Properties

Label 845.2.o.f.488.1
Level $845$
Weight $2$
Character 845.488
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(258,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.258");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 488.1
Root \(-2.25081i\) of defining polynomial
Character \(\chi\) \(=\) 845.488
Dual form 845.2.o.f.587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12540 + 1.94926i) q^{2} +(-1.91913 + 0.514229i) q^{3} +(-1.53307 - 2.65535i) q^{4} +(2.22228 - 0.247944i) q^{5} +(1.15743 - 4.31958i) q^{6} +(-1.10607 + 0.638592i) q^{7} +2.39966 q^{8} +(0.820542 - 0.473740i) q^{9} +(-2.01765 + 4.61083i) q^{10} +(-1.41373 - 5.27612i) q^{11} +(4.30760 + 4.30760i) q^{12} -2.87469i q^{14} +(-4.13734 + 1.61860i) q^{15} +(0.365551 - 0.633152i) q^{16} +(-0.833802 + 3.11179i) q^{17} +2.13259i q^{18} +(1.17707 + 0.315395i) q^{19} +(-4.06528 - 5.52081i) q^{20} +(1.79431 - 1.79431i) q^{21} +(11.8755 + 3.18204i) q^{22} +(-0.0428736 - 0.160006i) q^{23} +(-4.60524 + 1.23397i) q^{24} +(4.87705 - 1.10200i) q^{25} +(2.88358 - 2.88358i) q^{27} +(3.39137 + 1.95801i) q^{28} +(8.41068 + 4.85591i) q^{29} +(1.50111 - 9.88630i) q^{30} +(-0.233305 - 0.233305i) q^{31} +(3.22244 + 5.58143i) q^{32} +(5.42627 + 9.39857i) q^{33} +(-5.12732 - 5.12732i) q^{34} +(-2.29967 + 1.69337i) q^{35} +(-2.51589 - 1.45255i) q^{36} +(-1.14457 - 0.660816i) q^{37} +(-1.93947 + 1.93947i) q^{38} +(5.33270 - 0.594981i) q^{40} +(0.483595 - 0.129579i) q^{41} +(1.47825 + 5.51690i) q^{42} +(6.43569 + 1.72444i) q^{43} +(-11.8426 + 11.8426i) q^{44} +(1.70601 - 1.25623i) q^{45} +(0.360144 + 0.0965002i) q^{46} +3.20027i q^{47} +(-0.375953 + 1.40308i) q^{48} +(-2.68440 + 4.64952i) q^{49} +(-3.34056 + 10.7468i) q^{50} -6.40069i q^{51} +(4.49845 + 4.49845i) q^{53} +(2.37565 + 8.86603i) q^{54} +(-4.44989 - 11.3745i) q^{55} +(-2.65420 + 1.53240i) q^{56} -2.42113 q^{57} +(-18.9308 + 10.9297i) q^{58} +(-0.000595178 + 0.00222123i) q^{59} +(10.6407 + 8.50465i) q^{60} +(-0.695993 - 1.20550i) q^{61} +(0.717332 - 0.192209i) q^{62} +(-0.605053 + 1.04798i) q^{63} -13.0440 q^{64} -24.4270 q^{66} +(3.03718 - 5.26055i) q^{67} +(9.54117 - 2.55655i) q^{68} +(0.164560 + 0.285026i) q^{69} +(-0.712764 - 6.38837i) q^{70} +(3.14648 - 11.7428i) q^{71} +(1.96902 - 1.13681i) q^{72} -7.34614 q^{73} +(2.57620 - 1.48737i) q^{74} +(-8.79299 + 4.62280i) q^{75} +(-0.967044 - 3.60906i) q^{76} +(4.93298 + 4.93298i) q^{77} +11.1774i q^{79} +(0.655369 - 1.49768i) q^{80} +(-5.47236 + 9.47841i) q^{81} +(-0.291657 + 1.08848i) q^{82} -2.65539i q^{83} +(-7.51533 - 2.01373i) q^{84} +(-1.08139 + 7.12201i) q^{85} +(-10.6041 + 10.6041i) q^{86} +(-18.6382 - 4.99409i) q^{87} +(-3.39247 - 12.6609i) q^{88} +(6.96542 - 1.86638i) q^{89} +(0.528764 + 4.73922i) q^{90} +(-0.359145 + 0.359145i) q^{92} +(0.567713 + 0.327769i) q^{93} +(-6.23815 - 3.60160i) q^{94} +(2.69398 + 0.409048i) q^{95} +(-9.05440 - 9.05440i) q^{96} +(2.09035 + 3.62059i) q^{97} +(-6.04207 - 10.4652i) q^{98} +(-3.65954 - 3.65954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 2 q^{3} - 6 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} - 12 q^{8} + 12 q^{9} + 2 q^{10} - 8 q^{11} + 24 q^{12} - 12 q^{15} - 2 q^{16} - 4 q^{17} + 16 q^{19} - 8 q^{20} - 4 q^{21} + 16 q^{22} + 10 q^{23}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12540 + 1.94926i −0.795780 + 1.37833i 0.126562 + 0.991959i \(0.459606\pi\)
−0.922342 + 0.386373i \(0.873728\pi\)
\(3\) −1.91913 + 0.514229i −1.10801 + 0.296890i −0.766022 0.642815i \(-0.777767\pi\)
−0.341987 + 0.939705i \(0.611100\pi\)
\(4\) −1.53307 2.65535i −0.766533 1.32767i
\(5\) 2.22228 0.247944i 0.993833 0.110884i
\(6\) 1.15743 4.31958i 0.472518 1.76346i
\(7\) −1.10607 + 0.638592i −0.418057 + 0.241365i −0.694245 0.719738i \(-0.744262\pi\)
0.276189 + 0.961103i \(0.410928\pi\)
\(8\) 2.39966 0.848406
\(9\) 0.820542 0.473740i 0.273514 0.157913i
\(10\) −2.01765 + 4.61083i −0.638038 + 1.45807i
\(11\) −1.41373 5.27612i −0.426257 1.59081i −0.761163 0.648560i \(-0.775371\pi\)
0.334907 0.942251i \(-0.391295\pi\)
\(12\) 4.30760 + 4.30760i 1.24350 + 1.24350i
\(13\) 0 0
\(14\) 2.87469i 0.768294i
\(15\) −4.13734 + 1.61860i −1.06826 + 0.417920i
\(16\) 0.365551 0.633152i 0.0913876 0.158288i
\(17\) −0.833802 + 3.11179i −0.202227 + 0.754721i 0.788050 + 0.615611i \(0.211091\pi\)
−0.990277 + 0.139110i \(0.955576\pi\)
\(18\) 2.13259i 0.502657i
\(19\) 1.17707 + 0.315395i 0.270039 + 0.0723567i 0.391297 0.920264i \(-0.372026\pi\)
−0.121259 + 0.992621i \(0.538693\pi\)
\(20\) −4.06528 5.52081i −0.909024 1.23449i
\(21\) 1.79431 1.79431i 0.391551 0.391551i
\(22\) 11.8755 + 3.18204i 2.53187 + 0.678413i
\(23\) −0.0428736 0.160006i −0.00893976 0.0333637i 0.961312 0.275462i \(-0.0888309\pi\)
−0.970252 + 0.242099i \(0.922164\pi\)
\(24\) −4.60524 + 1.23397i −0.940042 + 0.251883i
\(25\) 4.87705 1.10200i 0.975409 0.220401i
\(26\) 0 0
\(27\) 2.88358 2.88358i 0.554946 0.554946i
\(28\) 3.39137 + 1.95801i 0.640908 + 0.370029i
\(29\) 8.41068 + 4.85591i 1.56182 + 0.901719i 0.997073 + 0.0764575i \(0.0243610\pi\)
0.564751 + 0.825262i \(0.308972\pi\)
\(30\) 1.50111 9.88630i 0.274065 1.80498i
\(31\) −0.233305 0.233305i −0.0419027 0.0419027i 0.685845 0.727748i \(-0.259433\pi\)
−0.727748 + 0.685845i \(0.759433\pi\)
\(32\) 3.22244 + 5.58143i 0.569652 + 0.986667i
\(33\) 5.42627 + 9.39857i 0.944592 + 1.63608i
\(34\) −5.12732 5.12732i −0.879328 0.879328i
\(35\) −2.29967 + 1.69337i −0.388715 + 0.286232i
\(36\) −2.51589 1.45255i −0.419315 0.242091i
\(37\) −1.14457 0.660816i −0.188166 0.108638i 0.402958 0.915219i \(-0.367982\pi\)
−0.591124 + 0.806581i \(0.701315\pi\)
\(38\) −1.93947 + 1.93947i −0.314623 + 0.314623i
\(39\) 0 0
\(40\) 5.33270 0.594981i 0.843175 0.0940747i
\(41\) 0.483595 0.129579i 0.0755249 0.0202368i −0.220859 0.975306i \(-0.570886\pi\)
0.296384 + 0.955069i \(0.404219\pi\)
\(42\) 1.47825 + 5.51690i 0.228099 + 0.851277i
\(43\) 6.43569 + 1.72444i 0.981434 + 0.262974i 0.713648 0.700504i \(-0.247041\pi\)
0.267786 + 0.963479i \(0.413708\pi\)
\(44\) −11.8426 + 11.8426i −1.78534 + 1.78534i
\(45\) 1.70601 1.25623i 0.254317 0.187268i
\(46\) 0.360144 + 0.0965002i 0.0531003 + 0.0142282i
\(47\) 3.20027i 0.466808i 0.972380 + 0.233404i \(0.0749864\pi\)
−0.972380 + 0.233404i \(0.925014\pi\)
\(48\) −0.375953 + 1.40308i −0.0542642 + 0.202517i
\(49\) −2.68440 + 4.64952i −0.383486 + 0.664217i
\(50\) −3.34056 + 10.7468i −0.472427 + 1.51983i
\(51\) 6.40069i 0.896276i
\(52\) 0 0
\(53\) 4.49845 + 4.49845i 0.617909 + 0.617909i 0.944995 0.327086i \(-0.106067\pi\)
−0.327086 + 0.944995i \(0.606067\pi\)
\(54\) 2.37565 + 8.86603i 0.323285 + 1.20651i
\(55\) −4.44989 11.3745i −0.600024 1.53374i
\(56\) −2.65420 + 1.53240i −0.354682 + 0.204776i
\(57\) −2.42113 −0.320687
\(58\) −18.9308 + 10.9297i −2.48574 + 1.43514i
\(59\) −0.000595178 0.00222123i −7.74855e−5 0.000289180i −0.965965 0.258674i \(-0.916714\pi\)
0.965887 + 0.258964i \(0.0833810\pi\)
\(60\) 10.6407 + 8.50465i 1.37371 + 1.09795i
\(61\) −0.695993 1.20550i −0.0891128 0.154348i 0.818024 0.575185i \(-0.195070\pi\)
−0.907136 + 0.420837i \(0.861736\pi\)
\(62\) 0.717332 0.192209i 0.0911013 0.0244105i
\(63\) −0.605053 + 1.04798i −0.0762295 + 0.132033i
\(64\) −13.0440 −1.63050
\(65\) 0 0
\(66\) −24.4270 −3.00675
\(67\) 3.03718 5.26055i 0.371050 0.642678i −0.618677 0.785645i \(-0.712331\pi\)
0.989727 + 0.142967i \(0.0456644\pi\)
\(68\) 9.54117 2.55655i 1.15704 0.310027i
\(69\) 0.164560 + 0.285026i 0.0198107 + 0.0343131i
\(70\) −0.712764 6.38837i −0.0851916 0.763557i
\(71\) 3.14648 11.7428i 0.373418 1.39361i −0.482225 0.876048i \(-0.660171\pi\)
0.855643 0.517567i \(-0.173162\pi\)
\(72\) 1.96902 1.13681i 0.232051 0.133975i
\(73\) −7.34614 −0.859801 −0.429901 0.902876i \(-0.641451\pi\)
−0.429901 + 0.902876i \(0.641451\pi\)
\(74\) 2.57620 1.48737i 0.299477 0.172903i
\(75\) −8.79299 + 4.62280i −1.01533 + 0.533795i
\(76\) −0.967044 3.60906i −0.110928 0.413987i
\(77\) 4.93298 + 4.93298i 0.562166 + 0.562166i
\(78\) 0 0
\(79\) 11.1774i 1.25756i 0.777584 + 0.628779i \(0.216445\pi\)
−0.777584 + 0.628779i \(0.783555\pi\)
\(80\) 0.655369 1.49768i 0.0732725 0.167445i
\(81\) −5.47236 + 9.47841i −0.608040 + 1.05316i
\(82\) −0.291657 + 1.08848i −0.0322081 + 0.120202i
\(83\) 2.65539i 0.291467i −0.989324 0.145733i \(-0.953446\pi\)
0.989324 0.145733i \(-0.0465542\pi\)
\(84\) −7.51533 2.01373i −0.819990 0.219716i
\(85\) −1.08139 + 7.12201i −0.117293 + 0.772490i
\(86\) −10.6041 + 10.6041i −1.14347 + 1.14347i
\(87\) −18.6382 4.99409i −1.99823 0.535423i
\(88\) −3.39247 12.6609i −0.361639 1.34965i
\(89\) 6.96542 1.86638i 0.738333 0.197836i 0.129996 0.991515i \(-0.458504\pi\)
0.608337 + 0.793679i \(0.291837\pi\)
\(90\) 0.528764 + 4.73922i 0.0557367 + 0.499558i
\(91\) 0 0
\(92\) −0.359145 + 0.359145i −0.0374434 + 0.0374434i
\(93\) 0.567713 + 0.327769i 0.0588691 + 0.0339881i
\(94\) −6.23815 3.60160i −0.643416 0.371477i
\(95\) 2.69398 + 0.409048i 0.276397 + 0.0419675i
\(96\) −9.05440 9.05440i −0.924111 0.924111i
\(97\) 2.09035 + 3.62059i 0.212243 + 0.367616i 0.952416 0.304801i \(-0.0985899\pi\)
−0.740173 + 0.672416i \(0.765257\pi\)
\(98\) −6.04207 10.4652i −0.610341 1.05714i
\(99\) −3.65954 3.65954i −0.367797 0.367797i
\(100\) −10.4030 11.2608i −1.04030 1.12608i
\(101\) 7.47319 + 4.31465i 0.743610 + 0.429323i 0.823380 0.567490i \(-0.192085\pi\)
−0.0797704 + 0.996813i \(0.525419\pi\)
\(102\) 12.4766 + 7.20336i 1.23537 + 0.713239i
\(103\) −1.07603 + 1.07603i −0.106025 + 0.106025i −0.758129 0.652104i \(-0.773886\pi\)
0.652104 + 0.758129i \(0.273886\pi\)
\(104\) 0 0
\(105\) 3.54258 4.43236i 0.345720 0.432554i
\(106\) −13.8312 + 3.70606i −1.34340 + 0.359964i
\(107\) 3.75956 + 14.0309i 0.363451 + 1.35642i 0.869509 + 0.493917i \(0.164435\pi\)
−0.506058 + 0.862499i \(0.668898\pi\)
\(108\) −12.0776 3.23619i −1.16217 0.311403i
\(109\) −4.72405 + 4.72405i −0.452481 + 0.452481i −0.896177 0.443696i \(-0.853667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(110\) 27.1797 + 4.12691i 2.59149 + 0.393486i
\(111\) 2.53638 + 0.679621i 0.240743 + 0.0645068i
\(112\) 0.933751i 0.0882311i
\(113\) 2.94919 11.0065i 0.277437 1.03541i −0.676754 0.736209i \(-0.736614\pi\)
0.954191 0.299199i \(-0.0967193\pi\)
\(114\) 2.72475 4.71941i 0.255197 0.442013i
\(115\) −0.134950 0.344949i −0.0125841 0.0321666i
\(116\) 29.7777i 2.76479i
\(117\) 0 0
\(118\) −0.00365994 0.00365994i −0.000336925 0.000336925i
\(119\) −1.06492 3.97433i −0.0976210 0.364326i
\(120\) −9.92818 + 3.88407i −0.906315 + 0.354566i
\(121\) −16.3126 + 9.41807i −1.48296 + 0.856188i
\(122\) 3.13309 0.283657
\(123\) −0.861447 + 0.497357i −0.0776741 + 0.0448452i
\(124\) −0.261833 + 0.977176i −0.0235133 + 0.0877530i
\(125\) 10.5649 3.65819i 0.944956 0.327199i
\(126\) −1.36186 2.35881i −0.121324 0.210139i
\(127\) 0.506651 0.135757i 0.0449580 0.0120465i −0.236270 0.971687i \(-0.575925\pi\)
0.281228 + 0.959641i \(0.409258\pi\)
\(128\) 8.23486 14.2632i 0.727865 1.26070i
\(129\) −13.2377 −1.16551
\(130\) 0 0
\(131\) 5.09883 0.445486 0.222743 0.974877i \(-0.428499\pi\)
0.222743 + 0.974877i \(0.428499\pi\)
\(132\) 16.6377 28.8173i 1.44812 2.50822i
\(133\) −1.50334 + 0.402818i −0.130356 + 0.0349287i
\(134\) 6.83610 + 11.8405i 0.590549 + 1.02286i
\(135\) 5.69316 7.12309i 0.489989 0.613058i
\(136\) −2.00084 + 7.46723i −0.171571 + 0.640310i
\(137\) 3.29390 1.90173i 0.281417 0.162476i −0.352648 0.935756i \(-0.614719\pi\)
0.634065 + 0.773280i \(0.281385\pi\)
\(138\) −0.740785 −0.0630598
\(139\) −1.28017 + 0.739106i −0.108583 + 0.0626902i −0.553308 0.832977i \(-0.686635\pi\)
0.444725 + 0.895667i \(0.353301\pi\)
\(140\) 8.02204 + 3.51037i 0.677986 + 0.296680i
\(141\) −1.64567 6.14173i −0.138591 0.517227i
\(142\) 19.3487 + 19.3487i 1.62371 + 1.62371i
\(143\) 0 0
\(144\) 0.692704i 0.0577253i
\(145\) 19.8949 + 8.70580i 1.65218 + 0.722977i
\(146\) 8.26737 14.3195i 0.684213 1.18509i
\(147\) 2.76079 10.3034i 0.227706 0.849811i
\(148\) 4.05230i 0.333097i
\(149\) 16.6295 + 4.45586i 1.36234 + 0.365038i 0.864675 0.502331i \(-0.167524\pi\)
0.497665 + 0.867369i \(0.334191\pi\)
\(150\) 0.884644 22.3423i 0.0722308 1.82424i
\(151\) 10.0539 10.0539i 0.818178 0.818178i −0.167666 0.985844i \(-0.553623\pi\)
0.985844 + 0.167666i \(0.0536230\pi\)
\(152\) 2.82457 + 0.756840i 0.229103 + 0.0613879i
\(153\) 0.790011 + 2.94836i 0.0638686 + 0.238361i
\(154\) −15.1672 + 4.06405i −1.22221 + 0.327491i
\(155\) −0.576314 0.460621i −0.0462907 0.0369980i
\(156\) 0 0
\(157\) 3.07230 3.07230i 0.245196 0.245196i −0.573799 0.818996i \(-0.694531\pi\)
0.818996 + 0.573799i \(0.194531\pi\)
\(158\) −21.7876 12.5791i −1.73333 1.00074i
\(159\) −10.9463 6.31986i −0.868100 0.501198i
\(160\) 8.54504 + 11.6045i 0.675545 + 0.917417i
\(161\) 0.149600 + 0.149600i 0.0117902 + 0.0117902i
\(162\) −12.3172 21.3341i −0.967733 1.67616i
\(163\) 4.60251 + 7.97177i 0.360496 + 0.624398i 0.988043 0.154182i \(-0.0492741\pi\)
−0.627546 + 0.778579i \(0.715941\pi\)
\(164\) −1.08546 1.08546i −0.0847602 0.0847602i
\(165\) 14.3890 + 19.5408i 1.12018 + 1.52125i
\(166\) 5.17603 + 2.98838i 0.401738 + 0.231944i
\(167\) 10.9455 + 6.31936i 0.846985 + 0.489007i 0.859632 0.510913i \(-0.170693\pi\)
−0.0126474 + 0.999920i \(0.504026\pi\)
\(168\) 4.30574 4.30574i 0.332195 0.332195i
\(169\) 0 0
\(170\) −12.6656 10.1230i −0.971409 0.776402i
\(171\) 1.11525 0.298831i 0.0852854 0.0228522i
\(172\) −5.28736 19.7327i −0.403157 1.50460i
\(173\) 13.2481 + 3.54983i 1.00724 + 0.269888i 0.724474 0.689302i \(-0.242083\pi\)
0.282762 + 0.959190i \(0.408749\pi\)
\(174\) 30.7103 30.7103i 2.32814 2.32814i
\(175\) −4.69064 + 4.33334i −0.354579 + 0.327570i
\(176\) −3.85738 1.03358i −0.290761 0.0779092i
\(177\) 0.00456889i 0.000343419i
\(178\) −4.20086 + 15.6778i −0.314867 + 1.17510i
\(179\) 6.32126 10.9487i 0.472473 0.818347i −0.527031 0.849846i \(-0.676695\pi\)
0.999504 + 0.0314989i \(0.0100281\pi\)
\(180\) −5.95116 2.60417i −0.443573 0.194103i
\(181\) 8.16619i 0.606988i −0.952833 0.303494i \(-0.901847\pi\)
0.952833 0.303494i \(-0.0981533\pi\)
\(182\) 0 0
\(183\) 1.95560 + 1.95560i 0.144562 + 0.144562i
\(184\) −0.102882 0.383960i −0.00758455 0.0283059i
\(185\) −2.70739 1.18473i −0.199052 0.0871030i
\(186\) −1.27781 + 0.737745i −0.0936937 + 0.0540941i
\(187\) 17.5970 1.28682
\(188\) 8.49784 4.90623i 0.619769 0.357824i
\(189\) −1.34802 + 5.03089i −0.0980542 + 0.365943i
\(190\) −3.82916 + 4.79091i −0.277796 + 0.347569i
\(191\) 7.37692 + 12.7772i 0.533775 + 0.924526i 0.999222 + 0.0394498i \(0.0125605\pi\)
−0.465446 + 0.885076i \(0.654106\pi\)
\(192\) 25.0330 6.70758i 1.80660 0.484078i
\(193\) −7.54845 + 13.0743i −0.543349 + 0.941109i 0.455359 + 0.890308i \(0.349511\pi\)
−0.998709 + 0.0508011i \(0.983823\pi\)
\(194\) −9.40995 −0.675595
\(195\) 0 0
\(196\) 16.4614 1.17582
\(197\) −7.68576 + 13.3121i −0.547588 + 0.948450i 0.450851 + 0.892599i \(0.351121\pi\)
−0.998439 + 0.0558510i \(0.982213\pi\)
\(198\) 11.2518 3.01492i 0.799633 0.214261i
\(199\) −5.72810 9.92136i −0.406054 0.703307i 0.588389 0.808578i \(-0.299762\pi\)
−0.994444 + 0.105271i \(0.966429\pi\)
\(200\) 11.7032 2.64443i 0.827544 0.186989i
\(201\) −3.12361 + 11.6575i −0.220322 + 0.822254i
\(202\) −16.8207 + 9.71144i −1.18350 + 0.683294i
\(203\) −12.4038 −0.870574
\(204\) −16.9961 + 9.81268i −1.18996 + 0.687025i
\(205\) 1.04255 0.407865i 0.0728152 0.0284865i
\(206\) −0.886492 3.30843i −0.0617648 0.230509i
\(207\) −0.110981 0.110981i −0.00771372 0.00771372i
\(208\) 0 0
\(209\) 6.65626i 0.460423i
\(210\) 4.65297 + 11.8936i 0.321085 + 0.820735i
\(211\) −1.59195 + 2.75735i −0.109595 + 0.189823i −0.915606 0.402076i \(-0.868289\pi\)
0.806011 + 0.591900i \(0.201622\pi\)
\(212\) 5.04852 18.8414i 0.346734 1.29403i
\(213\) 24.1539i 1.65500i
\(214\) −31.5808 8.46205i −2.15882 0.578454i
\(215\) 14.7295 + 2.23649i 1.00454 + 0.152527i
\(216\) 6.91961 6.91961i 0.470820 0.470820i
\(217\) 0.407038 + 0.109066i 0.0276316 + 0.00740386i
\(218\) −3.89192 14.5248i −0.263594 0.983746i
\(219\) 14.0982 3.77760i 0.952667 0.255266i
\(220\) −23.3813 + 29.2539i −1.57636 + 1.97230i
\(221\) 0 0
\(222\) −4.17921 + 4.17921i −0.280490 + 0.280490i
\(223\) −10.2862 5.93874i −0.688815 0.397688i 0.114353 0.993440i \(-0.463521\pi\)
−0.803168 + 0.595753i \(0.796854\pi\)
\(224\) −7.12851 4.11565i −0.476294 0.274988i
\(225\) 3.47976 3.21469i 0.231984 0.214313i
\(226\) 18.1355 + 18.1355i 1.20636 + 1.20636i
\(227\) −13.8333 23.9600i −0.918149 1.59028i −0.802225 0.597022i \(-0.796350\pi\)
−0.115924 0.993258i \(-0.536983\pi\)
\(228\) 3.71176 + 6.42896i 0.245817 + 0.425768i
\(229\) 12.9000 + 12.9000i 0.852455 + 0.852455i 0.990435 0.137980i \(-0.0440610\pi\)
−0.137980 + 0.990435i \(0.544061\pi\)
\(230\) 0.824266 + 0.125155i 0.0543505 + 0.00825246i
\(231\) −12.0037 6.93034i −0.789786 0.455983i
\(232\) 20.1827 + 11.6525i 1.32506 + 0.765024i
\(233\) 16.3545 16.3545i 1.07142 1.07142i 0.0741712 0.997246i \(-0.476369\pi\)
0.997246 0.0741712i \(-0.0236311\pi\)
\(234\) 0 0
\(235\) 0.793489 + 7.11190i 0.0517615 + 0.463929i
\(236\) 0.00681059 0.00182489i 0.000443332 0.000118790i
\(237\) −5.74774 21.4509i −0.373356 1.39338i
\(238\) 8.94546 + 2.39693i 0.579848 + 0.155370i
\(239\) −2.61794 + 2.61794i −0.169341 + 0.169341i −0.786690 0.617349i \(-0.788207\pi\)
0.617349 + 0.786690i \(0.288207\pi\)
\(240\) −0.487588 + 3.21124i −0.0314737 + 0.207285i
\(241\) 20.1013 + 5.38613i 1.29484 + 0.346951i 0.839496 0.543365i \(-0.182850\pi\)
0.455343 + 0.890316i \(0.349517\pi\)
\(242\) 42.3965i 2.72535i
\(243\) 2.46169 9.18717i 0.157918 0.589357i
\(244\) −2.13401 + 3.69621i −0.136616 + 0.236625i
\(245\) −4.81267 + 10.9981i −0.307470 + 0.702643i
\(246\) 2.23891i 0.142748i
\(247\) 0 0
\(248\) −0.559851 0.559851i −0.0355505 0.0355505i
\(249\) 1.36548 + 5.09603i 0.0865336 + 0.322948i
\(250\) −4.75905 + 24.7107i −0.300989 + 1.56284i
\(251\) 2.05050 1.18386i 0.129427 0.0747245i −0.433889 0.900966i \(-0.642859\pi\)
0.563315 + 0.826242i \(0.309526\pi\)
\(252\) 3.71034 0.233730
\(253\) −0.783602 + 0.452413i −0.0492647 + 0.0284430i
\(254\) −0.305562 + 1.14037i −0.0191727 + 0.0715533i
\(255\) −1.58701 14.2241i −0.0993827 0.890749i
\(256\) 5.49109 + 9.51085i 0.343193 + 0.594428i
\(257\) −0.840391 + 0.225182i −0.0524221 + 0.0140465i −0.284935 0.958547i \(-0.591972\pi\)
0.232513 + 0.972593i \(0.425305\pi\)
\(258\) 14.8977 25.8036i 0.927492 1.60646i
\(259\) 1.68797 0.104885
\(260\) 0 0
\(261\) 9.20175 0.569574
\(262\) −5.73824 + 9.93892i −0.354509 + 0.614028i
\(263\) 14.6707 3.93099i 0.904632 0.242395i 0.223627 0.974675i \(-0.428210\pi\)
0.681004 + 0.732279i \(0.261543\pi\)
\(264\) 13.0212 + 22.5533i 0.801398 + 1.38806i
\(265\) 11.1122 + 8.88144i 0.682615 + 0.545582i
\(266\) 0.906665 3.38372i 0.0555912 0.207469i
\(267\) −12.4078 + 7.16363i −0.759343 + 0.438407i
\(268\) −18.6248 −1.13769
\(269\) 21.1150 12.1908i 1.28741 0.743285i 0.309216 0.950992i \(-0.399933\pi\)
0.978191 + 0.207707i \(0.0666000\pi\)
\(270\) 7.47763 + 19.1138i 0.455074 + 1.16323i
\(271\) −3.39484 12.6697i −0.206222 0.769630i −0.989074 0.147422i \(-0.952903\pi\)
0.782852 0.622208i \(-0.213764\pi\)
\(272\) 1.66544 + 1.66544i 0.100982 + 0.100982i
\(273\) 0 0
\(274\) 8.56086i 0.517181i
\(275\) −12.7091 24.1740i −0.766390 1.45775i
\(276\) 0.504562 0.873927i 0.0303711 0.0526042i
\(277\) −3.16472 + 11.8109i −0.190149 + 0.709647i 0.803320 + 0.595548i \(0.203065\pi\)
−0.993469 + 0.114099i \(0.963602\pi\)
\(278\) 3.32717i 0.199550i
\(279\) −0.301962 0.0809104i −0.0180780 0.00484398i
\(280\) −5.51841 + 4.06352i −0.329788 + 0.242841i
\(281\) 6.43529 6.43529i 0.383897 0.383897i −0.488607 0.872504i \(-0.662495\pi\)
0.872504 + 0.488607i \(0.162495\pi\)
\(282\) 13.8239 + 3.70409i 0.823198 + 0.220575i
\(283\) −7.07953 26.4212i −0.420834 1.57057i −0.772855 0.634583i \(-0.781172\pi\)
0.352021 0.935992i \(-0.385495\pi\)
\(284\) −36.0050 + 9.64751i −2.13650 + 0.572474i
\(285\) −5.38044 + 0.600307i −0.318710 + 0.0355591i
\(286\) 0 0
\(287\) −0.452144 + 0.452144i −0.0266892 + 0.0266892i
\(288\) 5.28829 + 3.05320i 0.311616 + 0.179911i
\(289\) 5.73440 + 3.31076i 0.337318 + 0.194750i
\(290\) −39.3596 + 28.9826i −2.31127 + 1.70192i
\(291\) −5.87346 5.87346i −0.344308 0.344308i
\(292\) 11.2621 + 19.5066i 0.659066 + 1.14154i
\(293\) −13.0620 22.6241i −0.763092 1.32171i −0.941249 0.337713i \(-0.890347\pi\)
0.178157 0.984002i \(-0.442987\pi\)
\(294\) 16.9770 + 16.9770i 0.990118 + 0.990118i
\(295\) −0.000771909 0.00508377i −4.49423e−5 0.000295989i
\(296\) −2.74657 1.58573i −0.159641 0.0921688i
\(297\) −19.2908 11.1375i −1.11936 0.646265i
\(298\) −27.4005 + 27.4005i −1.58727 + 1.58727i
\(299\) 0 0
\(300\) 25.7554 + 16.2614i 1.48699 + 0.938852i
\(301\) −8.21957 + 2.20243i −0.473768 + 0.126946i
\(302\) 8.28296 + 30.9124i 0.476631 + 1.77881i
\(303\) −16.5607 4.43743i −0.951388 0.254924i
\(304\) 0.629972 0.629972i 0.0361314 0.0361314i
\(305\) −1.84559 2.50638i −0.105678 0.143515i
\(306\) −6.63619 1.77816i −0.379366 0.101651i
\(307\) 14.7038i 0.839189i 0.907712 + 0.419595i \(0.137828\pi\)
−0.907712 + 0.419595i \(0.862172\pi\)
\(308\) 5.53620 20.6614i 0.315454 1.17729i
\(309\) 1.51172 2.61837i 0.0859985 0.148954i
\(310\) 1.54645 0.604999i 0.0878327 0.0343617i
\(311\) 31.8525i 1.80619i 0.429440 + 0.903095i \(0.358711\pi\)
−0.429440 + 0.903095i \(0.641289\pi\)
\(312\) 0 0
\(313\) −11.9865 11.9865i −0.677519 0.677519i 0.281919 0.959438i \(-0.409029\pi\)
−0.959438 + 0.281919i \(0.909029\pi\)
\(314\) 2.53112 + 9.44628i 0.142840 + 0.533084i
\(315\) −1.08476 + 2.47893i −0.0611190 + 0.139672i
\(316\) 29.6799 17.1357i 1.66963 0.963959i
\(317\) −15.5627 −0.874088 −0.437044 0.899440i \(-0.643975\pi\)
−0.437044 + 0.899440i \(0.643975\pi\)
\(318\) 24.6380 14.2248i 1.38163 0.797686i
\(319\) 13.7299 51.2407i 0.768728 2.86893i
\(320\) −28.9874 + 3.23418i −1.62044 + 0.180796i
\(321\) −14.4302 24.9938i −0.805413 1.39502i
\(322\) −0.459970 + 0.123249i −0.0256331 + 0.00686837i
\(323\) −1.96289 + 3.39983i −0.109218 + 0.189171i
\(324\) 33.5580 1.86433
\(325\) 0 0
\(326\) −20.7187 −1.14750
\(327\) 6.63680 11.4953i 0.367016 0.635691i
\(328\) 1.16046 0.310945i 0.0640758 0.0171691i
\(329\) −2.04367 3.53974i −0.112671 0.195152i
\(330\) −54.2835 + 6.05653i −2.98821 + 0.333401i
\(331\) −4.41633 + 16.4820i −0.242743 + 0.905930i 0.731761 + 0.681561i \(0.238699\pi\)
−0.974504 + 0.224369i \(0.927968\pi\)
\(332\) −7.05098 + 4.07089i −0.386973 + 0.223419i
\(333\) −1.25222 −0.0686212
\(334\) −24.6361 + 14.2237i −1.34803 + 0.778284i
\(335\) 5.44513 12.4435i 0.297499 0.679858i
\(336\) −0.480161 1.79199i −0.0261949 0.0977609i
\(337\) −25.0560 25.0560i −1.36489 1.36489i −0.867568 0.497319i \(-0.834318\pi\)
−0.497319 0.867568i \(-0.665682\pi\)
\(338\) 0 0
\(339\) 22.6395i 1.22961i
\(340\) 20.5693 8.04704i 1.11552 0.436412i
\(341\) −0.901114 + 1.56077i −0.0487980 + 0.0845207i
\(342\) −0.672610 + 2.51022i −0.0363706 + 0.135737i
\(343\) 15.7972i 0.852971i
\(344\) 15.4435 + 4.13806i 0.832655 + 0.223109i
\(345\) 0.436368 + 0.592605i 0.0234933 + 0.0319048i
\(346\) −21.8290 + 21.8290i −1.17354 + 1.17354i
\(347\) −12.4604 3.33874i −0.668907 0.179233i −0.0916446 0.995792i \(-0.529212\pi\)
−0.577262 + 0.816559i \(0.695879\pi\)
\(348\) 15.3125 + 57.1472i 0.820838 + 3.06341i
\(349\) 25.9362 6.94957i 1.38833 0.372002i 0.514191 0.857676i \(-0.328092\pi\)
0.874140 + 0.485674i \(0.161426\pi\)
\(350\) −3.16792 14.0200i −0.169332 0.749402i
\(351\) 0 0
\(352\) 24.8926 24.8926i 1.32678 1.32678i
\(353\) 20.1885 + 11.6558i 1.07453 + 0.620378i 0.929414 0.369038i \(-0.120313\pi\)
0.145111 + 0.989415i \(0.453646\pi\)
\(354\) 0.00890593 + 0.00514184i 0.000473345 + 0.000273286i
\(355\) 4.08078 26.8759i 0.216586 1.42643i
\(356\) −15.6343 15.6343i −0.828617 0.828617i
\(357\) 4.08743 + 7.07964i 0.216330 + 0.374694i
\(358\) 14.2279 + 24.6435i 0.751970 + 1.30245i
\(359\) 9.17222 + 9.17222i 0.484091 + 0.484091i 0.906435 0.422344i \(-0.138793\pi\)
−0.422344 + 0.906435i \(0.638793\pi\)
\(360\) 4.09384 3.01452i 0.215764 0.158879i
\(361\) −15.1685 8.75751i −0.798340 0.460922i
\(362\) 15.9180 + 9.19026i 0.836631 + 0.483029i
\(363\) 26.4629 26.4629i 1.38894 1.38894i
\(364\) 0 0
\(365\) −16.3252 + 1.82143i −0.854499 + 0.0953382i
\(366\) −6.01280 + 1.61113i −0.314294 + 0.0842149i
\(367\) 3.84780 + 14.3602i 0.200853 + 0.749595i 0.990674 + 0.136256i \(0.0435071\pi\)
−0.789820 + 0.613338i \(0.789826\pi\)
\(368\) −0.116981 0.0313449i −0.00609805 0.00163397i
\(369\) 0.335423 0.335423i 0.0174614 0.0174614i
\(370\) 5.35625 3.94410i 0.278458 0.205044i
\(371\) −7.84829 2.10294i −0.407463 0.109179i
\(372\) 2.00997i 0.104212i
\(373\) 1.59980 5.97055i 0.0828348 0.309144i −0.912061 0.410055i \(-0.865509\pi\)
0.994895 + 0.100912i \(0.0321760\pi\)
\(374\) −19.8037 + 34.3010i −1.02403 + 1.77366i
\(375\) −18.3943 + 12.4533i −0.949877 + 0.643087i
\(376\) 7.67955i 0.396043i
\(377\) 0 0
\(378\) −8.28942 8.28942i −0.426362 0.426362i
\(379\) −4.72834 17.6464i −0.242878 0.906435i −0.974438 0.224657i \(-0.927874\pi\)
0.731559 0.681778i \(-0.238793\pi\)
\(380\) −3.04389 7.78056i −0.156148 0.399134i
\(381\) −0.902517 + 0.521068i −0.0462373 + 0.0266951i
\(382\) −33.2081 −1.69907
\(383\) −8.87106 + 5.12171i −0.453290 + 0.261707i −0.709219 0.704989i \(-0.750952\pi\)
0.255929 + 0.966696i \(0.417619\pi\)
\(384\) −8.46920 + 31.6075i −0.432192 + 1.61296i
\(385\) 12.1856 + 9.73936i 0.621034 + 0.496364i
\(386\) −16.9901 29.4277i −0.864774 1.49783i
\(387\) 6.09769 1.63387i 0.309963 0.0830543i
\(388\) 6.40929 11.1012i 0.325382 0.563579i
\(389\) 3.41200 0.172995 0.0864977 0.996252i \(-0.472432\pi\)
0.0864977 + 0.996252i \(0.472432\pi\)
\(390\) 0 0
\(391\) 0.533655 0.0269881
\(392\) −6.44164 + 11.1572i −0.325352 + 0.563526i
\(393\) −9.78529 + 2.62196i −0.493603 + 0.132260i
\(394\) −17.2992 29.9630i −0.871519 1.50952i
\(395\) 2.77138 + 24.8393i 0.139443 + 1.24980i
\(396\) −4.10703 + 15.3277i −0.206386 + 0.770244i
\(397\) −10.3335 + 5.96603i −0.518622 + 0.299426i −0.736371 0.676578i \(-0.763462\pi\)
0.217749 + 0.976005i \(0.430129\pi\)
\(398\) 25.7857 1.29252
\(399\) 2.67795 1.54612i 0.134065 0.0774027i
\(400\) 1.08507 3.49075i 0.0542536 0.174538i
\(401\) 1.05497 + 3.93721i 0.0526828 + 0.196615i 0.987252 0.159168i \(-0.0508811\pi\)
−0.934569 + 0.355783i \(0.884214\pi\)
\(402\) −19.2081 19.2081i −0.958011 0.958011i
\(403\) 0 0
\(404\) 26.4586i 1.31636i
\(405\) −9.81100 + 22.4205i −0.487512 + 1.11408i
\(406\) 13.9592 24.1781i 0.692786 1.19994i
\(407\) −1.86844 + 6.97310i −0.0926149 + 0.345644i
\(408\) 15.3595i 0.760406i
\(409\) 6.70266 + 1.79597i 0.331425 + 0.0888051i 0.420694 0.907202i \(-0.361786\pi\)
−0.0892692 + 0.996008i \(0.528453\pi\)
\(410\) −0.378261 + 2.49122i −0.0186810 + 0.123033i
\(411\) −5.34348 + 5.34348i −0.263574 + 0.263574i
\(412\) 4.50687 + 1.20761i 0.222037 + 0.0594948i
\(413\) −0.000760151 0.00283692i −3.74046e−5 0.000139596i
\(414\) 0.341229 0.0914320i 0.0167705 0.00449364i
\(415\) −0.658389 5.90102i −0.0323190 0.289670i
\(416\) 0 0
\(417\) 2.07674 2.07674i 0.101698 0.101698i
\(418\) 12.9748 + 7.49098i 0.634616 + 0.366396i
\(419\) −18.3846 10.6144i −0.898147 0.518546i −0.0215487 0.999768i \(-0.506860\pi\)
−0.876599 + 0.481222i \(0.840193\pi\)
\(420\) −17.2004 2.61168i −0.839296 0.127437i
\(421\) 3.15727 + 3.15727i 0.153876 + 0.153876i 0.779847 0.625971i \(-0.215297\pi\)
−0.625971 + 0.779847i \(0.715297\pi\)
\(422\) −3.58318 6.20625i −0.174427 0.302116i
\(423\) 1.51610 + 2.62596i 0.0737152 + 0.127678i
\(424\) 10.7947 + 10.7947i 0.524238 + 0.524238i
\(425\) −0.637290 + 16.0952i −0.0309131 + 0.780733i
\(426\) −47.0822 27.1829i −2.28114 1.31702i
\(427\) 1.53964 + 0.888911i 0.0745084 + 0.0430174i
\(428\) 31.4932 31.4932i 1.52228 1.52228i
\(429\) 0 0
\(430\) −20.9361 + 26.1946i −1.00963 + 1.26321i
\(431\) 34.6226 9.27711i 1.66771 0.446863i 0.703221 0.710971i \(-0.251744\pi\)
0.964493 + 0.264109i \(0.0850777\pi\)
\(432\) −0.771651 2.87984i −0.0371261 0.138556i
\(433\) −7.81733 2.09465i −0.375677 0.100662i 0.0660397 0.997817i \(-0.478964\pi\)
−0.441716 + 0.897155i \(0.645630\pi\)
\(434\) −0.670679 + 0.670679i −0.0321936 + 0.0321936i
\(435\) −42.6575 6.47703i −2.04527 0.310550i
\(436\) 19.7863 + 5.30171i 0.947590 + 0.253906i
\(437\) 0.201861i 0.00965633i
\(438\) −8.50264 + 31.7323i −0.406272 + 1.51623i
\(439\) −14.3336 + 24.8265i −0.684104 + 1.18490i 0.289613 + 0.957144i \(0.406473\pi\)
−0.973717 + 0.227759i \(0.926860\pi\)
\(440\) −10.6782 27.2949i −0.509064 1.30123i
\(441\) 5.08683i 0.242230i
\(442\) 0 0
\(443\) −17.1586 17.1586i −0.815229 0.815229i 0.170184 0.985412i \(-0.445564\pi\)
−0.985412 + 0.170184i \(0.945564\pi\)
\(444\) −2.08381 7.77688i −0.0988931 0.369074i
\(445\) 15.0163 5.87465i 0.711843 0.278485i
\(446\) 23.1523 13.3670i 1.09629 0.632944i
\(447\) −34.2054 −1.61786
\(448\) 14.4276 8.32978i 0.681640 0.393545i
\(449\) −2.37239 + 8.85389i −0.111960 + 0.417841i −0.999042 0.0437720i \(-0.986062\pi\)
0.887081 + 0.461613i \(0.152729\pi\)
\(450\) 2.35012 + 10.4008i 0.110786 + 0.490297i
\(451\) −1.36735 2.36832i −0.0643860 0.111520i
\(452\) −33.7475 + 9.04261i −1.58735 + 0.425329i
\(453\) −14.1248 + 24.4648i −0.663639 + 1.14946i
\(454\) 62.2722 2.92258
\(455\) 0 0
\(456\) −5.80989 −0.272073
\(457\) −10.7399 + 18.6021i −0.502391 + 0.870167i 0.497605 + 0.867404i \(0.334213\pi\)
−0.999996 + 0.00276341i \(0.999120\pi\)
\(458\) −39.6631 + 10.6277i −1.85333 + 0.496599i
\(459\) 6.56877 + 11.3775i 0.306604 + 0.531054i
\(460\) −0.709072 + 0.887168i −0.0330607 + 0.0413644i
\(461\) −1.31453 + 4.90591i −0.0612240 + 0.228491i −0.989758 0.142757i \(-0.954403\pi\)
0.928534 + 0.371248i \(0.121070\pi\)
\(462\) 27.0180 15.5989i 1.25699 0.725725i
\(463\) 20.0793 0.933163 0.466581 0.884478i \(-0.345485\pi\)
0.466581 + 0.884478i \(0.345485\pi\)
\(464\) 6.14905 3.55016i 0.285463 0.164812i
\(465\) 1.34289 + 0.587633i 0.0622748 + 0.0272508i
\(466\) 13.4737 + 50.2844i 0.624156 + 2.32938i
\(467\) 21.4507 + 21.4507i 0.992618 + 0.992618i 0.999973 0.00735447i \(-0.00234102\pi\)
−0.00735447 + 0.999973i \(0.502341\pi\)
\(468\) 0 0
\(469\) 7.75807i 0.358234i
\(470\) −14.7559 6.45704i −0.680639 0.297841i
\(471\) −4.31627 + 7.47600i −0.198883 + 0.344476i
\(472\) −0.00142822 + 0.00533020i −6.57392e−5 + 0.000245342i
\(473\) 36.3934i 1.67337i
\(474\) 48.2818 + 12.9371i 2.21766 + 0.594219i
\(475\) 6.08820 + 0.241062i 0.279346 + 0.0110607i
\(476\) −8.92064 + 8.92064i −0.408877 + 0.408877i
\(477\) 5.82226 + 1.56007i 0.266583 + 0.0714306i
\(478\) −2.15680 8.04928i −0.0986497 0.368166i
\(479\) −30.0497 + 8.05179i −1.37300 + 0.367896i −0.868575 0.495557i \(-0.834964\pi\)
−0.504430 + 0.863453i \(0.668297\pi\)
\(480\) −22.3664 17.8764i −1.02088 0.815943i
\(481\) 0 0
\(482\) −33.1210 + 33.1210i −1.50862 + 1.50862i
\(483\) −0.364031 0.210173i −0.0165640 0.00956321i
\(484\) 50.0165 + 28.8770i 2.27348 + 1.31259i
\(485\) 5.54305 + 7.52768i 0.251697 + 0.341814i
\(486\) 15.1377 + 15.1377i 0.686662 + 0.686662i
\(487\) 9.71579 + 16.8282i 0.440264 + 0.762560i 0.997709 0.0676540i \(-0.0215514\pi\)
−0.557445 + 0.830214i \(0.688218\pi\)
\(488\) −1.67014 2.89277i −0.0756039 0.130950i
\(489\) −12.9321 12.9321i −0.584810 0.584810i
\(490\) −16.0219 21.7584i −0.723797 0.982945i
\(491\) 30.5824 + 17.6568i 1.38017 + 0.796839i 0.992179 0.124825i \(-0.0398371\pi\)
0.387987 + 0.921665i \(0.373170\pi\)
\(492\) 2.64131 + 1.52496i 0.119079 + 0.0687506i
\(493\) −22.1234 + 22.1234i −0.996389 + 0.996389i
\(494\) 0 0
\(495\) −9.03988 7.22515i −0.406312 0.324746i
\(496\) −0.233002 + 0.0624327i −0.0104621 + 0.00280331i
\(497\) 4.01863 + 14.9977i 0.180260 + 0.672740i
\(498\) −11.4702 3.07343i −0.513991 0.137723i
\(499\) −9.44430 + 9.44430i −0.422785 + 0.422785i −0.886161 0.463377i \(-0.846638\pi\)
0.463377 + 0.886161i \(0.346638\pi\)
\(500\) −25.9105 22.4453i −1.15875 1.00378i
\(501\) −24.2553 6.49919i −1.08365 0.290363i
\(502\) 5.32928i 0.237857i
\(503\) −6.24460 + 23.3052i −0.278433 + 1.03913i 0.675073 + 0.737751i \(0.264112\pi\)
−0.953506 + 0.301375i \(0.902554\pi\)
\(504\) −1.45192 + 2.51480i −0.0646736 + 0.112018i
\(505\) 17.6773 + 7.73542i 0.786630 + 0.344221i
\(506\) 2.03659i 0.0905374i
\(507\) 0 0
\(508\) −1.13721 1.13721i −0.0504555 0.0504555i
\(509\) −0.963376 3.59537i −0.0427009 0.159362i 0.941283 0.337618i \(-0.109621\pi\)
−0.983984 + 0.178256i \(0.942954\pi\)
\(510\) 29.5125 + 12.9144i 1.30683 + 0.571858i
\(511\) 8.12538 4.69119i 0.359446 0.207526i
\(512\) 8.22064 0.363304
\(513\) 4.30365 2.48471i 0.190011 0.109703i
\(514\) 0.506841 1.89156i 0.0223558 0.0834330i
\(515\) −2.12445 + 2.65804i −0.0936144 + 0.117127i
\(516\) 20.2942 + 35.1506i 0.893403 + 1.54742i
\(517\) 16.8850 4.52433i 0.742603 0.198980i
\(518\) −1.89964 + 3.29028i −0.0834656 + 0.144567i
\(519\) −27.2503 −1.19615
\(520\) 0 0
\(521\) 45.2323 1.98166 0.990832 0.135103i \(-0.0431364\pi\)
0.990832 + 0.135103i \(0.0431364\pi\)
\(522\) −10.3557 + 17.9366i −0.453256 + 0.785062i
\(523\) −1.10259 + 0.295439i −0.0482131 + 0.0129187i −0.282845 0.959166i \(-0.591278\pi\)
0.234632 + 0.972084i \(0.424612\pi\)
\(524\) −7.81683 13.5392i −0.341480 0.591461i
\(525\) 6.77362 10.7283i 0.295625 0.468221i
\(526\) −8.84790 + 33.0208i −0.385787 + 1.43978i
\(527\) 0.920525 0.531466i 0.0400987 0.0231510i
\(528\) 7.93430 0.345296
\(529\) 19.8948 11.4863i 0.864992 0.499403i
\(530\) −29.8179 + 11.6653i −1.29521 + 0.506706i
\(531\) 0.000563919 0.00210457i 2.44720e−5 9.13307e-5i
\(532\) 3.37434 + 3.37434i 0.146296 + 0.146296i
\(533\) 0 0
\(534\) 32.2479i 1.39550i
\(535\) 11.8337 + 30.2484i 0.511614 + 1.30775i
\(536\) 7.28818 12.6235i 0.314801 0.545252i
\(537\) −6.50114 + 24.2626i −0.280545 + 1.04701i
\(538\) 54.8782i 2.36597i
\(539\) 28.3265 + 7.59005i 1.22011 + 0.326927i
\(540\) −27.6423 4.19714i −1.18953 0.180616i
\(541\) −22.3573 + 22.3573i −0.961218 + 0.961218i −0.999276 0.0380580i \(-0.987883\pi\)
0.0380580 + 0.999276i \(0.487883\pi\)
\(542\) 28.5171 + 7.64112i 1.22491 + 0.328214i
\(543\) 4.19929 + 15.6720i 0.180209 + 0.672548i
\(544\) −20.0551 + 5.37376i −0.859857 + 0.230398i
\(545\) −9.32685 + 11.6694i −0.399518 + 0.499864i
\(546\) 0 0
\(547\) −5.20384 + 5.20384i −0.222500 + 0.222500i −0.809550 0.587050i \(-0.800289\pi\)
0.587050 + 0.809550i \(0.300289\pi\)
\(548\) −10.0995 5.83096i −0.431430 0.249086i
\(549\) −1.14218 0.659440i −0.0487472 0.0281442i
\(550\) 61.4242 + 2.43209i 2.61914 + 0.103705i
\(551\) 8.36844 + 8.36844i 0.356507 + 0.356507i
\(552\) 0.394887 + 0.683964i 0.0168075 + 0.0291114i
\(553\) −7.13781 12.3630i −0.303530 0.525730i
\(554\) −19.4608 19.4608i −0.826812 0.826812i
\(555\) 5.80505 + 0.881427i 0.246411 + 0.0374145i
\(556\) 3.92517 + 2.26620i 0.166464 + 0.0961081i
\(557\) −5.70401 3.29321i −0.241687 0.139538i 0.374265 0.927322i \(-0.377895\pi\)
−0.615952 + 0.787784i \(0.711228\pi\)
\(558\) 0.497544 0.497544i 0.0210627 0.0210627i
\(559\) 0 0
\(560\) 0.231518 + 2.07505i 0.00978343 + 0.0876871i
\(561\) −33.7709 + 9.04887i −1.42581 + 0.382044i
\(562\) 5.30173 + 19.7863i 0.223640 + 0.834636i
\(563\) −28.3543 7.59751i −1.19499 0.320197i −0.394134 0.919053i \(-0.628955\pi\)
−0.800856 + 0.598856i \(0.795622\pi\)
\(564\) −13.7855 + 13.7855i −0.580475 + 0.580475i
\(565\) 3.82492 25.1908i 0.160916 1.05979i
\(566\) 59.4689 + 15.9347i 2.49967 + 0.669783i
\(567\) 13.9784i 0.587039i
\(568\) 7.55046 28.1787i 0.316810 1.18235i
\(569\) 16.9543 29.3658i 0.710763 1.23108i −0.253808 0.967255i \(-0.581683\pi\)
0.964571 0.263823i \(-0.0849835\pi\)
\(570\) 4.88501 11.1634i 0.204611 0.467585i
\(571\) 33.5525i 1.40413i 0.712113 + 0.702065i \(0.247738\pi\)
−0.712113 + 0.702065i \(0.752262\pi\)
\(572\) 0 0
\(573\) −20.7277 20.7277i −0.865910 0.865910i
\(574\) −0.372500 1.39019i −0.0155478 0.0580253i
\(575\) −0.385424 0.733112i −0.0160733 0.0305729i
\(576\) −10.7031 + 6.17945i −0.445964 + 0.257477i
\(577\) −11.0413 −0.459654 −0.229827 0.973232i \(-0.573816\pi\)
−0.229827 + 0.973232i \(0.573816\pi\)
\(578\) −12.9070 + 7.45188i −0.536862 + 0.309957i
\(579\) 7.76326 28.9729i 0.322630 1.20407i
\(580\) −7.38321 66.1743i −0.306571 2.74774i
\(581\) 1.69571 + 2.93706i 0.0703499 + 0.121850i
\(582\) 18.0589 4.83886i 0.748565 0.200577i
\(583\) 17.3748 30.0940i 0.719589 1.24636i
\(584\) −17.6282 −0.729461
\(585\) 0 0
\(586\) 58.8002 2.42902
\(587\) 11.7529 20.3567i 0.485095 0.840209i −0.514758 0.857335i \(-0.672118\pi\)
0.999853 + 0.0171260i \(0.00545165\pi\)
\(588\) −31.5916 + 8.46495i −1.30282 + 0.349089i
\(589\) −0.201033 0.348199i −0.00828342 0.0143473i
\(590\) −0.00904086 0.00722594i −0.000372206 0.000297487i
\(591\) 7.90448 29.4999i 0.325147 1.21346i
\(592\) −0.836794 + 0.483123i −0.0343920 + 0.0198563i
\(593\) 30.6582 1.25898 0.629491 0.777007i \(-0.283263\pi\)
0.629491 + 0.777007i \(0.283263\pi\)
\(594\) 43.4198 25.0684i 1.78153 1.02857i
\(595\) −3.35196 8.56804i −0.137417 0.351255i
\(596\) −13.6622 50.9882i −0.559627 2.08856i
\(597\) 16.0948 + 16.0948i 0.658717 + 0.658717i
\(598\) 0 0
\(599\) 7.49378i 0.306188i −0.988212 0.153094i \(-0.951076\pi\)
0.988212 0.153094i \(-0.0489237\pi\)
\(600\) −21.1002 + 11.0931i −0.861410 + 0.452875i
\(601\) 7.04653 12.2049i 0.287434 0.497850i −0.685763 0.727825i \(-0.740531\pi\)
0.973196 + 0.229975i \(0.0738645\pi\)
\(602\) 4.95724 18.5007i 0.202042 0.754030i
\(603\) 5.75533i 0.234375i
\(604\) −42.1101 11.2834i −1.71343 0.459113i
\(605\) −33.9159 + 24.9742i −1.37888 + 1.01534i
\(606\) 27.2872 27.2872i 1.10847 1.10847i
\(607\) −14.5660 3.90296i −0.591218 0.158416i −0.0492080 0.998789i \(-0.515670\pi\)
−0.542010 + 0.840372i \(0.682336\pi\)
\(608\) 2.03268 + 7.58608i 0.0824363 + 0.307656i
\(609\) 23.8044 6.37837i 0.964604 0.258465i
\(610\) 6.96260 0.776832i 0.281908 0.0314530i
\(611\) 0 0
\(612\) 6.61779 6.61779i 0.267508 0.267508i
\(613\) 10.3197 + 5.95807i 0.416808 + 0.240644i 0.693711 0.720254i \(-0.255975\pi\)
−0.276903 + 0.960898i \(0.589308\pi\)
\(614\) −28.6614 16.5477i −1.15668 0.667810i
\(615\) −1.79106 + 1.31886i −0.0722225 + 0.0531814i
\(616\) 11.8375 + 11.8375i 0.476945 + 0.476945i
\(617\) −19.4158 33.6292i −0.781652 1.35386i −0.930979 0.365074i \(-0.881044\pi\)
0.149326 0.988788i \(-0.452290\pi\)
\(618\) 3.40258 + 5.89344i 0.136872 + 0.237069i
\(619\) −14.9567 14.9567i −0.601159 0.601159i 0.339461 0.940620i \(-0.389755\pi\)
−0.940620 + 0.339461i \(0.889755\pi\)
\(620\) −0.339582 + 2.23648i −0.0136379 + 0.0898191i
\(621\) −0.585021 0.337762i −0.0234761 0.0135539i
\(622\) −62.0887 35.8469i −2.48953 1.43733i
\(623\) −6.51241 + 6.51241i −0.260914 + 0.260914i
\(624\) 0 0
\(625\) 22.5712 10.7490i 0.902847 0.429961i
\(626\) 36.8545 9.87514i 1.47300 0.394690i
\(627\) 3.42284 + 12.7742i 0.136695 + 0.510153i
\(628\) −12.8681 3.44799i −0.513492 0.137590i
\(629\) 3.01067 3.01067i 0.120043 0.120043i
\(630\) −3.61128 4.90426i −0.143877 0.195390i
\(631\) −37.7256 10.1085i −1.50183 0.402415i −0.588119 0.808775i \(-0.700131\pi\)
−0.913713 + 0.406360i \(0.866798\pi\)
\(632\) 26.8219i 1.06692i
\(633\) 1.63726 6.11032i 0.0650751 0.242864i
\(634\) 17.5143 30.3357i 0.695582 1.20478i
\(635\) 1.09226 0.427310i 0.0433450 0.0169573i
\(636\) 38.7550i 1.53674i
\(637\) 0 0
\(638\) 84.4296 + 84.4296i 3.34260 + 3.34260i
\(639\) −2.98122 11.1261i −0.117935 0.440141i
\(640\) 14.7637 33.7386i 0.583585 1.33363i
\(641\) 7.55607 4.36250i 0.298447 0.172308i −0.343298 0.939226i \(-0.611544\pi\)
0.641745 + 0.766918i \(0.278211\pi\)
\(642\) 64.9590 2.56373
\(643\) −12.8146 + 7.39852i −0.505359 + 0.291769i −0.730924 0.682459i \(-0.760911\pi\)
0.225565 + 0.974228i \(0.427577\pi\)
\(644\) 0.167894 0.626588i 0.00661594 0.0246910i
\(645\) −29.4178 + 3.28220i −1.15832 + 0.129237i
\(646\) −4.41809 7.65235i −0.173827 0.301078i
\(647\) −32.7213 + 8.76765i −1.28641 + 0.344692i −0.836295 0.548280i \(-0.815283\pi\)
−0.450113 + 0.892972i \(0.648616\pi\)
\(648\) −13.1318 + 22.7449i −0.515865 + 0.893505i
\(649\) 0.0125609 0.000493060
\(650\) 0 0
\(651\) −0.837243 −0.0328141
\(652\) 14.1119 24.4425i 0.552664 0.957242i
\(653\) 19.5581 5.24059i 0.765369 0.205080i 0.145044 0.989425i \(-0.453667\pi\)
0.620325 + 0.784345i \(0.287001\pi\)
\(654\) 14.9382 + 25.8737i 0.584128 + 1.01174i
\(655\) 11.3310 1.26422i 0.442739 0.0493973i
\(656\) 0.0947353 0.353557i 0.00369879 0.0138041i
\(657\) −6.02782 + 3.48016i −0.235168 + 0.135774i
\(658\) 9.19981 0.358646
\(659\) −26.2317 + 15.1449i −1.02184 + 0.589961i −0.914637 0.404276i \(-0.867523\pi\)
−0.107205 + 0.994237i \(0.534190\pi\)
\(660\) 29.8284 68.1652i 1.16107 2.65333i
\(661\) −5.66280 21.1339i −0.220257 0.822012i −0.984249 0.176786i \(-0.943430\pi\)
0.763992 0.645226i \(-0.223237\pi\)
\(662\) −27.1574 27.1574i −1.05550 1.05550i
\(663\) 0 0
\(664\) 6.37202i 0.247282i
\(665\) −3.24096 + 1.26792i −0.125679 + 0.0491677i
\(666\) 1.40925 2.44090i 0.0546074 0.0945829i
\(667\) 0.416380 1.55395i 0.0161223 0.0601693i
\(668\) 38.7520i 1.49936i
\(669\) 22.7944 + 6.10774i 0.881282 + 0.236139i
\(670\) 18.1275 + 24.6179i 0.700326 + 0.951071i
\(671\) −5.37640 + 5.37640i −0.207553 + 0.207553i
\(672\) 15.7969 + 4.23277i 0.609379 + 0.163283i
\(673\) −0.148622 0.554664i −0.00572895 0.0213807i 0.963002 0.269494i \(-0.0868563\pi\)
−0.968731 + 0.248113i \(0.920190\pi\)
\(674\) 77.0386 20.6424i 2.96742 0.795117i
\(675\) 10.8857 17.2411i 0.418989 0.663610i
\(676\) 0 0
\(677\) −11.5229 + 11.5229i −0.442862 + 0.442862i −0.892973 0.450111i \(-0.851385\pi\)
0.450111 + 0.892973i \(0.351385\pi\)
\(678\) −44.1302 25.4786i −1.69481 0.978498i
\(679\) −4.62416 2.66976i −0.177459 0.102456i
\(680\) −2.59496 + 17.0904i −0.0995124 + 0.655386i
\(681\) 38.8688 + 38.8688i 1.48946 + 1.48946i
\(682\) −2.02823 3.51300i −0.0776650 0.134520i
\(683\) 10.0529 + 17.4121i 0.384663 + 0.666256i 0.991722 0.128400i \(-0.0409843\pi\)
−0.607059 + 0.794657i \(0.707651\pi\)
\(684\) −2.50325 2.50325i −0.0957143 0.0957143i
\(685\) 6.84843 5.04288i 0.261665 0.192679i
\(686\) 30.7929 + 17.7783i 1.17568 + 0.678777i
\(687\) −31.3902 18.1232i −1.19761 0.691442i
\(688\) 3.44440 3.44440i 0.131317 0.131317i
\(689\) 0 0
\(690\) −1.64623 + 0.183673i −0.0626709 + 0.00699232i
\(691\) −41.8571 + 11.2156i −1.59232 + 0.426661i −0.942712 0.333608i \(-0.891734\pi\)
−0.649608 + 0.760269i \(0.725067\pi\)
\(692\) −10.8842 40.6205i −0.413756 1.54416i
\(693\) 6.38467 + 1.71077i 0.242534 + 0.0649867i
\(694\) 20.5310 20.5310i 0.779346 0.779346i
\(695\) −2.66164 + 1.95991i −0.100962 + 0.0743436i
\(696\) −44.7253 11.9841i −1.69531 0.454256i
\(697\) 1.61289i 0.0610926i
\(698\) −15.6421 + 58.3773i −0.592064 + 2.20961i
\(699\) −22.9764 + 39.7962i −0.869046 + 1.50523i
\(700\) 18.6976 + 5.81200i 0.706702 + 0.219673i
\(701\) 8.03468i 0.303466i 0.988422 + 0.151733i \(0.0484853\pi\)
−0.988422 + 0.151733i \(0.951515\pi\)
\(702\) 0 0
\(703\) −1.13882 1.13882i −0.0429514 0.0429514i
\(704\) 18.4407 + 68.8216i 0.695010 + 2.59381i
\(705\) −5.17995 13.2406i −0.195088 0.498670i
\(706\) −45.4404 + 26.2350i −1.71017 + 0.987369i
\(707\) −11.0212 −0.414495
\(708\) −0.0121320 + 0.00700440i −0.000455948 + 0.000263242i
\(709\) −5.88217 + 21.9526i −0.220910 + 0.824446i 0.763092 + 0.646289i \(0.223680\pi\)
−0.984002 + 0.178157i \(0.942987\pi\)
\(710\) 47.7956 + 38.2008i 1.79374 + 1.43365i
\(711\) 5.29519 + 9.17153i 0.198585 + 0.343959i
\(712\) 16.7146 4.47866i 0.626406 0.167845i
\(713\) −0.0273276 + 0.0473328i −0.00102343 + 0.00177263i
\(714\) −18.4000 −0.688604
\(715\) 0 0
\(716\) −38.7636 −1.44866
\(717\) 3.67794 6.37039i 0.137355 0.237906i
\(718\) −28.2014 + 7.55655i −1.05247 + 0.282008i
\(719\) −21.4786 37.2021i −0.801018 1.38740i −0.918946 0.394382i \(-0.870959\pi\)
0.117928 0.993022i \(-0.462375\pi\)
\(720\) −0.171752 1.53938i −0.00640081 0.0573693i
\(721\) 0.503026 1.87732i 0.0187336 0.0699149i
\(722\) 34.1413 19.7115i 1.27061 0.733585i
\(723\) −41.3467 −1.53770
\(724\) −21.6841 + 12.5193i −0.805882 + 0.465276i
\(725\) 46.3705 + 14.4139i 1.72216 + 0.535319i
\(726\) 21.8015 + 81.3643i 0.809129 + 3.01971i
\(727\) 1.42786 + 1.42786i 0.0529563 + 0.0529563i 0.733089 0.680133i \(-0.238078\pi\)
−0.680133 + 0.733089i \(0.738078\pi\)
\(728\) 0 0
\(729\) 13.9369i 0.516183i
\(730\) 14.8220 33.8718i 0.548586 1.25365i
\(731\) −10.7322 + 18.5887i −0.396945 + 0.687528i
\(732\) 2.19473 8.19086i 0.0811197 0.302743i
\(733\) 32.1064i 1.18588i −0.805247 0.592939i \(-0.797967\pi\)
0.805247 0.592939i \(-0.202033\pi\)
\(734\) −32.3220 8.66065i −1.19303 0.319670i
\(735\) 3.58058 23.5816i 0.132072 0.869820i
\(736\) 0.754907 0.754907i 0.0278262 0.0278262i
\(737\) −32.0491 8.58752i −1.18054 0.316325i
\(738\) 0.276339 + 1.03131i 0.0101722 + 0.0379631i
\(739\) −19.8460 + 5.31771i −0.730046 + 0.195615i −0.604650 0.796492i \(-0.706687\pi\)
−0.125396 + 0.992107i \(0.540020\pi\)
\(740\) 1.00474 + 9.00534i 0.0369351 + 0.331043i
\(741\) 0 0
\(742\) 12.9317 12.9317i 0.474736 0.474736i
\(743\) 19.4891 + 11.2520i 0.714985 + 0.412797i 0.812904 0.582398i \(-0.197885\pi\)
−0.0979193 + 0.995194i \(0.531219\pi\)
\(744\) 1.36232 + 0.786533i 0.0499449 + 0.0288357i
\(745\) 38.0601 + 5.77897i 1.39442 + 0.211725i
\(746\) 9.83771 + 9.83771i 0.360184 + 0.360184i
\(747\) −1.25796 2.17886i −0.0460265 0.0797202i
\(748\) −26.9773 46.7261i −0.986389 1.70848i
\(749\) −13.1184 13.1184i −0.479334 0.479334i
\(750\) −3.57372 49.8702i −0.130494 1.82100i
\(751\) −1.44204 0.832560i −0.0526207 0.0303806i 0.473459 0.880816i \(-0.343005\pi\)
−0.526080 + 0.850435i \(0.676339\pi\)
\(752\) 2.02626 + 1.16986i 0.0738901 + 0.0426605i
\(753\) −3.32640 + 3.32640i −0.121221 + 0.121221i
\(754\) 0 0
\(755\) 19.8498 24.8355i 0.722410 0.903855i
\(756\) 15.4254 4.13321i 0.561015 0.150324i
\(757\) −10.1014 37.6990i −0.367143 1.37019i −0.864493 0.502645i \(-0.832360\pi\)
0.497350 0.867550i \(-0.334306\pi\)
\(758\) 39.7186 + 10.6426i 1.44265 + 0.386556i
\(759\) 1.27119 1.27119i 0.0461412 0.0461412i
\(760\) 6.46463 + 0.981575i 0.234497 + 0.0356055i
\(761\) −15.7109 4.20973i −0.569521 0.152603i −0.0374441 0.999299i \(-0.511922\pi\)
−0.532077 + 0.846696i \(0.678588\pi\)
\(762\) 2.34565i 0.0849739i
\(763\) 2.20841 8.24188i 0.0799496 0.298376i
\(764\) 22.6186 39.1766i 0.818313 1.41736i
\(765\) 2.48665 + 6.35620i 0.0899052 + 0.229809i
\(766\) 23.0560i 0.833045i
\(767\) 0 0
\(768\) −15.4289 15.4289i −0.556741 0.556741i
\(769\) −10.3296 38.5504i −0.372493 1.39016i −0.856973 0.515362i \(-0.827658\pi\)
0.484479 0.874803i \(-0.339009\pi\)
\(770\) −32.6982 + 12.7921i −1.17836 + 0.460995i
\(771\) 1.49702 0.864306i 0.0539139 0.0311272i
\(772\) 46.2891 1.66598
\(773\) −17.8304 + 10.2944i −0.641313 + 0.370262i −0.785120 0.619343i \(-0.787399\pi\)
0.143807 + 0.989606i \(0.454066\pi\)
\(774\) −3.67753 + 13.7247i −0.132186 + 0.493325i
\(775\) −1.39494 0.880735i −0.0501077 0.0316369i
\(776\) 5.01612 + 8.68818i 0.180068 + 0.311887i
\(777\) −3.23942 + 0.868001i −0.116214 + 0.0311394i
\(778\) −3.83988 + 6.65087i −0.137666 + 0.238445i
\(779\) 0.610095 0.0218589
\(780\) 0 0
\(781\) −66.4048 −2.37615
\(782\) −0.600577 + 1.04023i −0.0214766 + 0.0371986i
\(783\) 38.2553 10.2505i 1.36713 0.366322i
\(784\) 1.96257 + 3.39927i 0.0700917 + 0.121402i
\(785\) 6.06575 7.58927i 0.216496 0.270873i
\(786\) 5.90153 22.0248i 0.210501 0.785599i
\(787\) 24.8106 14.3244i 0.884404 0.510611i 0.0122960 0.999924i \(-0.496086\pi\)
0.872108 + 0.489314i \(0.162753\pi\)
\(788\) 47.1311 1.67898
\(789\) −26.1334 + 15.0881i −0.930375 + 0.537152i
\(790\) −51.5371 22.5521i −1.83361 0.802369i
\(791\) 3.76666 + 14.0574i 0.133927 + 0.499822i
\(792\) −8.78163 8.78163i −0.312042 0.312042i
\(793\) 0 0
\(794\) 26.8568i 0.953111i
\(795\) −25.8927 11.3304i −0.918321 0.401848i
\(796\) −17.5631 + 30.4202i −0.622508 + 1.07822i
\(797\) 2.27363 8.48530i 0.0805361 0.300565i −0.913895 0.405950i \(-0.866941\pi\)
0.994432 + 0.105385i \(0.0336075\pi\)
\(798\) 6.96002i 0.246382i
\(799\) −9.95859 2.66840i −0.352310 0.0944011i
\(800\) 21.8667 + 23.6698i 0.773106 + 0.836852i
\(801\) 4.83124 4.83124i 0.170703 0.170703i
\(802\) −8.86190 2.37454i −0.312924 0.0838479i
\(803\) 10.3855 + 38.7592i 0.366496 + 1.36778i
\(804\) 35.7433 9.57739i 1.26057 0.337768i
\(805\) 0.369546 + 0.295361i 0.0130248 + 0.0104101i
\(806\) 0 0
\(807\) −34.2536 + 34.2536i −1.20578 + 1.20578i
\(808\) 17.9331 + 10.3537i 0.630884 + 0.364241i
\(809\) −0.820571 0.473757i −0.0288497 0.0166564i 0.485506 0.874233i \(-0.338635\pi\)
−0.514356 + 0.857577i \(0.671969\pi\)
\(810\) −32.6620 44.3563i −1.14762 1.55852i
\(811\) −28.8041 28.8041i −1.01145 1.01145i −0.999934 0.0115151i \(-0.996335\pi\)
−0.0115151 0.999934i \(-0.503665\pi\)
\(812\) 19.0158 + 32.9363i 0.667324 + 1.15584i
\(813\) 13.0302 + 22.5690i 0.456991 + 0.791531i
\(814\) −11.4896 11.4896i −0.402711 0.402711i
\(815\) 12.2046 + 16.5743i 0.427509 + 0.580574i
\(816\) −4.05261 2.33978i −0.141870 0.0819086i
\(817\) 7.03139 + 4.05958i 0.245997 + 0.142027i
\(818\) −11.0440 + 11.0440i −0.386145 + 0.386145i
\(819\) 0 0
\(820\) −2.68133 2.14306i −0.0936361 0.0748390i
\(821\) 1.29968 0.348249i 0.0453592 0.0121540i −0.236068 0.971737i \(-0.575859\pi\)
0.281427 + 0.959583i \(0.409192\pi\)
\(822\) −4.40224 16.4294i −0.153546 0.573041i
\(823\) 31.9429 + 8.55907i 1.11346 + 0.298350i 0.768234 0.640169i \(-0.221136\pi\)
0.345225 + 0.938520i \(0.387803\pi\)
\(824\) −2.58211 + 2.58211i −0.0899520 + 0.0899520i
\(825\) 36.8214 + 39.8575i 1.28196 + 1.38766i
\(826\) 0.00638537 + 0.00171095i 0.000222175 + 5.95317e-5i
\(827\) 26.4195i 0.918697i −0.888256 0.459349i \(-0.848083\pi\)
0.888256 0.459349i \(-0.151917\pi\)
\(828\) −0.124552 + 0.464834i −0.00432848 + 0.0161541i
\(829\) −1.23034 + 2.13101i −0.0427314 + 0.0740130i −0.886600 0.462537i \(-0.846939\pi\)
0.843869 + 0.536550i \(0.180273\pi\)
\(830\) 12.2435 + 5.35766i 0.424980 + 0.185967i
\(831\) 24.2940i 0.842748i
\(832\) 0 0
\(833\) −12.2301 12.2301i −0.423747 0.423747i
\(834\) 1.71093 + 6.38526i 0.0592445 + 0.221104i
\(835\) 25.8907 + 11.3295i 0.895985 + 0.392074i
\(836\) −17.6747 + 10.2045i −0.611292 + 0.352929i
\(837\) −1.34551 −0.0465075
\(838\) 41.3802 23.8909i 1.42946 0.825297i
\(839\) −13.0306 + 48.6308i −0.449866 + 1.67892i 0.252893 + 0.967494i \(0.418618\pi\)
−0.702759 + 0.711428i \(0.748049\pi\)
\(840\) 8.50096 10.6361i 0.293311 0.366981i
\(841\) 32.6597 + 56.5682i 1.12619 + 1.95063i
\(842\) −9.70754 + 2.60113i −0.334544 + 0.0896408i
\(843\) −9.04093 + 15.6594i −0.311386 + 0.539337i
\(844\) 9.76228 0.336032
\(845\) 0 0
\(846\) −6.82488 −0.234644
\(847\) 12.0286 20.8342i 0.413308 0.715870i
\(848\) 4.49261 1.20379i 0.154277 0.0413384i
\(849\) 27.1730 + 47.0651i 0.932576 + 1.61527i
\(850\) −30.6565 19.3559i −1.05151 0.663900i
\(851\) −0.0566632 + 0.211470i −0.00194239 + 0.00724909i
\(852\) 64.1371 37.0296i 2.19730 1.26861i
\(853\) −42.9612 −1.47096 −0.735481 0.677545i \(-0.763044\pi\)
−0.735481 + 0.677545i \(0.763044\pi\)
\(854\) −3.46543 + 2.00077i −0.118585 + 0.0684649i
\(855\) 2.40431 0.940605i 0.0822255 0.0321680i
\(856\) 9.02166 + 33.6693i 0.308354 + 1.15079i
\(857\) −29.0789 29.0789i −0.993316 0.993316i 0.00666151 0.999978i \(-0.497880\pi\)
−0.999978 + 0.00666151i \(0.997880\pi\)
\(858\) 0 0
\(859\) 42.1283i 1.43740i 0.695321 + 0.718700i \(0.255262\pi\)
−0.695321 + 0.718700i \(0.744738\pi\)
\(860\) −16.6426 42.5406i −0.567508 1.45062i
\(861\) 0.635216 1.10023i 0.0216481 0.0374956i
\(862\) −20.8810 + 77.9289i −0.711209 + 2.65427i
\(863\) 6.80768i 0.231736i −0.993265 0.115868i \(-0.963035\pi\)
0.993265 0.115868i \(-0.0369650\pi\)
\(864\) 25.3867 + 6.80234i 0.863672 + 0.231420i
\(865\) 30.3212 + 4.60391i 1.03095 + 0.156537i
\(866\) 12.8806 12.8806i 0.437702 0.437702i
\(867\) −12.7075 3.40497i −0.431570 0.115639i
\(868\) −0.334410 1.24803i −0.0113506 0.0423610i
\(869\) 58.9734 15.8019i 2.00054 0.536042i
\(870\) 60.6323 75.8612i 2.05563 2.57194i
\(871\) 0 0
\(872\) −11.3361 + 11.3361i −0.383888 + 0.383888i
\(873\) 3.43044 + 1.98056i 0.116103 + 0.0670320i
\(874\) 0.393479 + 0.227175i 0.0133096 + 0.00768432i
\(875\) −9.34949 + 10.7929i −0.316071 + 0.364867i
\(876\) −31.6443 31.6443i −1.06916 1.06916i
\(877\) 23.8407 + 41.2933i 0.805043 + 1.39437i 0.916262 + 0.400579i \(0.131191\pi\)
−0.111219 + 0.993796i \(0.535476\pi\)
\(878\) −32.2621 55.8796i −1.08879 1.88585i
\(879\) 36.7017 + 36.7017i 1.23792 + 1.23792i
\(880\) −8.82845 1.34049i −0.297607 0.0451880i
\(881\) −4.43737 2.56192i −0.149499 0.0863133i 0.423385 0.905950i \(-0.360842\pi\)
−0.572884 + 0.819637i \(0.694175\pi\)
\(882\) −9.91554 5.72474i −0.333873 0.192762i
\(883\) 14.8283 14.8283i 0.499014 0.499014i −0.412117 0.911131i \(-0.635211\pi\)
0.911131 + 0.412117i \(0.135211\pi\)
\(884\) 0 0
\(885\) −0.00113283 0.0101533i −3.80796e−5 0.000341301i
\(886\) 52.7568 14.1361i 1.77240 0.474913i
\(887\) −2.72597 10.1735i −0.0915293 0.341592i 0.904941 0.425537i \(-0.139915\pi\)
−0.996470 + 0.0839449i \(0.973248\pi\)
\(888\) 6.08644 + 1.63086i 0.204248 + 0.0547280i
\(889\) −0.473700 + 0.473700i −0.0158874 + 0.0158874i
\(890\) −5.44825 + 35.8820i −0.182626 + 1.20277i
\(891\) 57.7457 + 15.4729i 1.93455 + 0.518362i
\(892\) 36.4179i 1.21936i
\(893\) −1.00935 + 3.76695i −0.0337767 + 0.126056i
\(894\) 38.4949 66.6751i 1.28746 2.22995i
\(895\) 11.3329 25.8985i 0.378818 0.865691i
\(896\) 21.0349i 0.702725i
\(897\) 0 0
\(898\) −14.5886 14.5886i −0.486828 0.486828i
\(899\) −0.829344 3.09515i −0.0276602 0.103229i
\(900\) −13.8708 4.31163i −0.462361 0.143721i
\(901\) −17.7490 + 10.2474i −0.591307 + 0.341391i
\(902\) 6.15528 0.204948
\(903\) 14.6418 8.45347i 0.487250 0.281314i
\(904\) 7.07704 26.4119i 0.235379 0.878446i
\(905\) −2.02476 18.1476i −0.0673053 0.603245i
\(906\) −31.7921 55.0656i −1.05622 1.82943i
\(907\) −20.8031 + 5.57417i −0.690755 + 0.185087i −0.587086 0.809525i \(-0.699725\pi\)
−0.103669 + 0.994612i \(0.533058\pi\)
\(908\) −42.4147 + 73.4645i −1.40758 + 2.43800i
\(909\) 8.17608 0.271184
\(910\) 0 0
\(911\) −16.6400 −0.551309 −0.275654 0.961257i \(-0.588895\pi\)
−0.275654 + 0.961257i \(0.588895\pi\)
\(912\) −0.885047 + 1.53295i −0.0293068 + 0.0507609i
\(913\) −14.0102 + 3.75401i −0.463669 + 0.124240i
\(914\) −24.1734 41.8696i −0.799586 1.38492i
\(915\) 4.83077 + 3.86101i 0.159700 + 0.127641i
\(916\) 14.4774 54.0305i 0.478347 1.78522i
\(917\) −5.63968 + 3.25607i −0.186239 + 0.107525i
\(918\) −29.5701 −0.975958
\(919\) 5.95358 3.43730i 0.196390 0.113386i −0.398580 0.917133i \(-0.630497\pi\)
0.594971 + 0.803747i \(0.297164\pi\)
\(920\) −0.323833 0.827758i −0.0106765 0.0272904i
\(921\) −7.56111 28.2184i −0.249147 0.929829i
\(922\) −8.08349 8.08349i −0.266216 0.266216i
\(923\) 0 0
\(924\) 42.4987i 1.39810i
\(925\) −6.31033 1.96152i −0.207482 0.0644942i
\(926\) −22.5973 + 39.1396i −0.742593 + 1.28621i
\(927\) −0.373170 + 1.39269i −0.0122565 + 0.0457419i
\(928\) 62.5915i 2.05467i
\(929\) −42.9399 11.5057i −1.40881 0.377490i −0.527312 0.849672i \(-0.676800\pi\)
−0.881501 + 0.472182i \(0.843467\pi\)
\(930\) −2.65674 + 1.95630i −0.0871178 + 0.0641497i
\(931\) −4.62617 + 4.62617i −0.151617 + 0.151617i
\(932\) −68.4993 18.3543i −2.24377 0.601216i
\(933\) −16.3795 61.1290i −0.536240 2.00127i
\(934\) −65.9535 + 17.6722i −2.15806 + 0.578252i
\(935\) 39.1054 4.36307i 1.27888 0.142688i
\(936\) 0 0
\(937\) 13.1724 13.1724i 0.430323 0.430323i −0.458415 0.888738i \(-0.651583\pi\)
0.888738 + 0.458415i \(0.151583\pi\)
\(938\) −15.1225 8.73096i −0.493766 0.285076i
\(939\) 29.1675 + 16.8399i 0.951846 + 0.549548i
\(940\) 17.6681 13.0100i 0.576270 0.424339i
\(941\) −40.0251 40.0251i −1.30478 1.30478i −0.925130 0.379650i \(-0.876045\pi\)
−0.379650 0.925130i \(-0.623955\pi\)
\(942\) −9.71510 16.8270i −0.316535 0.548255i
\(943\) −0.0414669 0.0718228i −0.00135035 0.00233887i
\(944\) 0.00118881 + 0.00118881i 3.86925e−5 + 3.86925e-5i
\(945\) −1.74830 + 11.5143i −0.0568723 + 0.374559i
\(946\) 70.9401 + 40.9573i 2.30646 + 1.33164i
\(947\) 51.0040 + 29.4472i 1.65741 + 0.956904i 0.973905 + 0.226955i \(0.0728770\pi\)
0.683501 + 0.729949i \(0.260456\pi\)
\(948\) −48.1479 + 48.1479i −1.56377 + 1.56377i
\(949\) 0 0
\(950\) −7.32157 + 11.5962i −0.237543 + 0.376229i
\(951\) 29.8668 8.00278i 0.968497 0.259508i
\(952\) −2.55544 9.53703i −0.0828223 0.309097i
\(953\) 17.2456 + 4.62094i 0.558640 + 0.149687i 0.527081 0.849815i \(-0.323286\pi\)
0.0315583 + 0.999502i \(0.489953\pi\)
\(954\) −9.59336 + 9.59336i −0.310596 + 0.310596i
\(955\) 19.5616 + 26.5654i 0.632999 + 0.859638i
\(956\) 10.9650 + 2.93807i 0.354634 + 0.0950240i
\(957\) 105.398i 3.40703i
\(958\) 18.1230 67.6360i 0.585528 2.18522i
\(959\) −2.42886 + 4.20691i −0.0784320 + 0.135848i
\(960\) 53.9673 21.1129i 1.74179 0.681417i
\(961\) 30.8911i 0.996488i
\(962\) 0 0
\(963\) 9.73187 + 9.73187i 0.313605 + 0.313605i
\(964\) −16.5146 61.6333i −0.531899 1.98507i
\(965\) −13.5331 + 30.9263i −0.435645 + 0.995554i
\(966\) 0.819363 0.473059i 0.0263626 0.0152204i
\(967\) 23.2093 0.746360 0.373180 0.927759i \(-0.378267\pi\)
0.373180 + 0.927759i \(0.378267\pi\)
\(968\) −39.1446 + 22.6001i −1.25815 + 0.726395i
\(969\) 2.01875 7.53407i 0.0648515 0.242029i
\(970\) −20.9115 + 2.33314i −0.671429 + 0.0749127i
\(971\) −21.1932 36.7078i −0.680123 1.17801i −0.974943 0.222455i \(-0.928593\pi\)
0.294820 0.955553i \(-0.404740\pi\)
\(972\) −28.1691 + 7.54788i −0.903523 + 0.242098i
\(973\) 0.943975 1.63501i 0.0302624 0.0524161i
\(974\) −43.7367 −1.40141
\(975\) 0 0
\(976\) −1.01768 −0.0325752
\(977\) −12.2049 + 21.1395i −0.390469 + 0.676312i −0.992511 0.122152i \(-0.961020\pi\)
0.602043 + 0.798464i \(0.294354\pi\)
\(978\) 39.7618 10.6541i 1.27144 0.340682i
\(979\) −19.6945 34.1118i −0.629438 1.09022i
\(980\) 36.5819 4.08152i 1.16857 0.130379i
\(981\) −1.63831 + 6.11424i −0.0523071 + 0.195213i
\(982\) −68.8352 + 39.7420i −2.19662 + 1.26822i
\(983\) 4.47004 0.142572 0.0712860 0.997456i \(-0.477290\pi\)
0.0712860 + 0.997456i \(0.477290\pi\)
\(984\) −2.06718 + 1.19349i −0.0658992 + 0.0380469i
\(985\) −13.7792 + 31.4889i −0.439043 + 1.00332i
\(986\) −18.2264 68.0220i −0.580448 2.16626i
\(987\) 5.74230 + 5.74230i 0.182779 + 0.182779i
\(988\) 0 0
\(989\) 1.10369i 0.0350952i
\(990\) 24.2572 9.48982i 0.770944 0.301606i
\(991\) 24.7675 42.8986i 0.786766 1.36272i −0.141172 0.989985i \(-0.545087\pi\)
0.927938 0.372734i \(-0.121580\pi\)
\(992\) 0.550363 2.05398i 0.0174740 0.0652140i
\(993\) 33.9020i 1.07585i
\(994\) −33.7570 9.04516i −1.07071 0.286895i
\(995\) −15.1894 20.6278i −0.481536 0.653945i
\(996\) 11.4384 11.4384i 0.362439 0.362439i
\(997\) 33.8485 + 9.06967i 1.07199 + 0.287239i 0.751311 0.659948i \(-0.229422\pi\)
0.320681 + 0.947187i \(0.396088\pi\)
\(998\) −7.78071 29.0380i −0.246294 0.919182i
\(999\) −5.20597 + 1.39494i −0.164710 + 0.0441338i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.f.488.1 20
5.2 odd 4 845.2.t.e.657.1 20
13.2 odd 12 845.2.t.e.418.1 20
13.3 even 3 845.2.o.g.258.1 20
13.4 even 6 845.2.k.e.268.1 20
13.5 odd 4 845.2.t.g.188.5 20
13.6 odd 12 845.2.f.d.408.1 20
13.7 odd 12 845.2.f.e.408.10 20
13.8 odd 4 65.2.t.a.58.1 yes 20
13.9 even 3 845.2.k.d.268.10 20
13.10 even 6 65.2.o.a.63.5 yes 20
13.11 odd 12 845.2.t.f.418.5 20
13.12 even 2 845.2.o.e.488.5 20
39.8 even 4 585.2.dp.a.253.5 20
39.23 odd 6 585.2.cf.a.388.1 20
65.2 even 12 inner 845.2.o.f.587.1 20
65.7 even 12 845.2.k.e.577.1 20
65.8 even 4 325.2.s.b.32.1 20
65.12 odd 4 845.2.t.f.657.5 20
65.17 odd 12 845.2.f.e.437.1 20
65.22 odd 12 845.2.f.d.437.10 20
65.23 odd 12 325.2.x.b.232.5 20
65.32 even 12 845.2.k.d.577.10 20
65.34 odd 4 325.2.x.b.318.5 20
65.37 even 12 845.2.o.e.587.5 20
65.42 odd 12 845.2.t.g.427.5 20
65.47 even 4 65.2.o.a.32.5 20
65.49 even 6 325.2.s.b.193.1 20
65.57 even 4 845.2.o.g.357.1 20
65.62 odd 12 65.2.t.a.37.1 yes 20
195.47 odd 4 585.2.cf.a.487.1 20
195.62 even 12 585.2.dp.a.37.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.5 20 65.47 even 4
65.2.o.a.63.5 yes 20 13.10 even 6
65.2.t.a.37.1 yes 20 65.62 odd 12
65.2.t.a.58.1 yes 20 13.8 odd 4
325.2.s.b.32.1 20 65.8 even 4
325.2.s.b.193.1 20 65.49 even 6
325.2.x.b.232.5 20 65.23 odd 12
325.2.x.b.318.5 20 65.34 odd 4
585.2.cf.a.388.1 20 39.23 odd 6
585.2.cf.a.487.1 20 195.47 odd 4
585.2.dp.a.37.5 20 195.62 even 12
585.2.dp.a.253.5 20 39.8 even 4
845.2.f.d.408.1 20 13.6 odd 12
845.2.f.d.437.10 20 65.22 odd 12
845.2.f.e.408.10 20 13.7 odd 12
845.2.f.e.437.1 20 65.17 odd 12
845.2.k.d.268.10 20 13.9 even 3
845.2.k.d.577.10 20 65.32 even 12
845.2.k.e.268.1 20 13.4 even 6
845.2.k.e.577.1 20 65.7 even 12
845.2.o.e.488.5 20 13.12 even 2
845.2.o.e.587.5 20 65.37 even 12
845.2.o.f.488.1 20 1.1 even 1 trivial
845.2.o.f.587.1 20 65.2 even 12 inner
845.2.o.g.258.1 20 13.3 even 3
845.2.o.g.357.1 20 65.57 even 4
845.2.t.e.418.1 20 13.2 odd 12
845.2.t.e.657.1 20 5.2 odd 4
845.2.t.f.418.5 20 13.11 odd 12
845.2.t.f.657.5 20 65.12 odd 4
845.2.t.g.188.5 20 13.5 odd 4
845.2.t.g.427.5 20 65.42 odd 12