.0343221 0.0429427i
\(231\) 13.8607i 0.911966i
\(232\) 23.3050 1.53005
\(233\) −16.3545 16.3545i −1.07142 1.07142i −0.997246 0.0741712i \(-0.976369\pi\)
−0.0741712 0.997246i \(-0.523631\pi\)
\(234\) 0 0
\(235\) 0.793489 7.11190i 0.0517615 0.463929i
\(236\) −0.00498570 0.00498570i −0.000324541 0.000324541i
\(237\) −15.7031 15.7031i −1.02003 1.02003i
\(238\) 6.54853 + 6.54853i 0.424478 + 0.424478i
\(239\) 2.61794 2.61794i 0.169341 0.169341i −0.617349 0.786690i \(-0.711793\pi\)
0.786690 + 0.617349i \(0.211793\pi\)
\(240\) −2.02788 2.53722i −0.130899 0.163777i
\(241\) −14.7152 + 14.7152i −0.947888 + 0.947888i −0.998708 0.0508198i \(-0.983817\pi\)
0.0508198 + 0.998708i \(0.483817\pi\)
\(242\) 42.3965 2.72535
\(243\) 6.72548 6.72548i 0.431439 0.431439i
\(244\) −4.26801 −0.273232
\(245\) 1.33116 11.9310i 0.0850449 0.762242i
\(246\) 2.23891i 0.142748i
\(247\) 0 0
\(248\) −0.559851 + 0.559851i −0.0355505 + 0.0355505i
\(249\) −3.73055 + 3.73055i −0.236414 + 0.236414i
\(250\) 23.7796 + 8.23389i 1.50395 + 0.520757i
\(251\) 2.36772i 0.149449i 0.997204 + 0.0747245i \(0.0238078\pi\)
−0.997204 + 0.0747245i \(0.976192\pi\)
\(252\) 3.71034i 0.233730i
\(253\) −0.904826 −0.0568859
\(254\) 0.834811 + 0.834811i 0.0523807 + 0.0523807i
\(255\) 14.2241 + 1.58701i 0.890749 + 0.0993827i
\(256\) −10.9822 −0.686387
\(257\) −0.615209 + 0.615209i −0.0383757 + 0.0383757i −0.726034 0.687659i \(-0.758639\pi\)
0.687659 + 0.726034i \(0.258639\pi\)
\(258\) 29.7954i 1.85498i
\(259\) −1.68797 −0.104885
\(260\) 0 0
\(261\) 9.20175 0.569574
\(262\) 11.4765i 0.709019i
\(263\) −10.7397 + 10.7397i −0.662236 + 0.662236i −0.955907 0.293670i \(-0.905123\pi\)
0.293670 + 0.955907i \(0.405123\pi\)
\(264\) 26.0424 1.60280
\(265\) 8.88144 + 11.1122i 0.545582 + 0.682615i
\(266\) 2.47706 + 2.47706i 0.151878 + 0.151878i
\(267\) 14.3273 0.876814
\(268\) 18.6248i 1.13769i
\(269\) 24.3816i 1.48657i −0.668975 0.743285i \(-0.733267\pi\)
0.668975 0.743285i \(-0.266733\pi\)
\(270\) −12.8142 16.0327i −0.779847 0.975719i
\(271\) −9.27487 + 9.27487i −0.563408 + 0.563408i −0.930274 0.366866i \(-0.880431\pi\)
0.366866 + 0.930274i \(0.380431\pi\)
\(272\) −1.66544 + 1.66544i −0.100982 + 0.100982i
\(273\) 0 0
\(274\) 8.56086i 0.517181i
\(275\) 23.0934 14.5807i 1.39259 0.879249i
\(276\) −1.00912 −0.0607421
\(277\) 8.64616 8.64616i 0.519498 0.519498i −0.397922 0.917419i \(-0.630268\pi\)
0.917419 + 0.397922i \(0.130268\pi\)
\(278\) −3.32717 −0.199550
\(279\) −0.221051 + 0.221051i −0.0132340 + 0.0132340i
\(280\) 6.81085 + 0.759900i 0.407026 + 0.0454127i
\(281\) 6.43529 6.43529i 0.383897 0.383897i −0.488607 0.872504i \(-0.662495\pi\)
0.872504 + 0.488607i \(0.162495\pi\)
\(282\) −10.1198 10.1198i −0.602623 0.602623i
\(283\) 19.3416 + 19.3416i 1.14974 + 1.14974i 0.986603 + 0.163137i \(0.0521613\pi\)
0.163137 + 0.986603i \(0.447839\pi\)
\(284\) −26.3575 26.3575i −1.56403 1.56403i
\(285\) 5.38044 + 0.600307i 0.318710 + 0.0355591i
\(286\) 0 0
\(287\) −0.452144 0.452144i −0.0266892 0.0266892i
\(288\) −6.10639 −0.359823
\(289\) 6.62152i 0.389501i
\(290\) 5.41992 48.5777i 0.318268 2.85258i
\(291\) −5.87346 5.87346i −0.344308 0.344308i
\(292\) 22.5242i 1.31813i
\(293\) 26.1241i 1.52618i −0.646289 0.763092i \(-0.723680\pi\)
0.646289 0.763092i \(-0.276320\pi\)
\(294\) −16.9770 16.9770i −0.990118 0.990118i
\(295\) −0.00401672 + 0.00321038i −0.000233863 + 0.000186915i
\(296\) 3.17146i 0.184338i
\(297\) −22.2750 −1.29253
\(298\) 27.4005 + 27.4005i 1.58727 + 1.58727i
\(299\) 0 0
\(300\) 25.7554 16.2614i 1.48699 0.938852i
\(301\) 6.01714 + 6.01714i 0.346822 + 0.346822i
\(302\) 22.6295 + 22.6295i 1.30218 + 1.30218i
\(303\) −12.1233 12.1233i −0.696464 0.696464i
\(304\) −0.629972 + 0.629972i −0.0361314 + 0.0361314i
\(305\) −0.345135 + 3.09338i −0.0197624 + 0.177127i
\(306\) 4.85803 4.85803i 0.277715 0.277715i
\(307\) −14.7038 −0.839189 −0.419595 0.907712i \(-0.637828\pi\)
−0.419595 + 0.907712i \(0.637828\pi\)
\(308\) 15.1252 15.1252i 0.861837 0.861837i
\(309\) 3.02343 0.171997
\(310\) 1.03677 + 1.29717i 0.0588845 + 0.0736744i
\(311\) 31.8525i 1.80619i 0.429440 + 0.903095i \(0.358711\pi\)
−0.429440 + 0.903095i \(0.641289\pi\)
\(312\) 0 0
\(313\) −11.9865 + 11.9865i −0.677519 + 0.677519i −0.959438 0.281919i \(-0.909029\pi\)
0.281919 + 0.959438i \(0.409029\pi\)
\(314\) −6.91516 + 6.91516i −0.390245 + 0.390245i
\(315\) 2.68919 + 0.300039i 0.151519 + 0.0169053i
\(316\) 34.2714i 1.92792i
\(317\) 15.5627i 0.874088i −0.899440 0.437044i \(-0.856025\pi\)
0.899440 0.437044i \(-0.143975\pi\)
\(318\) 28.4496 1.59537
\(319\) −37.5108 37.5108i −2.10020 2.10020i
\(320\) −3.23418 + 28.9874i −0.180796 + 1.62044i
\(321\) 28.8603 1.61083
\(322\) −0.336721 + 0.336721i −0.0187647 + 0.0187647i
\(323\) 3.92578i 0.218436i
\(324\) −33.5580 −1.86433
\(325\) 0 0
\(326\) −20.7187 −1.14750
\(327\) 13.2736i 0.734032i
\(328\) −0.849517 + 0.849517i −0.0469067 + 0.0469067i
\(329\) −4.08734 −0.225342
\(330\) 6.05653 54.2835i 0.333401 2.98821i
\(331\) −12.0656 12.0656i −0.663187 0.663187i 0.292943 0.956130i \(-0.405365\pi\)
−0.956130 + 0.292943i \(0.905365\pi\)
\(332\) 8.14177 0.446838
\(333\) 1.25222i 0.0686212i
\(334\) 28.4473i 1.55657i
\(335\) 13.4989 + 1.50610i 0.737524 + 0.0822871i
\(336\) −1.31182 + 1.31182i −0.0715659 + 0.0715659i
\(337\) 25.0560 25.0560i 1.36489 1.36489i 0.497319 0.867568i \(-0.334318\pi\)
0.867568 0.497319i \(-0.165682\pi\)
\(338\) 0 0
\(339\) 22.6395i 1.22961i
\(340\) −13.7900 17.2536i −0.747866 0.935706i
\(341\) 1.80223 0.0975961
\(342\) 1.83761 1.83761i 0.0993663 0.0993663i
\(343\) −15.7972 −0.852971
\(344\) 11.3054 11.3054i 0.609546 0.609546i
\(345\) −0.0816033 + 0.731396i −0.00439337 + 0.0393770i
\(346\) −21.8290 + 21.8290i −1.17354 + 1.17354i
\(347\) 9.12161 + 9.12161i 0.489674 + 0.489674i 0.908203 0.418529i \(-0.137454\pi\)
−0.418529 + 0.908203i \(0.637454\pi\)
\(348\) −41.8346 41.8346i −2.24257 2.24257i
\(349\) 18.9866 + 18.9866i 1.01633 + 1.01633i 0.999864 + 0.0164642i \(0.00524094\pi\)
0.0164642 + 0.999864i \(0.494759\pi\)
\(350\) 3.16792 14.0200i 0.169332 0.749402i
\(351\) 0 0
\(352\) 24.8926 + 24.8926i 1.32678 + 1.32678i
\(353\) −23.3117 −1.24076 −0.620378 0.784303i \(-0.713021\pi\)
−0.620378 + 0.784303i \(0.713021\pi\)
\(354\) 0.0102837i 0.000546571i
\(355\) −21.2349 + 16.9720i −1.12703 + 0.900782i
\(356\) −15.6343 15.6343i −0.828617 0.828617i
\(357\) 8.17486i 0.432660i
\(358\) 28.4559i 1.50394i
\(359\) −9.17222 9.17222i −0.484091 0.484091i 0.422344 0.906435i \(-0.361207\pi\)
−0.906435 + 0.422344i \(0.861207\pi\)
\(360\) 0.563732 5.05263i 0.0297113 0.266297i
\(361\) 17.5150i 0.921844i
\(362\) 18.3805 0.966059
\(363\) −26.4629 26.4629i −1.38894 1.38894i
\(364\) 0 0
\(365\) −16.3252 1.82143i −0.854499 0.0953382i
\(366\) 4.40168 + 4.40168i 0.230079 + 0.230079i
\(367\) 10.5124 + 10.5124i 0.548741 + 0.548741i 0.926077 0.377335i \(-0.123160\pi\)
−0.377335 + 0.926077i \(0.623160\pi\)
\(368\) −0.0856360 0.0856360i −0.00446408 0.00446408i
\(369\) −0.335423 + 0.335423i −0.0174614 + 0.0174614i
\(370\) 6.61070 + 0.737570i 0.343674 + 0.0383444i
\(371\) 5.74534 5.74534i 0.298283 0.298283i
\(372\) 2.00997 0.104212
\(373\) 4.37075 4.37075i 0.226309 0.226309i −0.584840 0.811149i \(-0.698843\pi\)
0.811149 + 0.584840i \(0.198843\pi\)
\(374\) −39.6074 −2.04805
\(375\) −9.70326 19.9820i −0.501074 1.03187i
\(376\) 7.67955i 0.396043i
\(377\) 0 0
\(378\) −8.28942 + 8.28942i −0.426362 + 0.426362i
\(379\) 12.9181 12.9181i 0.663556 0.663556i −0.292660 0.956216i \(-0.594540\pi\)
0.956216 + 0.292660i \(0.0945405\pi\)
\(380\) −5.21622 6.52636i −0.267586 0.334795i
\(381\) 1.04214i 0.0533903i
\(382\) 33.2081i 1.69907i
\(383\) −10.2434 −0.523414 −0.261707 0.965147i \(-0.584285\pi\)
−0.261707 + 0.965147i \(0.584285\pi\)
\(384\) 23.1383 + 23.1383i 1.18077 + 1.18077i
\(385\) −9.73936 12.1856i −0.496364 0.621034i
\(386\) 33.9802 1.72955
\(387\) 4.46382 4.46382i 0.226909 0.226909i
\(388\) 12.8186i 0.650765i
\(389\) −3.41200 −0.172995 −0.0864977 0.996252i \(-0.527568\pi\)
−0.0864977 + 0.996252i \(0.527568\pi\)
\(390\) 0 0
\(391\) 0.533655 0.0269881
\(392\) 12.8833i 0.650704i
\(393\) 7.16333 7.16333i 0.361342 0.361342i
\(394\) −34.5983 −1.74304
\(395\) 24.8393 + 2.77138i 1.24980 + 0.139443i
\(396\) −11.2206 11.2206i −0.563858 0.563858i
\(397\) 11.9321 0.598853 0.299426 0.954119i \(-0.403205\pi\)
0.299426 + 0.954119i \(0.403205\pi\)
\(398\) 25.7857i 1.29252i
\(399\) 3.09223i 0.154805i
\(400\) 3.56561 + 0.805675i 0.178281 + 0.0402838i
\(401\) 2.88224 2.88224i 0.143932 0.143932i −0.631469 0.775401i \(-0.717548\pi\)
0.775401 + 0.631469i \(0.217548\pi\)
\(402\) 19.2081 19.2081i 0.958011 0.958011i
\(403\) 0 0
\(404\) 26.4586i 1.31636i
\(405\) −2.71368 + 24.3222i −0.134844 + 1.20858i
\(406\) −27.9185 −1.38557
\(407\) 5.10466 5.10466i 0.253029 0.253029i
\(408\) −15.3595 −0.760406
\(409\) 4.90669 4.90669i 0.242620 0.242620i −0.575313 0.817933i \(-0.695120\pi\)
0.817933 + 0.575313i \(0.195120\pi\)
\(410\) 1.57319 + 1.96833i 0.0776945 + 0.0972088i
\(411\) −5.34348 + 5.34348i −0.263574 + 0.263574i
\(412\) −3.29926 3.29926i −0.162543 0.162543i
\(413\) 0.00207677 + 0.00207677i 0.000102191 + 0.000102191i
\(414\) 0.249797 + 0.249797i 0.0122768 + 0.0122768i
\(415\) 0.658389 5.90102i 0.0323190 0.289670i
\(416\) 0 0
\(417\) 2.07674 + 2.07674i 0.101698 + 0.101698i
\(418\) −14.9820 −0.732791
\(419\) 21.2287i 1.03709i −0.855050 0.518546i \(-0.826474\pi\)
0.855050 0.518546i \(-0.173526\pi\)
\(420\) −10.8620 13.5902i −0.530012 0.663133i
\(421\) 3.15727 + 3.15727i 0.153876 + 0.153876i 0.779847 0.625971i \(-0.215297\pi\)
−0.625971 + 0.779847i \(0.715297\pi\)
\(422\) 7.16636i 0.348853i
\(423\) 3.03219i 0.147430i
\(424\) −10.7947 10.7947i −0.524238 0.524238i
\(425\) −13.6202 + 8.59952i −0.660678 + 0.417138i
\(426\) 54.3659i 2.63403i
\(427\) 1.77782 0.0860349
\(428\) −31.4932 31.4932i −1.52228 1.52228i
\(429\) 0 0
\(430\) −20.9361 26.1946i −1.00963 1.26321i
\(431\) −25.3455 25.3455i −1.22085 1.22085i −0.967330 0.253522i \(-0.918411\pi\)
−0.253522 0.967330i \(-0.581589\pi\)
\(432\) −2.10819 2.10819i −0.101430 0.101430i
\(433\) −5.72268 5.72268i −0.275014 0.275014i 0.556101 0.831115i \(-0.312297\pi\)
−0.831115 + 0.556101i \(0.812297\pi\)
\(434\) 0.670679 0.670679i 0.0321936 0.0321936i
\(435\) −33.7040 + 26.9380i −1.61598 + 1.29158i
\(436\) −14.4845 + 14.4845i −0.693684 + 0.693684i
\(437\) 0.201861 0.00965633
\(438\) −23.2296 + 23.2296i −1.10996 + 1.10996i
\(439\) −28.6671 −1.36821 −0.684104 0.729384i \(-0.739807\pi\)
−0.684104 + 0.729384i \(0.739807\pi\)
\(440\) −22.8950 + 18.2989i −1.09148 + 0.872368i
\(441\) 5.08683i 0.242230i
\(442\) 0 0
\(443\) −17.1586 + 17.1586i −0.815229 + 0.815229i −0.985412 0.170184i \(-0.945564\pi\)
0.170184 + 0.985412i \(0.445564\pi\)
\(444\) 5.69307 5.69307i 0.270181 0.270181i
\(445\) −12.5958 + 10.0672i −0.597096 + 0.477231i
\(446\) 26.7339i 1.26589i
\(447\) 34.2054i 1.61786i
\(448\) 16.6596 0.787090
\(449\) 6.48150 + 6.48150i 0.305881 + 0.305881i 0.843309 0.537428i \(-0.180604\pi\)
−0.537428 + 0.843309i \(0.680604\pi\)
\(450\) −10.4008 2.35012i −0.490297 0.110786i
\(451\) 2.73470 0.128772
\(452\) −24.7049 + 24.7049i −1.16202 + 1.16202i
\(453\) 28.2495i 1.32728i
\(454\) −62.2722 −2.92258
\(455\) 0 0
\(456\) −5.80989 −0.272073
\(457\) 21.4798i 1.00478i 0.864640 + 0.502391i \(0.167546\pi\)
−0.864640 + 0.502391i \(0.832454\pi\)
\(458\) 29.0354 29.0354i 1.35673 1.35673i
\(459\) 13.1375 0.613208
\(460\) 0.887168 0.709072i 0.0413644 0.0330607i
\(461\) −3.59137 3.59137i −0.167267 0.167267i 0.618510 0.785777i \(-0.287737\pi\)
−0.785777 + 0.618510i \(0.787737\pi\)
\(462\) −31.1977 −1.45145
\(463\) 20.0793i 0.933163i −0.884478 0.466581i \(-0.845485\pi\)
0.884478 0.466581i \(-0.154515\pi\)
\(464\) 7.10032i 0.329624i
\(465\) 0.162537 1.45679i 0.00753747 0.0675570i
\(466\) 36.8107 36.8107i 1.70522 1.70522i
\(467\) −21.4507 + 21.4507i −0.992618 + 0.992618i −0.999973 0.00735447i \(-0.997659\pi\)
0.00735447 + 0.999973i \(0.497659\pi\)
\(468\) 0 0
\(469\) 7.75807i 0.358234i
\(470\) 16.0075 + 1.78599i 0.738372 + 0.0823816i
\(471\) 8.63254 0.397767
\(472\) 0.00390197 0.00390197i 0.000179603 0.000179603i
\(473\) −36.3934 −1.67337
\(474\) 35.3447 35.3447i 1.62344 1.62344i
\(475\) −5.15200 + 3.25287i −0.236390 + 0.149252i
\(476\) −8.92064 + 8.92064i −0.408877 + 0.408877i
\(477\) −4.26219 4.26219i −0.195152 0.195152i
\(478\) 5.89248 + 5.89248i 0.269516 + 0.269516i
\(479\) −21.9979 21.9979i −1.00511 1.00511i −0.999987 0.00512249i \(-0.998369\pi\)
−0.00512249 0.999987i \(-0.501631\pi\)
\(480\) 22.3664 17.8764i 1.02088 0.815943i
\(481\) 0 0
\(482\) −33.1210 33.1210i −1.50862 1.50862i
\(483\) 0.420346 0.0191264
\(484\) 57.7541i 2.62518i
\(485\) 9.29068 + 1.03658i 0.421868 + 0.0470687i
\(486\) 15.1377 + 15.1377i 0.686662 + 0.686662i
\(487\) 19.4316i 0.880529i −0.897868 0.440264i \(-0.854885\pi\)
0.897868 0.440264i \(-0.145115\pi\)
\(488\) 3.34029i 0.151208i
\(489\) 12.9321 + 12.9321i 0.584810 + 0.584810i
\(490\) 26.8543 + 2.99619i 1.21315 + 0.135354i
\(491\) 35.3136i 1.59368i −0.604191 0.796839i \(-0.706504\pi\)
0.604191 0.796839i \(-0.293496\pi\)
\(492\) 3.04992 0.137501
\(493\) 22.1234 + 22.1234i 0.996389 + 0.996389i
\(494\) 0 0
\(495\) −9.03988 + 7.22515i −0.406312 + 0.324746i
\(496\) 0.170569 + 0.170569i 0.00765878 + 0.00765878i
\(497\) 10.9791 + 10.9791i 0.492480 + 0.492480i
\(498\) −8.39676 8.39676i −0.376268 0.376268i
\(499\) 9.44430 9.44430i 0.422785 0.422785i −0.463377 0.886161i \(-0.653362\pi\)
0.886161 + 0.463377i \(0.153362\pi\)
\(500\) −11.2165 + 32.3934i −0.501617 + 1.44868i
\(501\) 17.7561 17.7561i 0.793285 0.793285i
\(502\) −5.32928 −0.237857
\(503\) −17.0606 + 17.0606i −0.760693 + 0.760693i −0.976448 0.215754i \(-0.930779\pi\)
0.215754 + 0.976448i \(0.430779\pi\)
\(504\) −2.90384 −0.129347
\(505\) 19.1767 + 2.13958i 0.853352 + 0.0952102i
\(506\) 2.03659i 0.0905374i
\(507\) 0 0
\(508\) −1.13721 + 1.13721i −0.0504555 + 0.0504555i
\(509\) 2.63199 2.63199i 0.116661 0.116661i −0.646366 0.763027i \(-0.723712\pi\)
0.763027 + 0.646366i \(0.223712\pi\)
\(510\) −3.57206 + 32.0158i −0.158174 + 1.41768i
\(511\) 9.38238i 0.415052i
\(512\) 8.22064i 0.363304i
\(513\) 4.96943 0.219406
\(514\) −1.38472 1.38472i −0.0610772 0.0610772i
\(515\) −2.65804 + 2.12445i −0.117127 + 0.0936144i
\(516\) −40.5884 −1.78681
\(517\) 12.3607 12.3607i 0.543623 0.543623i
\(518\) 3.79929i 0.166931i
\(519\) 27.2503 1.19615
\(520\) 0 0
\(521\) 45.2323 1.98166 0.990832 0.135103i \(-0.0431364\pi\)
0.990832 + 0.135103i \(0.0431364\pi\)
\(522\) 20.7114i 0.906511i
\(523\) 0.807155 0.807155i 0.0352944 0.0352944i −0.689239 0.724534i \(-0.742055\pi\)
0.724534 + 0.689239i \(0.242055\pi\)
\(524\) −15.6337 −0.682960
\(525\) −10.7283 + 6.77362i −0.468221 + 0.295625i
\(526\) −24.1729 24.1729i −1.05399 1.05399i
\(527\) −1.06293 −0.0463020
\(528\) 7.93430i 0.345296i
\(529\) 22.9726i 0.998807i
\(530\) −25.0113 + 19.9904i −1.08642 + 0.868328i
\(531\) 0.00154066 0.00154066i 6.68587e−5 6.68587e-5i
\(532\) −3.37434 + 3.37434i −0.146296 + 0.146296i
\(533\) 0 0
\(534\) 32.2479i 1.39550i
\(535\) −25.3724 + 20.2790i −1.09695 + 0.876738i
\(536\) −14.5764 −0.629603
\(537\) 17.7615 17.7615i 0.766463 0.766463i
\(538\) 54.8782 2.36597
\(539\) 20.7364 20.7364i 0.893180 0.893180i
\(540\) 21.8403 17.4560i 0.939858 0.751185i
\(541\) −22.3573 + 22.3573i −0.961218 + 0.961218i −0.999276 0.0380580i \(-0.987883\pi\)
0.0380580 + 0.999276i \(0.487883\pi\)
\(542\) −20.8759 20.8759i −0.896698 0.896698i
\(543\) −11.4727 11.4727i −0.492339 0.492339i
\(544\) −14.6814 14.6814i −0.629459 0.629459i
\(545\) 9.32685 + 11.6694i 0.399518 + 0.499864i
\(546\) 0 0
\(547\) −5.20384 5.20384i −0.222500 0.222500i 0.587050 0.809550i \(-0.300289\pi\)
−0.809550 + 0.587050i \(0.800289\pi\)
\(548\) 11.6619 0.498173
\(549\) 1.31888i 0.0562884i
\(550\) 32.8183 + 51.9789i 1.39938 + 2.21639i
\(551\) 8.36844 + 8.36844i 0.356507 + 0.356507i
\(552\) 0.789774i 0.0336150i
\(553\) 14.2756i 0.607061i
\(554\) 19.4608 + 19.4608i 0.826812 + 0.826812i
\(555\) −3.66586 4.58661i −0.155607 0.194691i
\(556\) 4.53239i 0.192216i
\(557\) −6.58643 −0.279076 −0.139538 0.990217i \(-0.544562\pi\)
−0.139538 + 0.990217i \(0.544562\pi\)
\(558\) −0.497544 0.497544i −0.0210627 0.0210627i
\(559\) 0 0
\(560\) 0.231518 2.07505i 0.00978343 0.0876871i
\(561\) 24.7220 + 24.7220i 1.04376 + 1.04376i
\(562\) 14.4846 + 14.4846i 0.610996 + 0.610996i
\(563\) −20.7568 20.7568i −0.874794 0.874794i 0.118197 0.992990i \(-0.462289\pi\)
−0.992990 + 0.118197i \(0.962289\pi\)
\(564\) 13.7855 13.7855i 0.580475 0.580475i
\(565\) 15.9079 + 19.9034i 0.669250 + 0.837344i
\(566\) −43.5343 + 43.5343i −1.82988 + 1.82988i
\(567\) 13.9784 0.587039
\(568\) 20.6282 20.6282i 0.865542 0.865542i
\(569\) 33.9087 1.42153 0.710763 0.703432i \(-0.248350\pi\)
0.710763 + 0.703432i \(0.248350\pi\)
\(570\) −1.35117 + 12.1103i −0.0565945 + 0.507246i
\(571\) 33.5525i 1.40413i 0.712113 + 0.702065i \(0.247738\pi\)
−0.712113 + 0.702065i \(0.752262\pi\)
\(572\) 0 0
\(573\) −20.7277 + 20.7277i −0.865910 + 0.865910i
\(574\) 1.01769 1.01769i 0.0424775 0.0424775i
\(575\) −0.442182 0.700343i −0.0184403 0.0292063i
\(576\) 12.3589i 0.514954i
\(577\) 11.0413i 0.459654i −0.973232 0.229827i \(-0.926184\pi\)
0.973232 0.229827i \(-0.0738160\pi\)
\(578\) −14.9038 −0.619914
\(579\) −21.2096 21.2096i −0.881442 0.881442i
\(580\) 66.1743 + 7.38321i 2.74774 + 0.306571i
\(581\) −3.39142 −0.140700
\(582\) 13.2200 13.2200i 0.547988 0.547988i
\(583\) 34.7495i 1.43918i
\(584\) 17.6282 0.729461
\(585\) 0 0
\(586\) 58.8002 2.42902
\(587\) 23.5058i 0.970190i −0.874461 0.485095i \(-0.838785\pi\)
0.874461 0.485095i \(-0.161215\pi\)
\(588\) 23.1267 23.1267i 0.953728 0.953728i
\(589\) −0.402066 −0.0165668
\(590\) −0.00722594 0.00904086i −0.000297487 0.000372206i
\(591\) 21.5954 + 21.5954i 0.888317 + 0.888317i
\(592\) 0.966247 0.0397125
\(593\) 30.6582i 1.25898i −0.777007 0.629491i \(-0.783263\pi\)
0.777007 0.629491i \(-0.216737\pi\)
\(594\) 50.1368i 2.05714i
\(595\) 5.74416 + 7.18690i 0.235487 + 0.294634i
\(596\) −37.3259 + 37.3259i −1.52893 + 1.52893i
\(597\) −16.0948 + 16.0948i −0.658717 + 0.658717i
\(598\) 0 0
\(599\) 7.49378i 0.306188i 0.988212 + 0.153094i \(0.0489237\pi\)
−0.988212 + 0.153094i \(0.951076\pi\)
\(600\) 12.7267 + 20.1570i 0.519566 + 0.822906i
\(601\) −14.0931 −0.574868 −0.287434 0.957801i \(-0.592802\pi\)
−0.287434 + 0.957801i \(0.592802\pi\)
\(602\) −13.5434 + 13.5434i −0.551989 + 0.551989i
\(603\) −5.75533 −0.234375
\(604\) −30.8267 + 30.8267i −1.25432 + 1.25432i
\(605\) 41.8591 + 4.67031i 1.70182 + 0.189875i
\(606\) 27.2872 27.2872i 1.10847 1.10847i
\(607\) 10.6631 + 10.6631i 0.432801 + 0.432801i 0.889580 0.456779i \(-0.150997\pi\)
−0.456779 + 0.889580i \(0.650997\pi\)
\(608\) −5.55340 5.55340i −0.225220 0.225220i
\(609\) 17.4260 + 17.4260i 0.706139 + 0.706139i
\(610\) −6.96260 0.776832i −0.281908 0.0314530i
\(611\) 0 0
\(612\) 6.61779 + 6.61779i 0.267508 + 0.267508i
\(613\) −11.9161 −0.481288 −0.240644 0.970613i \(-0.577359\pi\)
−0.240644 + 0.970613i \(0.577359\pi\)
\(614\) 33.0954i 1.33562i
\(615\) 0.246634 2.21053i 0.00994522 0.0891372i
\(616\) 11.8375 + 11.8375i 0.476945 + 0.476945i
\(617\) 38.8317i 1.56330i 0.623714 + 0.781652i \(0.285623\pi\)
−0.623714 + 0.781652i \(0.714377\pi\)
\(618\) 6.80516i 0.273744i
\(619\) 14.9567 + 14.9567i 0.601159 + 0.601159i 0.940620 0.339461i \(-0.110245\pi\)
−0.339461 + 0.940620i \(0.610245\pi\)
\(620\) −1.76706 + 1.41233i −0.0709667 + 0.0567203i
\(621\) 0.675525i 0.0271079i
\(622\) −71.6939 −2.87466
\(623\) 6.51241 + 6.51241i 0.260914 + 0.260914i
\(624\) 0 0
\(625\) 22.5712 + 10.7490i 0.902847 + 0.429961i
\(626\) −26.9794 26.9794i −1.07831 1.07831i
\(627\) 9.35137 + 9.35137i 0.373458 + 0.373458i
\(628\) −9.42008 9.42008i −0.375902 0.375902i
\(629\) −3.01067 + 3.01067i −0.120043 + 0.120043i
\(630\) −0.675330 + 6.05286i −0.0269058 + 0.241152i
\(631\) 27.6170 27.6170i 1.09942 1.09942i 0.104938 0.994479i \(-0.466535\pi\)
0.994479 0.104938i \(-0.0334646\pi\)
\(632\) −26.8219 −1.06692
\(633\) 4.47307 4.47307i 0.177788 0.177788i
\(634\) 35.0286 1.39116
\(635\) 0.732269 + 0.916191i 0.0290592 + 0.0363579i
\(636\) 38.7550i 1.53674i
\(637\) 0 0
\(638\) 84.4296 84.4296i 3.34260 3.34260i
\(639\) 8.14485 8.14485i 0.322205 0.322205i
\(640\) −36.6003 4.08357i −1.44675 0.161417i
\(641\) 8.72499i 0.344617i 0.985043 + 0.172308i \(0.0551225\pi\)
−0.985043 + 0.172308i \(0.944877\pi\)
\(642\) 64.9590i 2.56373i
\(643\) −14.7970 −0.583538 −0.291769 0.956489i \(-0.594244\pi\)
−0.291769 + 0.956489i \(0.594244\pi\)
\(644\) −0.458694 0.458694i −0.0180751 0.0180751i
\(645\) −3.28220 + 29.4178i −0.129237 + 1.15832i
\(646\) 8.83617 0.347655
\(647\) −23.9537 + 23.9537i −0.941716 + 0.941716i −0.998393 0.0566765i \(-0.981950\pi\)
0.0566765 + 0.998393i \(0.481950\pi\)
\(648\) 26.2636i 1.03173i
\(649\) −0.0125609 −0.000493060
\(650\) 0 0
\(651\) −0.837243 −0.0328141
\(652\) 28.2238i 1.10533i
\(653\) −14.3176 + 14.3176i −0.560289 + 0.560289i −0.929390 0.369100i \(-0.879666\pi\)
0.369100 + 0.929390i \(0.379666\pi\)
\(654\) 29.8763 1.16826
\(655\) −1.26422 + 11.3310i −0.0493973 + 0.442739i
\(656\) 0.258822 + 0.258822i 0.0101053 + 0.0101053i
\(657\) 6.96032 0.271548
\(658\) 9.19981i 0.358646i
\(659\) 30.2898i 1.17992i 0.807432 + 0.589961i \(0.200857\pi\)
−0.807432 + 0.589961i \(0.799143\pi\)
\(660\) 73.9470 + 8.25042i 2.87838 + 0.321147i
\(661\) −15.4711 + 15.4711i −0.601754 + 0.601754i −0.940778 0.339024i \(-0.889903\pi\)
0.339024 + 0.940778i \(0.389903\pi\)
\(662\) 27.1574 27.1574i 1.05550 1.05550i
\(663\) 0 0
\(664\) 6.37202i 0.247282i
\(665\) 2.17279 + 2.71853i 0.0842573 + 0.105420i
\(666\) −2.81851 −0.109215
\(667\) −1.13757 + 1.13757i −0.0440470 + 0.0440470i
\(668\) −38.7520 −1.49936
\(669\) 16.6867 16.6867i 0.645143 0.645143i
\(670\) −3.38994 + 30.3834i −0.130965 + 1.17381i
\(671\) −5.37640 + 5.37640i −0.207553 + 0.207553i
\(672\) −11.5641 11.5641i −0.446096 0.446096i
\(673\) 0.406042 + 0.406042i 0.0156518 + 0.0156518i 0.714889 0.699238i \(-0.246477\pi\)
−0.699238 + 0.714889i \(0.746477\pi\)
\(674\) 56.3962 + 56.3962i 2.17230 + 2.17230i
\(675\) −10.8857 17.2411i −0.418989 0.663610i
\(676\) 0 0
\(677\) −11.5229 11.5229i −0.442862 0.442862i 0.450111 0.892973i \(-0.351385\pi\)
−0.892973 + 0.450111i \(0.851385\pi\)
\(678\) 50.9571 1.95700
\(679\) 5.33952i 0.204912i
\(680\) 13.5032 10.7925i 0.517825 0.413873i
\(681\) 38.8688 + 38.8688i 1.48946 + 1.48946i
\(682\) 4.05646i 0.155330i
\(683\) 20.1058i 0.769326i 0.923057 + 0.384663i \(0.125682\pi\)
−0.923057 + 0.384663i \(0.874318\pi\)
\(684\) 2.50325 + 2.50325i 0.0957143 + 0.0957143i
\(685\) 0.943047 8.45236i 0.0360320 0.322948i
\(686\) 35.5565i 1.35755i
\(687\) −36.2463 −1.38288
\(688\) −3.44440 3.44440i −0.131317 0.131317i
\(689\) 0 0
\(690\) −1.64623 0.183673i −0.0626709 0.00699232i
\(691\) 30.6415 + 30.6415i 1.16566 + 1.16566i 0.983216 + 0.182443i \(0.0584005\pi\)
0.182443 + 0.983216i \(0.441600\pi\)
\(692\) −29.7363 29.7363i −1.13040 1.13040i
\(693\) 4.67390 + 4.67390i 0.177547 + 0.177547i
\(694\) −20.5310 + 20.5310i −0.779346 + 0.779346i
\(695\) −3.28500 0.366514i −0.124607 0.0139027i
\(696\) 32.7412 32.7412i 1.24105 1.24105i
\(697\) −1.61289 −0.0610926
\(698\) −42.7351 + 42.7351i −1.61755 + 1.61755i
\(699\) −45.9527 −1.73809
\(700\) 19.0986 + 4.31546i 0.721859 + 0.163109i
\(701\) 8.03468i 0.303466i 0.988422 + 0.151733i \(0.0484853\pi\)
−0.988422 + 0.151733i \(0.951515\pi\)
\(702\) 0 0
\(703\) −1.13882 + 1.13882i −0.0429514 + 0.0429514i
\(704\) −50.3809 + 50.3809i −1.89880 + 1.89880i
\(705\) −8.87673 11.1063i −0.334317 0.418286i
\(706\) 52.4701i 1.97474i
\(707\) 11.0212i 0.414495i
\(708\) −0.0140088 −0.000526483
\(709\) 16.0704 + 16.0704i 0.603536 + 0.603536i 0.941249 0.337713i \(-0.109653\pi\)
−0.337713 + 0.941249i \(0.609653\pi\)
\(710\) −38.2008 47.7956i −1.43365 1.79374i
\(711\) −10.5904 −0.397170
\(712\) 12.2359 12.2359i 0.458561 0.458561i
\(713\) 0.0546553i 0.00204686i
\(714\) 18.4000 0.688604
\(715\) 0 0
\(716\) −38.7636 −1.44866
\(717\) 7.35589i 0.274711i
\(718\) 20.6449 20.6449i 0.770460 0.770460i
\(719\) −42.9573 −1.60204 −0.801018 0.598640i \(-0.795708\pi\)
−0.801018 + 0.598640i \(0.795708\pi\)
\(720\) −1.53938 0.171752i −0.0573693 0.00640081i
\(721\) 1.37429 + 1.37429i 0.0511813 + 0.0511813i
\(722\) −39.4229 −1.46717
\(723\) 41.3467i 1.53770i
\(724\) 25.0386i 0.930553i
\(725\) 10.7024 47.3650i 0.397479 1.75909i
\(726\) 59.5628 59.5628i 2.21058 2.21058i
\(727\) −1.42786 + 1.42786i −0.0529563 + 0.0529563i −0.733089 0.680133i \(-0.761922\pi\)
0.680133 + 0.733089i \(0.261922\pi\)
\(728\) 0 0
\(729\) 13.9369i 0.516183i
\(730\) 4.09970 36.7448i 0.151737 1.35999i
\(731\) 21.4644 0.793889
\(732\) −5.99613 + 5.99613i −0.221623 + 0.221623i
\(733\) −32.1064 −1.18588 −0.592939 0.805247i \(-0.702033\pi\)
−0.592939 + 0.805247i \(0.702033\pi\)
\(734\) −23.6613 + 23.6613i −0.873355 + 0.873355i
\(735\) −14.8917 18.6320i −0.549287 0.687250i
\(736\) 0.754907 0.754907i 0.0278262 0.0278262i
\(737\) 23.4615 + 23.4615i 0.864217 + 0.864217i
\(738\) −0.754973 0.754973i −0.0277909 0.0277909i
\(739\) −14.5283 14.5283i −0.534431 0.534431i 0.387457 0.921888i \(-0.373354\pi\)
−0.921888 + 0.387457i \(0.873354\pi\)
\(740\) −1.00474 + 9.00534i −0.0369351 + 0.331043i
\(741\) 0 0
\(742\) 12.9317 + 12.9317i 0.474736 + 0.474736i
\(743\) −22.5040 −0.825593 −0.412797 0.910823i \(-0.635448\pi\)
−0.412797 + 0.910823i \(0.635448\pi\)
\(744\) 1.57307i 0.0576714i
\(745\) 24.0348 + 30.0716i 0.880567 + 1.10174i
\(746\) 9.83771 + 9.83771i 0.360184 + 0.360184i
\(747\) 2.51593i 0.0920530i
\(748\) 53.9547i 1.97278i
\(749\) 13.1184 + 13.1184i 0.479334 + 0.479334i
\(750\) 44.9757 21.8402i 1.64228 0.797490i
\(751\) 1.66512i 0.0607611i 0.999538 + 0.0303806i \(0.00967192\pi\)
−0.999538 + 0.0303806i \(0.990328\pi\)
\(752\) 2.33972 0.0853209
\(753\) 3.32640 + 3.32640i 0.121221 + 0.121221i
\(754\) 0 0
\(755\) 19.8498 + 24.8355i 0.722410 + 0.903855i
\(756\) −11.2921 11.2921i −0.410692 0.410692i
\(757\) −27.5976 27.5976i −1.00305 1.00305i −0.999995 0.00305681i \(-0.999027\pi\)
−0.00305681 0.999995i \(-0.500973\pi\)
\(758\) 29.0761 + 29.0761i 1.05609 + 1.05609i
\(759\) −1.27119 + 1.27119i −0.0461412 + 0.0461412i
\(760\) 5.10774 4.08238i 0.185277 0.148084i
\(761\) 11.5012 11.5012i 0.416918 0.416918i −0.467222 0.884140i \(-0.654745\pi\)
0.884140 + 0.467222i \(0.154745\pi\)
\(762\) 2.34565 0.0849739
\(763\) 6.03348 6.03348i 0.218426 0.218426i
\(764\) 45.2372 1.63663
\(765\) 5.33161 4.26131i 0.192765 0.154068i
\(766\) 23.0560i 0.833045i
\(767\) 0 0
\(768\) −15.4289 + 15.4289i −0.556741 + 0.556741i
\(769\) 28.2209 28.2209i 1.01767 1.01767i 0.0178298 0.999841i \(-0.494324\pi\)
0.999841 0.0178298i \(-0.00567570\pi\)
\(770\) 27.4274 21.9214i 0.988414 0.789993i
\(771\) 1.72861i 0.0622544i
\(772\) 46.2891i 1.66598i
\(773\) −20.5887 −0.740525 −0.370262 0.928927i \(-0.620732\pi\)
−0.370262 + 0.928927i \(0.620732\pi\)
\(774\) 10.0472 + 10.0472i 0.361139 + 0.361139i
\(775\) 0.880735 + 1.39494i 0.0316369 + 0.0501077i
\(776\) −10.0322 −0.360137
\(777\) −2.37142 + 2.37142i −0.0850744 + 0.0850744i
\(778\) 7.67976i 0.275333i
\(779\) −0.610095 −0.0218589
\(780\) 0 0
\(781\) −66.4048 −2.37615
\(782\) 1.20115i 0.0429532i
\(783\) −28.0048 + 28.0048i −1.00081 + 1.00081i
\(784\) 3.92514 0.140183
\(785\) −7.58927 + 6.06575i −0.270873 + 0.216496i
\(786\) 16.1233 + 16.1233i 0.575098 + 0.575098i
\(787\) −28.6489 −1.02122 −0.510611 0.859812i \(-0.670581\pi\)
−0.510611 + 0.859812i \(0.670581\pi\)
\(788\) 47.1311i 1.67898i
\(789\) 30.1763i 1.07430i
\(790\) −6.23783 + 55.9085i −0.221932 + 1.98914i
\(791\) 10.2907 10.2907i 0.365895 0.365895i
\(792\) 8.78163 8.78163i 0.312042 0.312042i
\(793\) 0 0
\(794\) 26.8568i 0.953111i
\(795\) 28.0890 + 3.13395i 0.996214 + 0.111150i
\(796\) 35.1262 1.24502
\(797\) −6.21167 + 6.21167i −0.220029 + 0.220029i −0.808510 0.588482i \(-0.799726\pi\)
0.588482 + 0.808510i \(0.299726\pi\)
\(798\) 6.96002 0.246382
\(799\) −7.29019 + 7.29019i −0.257909 + 0.257909i
\(800\) −7.10227 + 31.4320i −0.251103 + 1.11129i
\(801\) 4.83124 4.83124i 0.170703 0.170703i
\(802\) 6.48736 + 6.48736i 0.229077 + 0.229077i
\(803\) −28.3737 28.3737i −1.00129 1.00129i
\(804\) 26.1659 + 26.1659i 0.922801 + 0.922801i
\(805\) −0.369546 + 0.295361i −0.0130248 + 0.0104101i
\(806\) 0 0
\(807\) −34.2536 34.2536i −1.20578 1.20578i
\(808\) −20.7073 −0.728482
\(809\) 0.947514i 0.0333128i −0.999861 0.0166564i \(-0.994698\pi\)
0.999861 0.0166564i \(-0.00530214\pi\)
\(810\) −54.7446 6.10797i −1.92353 0.214612i
\(811\) −28.8041 28.8041i −1.01145 1.01145i −0.999934 0.0115151i \(-0.996335\pi\)
−0.0115151 0.999934i \(-0.503665\pi\)
\(812\) 38.0316i 1.33465i
\(813\) 26.0605i 0.913981i
\(814\) 11.4896 + 11.4896i 0.402711 + 0.402711i
\(815\) −20.4561 2.28233i −0.716546 0.0799465i
\(816\) 4.67955i 0.163817i
\(817\) 8.11915 0.284053
\(818\) 11.0440 + 11.0440i 0.386145 + 0.386145i
\(819\) 0 0
\(820\) −2.68133 + 2.14306i −0.0936361 + 0.0748390i
\(821\) −0.951434 0.951434i −0.0332053 0.0332053i 0.690309 0.723514i \(-0.257474\pi\)
−0.723514 + 0.690309i \(0.757474\pi\)
\(822\) −12.0271 12.0271i −0.419495 0.419495i
\(823\) 23.3838 + 23.3838i 0.815109 + 0.815109i 0.985395 0.170286i \(-0.0544692\pi\)
−0.170286 + 0.985395i \(0.554469\pi\)
\(824\) 2.58211 2.58211i 0.0899520 0.0899520i
\(825\) 11.9595 52.9283i 0.416377 1.84273i
\(826\) −0.00467441 + 0.00467441i −0.000162644 + 0.000162644i
\(827\) 26.4195 0.918697 0.459349 0.888256i \(-0.348083\pi\)
0.459349 + 0.888256i \(0.348083\pi\)
\(828\) −0.340282 + 0.340282i −0.0118256 + 0.0118256i
\(829\) −2.46068 −0.0854629 −0.0427314 0.999087i \(-0.513606\pi\)
−0.0427314 + 0.999087i \(0.513606\pi\)
\(830\) 13.2820 + 1.48191i 0.461027 + 0.0514377i
\(831\) 24.2940i 0.842748i
\(832\) 0 0
\(833\) −12.2301 + 12.2301i −0.423747 + 0.423747i
\(834\) −4.67434 + 4.67434i −0.161859 + 0.161859i
\(835\) −3.13370 + 28.0868i −0.108446 + 0.971983i
\(836\) 20.4090i 0.705859i
\(837\) 1.34551i 0.0465075i
\(838\) 47.7818 1.65059
\(839\) 35.6002 + 35.6002i 1.22906 + 1.22906i 0.964321 + 0.264736i \(0.0852847\pi\)
0.264736 + 0.964321i \(0.414715\pi\)
\(840\) 10.6361 8.50096i 0.366981 0.293311i
\(841\) −65.3193 −2.25239
\(842\) −7.10641 + 7.10641i −0.244903 + 0.244903i
\(843\) 18.0819i 0.622773i
\(844\) −9.76228 −0.336032
\(845\) 0 0
\(846\) −6.82488 −0.234644
\(847\) 24.0572i 0.826616i
\(848\) −3.28882 + 3.28882i −0.112939 + 0.112939i
\(849\) 54.3461 1.86515
\(850\) −19.3559 30.6565i −0.663900 1.05151i
\(851\) −0.154807 0.154807i −0.00530670 0.00530670i
\(852\) −74.0592 −2.53723
\(853\) 42.9612i 1.47096i 0.677545 + 0.735481i \(0.263044\pi\)
−0.677545 + 0.735481i \(0.736956\pi\)
\(854\) 4.00154i 0.136930i
\(855\) 2.01674 1.61189i 0.0689711 0.0551254i
\(856\) 24.6476 24.6476i 0.842438 0.842438i
\(857\) 29.0789 29.0789i 0.993316 0.993316i −0.00666151 0.999978i \(-0.502120\pi\)
0.999978 + 0.00666151i \(0.00212044\pi\)
\(858\) 0 0
\(859\) 42.1283i 1.43740i −0.695321 0.718700i \(-0.744738\pi\)
0.695321 0.718700i \(-0.255262\pi\)
\(860\) 35.6832 28.5199i 1.21679 0.972521i
\(861\) −1.27043 −0.0432962
\(862\) 57.0479 57.0479i 1.94306 1.94306i
\(863\) −6.80768 −0.231736 −0.115868 0.993265i \(-0.536965\pi\)
−0.115868 + 0.993265i \(0.536965\pi\)
\(864\) 18.5843 18.5843i 0.632252 0.632252i
\(865\) −23.9570 + 19.1477i −0.814562 + 0.651041i
\(866\) 12.8806 12.8806i 0.437702 0.437702i
\(867\) 9.30256 + 9.30256i 0.315931 + 0.315931i
\(868\) 0.913624 + 0.913624i 0.0310104 + 0.0310104i
\(869\) 43.1715 + 43.1715i 1.46449 + 1.46449i
\(870\) −60.6323 75.8612i −2.05563 2.57194i
\(871\) 0 0
\(872\) −11.3361 11.3361i −0.383888 0.383888i
\(873\) −3.96113 −0.134064
\(874\) 0.454351i 0.0153686i
\(875\) 4.67219 13.4934i 0.157949 0.456159i
\(876\) −31.6443 31.6443i −1.06916 1.06916i
\(877\) 47.6814i 1.61009i −0.593217 0.805043i \(-0.702142\pi\)
0.593217 0.805043i \(-0.297858\pi\)
\(878\) 64.5242i 2.17759i
\(879\) −36.7017 36.7017i −1.23792 1.23792i
\(880\) 5.57512 + 6.97541i 0.187937 + 0.235141i
\(881\) 5.12384i 0.172627i 0.996268 + 0.0863133i \(0.0275086\pi\)
−0.996268 + 0.0863133i \(0.972491\pi\)
\(882\) −11.4495 −0.385524
\(883\) −14.8283 14.8283i −0.499014 0.499014i 0.412117 0.911131i \(-0.364789\pi\)
−0.911131 + 0.412117i \(0.864789\pi\)
\(884\) 0 0
\(885\) −0.00113283 + 0.0101533i −3.80796e−5 + 0.000341301i
\(886\) −38.6206 38.6206i −1.29749 1.29749i
\(887\) −7.44750 7.44750i −0.250063 0.250063i 0.570934 0.820996i \(-0.306581\pi\)
−0.820996 + 0.570934i \(0.806581\pi\)
\(888\) 4.45558 + 4.45558i 0.149520 + 0.149520i
\(889\) 0.473700 0.473700i 0.0158874 0.0158874i
\(890\) −22.6593 28.3506i −0.759543 0.950315i
\(891\) −42.2728 + 42.2728i −1.41619 + 1.41619i
\(892\) −36.4179 −1.21936
\(893\) −2.75760 + 2.75760i −0.0922795 + 0.0922795i
\(894\) 76.9898 2.57492
\(895\) −3.13464 + 28.0952i −0.104779 + 0.939119i
\(896\) 21.0349i 0.702725i
\(897\) 0 0
\(898\) −14.5886 + 14.5886i −0.486828 + 0.486828i
\(899\) 2.26581 2.26581i 0.0755690 0.0755690i
\(900\) 3.20143 14.1683i 0.106714 0.472277i
\(901\) 20.4948i 0.682782i
\(902\) 6.15528i 0.204948i
\(903\) 16.9069 0.562628
\(904\) −19.3348 19.3348i −0.643067 0.643067i
\(905\) 18.1476 + 2.02476i 0.603245 + 0.0673053i
\(906\) 63.5842 2.11244
\(907\) −15.2289 + 15.2289i −0.505668 + 0.505668i −0.913194 0.407526i \(-0.866392\pi\)
0.407526 + 0.913194i \(0.366392\pi\)
\(908\) 84.8295i 2.81517i
\(909\) −8.17608 −0.271184
\(910\) 0 0
\(911\) −16.6400 −0.551309 −0.275654 0.961257i \(-0.588895\pi\)
−0.275654 + 0.961257i \(0.588895\pi\)
\(912\) 1.77009i 0.0586137i
\(913\) 10.2562 10.2562i 0.339429 0.339429i
\(914\) −48.3469 −1.59917
\(915\) 3.86101 + 4.83077i 0.127641 + 0.159700i
\(916\) 39.5530 + 39.5530i 1.30687 + 1.30687i
\(917\) 6.51214 0.215050
\(918\) 29.5701i 0.975958i
\(919\) 6.87460i 0.226772i −0.993551 0.113386i \(-0.963830\pi\)
0.993551 0.113386i \(-0.0361697\pi\)
\(920\) 0.554943 + 0.694327i 0.0182959 + 0.0228913i
\(921\) −20.6573 + 20.6573i −0.680682 + 0.680682i
\(922\) 8.08349 8.08349i 0.266216 0.266216i
\(923\) 0 0
\(924\) 42.4987i 1.39810i
\(925\) 6.44566 + 1.45644i 0.211932 + 0.0478875i
\(926\) 45.1946 1.48519
\(927\) 1.01952 1.01952i 0.0334854 0.0334854i
\(928\) 62.5915 2.05467
\(929\) −31.4342 + 31.4342i −1.03132 + 1.03132i −0.0318293 + 0.999493i \(0.510133\pi\)
−0.999493 + 0.0318293i \(0.989867\pi\)
\(930\) 3.27895 + 0.365839i 0.107521 + 0.0119963i
\(931\) −4.62617 + 4.62617i −0.151617 + 0.151617i
\(932\) 50.1449 + 50.1449i 1.64255 + 1.64255i
\(933\) 44.7495 + 44.7495i 1.46503 + 1.46503i
\(934\) −48.2813 48.2813i −1.57981 1.57981i
\(935\) −39.1054 4.36307i −1.27888 0.142688i
\(936\) 0 0
\(937\) 13.1724 + 13.1724i 0.430323 + 0.430323i 0.888738 0.458415i \(-0.151583\pi\)
−0.458415 + 0.888738i \(0.651583\pi\)
\(938\) 17.4619 0.570152
\(939\) 33.6797i 1.09910i
\(940\) −2.43294 + 21.8060i −0.0793538 + 0.711234i
\(941\) −40.0251 40.0251i −1.30478 1.30478i −0.925130 0.379650i \(-0.876045\pi\)
−0.379650 0.925130i \(-0.623955\pi\)
\(942\) 19.4302i 0.633070i
\(943\) 0.0829339i 0.00270070i
\(944\) −0.00118881 0.00118881i −3.86925e−5 3.86925e-5i
\(945\) −9.09750 + 7.27121i −0.295942 + 0.236532i
\(946\) 81.9146i 2.66327i
\(947\) 58.8943 1.91381 0.956904 0.290404i \(-0.0937896\pi\)
0.956904 + 0.290404i \(0.0937896\pi\)
\(948\) 48.1479 + 48.1479i 1.56377 + 1.56377i
\(949\) 0 0
\(950\) −7.32157 11.5962i −0.237543 0.376229i
\(951\) −21.8640 21.8640i −0.708989 0.708989i
\(952\) −6.98159 6.98159i −0.226275 0.226275i
\(953\) 12.6246 + 12.6246i 0.408953 + 0.408953i 0.881373 0.472421i \(-0.156620\pi\)
−0.472421 + 0.881373i \(0.656620\pi\)
\(954\) 9.59336 9.59336i 0.310596 0.310596i
\(955\) 3.65813 32.7872i 0.118374 1.06097i
\(956\) −8.02696 + 8.02696i −0.259610 + 0.259610i
\(957\) −105.398 −3.40703
\(958\) 49.5130 49.5130i 1.59969 1.59969i
\(959\) −4.85772 −0.156864
\(960\) 36.1806 + 45.2680i 1.16772 + 1.46102i
\(961\) 30.8911i 0.996488i
\(962\) 0 0
\(963\) 9.73187 9.73187i 0.313605 0.313605i
\(964\) 45.1187 45.1187i 1.45317 1.45317i
\(965\) 33.5495 + 3.74319i 1.08000 + 0.120498i
\(966\) 0.946118i 0.0304409i
\(967\) 23.2093i 0.746360i 0.927759 + 0.373180i \(0.121733\pi\)
−0.927759 + 0.373180i \(0.878267\pi\)
\(968\) −45.2002 −1.45279
\(969\) −5.51532 5.51532i −0.177178 0.177178i
\(970\) −2.33314 + 20.9115i −0.0749127 + 0.671429i
\(971\) 42.3865 1.36025 0.680123 0.733098i \(-0.261926\pi\)
0.680123 + 0.733098i \(0.261926\pi\)
\(972\) −20.6212 + 20.6212i −0.661425 + 0.661425i
\(973\) 1.88795i 0.0605249i
\(974\) 43.7367 1.40141
\(975\) 0 0
\(976\) −1.01768 −0.0325752
\(977\) 24.4098i 0.780938i 0.920616 + 0.390469i \(0.127687\pi\)
−0.920616 + 0.390469i \(0.872313\pi\)
\(978\) −29.1077 + 29.1077i −0.930761 + 0.930761i
\(979\) −39.3890 −1.25888
\(980\) −4.08152 + 36.5819i −0.130379 + 1.16857i
\(981\) −4.47594 4.47594i −0.142906 0.142906i
\(982\) 79.4840 2.53644
\(983\) 4.47004i 0.142572i −0.997456 0.0712860i \(-0.977290\pi\)
0.997456 0.0712860i \(-0.0227103\pi\)
\(984\) 2.38697i 0.0760938i
\(985\) −34.1598 3.81128i −1.08842 0.121438i
\(986\) −49.7955 + 49.7955i −1.58581 + 1.58581i
\(987\) −5.74230 + 5.74230i −0.182779 + 0.182779i
\(988\) 0 0
\(989\) 1.10369i 0.0350952i
\(990\) −16.2624 20.3470i −0.516854 0.646671i
\(991\) −49.5350 −1.57353 −0.786766 0.617251i \(-0.788246\pi\)
−0.786766 + 0.617251i \(0.788246\pi\)
\(992\) −1.50362 + 1.50362i −0.0477400 + 0.0477400i
\(993\) −33.9020 −1.07585
\(994\) −24.7118 + 24.7118i −0.783812 + 0.783812i
\(995\) 2.84050 25.4589i 0.0900499 0.807101i
\(996\) 11.4384 11.4384i 0.362439 0.362439i
\(997\) −24.7788 24.7788i −0.784753 0.784753i 0.195876 0.980629i \(-0.437245\pi\)
−0.980629 + 0.195876i \(0.937245\pi\)
\(998\) 21.2573 + 21.2573i 0.672888 + 0.672888i
\(999\) −3.81104 3.81104i −0.120576 0.120576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.d.437.10 20
5.3 odd 4 845.2.k.d.268.10 20
13.2 odd 12 845.2.o.g.357.1 20
13.3 even 3 845.2.t.e.657.1 20
13.4 even 6 65.2.t.a.37.1 yes 20
13.5 odd 4 845.2.k.d.577.10 20
13.6 odd 12 845.2.o.f.587.1 20
13.7 odd 12 845.2.o.e.587.5 20
13.8 odd 4 845.2.k.e.577.1 20
13.9 even 3 845.2.t.g.427.5 20
13.10 even 6 845.2.t.f.657.5 20
13.11 odd 12 65.2.o.a.32.5 20
13.12 even 2 845.2.f.e.437.1 20
39.11 even 12 585.2.cf.a.487.1 20
39.17 odd 6 585.2.dp.a.37.5 20
65.3 odd 12 845.2.o.f.488.1 20
65.4 even 6 325.2.x.b.232.5 20
65.8 even 4 845.2.f.e.408.10 20
65.17 odd 12 325.2.s.b.193.1 20
65.18 even 4 inner 845.2.f.d.408.1 20
65.23 odd 12 845.2.o.e.488.5 20
65.24 odd 12 325.2.s.b.32.1 20
65.28 even 12 845.2.t.g.188.5 20
65.33 even 12 845.2.t.f.418.5 20
65.37 even 12 325.2.x.b.318.5 20
65.38 odd 4 845.2.k.e.268.1 20
65.43 odd 12 65.2.o.a.63.5 yes 20
65.48 odd 12 845.2.o.g.258.1 20
65.58 even 12 845.2.t.e.418.1 20
65.63 even 12 65.2.t.a.58.1 yes 20
195.128 odd 12 585.2.dp.a.253.5 20
195.173 even 12 585.2.cf.a.388.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.5 20 13.11 odd 12
65.2.o.a.63.5 yes 20 65.43 odd 12
65.2.t.a.37.1 yes 20 13.4 even 6
65.2.t.a.58.1 yes 20 65.63 even 12
325.2.s.b.32.1 20 65.24 odd 12
325.2.s.b.193.1 20 65.17 odd 12
325.2.x.b.232.5 20 65.4 even 6
325.2.x.b.318.5 20 65.37 even 12
585.2.cf.a.388.1 20 195.173 even 12
585.2.cf.a.487.1 20 39.11 even 12
585.2.dp.a.37.5 20 39.17 odd 6
585.2.dp.a.253.5 20 195.128 odd 12
845.2.f.d.408.1 20 65.18 even 4 inner
845.2.f.d.437.10 20 1.1 even 1 trivial
845.2.f.e.408.10 20 65.8 even 4
845.2.f.e.437.1 20 13.12 even 2
845.2.k.d.268.10 20 5.3 odd 4
845.2.k.d.577.10 20 13.5 odd 4
845.2.k.e.268.1 20 65.38 odd 4
845.2.k.e.577.1 20 13.8 odd 4
845.2.o.e.488.5 20 65.23 odd 12
845.2.o.e.587.5 20 13.7 odd 12
845.2.o.f.488.1 20 65.3 odd 12
845.2.o.f.587.1 20 13.6 odd 12
845.2.o.g.258.1 20 65.48 odd 12
845.2.o.g.357.1 20 13.2 odd 12
845.2.t.e.418.1 20 65.58 even 12
845.2.t.e.657.1 20 13.3 even 3
845.2.t.f.418.5 20 65.33 even 12
845.2.t.f.657.5 20 13.10 even 6
845.2.t.g.188.5 20 65.28 even 12
845.2.t.g.427.5 20 13.9 even 3