Properties

Label 845.2.k.e.577.4
Level $845$
Weight $2$
Character 845.577
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(268,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.268");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.4
Root \(0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 845.577
Dual form 845.2.k.e.268.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.131303 q^{2} +(-0.243172 + 0.243172i) q^{3} -1.98276 q^{4} +(0.813169 - 2.08297i) q^{5} +(0.0319291 - 0.0319291i) q^{6} -2.78137i q^{7} +0.522947 q^{8} +2.88174i q^{9} +(-0.106771 + 0.273499i) q^{10} +(2.86749 + 2.86749i) q^{11} +(0.482151 - 0.482151i) q^{12} +0.365201i q^{14} +(0.308779 + 0.704259i) q^{15} +3.89686 q^{16} +(1.71436 - 1.71436i) q^{17} -0.378379i q^{18} +(-1.34301 - 1.34301i) q^{19} +(-1.61232 + 4.13003i) q^{20} +(0.676351 + 0.676351i) q^{21} +(-0.376509 - 0.376509i) q^{22} +(-5.64077 - 5.64077i) q^{23} +(-0.127166 + 0.127166i) q^{24} +(-3.67751 - 3.38761i) q^{25} +(-1.43027 - 1.43027i) q^{27} +5.51479i q^{28} -4.57914i q^{29} +(-0.0405435 - 0.0924710i) q^{30} +(3.87352 - 3.87352i) q^{31} -1.55756 q^{32} -1.39458 q^{33} +(-0.225100 + 0.225100i) q^{34} +(-5.79351 - 2.26173i) q^{35} -5.71379i q^{36} -7.01019i q^{37} +(0.176341 + 0.176341i) q^{38} +(0.425244 - 1.08928i) q^{40} +(-4.54006 + 4.54006i) q^{41} +(-0.0888066 - 0.0888066i) q^{42} +(-4.57069 - 4.57069i) q^{43} +(-5.68554 - 5.68554i) q^{44} +(6.00256 + 2.34334i) q^{45} +(0.740648 + 0.740648i) q^{46} -0.512375i q^{47} +(-0.947605 + 0.947605i) q^{48} -0.736030 q^{49} +(0.482867 + 0.444802i) q^{50} +0.833767i q^{51} +(-1.32662 + 1.32662i) q^{53} +(0.187798 + 0.187798i) q^{54} +(8.30464 - 3.64114i) q^{55} -1.45451i q^{56} +0.653165 q^{57} +0.601253i q^{58} +(1.85697 - 1.85697i) q^{59} +(-0.612235 - 1.39638i) q^{60} -1.28353 q^{61} +(-0.508603 + 0.508603i) q^{62} +8.01518 q^{63} -7.58920 q^{64} +0.183113 q^{66} +3.61629 q^{67} +(-3.39916 + 3.39916i) q^{68} +2.74335 q^{69} +(0.760703 + 0.296970i) q^{70} +(4.54457 - 4.54457i) q^{71} +1.50699i q^{72} +9.93250 q^{73} +0.920457i q^{74} +(1.71804 - 0.0704959i) q^{75} +(2.66287 + 2.66287i) q^{76} +(7.97556 - 7.97556i) q^{77} -8.37577i q^{79} +(3.16880 - 8.11702i) q^{80} -7.94960 q^{81} +(0.596122 - 0.596122i) q^{82} -3.17194i q^{83} +(-1.34104 - 1.34104i) q^{84} +(-2.17689 - 4.96502i) q^{85} +(0.600143 + 0.600143i) q^{86} +(1.11352 + 1.11352i) q^{87} +(1.49954 + 1.49954i) q^{88} +(-4.40479 + 4.40479i) q^{89} +(-0.788152 - 0.307686i) q^{90} +(11.1843 + 11.1843i) q^{92} +1.88386i q^{93} +0.0672762i q^{94} +(-3.88955 + 1.70536i) q^{95} +(0.378755 - 0.378755i) q^{96} -11.7700 q^{97} +0.0966426 q^{98} +(-8.26335 + 8.26335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{2} + 4 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} + 12 q^{8} + 8 q^{10} + 8 q^{11} + 24 q^{12} - 24 q^{15} + 4 q^{16} + 14 q^{17} - 4 q^{19} - 22 q^{20} + 4 q^{21} - 32 q^{22} - 8 q^{23} + 4 q^{24}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.131303 −0.0928450 −0.0464225 0.998922i \(-0.514782\pi\)
−0.0464225 + 0.998922i \(0.514782\pi\)
\(3\) −0.243172 + 0.243172i −0.140395 + 0.140395i −0.773811 0.633416i \(-0.781652\pi\)
0.633416 + 0.773811i \(0.281652\pi\)
\(4\) −1.98276 −0.991380
\(5\) 0.813169 2.08297i 0.363660 0.931532i
\(6\) 0.0319291 0.0319291i 0.0130350 0.0130350i
\(7\) 2.78137i 1.05126i −0.850713 0.525630i \(-0.823830\pi\)
0.850713 0.525630i \(-0.176170\pi\)
\(8\) 0.522947 0.184890
\(9\) 2.88174i 0.960578i
\(10\) −0.106771 + 0.273499i −0.0337640 + 0.0864880i
\(11\) 2.86749 + 2.86749i 0.864581 + 0.864581i 0.991866 0.127285i \(-0.0406264\pi\)
−0.127285 + 0.991866i \(0.540626\pi\)
\(12\) 0.482151 0.482151i 0.139185 0.139185i
\(13\) 0 0
\(14\) 0.365201i 0.0976042i
\(15\) 0.308779 + 0.704259i 0.0797264 + 0.181839i
\(16\) 3.89686 0.974214
\(17\) 1.71436 1.71436i 0.415793 0.415793i −0.467958 0.883751i \(-0.655010\pi\)
0.883751 + 0.467958i \(0.155010\pi\)
\(18\) 0.378379i 0.0891849i
\(19\) −1.34301 1.34301i −0.308108 0.308108i 0.536067 0.844175i \(-0.319909\pi\)
−0.844175 + 0.536067i \(0.819909\pi\)
\(20\) −1.61232 + 4.13003i −0.360525 + 0.923502i
\(21\) 0.676351 + 0.676351i 0.147592 + 0.147592i
\(22\) −0.376509 0.376509i −0.0802720 0.0802720i
\(23\) −5.64077 5.64077i −1.17618 1.17618i −0.980709 0.195474i \(-0.937376\pi\)
−0.195474 0.980709i \(-0.562624\pi\)
\(24\) −0.127166 + 0.127166i −0.0259576 + 0.0259576i
\(25\) −3.67751 3.38761i −0.735502 0.677522i
\(26\) 0 0
\(27\) −1.43027 1.43027i −0.275256 0.275256i
\(28\) 5.51479i 1.04220i
\(29\) 4.57914i 0.850325i −0.905117 0.425162i \(-0.860217\pi\)
0.905117 0.425162i \(-0.139783\pi\)
\(30\) −0.0405435 0.0924710i −0.00740220 0.0168828i
\(31\) 3.87352 3.87352i 0.695704 0.695704i −0.267777 0.963481i \(-0.586289\pi\)
0.963481 + 0.267777i \(0.0862890\pi\)
\(32\) −1.55756 −0.275340
\(33\) −1.39458 −0.242766
\(34\) −0.225100 + 0.225100i −0.0386043 + 0.0386043i
\(35\) −5.79351 2.26173i −0.979282 0.382301i
\(36\) 5.71379i 0.952298i
\(37\) 7.01019i 1.15247i −0.817284 0.576234i \(-0.804522\pi\)
0.817284 0.576234i \(-0.195478\pi\)
\(38\) 0.176341 + 0.176341i 0.0286063 + 0.0286063i
\(39\) 0 0
\(40\) 0.425244 1.08928i 0.0672370 0.172230i
\(41\) −4.54006 + 4.54006i −0.709039 + 0.709039i −0.966333 0.257294i \(-0.917169\pi\)
0.257294 + 0.966333i \(0.417169\pi\)
\(42\) −0.0888066 0.0888066i −0.0137032 0.0137032i
\(43\) −4.57069 4.57069i −0.697023 0.697023i 0.266744 0.963767i \(-0.414052\pi\)
−0.963767 + 0.266744i \(0.914052\pi\)
\(44\) −5.68554 5.68554i −0.857128 0.857128i
\(45\) 6.00256 + 2.34334i 0.894809 + 0.349324i
\(46\) 0.740648 + 0.740648i 0.109203 + 0.109203i
\(47\) 0.512375i 0.0747376i −0.999302 0.0373688i \(-0.988102\pi\)
0.999302 0.0373688i \(-0.0118976\pi\)
\(48\) −0.947605 + 0.947605i −0.136775 + 0.136775i
\(49\) −0.736030 −0.105147
\(50\) 0.482867 + 0.444802i 0.0682877 + 0.0629045i
\(51\) 0.833767i 0.116751i
\(52\) 0 0
\(53\) −1.32662 + 1.32662i −0.182225 + 0.182225i −0.792325 0.610100i \(-0.791129\pi\)
0.610100 + 0.792325i \(0.291129\pi\)
\(54\) 0.187798 + 0.187798i 0.0255561 + 0.0255561i
\(55\) 8.30464 3.64114i 1.11980 0.490971i
\(56\) 1.45451i 0.194367i
\(57\) 0.653165 0.0865138
\(58\) 0.601253i 0.0789484i
\(59\) 1.85697 1.85697i 0.241757 0.241757i −0.575819 0.817577i \(-0.695317\pi\)
0.817577 + 0.575819i \(0.195317\pi\)
\(60\) −0.612235 1.39638i −0.0790392 0.180271i
\(61\) −1.28353 −0.164340 −0.0821698 0.996618i \(-0.526185\pi\)
−0.0821698 + 0.996618i \(0.526185\pi\)
\(62\) −0.508603 + 0.508603i −0.0645926 + 0.0645926i
\(63\) 8.01518 1.00982
\(64\) −7.58920 −0.948650
\(65\) 0 0
\(66\) 0.183113 0.0225396
\(67\) 3.61629 0.441800 0.220900 0.975296i \(-0.429101\pi\)
0.220900 + 0.975296i \(0.429101\pi\)
\(68\) −3.39916 + 3.39916i −0.412209 + 0.412209i
\(69\) 2.74335 0.330261
\(70\) 0.760703 + 0.296970i 0.0909214 + 0.0354948i
\(71\) 4.54457 4.54457i 0.539341 0.539341i −0.383994 0.923336i \(-0.625452\pi\)
0.923336 + 0.383994i \(0.125452\pi\)
\(72\) 1.50699i 0.177601i
\(73\) 9.93250 1.16251 0.581256 0.813721i \(-0.302562\pi\)
0.581256 + 0.813721i \(0.302562\pi\)
\(74\) 0.920457i 0.107001i
\(75\) 1.71804 0.0704959i 0.198382 0.00814016i
\(76\) 2.66287 + 2.66287i 0.305452 + 0.305452i
\(77\) 7.97556 7.97556i 0.908899 0.908899i
\(78\) 0 0
\(79\) 8.37577i 0.942347i −0.882040 0.471174i \(-0.843831\pi\)
0.882040 0.471174i \(-0.156169\pi\)
\(80\) 3.16880 8.11702i 0.354283 0.907511i
\(81\) −7.94960 −0.883289
\(82\) 0.596122 0.596122i 0.0658307 0.0658307i
\(83\) 3.17194i 0.348166i −0.984731 0.174083i \(-0.944304\pi\)
0.984731 0.174083i \(-0.0556961\pi\)
\(84\) −1.34104 1.34104i −0.146320 0.146320i
\(85\) −2.17689 4.96502i −0.236117 0.538532i
\(86\) 0.600143 + 0.600143i 0.0647151 + 0.0647151i
\(87\) 1.11352 + 1.11352i 0.119382 + 0.119382i
\(88\) 1.49954 + 1.49954i 0.159852 + 0.159852i
\(89\) −4.40479 + 4.40479i −0.466907 + 0.466907i −0.900911 0.434004i \(-0.857100\pi\)
0.434004 + 0.900911i \(0.357100\pi\)
\(90\) −0.788152 0.307686i −0.0830785 0.0324330i
\(91\) 0 0
\(92\) 11.1843 + 11.1843i 1.16604 + 1.16604i
\(93\) 1.88386i 0.195347i
\(94\) 0.0672762i 0.00693901i
\(95\) −3.88955 + 1.70536i −0.399059 + 0.174966i
\(96\) 0.378755 0.378755i 0.0386565 0.0386565i
\(97\) −11.7700 −1.19506 −0.597531 0.801846i \(-0.703851\pi\)
−0.597531 + 0.801846i \(0.703851\pi\)
\(98\) 0.0966426 0.00976238
\(99\) −8.26335 + 8.26335i −0.830498 + 0.830498i
\(100\) 7.29162 + 6.71682i 0.729162 + 0.671682i
\(101\) 1.00899i 0.100398i −0.998739 0.0501989i \(-0.984014\pi\)
0.998739 0.0501989i \(-0.0159855\pi\)
\(102\) 0.109476i 0.0108397i
\(103\) 6.00002 + 6.00002i 0.591200 + 0.591200i 0.937955 0.346756i \(-0.112717\pi\)
−0.346756 + 0.937955i \(0.612717\pi\)
\(104\) 0 0
\(105\) 1.95880 0.858830i 0.191160 0.0838132i
\(106\) 0.174188 0.174188i 0.0169187 0.0169187i
\(107\) 3.50416 + 3.50416i 0.338760 + 0.338760i 0.855901 0.517140i \(-0.173003\pi\)
−0.517140 + 0.855901i \(0.673003\pi\)
\(108\) 2.83588 + 2.83588i 0.272883 + 0.272883i
\(109\) 6.51002 + 6.51002i 0.623546 + 0.623546i 0.946436 0.322890i \(-0.104654\pi\)
−0.322890 + 0.946436i \(0.604654\pi\)
\(110\) −1.09042 + 0.478091i −0.103968 + 0.0455842i
\(111\) 1.70468 + 1.70468i 0.161801 + 0.161801i
\(112\) 10.8386i 1.02415i
\(113\) 5.30540 5.30540i 0.499090 0.499090i −0.412065 0.911155i \(-0.635192\pi\)
0.911155 + 0.412065i \(0.135192\pi\)
\(114\) −0.0857623 −0.00803237
\(115\) −16.3365 + 7.16265i −1.52338 + 0.667920i
\(116\) 9.07933i 0.842995i
\(117\) 0 0
\(118\) −0.243826 + 0.243826i −0.0224460 + 0.0224460i
\(119\) −4.76827 4.76827i −0.437106 0.437106i
\(120\) 0.161475 + 0.368290i 0.0147406 + 0.0336201i
\(121\) 5.44500i 0.495000i
\(122\) 0.168531 0.0152581
\(123\) 2.20803i 0.199091i
\(124\) −7.68025 + 7.68025i −0.689707 + 0.689707i
\(125\) −10.0467 + 4.90544i −0.898606 + 0.438756i
\(126\) −1.05241 −0.0937564
\(127\) −11.7016 + 11.7016i −1.03835 + 1.03835i −0.0391188 + 0.999235i \(0.512455\pi\)
−0.999235 + 0.0391188i \(0.987545\pi\)
\(128\) 4.11160 0.363418
\(129\) 2.22292 0.195718
\(130\) 0 0
\(131\) −12.6880 −1.10856 −0.554278 0.832332i \(-0.687006\pi\)
−0.554278 + 0.832332i \(0.687006\pi\)
\(132\) 2.76513 0.240673
\(133\) −3.73542 + 3.73542i −0.323902 + 0.323902i
\(134\) −0.474828 −0.0410189
\(135\) −4.14226 + 1.81616i −0.356509 + 0.156310i
\(136\) 0.896518 0.896518i 0.0768758 0.0768758i
\(137\) 14.9451i 1.27684i −0.769687 0.638422i \(-0.779588\pi\)
0.769687 0.638422i \(-0.220412\pi\)
\(138\) −0.360209 −0.0306631
\(139\) 8.57227i 0.727090i −0.931577 0.363545i \(-0.881566\pi\)
0.931577 0.363545i \(-0.118434\pi\)
\(140\) 11.4871 + 4.48446i 0.970840 + 0.379006i
\(141\) 0.124595 + 0.124595i 0.0104928 + 0.0104928i
\(142\) −0.596714 + 0.596714i −0.0500751 + 0.0500751i
\(143\) 0 0
\(144\) 11.2297i 0.935809i
\(145\) −9.53820 3.72361i −0.792105 0.309229i
\(146\) −1.30416 −0.107933
\(147\) 0.178982 0.178982i 0.0147622 0.0147622i
\(148\) 13.8995i 1.14253i
\(149\) 8.58517 + 8.58517i 0.703324 + 0.703324i 0.965123 0.261798i \(-0.0843155\pi\)
−0.261798 + 0.965123i \(0.584316\pi\)
\(150\) −0.225583 + 0.00925629i −0.0184188 + 0.000755773i
\(151\) 1.86999 + 1.86999i 0.152177 + 0.152177i 0.779090 0.626912i \(-0.215682\pi\)
−0.626912 + 0.779090i \(0.715682\pi\)
\(152\) −0.702324 0.702324i −0.0569660 0.0569660i
\(153\) 4.94033 + 4.94033i 0.399402 + 0.399402i
\(154\) −1.04721 + 1.04721i −0.0843867 + 0.0843867i
\(155\) −4.91859 11.2182i −0.395071 0.901071i
\(156\) 0 0
\(157\) −10.3194 10.3194i −0.823581 0.823581i 0.163039 0.986620i \(-0.447870\pi\)
−0.986620 + 0.163039i \(0.947870\pi\)
\(158\) 1.09976i 0.0874922i
\(159\) 0.645192i 0.0511671i
\(160\) −1.26656 + 3.24435i −0.100130 + 0.256488i
\(161\) −15.6891 + 15.6891i −1.23647 + 1.23647i
\(162\) 1.04380 0.0820089
\(163\) 18.6954 1.46434 0.732170 0.681122i \(-0.238508\pi\)
0.732170 + 0.681122i \(0.238508\pi\)
\(164\) 9.00186 9.00186i 0.702927 0.702927i
\(165\) −1.13403 + 2.90488i −0.0882844 + 0.226144i
\(166\) 0.416484i 0.0323255i
\(167\) 20.6778i 1.60010i −0.599935 0.800049i \(-0.704807\pi\)
0.599935 0.800049i \(-0.295193\pi\)
\(168\) 0.353695 + 0.353695i 0.0272882 + 0.0272882i
\(169\) 0 0
\(170\) 0.285831 + 0.651920i 0.0219223 + 0.0500000i
\(171\) 3.87021 3.87021i 0.295962 0.295962i
\(172\) 9.06258 + 9.06258i 0.691015 + 0.691015i
\(173\) 12.8312 + 12.8312i 0.975540 + 0.975540i 0.999708 0.0241680i \(-0.00769365\pi\)
−0.0241680 + 0.999708i \(0.507694\pi\)
\(174\) −0.146208 0.146208i −0.0110840 0.0110840i
\(175\) −9.42220 + 10.2285i −0.712252 + 0.773204i
\(176\) 11.1742 + 11.1742i 0.842287 + 0.842287i
\(177\) 0.903127i 0.0678832i
\(178\) 0.578360 0.578360i 0.0433499 0.0433499i
\(179\) 17.3622 1.29771 0.648856 0.760911i \(-0.275248\pi\)
0.648856 + 0.760911i \(0.275248\pi\)
\(180\) −11.9016 4.64628i −0.887096 0.346313i
\(181\) 24.9284i 1.85291i 0.376406 + 0.926455i \(0.377160\pi\)
−0.376406 + 0.926455i \(0.622840\pi\)
\(182\) 0 0
\(183\) 0.312119 0.312119i 0.0230725 0.0230725i
\(184\) −2.94982 2.94982i −0.217464 0.217464i
\(185\) −14.6020 5.70047i −1.07356 0.419107i
\(186\) 0.247356i 0.0181370i
\(187\) 9.83181 0.718973
\(188\) 1.01592i 0.0740934i
\(189\) −3.97812 + 3.97812i −0.289365 + 0.289365i
\(190\) 0.510708 0.223918i 0.0370506 0.0162447i
\(191\) 6.78709 0.491096 0.245548 0.969384i \(-0.421032\pi\)
0.245548 + 0.969384i \(0.421032\pi\)
\(192\) 1.84548 1.84548i 0.133186 0.133186i
\(193\) 1.19516 0.0860298 0.0430149 0.999074i \(-0.486304\pi\)
0.0430149 + 0.999074i \(0.486304\pi\)
\(194\) 1.54543 0.110955
\(195\) 0 0
\(196\) 1.45937 0.104241
\(197\) 20.1210 1.43356 0.716780 0.697300i \(-0.245615\pi\)
0.716780 + 0.697300i \(0.245615\pi\)
\(198\) 1.08500 1.08500i 0.0771075 0.0771075i
\(199\) −2.17769 −0.154372 −0.0771862 0.997017i \(-0.524594\pi\)
−0.0771862 + 0.997017i \(0.524594\pi\)
\(200\) −1.92314 1.77154i −0.135987 0.125267i
\(201\) −0.879379 + 0.879379i −0.0620266 + 0.0620266i
\(202\) 0.132482i 0.00932143i
\(203\) −12.7363 −0.893912
\(204\) 1.65316i 0.115744i
\(205\) 5.76497 + 13.1486i 0.402643 + 0.918342i
\(206\) −0.787818 0.787818i −0.0548899 0.0548899i
\(207\) 16.2552 16.2552i 1.12982 1.12982i
\(208\) 0 0
\(209\) 7.70215i 0.532769i
\(210\) −0.257196 + 0.112767i −0.0177482 + 0.00778163i
\(211\) −19.9528 −1.37361 −0.686805 0.726842i \(-0.740987\pi\)
−0.686805 + 0.726842i \(0.740987\pi\)
\(212\) 2.63037 2.63037i 0.180654 0.180654i
\(213\) 2.21022i 0.151442i
\(214\) −0.460106 0.460106i −0.0314522 0.0314522i
\(215\) −13.2373 + 5.80386i −0.902779 + 0.395820i
\(216\) −0.747956 0.747956i −0.0508919 0.0508919i
\(217\) −10.7737 10.7737i −0.731366 0.731366i
\(218\) −0.854782 0.854782i −0.0578931 0.0578931i
\(219\) −2.41530 + 2.41530i −0.163211 + 0.163211i
\(220\) −16.4661 + 7.21950i −1.11015 + 0.486738i
\(221\) 0 0
\(222\) −0.223829 0.223829i −0.0150224 0.0150224i
\(223\) 13.4134i 0.898231i −0.893474 0.449115i \(-0.851739\pi\)
0.893474 0.449115i \(-0.148261\pi\)
\(224\) 4.33215i 0.289454i
\(225\) 9.76220 10.5976i 0.650813 0.706508i
\(226\) −0.696612 + 0.696612i −0.0463380 + 0.0463380i
\(227\) 14.6813 0.974431 0.487215 0.873282i \(-0.338013\pi\)
0.487215 + 0.873282i \(0.338013\pi\)
\(228\) −1.29507 −0.0857681
\(229\) −2.65280 + 2.65280i −0.175302 + 0.175302i −0.789304 0.614002i \(-0.789558\pi\)
0.614002 + 0.789304i \(0.289558\pi\)
\(230\) 2.14502 0.940474i 0.141438 0.0620130i
\(231\) 3.87886i 0.255210i
\(232\) 2.39465i 0.157216i
\(233\) 13.9459 + 13.9459i 0.913629 + 0.913629i 0.996556 0.0829267i \(-0.0264267\pi\)
−0.0829267 + 0.996556i \(0.526427\pi\)
\(234\) 0 0
\(235\) −1.06726 0.416648i −0.0696205 0.0271791i
\(236\) −3.68193 + 3.68193i −0.239673 + 0.239673i
\(237\) 2.03675 + 2.03675i 0.132301 + 0.132301i
\(238\) 0.626086 + 0.626086i 0.0405831 + 0.0405831i
\(239\) 10.1890 + 10.1890i 0.659074 + 0.659074i 0.955161 0.296087i \(-0.0956818\pi\)
−0.296087 + 0.955161i \(0.595682\pi\)
\(240\) 1.20327 + 2.74439i 0.0776706 + 0.177150i
\(241\) −5.73049 5.73049i −0.369133 0.369133i 0.498028 0.867161i \(-0.334058\pi\)
−0.867161 + 0.498028i \(0.834058\pi\)
\(242\) 0.714943i 0.0459582i
\(243\) 6.22393 6.22393i 0.399265 0.399265i
\(244\) 2.54494 0.162923
\(245\) −0.598517 + 1.53313i −0.0382378 + 0.0979479i
\(246\) 0.289920i 0.0184846i
\(247\) 0 0
\(248\) 2.02564 2.02564i 0.128628 0.128628i
\(249\) 0.771327 + 0.771327i 0.0488809 + 0.0488809i
\(250\) 1.31916 0.644097i 0.0834311 0.0407363i
\(251\) 4.67543i 0.295110i −0.989054 0.147555i \(-0.952860\pi\)
0.989054 0.147555i \(-0.0471404\pi\)
\(252\) −15.8922 −1.00111
\(253\) 32.3497i 2.03381i
\(254\) 1.53646 1.53646i 0.0964059 0.0964059i
\(255\) 1.73671 + 0.677993i 0.108757 + 0.0424576i
\(256\) 14.6385 0.914908
\(257\) −12.2720 + 12.2720i −0.765507 + 0.765507i −0.977312 0.211805i \(-0.932066\pi\)
0.211805 + 0.977312i \(0.432066\pi\)
\(258\) −0.291876 −0.0181714
\(259\) −19.4980 −1.21154
\(260\) 0 0
\(261\) 13.1959 0.816804
\(262\) 1.66597 0.102924
\(263\) 1.71239 1.71239i 0.105590 0.105590i −0.652338 0.757928i \(-0.726212\pi\)
0.757928 + 0.652338i \(0.226212\pi\)
\(264\) −0.729293 −0.0448849
\(265\) 1.68454 + 3.84207i 0.103480 + 0.236016i
\(266\) 0.490470 0.490470i 0.0300726 0.0300726i
\(267\) 2.14224i 0.131103i
\(268\) −7.17023 −0.437992
\(269\) 9.73216i 0.593380i 0.954974 + 0.296690i \(0.0958828\pi\)
−0.954974 + 0.296690i \(0.904117\pi\)
\(270\) 0.543890 0.238466i 0.0331001 0.0145126i
\(271\) 15.4981 + 15.4981i 0.941441 + 0.941441i 0.998378 0.0569369i \(-0.0181334\pi\)
−0.0569369 + 0.998378i \(0.518133\pi\)
\(272\) 6.68061 6.68061i 0.405071 0.405071i
\(273\) 0 0
\(274\) 1.96233i 0.118548i
\(275\) −0.831290 20.2592i −0.0501287 1.22167i
\(276\) −5.43941 −0.327414
\(277\) −12.7676 + 12.7676i −0.767128 + 0.767128i −0.977600 0.210472i \(-0.932500\pi\)
0.210472 + 0.977600i \(0.432500\pi\)
\(278\) 1.12556i 0.0675067i
\(279\) 11.1625 + 11.1625i 0.668278 + 0.668278i
\(280\) −3.02970 1.18276i −0.181059 0.0706835i
\(281\) 11.3739 + 11.3739i 0.678510 + 0.678510i 0.959663 0.281153i \(-0.0907168\pi\)
−0.281153 + 0.959663i \(0.590717\pi\)
\(282\) −0.0163597 0.0163597i −0.000974204 0.000974204i
\(283\) −8.02927 8.02927i −0.477290 0.477290i 0.426974 0.904264i \(-0.359580\pi\)
−0.904264 + 0.426974i \(0.859580\pi\)
\(284\) −9.01079 + 9.01079i −0.534692 + 0.534692i
\(285\) 0.531134 1.36052i 0.0314616 0.0805904i
\(286\) 0 0
\(287\) 12.6276 + 12.6276i 0.745384 + 0.745384i
\(288\) 4.48848i 0.264486i
\(289\) 11.1220i 0.654232i
\(290\) 1.25239 + 0.488920i 0.0735429 + 0.0287104i
\(291\) 2.86213 2.86213i 0.167781 0.167781i
\(292\) −19.6938 −1.15249
\(293\) 0.699613 0.0408719 0.0204359 0.999791i \(-0.493495\pi\)
0.0204359 + 0.999791i \(0.493495\pi\)
\(294\) −0.0235007 + 0.0235007i −0.00137059 + 0.00137059i
\(295\) −2.35798 5.37805i −0.137287 0.313122i
\(296\) 3.66596i 0.213079i
\(297\) 8.20258i 0.475962i
\(298\) −1.12725 1.12725i −0.0653001 0.0653001i
\(299\) 0 0
\(300\) −3.40646 + 0.139776i −0.196672 + 0.00806999i
\(301\) −12.7128 + 12.7128i −0.732753 + 0.732753i
\(302\) −0.245534 0.245534i −0.0141289 0.0141289i
\(303\) 0.245357 + 0.245357i 0.0140954 + 0.0140954i
\(304\) −5.23352 5.23352i −0.300163 0.300163i
\(305\) −1.04373 + 2.67356i −0.0597638 + 0.153088i
\(306\) −0.648678 0.648678i −0.0370824 0.0370824i
\(307\) 14.2048i 0.810709i −0.914159 0.405355i \(-0.867148\pi\)
0.914159 0.405355i \(-0.132852\pi\)
\(308\) −15.8136 + 15.8136i −0.901064 + 0.901064i
\(309\) −2.91807 −0.166003
\(310\) 0.645823 + 1.47298i 0.0366803 + 0.0836598i
\(311\) 21.4961i 1.21893i −0.792812 0.609466i \(-0.791384\pi\)
0.792812 0.609466i \(-0.208616\pi\)
\(312\) 0 0
\(313\) −9.36303 + 9.36303i −0.529230 + 0.529230i −0.920343 0.391113i \(-0.872090\pi\)
0.391113 + 0.920343i \(0.372090\pi\)
\(314\) 1.35497 + 1.35497i 0.0764653 + 0.0764653i
\(315\) 6.51769 16.6954i 0.367230 0.940677i
\(316\) 16.6071i 0.934224i
\(317\) 17.3024 0.971798 0.485899 0.874015i \(-0.338492\pi\)
0.485899 + 0.874015i \(0.338492\pi\)
\(318\) 0.0847154i 0.00475060i
\(319\) 13.1306 13.1306i 0.735175 0.735175i
\(320\) −6.17130 + 15.8081i −0.344986 + 0.883697i
\(321\) −1.70423 −0.0951207
\(322\) 2.06002 2.06002i 0.114800 0.114800i
\(323\) −4.60481 −0.256218
\(324\) 15.7622 0.875675
\(325\) 0 0
\(326\) −2.45476 −0.135957
\(327\) −3.16610 −0.175086
\(328\) −2.37421 + 2.37421i −0.131094 + 0.131094i
\(329\) −1.42511 −0.0785686
\(330\) 0.148901 0.381418i 0.00819676 0.0209964i
\(331\) −12.7065 + 12.7065i −0.698412 + 0.698412i −0.964068 0.265656i \(-0.914412\pi\)
0.265656 + 0.964068i \(0.414412\pi\)
\(332\) 6.28920i 0.345165i
\(333\) 20.2015 1.10704
\(334\) 2.71505i 0.148561i
\(335\) 2.94065 7.53262i 0.160665 0.411551i
\(336\) 2.63564 + 2.63564i 0.143786 + 0.143786i
\(337\) −4.83668 + 4.83668i −0.263471 + 0.263471i −0.826462 0.562992i \(-0.809650\pi\)
0.562992 + 0.826462i \(0.309650\pi\)
\(338\) 0 0
\(339\) 2.58024i 0.140140i
\(340\) 4.31625 + 9.84444i 0.234082 + 0.533889i
\(341\) 22.2145 1.20299
\(342\) −0.508168 + 0.508168i −0.0274786 + 0.0274786i
\(343\) 17.4224i 0.940723i
\(344\) −2.39023 2.39023i −0.128872 0.128872i
\(345\) 2.23081 5.71432i 0.120103 0.307648i
\(346\) −1.68477 1.68477i −0.0905740 0.0905740i
\(347\) 13.1536 + 13.1536i 0.706123 + 0.706123i 0.965718 0.259594i \(-0.0835889\pi\)
−0.259594 + 0.965718i \(0.583589\pi\)
\(348\) −2.20784 2.20784i −0.118352 0.118352i
\(349\) −1.77981 + 1.77981i −0.0952710 + 0.0952710i −0.753136 0.657865i \(-0.771460\pi\)
0.657865 + 0.753136i \(0.271460\pi\)
\(350\) 1.23716 1.34303i 0.0661290 0.0717881i
\(351\) 0 0
\(352\) −4.46629 4.46629i −0.238054 0.238054i
\(353\) 32.7215i 1.74159i 0.491646 + 0.870795i \(0.336396\pi\)
−0.491646 + 0.870795i \(0.663604\pi\)
\(354\) 0.118583i 0.00630261i
\(355\) −5.77069 13.1617i −0.306277 0.698551i
\(356\) 8.73364 8.73364i 0.462882 0.462882i
\(357\) 2.31902 0.122735
\(358\) −2.27970 −0.120486
\(359\) 0.699684 0.699684i 0.0369279 0.0369279i −0.688402 0.725330i \(-0.741687\pi\)
0.725330 + 0.688402i \(0.241687\pi\)
\(360\) 3.13902 + 1.22544i 0.165441 + 0.0645864i
\(361\) 15.3926i 0.810139i
\(362\) 3.27316i 0.172033i
\(363\) −1.32407 1.32407i −0.0694956 0.0694956i
\(364\) 0 0
\(365\) 8.07680 20.6891i 0.422759 1.08292i
\(366\) −0.0409820 + 0.0409820i −0.00214217 + 0.00214217i
\(367\) 10.2343 + 10.2343i 0.534226 + 0.534226i 0.921827 0.387601i \(-0.126696\pi\)
−0.387601 + 0.921827i \(0.626696\pi\)
\(368\) −21.9813 21.9813i −1.14585 1.14585i
\(369\) −13.0833 13.0833i −0.681087 0.681087i
\(370\) 1.91728 + 0.748487i 0.0996747 + 0.0389120i
\(371\) 3.68982 + 3.68982i 0.191566 + 0.191566i
\(372\) 3.73524i 0.193663i
\(373\) −7.17039 + 7.17039i −0.371269 + 0.371269i −0.867939 0.496671i \(-0.834556\pi\)
0.496671 + 0.867939i \(0.334556\pi\)
\(374\) −1.29094 −0.0667530
\(375\) 1.25021 3.63594i 0.0645608 0.187759i
\(376\) 0.267945i 0.0138182i
\(377\) 0 0
\(378\) 0.522337 0.522337i 0.0268661 0.0268661i
\(379\) 0.742810 + 0.742810i 0.0381556 + 0.0381556i 0.725927 0.687772i \(-0.241411\pi\)
−0.687772 + 0.725927i \(0.741411\pi\)
\(380\) 7.71204 3.38131i 0.395619 0.173458i
\(381\) 5.69102i 0.291560i
\(382\) −0.891162 −0.0455958
\(383\) 12.0071i 0.613532i 0.951785 + 0.306766i \(0.0992469\pi\)
−0.951785 + 0.306766i \(0.900753\pi\)
\(384\) −0.999825 + 0.999825i −0.0510221 + 0.0510221i
\(385\) −10.1274 23.0983i −0.516138 1.17720i
\(386\) −0.156928 −0.00798743
\(387\) 13.1715 13.1715i 0.669546 0.669546i
\(388\) 23.3371 1.18476
\(389\) −7.37166 −0.373758 −0.186879 0.982383i \(-0.559837\pi\)
−0.186879 + 0.982383i \(0.559837\pi\)
\(390\) 0 0
\(391\) −19.3406 −0.978097
\(392\) −0.384904 −0.0194406
\(393\) 3.08536 3.08536i 0.155636 0.155636i
\(394\) −2.64194 −0.133099
\(395\) −17.4465 6.81091i −0.877826 0.342694i
\(396\) 16.3842 16.3842i 0.823339 0.823339i
\(397\) 6.05477i 0.303880i 0.988390 + 0.151940i \(0.0485521\pi\)
−0.988390 + 0.151940i \(0.951448\pi\)
\(398\) 0.285937 0.0143327
\(399\) 1.81669i 0.0909485i
\(400\) −14.3307 13.2010i −0.716537 0.660051i
\(401\) 1.70733 + 1.70733i 0.0852602 + 0.0852602i 0.748451 0.663190i \(-0.230798\pi\)
−0.663190 + 0.748451i \(0.730798\pi\)
\(402\) 0.115465 0.115465i 0.00575886 0.00575886i
\(403\) 0 0
\(404\) 2.00058i 0.0995324i
\(405\) −6.46437 + 16.5588i −0.321217 + 0.822812i
\(406\) 1.67231 0.0829952
\(407\) 20.1017 20.1017i 0.996402 0.996402i
\(408\) 0.436016i 0.0215860i
\(409\) −14.2391 14.2391i −0.704077 0.704077i 0.261206 0.965283i \(-0.415880\pi\)
−0.965283 + 0.261206i \(0.915880\pi\)
\(410\) −0.756955 1.72645i −0.0373834 0.0852634i
\(411\) 3.63422 + 3.63422i 0.179263 + 0.179263i
\(412\) −11.8966 11.8966i −0.586103 0.586103i
\(413\) −5.16494 5.16494i −0.254150 0.254150i
\(414\) −2.13435 + 2.13435i −0.104898 + 0.104898i
\(415\) −6.60706 2.57933i −0.324328 0.126614i
\(416\) 0 0
\(417\) 2.08453 + 2.08453i 0.102080 + 0.102080i
\(418\) 1.01131i 0.0494649i
\(419\) 30.0803i 1.46952i −0.678328 0.734759i \(-0.737295\pi\)
0.678328 0.734759i \(-0.262705\pi\)
\(420\) −3.88384 + 1.70285i −0.189512 + 0.0830907i
\(421\) 9.24685 9.24685i 0.450664 0.450664i −0.444911 0.895575i \(-0.646765\pi\)
0.895575 + 0.444911i \(0.146765\pi\)
\(422\) 2.61986 0.127533
\(423\) 1.47653 0.0717913
\(424\) −0.693751 + 0.693751i −0.0336915 + 0.0336915i
\(425\) −12.1122 + 0.496995i −0.587526 + 0.0241078i
\(426\) 0.290208i 0.0140606i
\(427\) 3.56998i 0.172764i
\(428\) −6.94792 6.94792i −0.335840 0.335840i
\(429\) 0 0
\(430\) 1.73810 0.762061i 0.0838185 0.0367499i
\(431\) −4.46276 + 4.46276i −0.214963 + 0.214963i −0.806372 0.591409i \(-0.798572\pi\)
0.591409 + 0.806372i \(0.298572\pi\)
\(432\) −5.57356 5.57356i −0.268158 0.268158i
\(433\) 8.68986 + 8.68986i 0.417608 + 0.417608i 0.884379 0.466770i \(-0.154583\pi\)
−0.466770 + 0.884379i \(0.654583\pi\)
\(434\) 1.41461 + 1.41461i 0.0679036 + 0.0679036i
\(435\) 3.22490 1.41394i 0.154622 0.0677934i
\(436\) −12.9078 12.9078i −0.618171 0.618171i
\(437\) 15.1513i 0.724783i
\(438\) 0.317136 0.317136i 0.0151533 0.0151533i
\(439\) −34.4447 −1.64395 −0.821977 0.569520i \(-0.807129\pi\)
−0.821977 + 0.569520i \(0.807129\pi\)
\(440\) 4.34289 1.90412i 0.207039 0.0907754i
\(441\) 2.12104i 0.101002i
\(442\) 0 0
\(443\) −5.39452 + 5.39452i −0.256301 + 0.256301i −0.823548 0.567247i \(-0.808009\pi\)
0.567247 + 0.823548i \(0.308009\pi\)
\(444\) −3.37997 3.37997i −0.160406 0.160406i
\(445\) 5.59320 + 12.7569i 0.265143 + 0.604734i
\(446\) 1.76122i 0.0833962i
\(447\) −4.17534 −0.197487
\(448\) 21.1084i 0.997277i
\(449\) −22.0157 + 22.0157i −1.03899 + 1.03899i −0.0397782 + 0.999209i \(0.512665\pi\)
−0.999209 + 0.0397782i \(0.987335\pi\)
\(450\) −1.28180 + 1.39149i −0.0604247 + 0.0655957i
\(451\) −26.0372 −1.22604
\(452\) −10.5193 + 10.5193i −0.494788 + 0.494788i
\(453\) −0.909456 −0.0427300
\(454\) −1.92769 −0.0904710
\(455\) 0 0
\(456\) 0.341570 0.0159955
\(457\) −3.10750 −0.145363 −0.0726814 0.997355i \(-0.523156\pi\)
−0.0726814 + 0.997355i \(0.523156\pi\)
\(458\) 0.348319 0.348319i 0.0162759 0.0162759i
\(459\) −4.90400 −0.228899
\(460\) 32.3913 14.2018i 1.51025 0.662163i
\(461\) 11.8061 11.8061i 0.549863 0.549863i −0.376538 0.926401i \(-0.622886\pi\)
0.926401 + 0.376538i \(0.122886\pi\)
\(462\) 0.509304i 0.0236950i
\(463\) 15.6396 0.726832 0.363416 0.931627i \(-0.381610\pi\)
0.363416 + 0.931627i \(0.381610\pi\)
\(464\) 17.8442i 0.828398i
\(465\) 3.92402 + 1.53190i 0.181972 + 0.0710400i
\(466\) −1.83114 1.83114i −0.0848258 0.0848258i
\(467\) −15.0821 + 15.0821i −0.697916 + 0.697916i −0.963961 0.266045i \(-0.914283\pi\)
0.266045 + 0.963961i \(0.414283\pi\)
\(468\) 0 0
\(469\) 10.0582i 0.464447i
\(470\) 0.140134 + 0.0547069i 0.00646391 + 0.00252344i
\(471\) 5.01879 0.231254
\(472\) 0.971099 0.971099i 0.0446984 0.0446984i
\(473\) 26.2128i 1.20527i
\(474\) −0.267430 0.267430i −0.0122835 0.0122835i
\(475\) 0.389341 + 9.48854i 0.0178642 + 0.435364i
\(476\) 9.45433 + 9.45433i 0.433339 + 0.433339i
\(477\) −3.82296 3.82296i −0.175041 0.175041i
\(478\) −1.33785 1.33785i −0.0611917 0.0611917i
\(479\) 30.1579 30.1579i 1.37795 1.37795i 0.529871 0.848079i \(-0.322240\pi\)
0.848079 0.529871i \(-0.177760\pi\)
\(480\) −0.480942 1.09693i −0.0219519 0.0500676i
\(481\) 0 0
\(482\) 0.752428 + 0.752428i 0.0342722 + 0.0342722i
\(483\) 7.63028i 0.347190i
\(484\) 10.7961i 0.490733i
\(485\) −9.57099 + 24.5165i −0.434596 + 1.11324i
\(486\) −0.817218 + 0.817218i −0.0370698 + 0.0370698i
\(487\) −15.2167 −0.689534 −0.344767 0.938688i \(-0.612042\pi\)
−0.344767 + 0.938688i \(0.612042\pi\)
\(488\) −0.671220 −0.0303847
\(489\) −4.54620 + 4.54620i −0.205586 + 0.205586i
\(490\) 0.0785868 0.201303i 0.00355019 0.00909396i
\(491\) 27.9753i 1.26251i −0.775576 0.631254i \(-0.782541\pi\)
0.775576 0.631254i \(-0.217459\pi\)
\(492\) 4.37799i 0.197375i
\(493\) −7.85029 7.85029i −0.353559 0.353559i
\(494\) 0 0
\(495\) 10.4928 + 23.9318i 0.471616 + 1.07565i
\(496\) 15.0945 15.0945i 0.677765 0.677765i
\(497\) −12.6401 12.6401i −0.566988 0.566988i
\(498\) −0.101277 0.101277i −0.00453834 0.00453834i
\(499\) 1.67479 + 1.67479i 0.0749740 + 0.0749740i 0.743599 0.668625i \(-0.233117\pi\)
−0.668625 + 0.743599i \(0.733117\pi\)
\(500\) 19.9202 9.72631i 0.890860 0.434974i
\(501\) 5.02826 + 5.02826i 0.224646 + 0.224646i
\(502\) 0.613896i 0.0273995i
\(503\) 16.3763 16.3763i 0.730184 0.730184i −0.240472 0.970656i \(-0.577302\pi\)
0.970656 + 0.240472i \(0.0773021\pi\)
\(504\) 4.19151 0.186705
\(505\) −2.10168 0.820476i −0.0935237 0.0365107i
\(506\) 4.24760i 0.188829i
\(507\) 0 0
\(508\) 23.2016 23.2016i 1.02940 1.02940i
\(509\) 4.26103 + 4.26103i 0.188867 + 0.188867i 0.795206 0.606339i \(-0.207363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(510\) −0.228034 0.0890223i −0.0100975 0.00394197i
\(511\) 27.6260i 1.22210i
\(512\) −10.1453 −0.448362
\(513\) 3.84174i 0.169617i
\(514\) 1.61135 1.61135i 0.0710734 0.0710734i
\(515\) 17.3769 7.61882i 0.765717 0.335725i
\(516\) −4.40752 −0.194030
\(517\) 1.46923 1.46923i 0.0646167 0.0646167i
\(518\) 2.56013 0.112486
\(519\) −6.24038 −0.273922
\(520\) 0 0
\(521\) 27.8183 1.21874 0.609371 0.792886i \(-0.291422\pi\)
0.609371 + 0.792886i \(0.291422\pi\)
\(522\) −1.73265 −0.0758361
\(523\) −0.387298 + 0.387298i −0.0169354 + 0.0169354i −0.715524 0.698588i \(-0.753812\pi\)
0.698588 + 0.715524i \(0.253812\pi\)
\(524\) 25.1573 1.09900
\(525\) −0.196075 4.77850i −0.00855742 0.208551i
\(526\) −0.224841 + 0.224841i −0.00980352 + 0.00980352i
\(527\) 13.2812i 0.578538i
\(528\) −5.43449 −0.236506
\(529\) 40.6367i 1.76681i
\(530\) −0.221184 0.504474i −0.00960763 0.0219129i
\(531\) 5.35131 + 5.35131i 0.232227 + 0.232227i
\(532\) 7.40643 7.40643i 0.321110 0.321110i
\(533\) 0 0
\(534\) 0.281282i 0.0121722i
\(535\) 10.1485 4.44959i 0.438760 0.192372i
\(536\) 1.89113 0.0816842
\(537\) −4.22200 + 4.22200i −0.182193 + 0.182193i
\(538\) 1.27786i 0.0550923i
\(539\) −2.11056 2.11056i −0.0909082 0.0909082i
\(540\) 8.21311 3.60100i 0.353436 0.154962i
\(541\) −29.7507 29.7507i −1.27908 1.27908i −0.941182 0.337899i \(-0.890284\pi\)
−0.337899 0.941182i \(-0.609716\pi\)
\(542\) −2.03494 2.03494i −0.0874080 0.0874080i
\(543\) −6.06187 6.06187i −0.260140 0.260140i
\(544\) −2.67022 + 2.67022i −0.114485 + 0.114485i
\(545\) 18.8539 8.26641i 0.807612 0.354094i
\(546\) 0 0
\(547\) −14.2594 14.2594i −0.609688 0.609688i 0.333176 0.942864i \(-0.391880\pi\)
−0.942864 + 0.333176i \(0.891880\pi\)
\(548\) 29.6325i 1.26584i
\(549\) 3.69880i 0.157861i
\(550\) 0.109151 + 2.66008i 0.00465420 + 0.113426i
\(551\) −6.14984 + 6.14984i −0.261992 + 0.261992i
\(552\) 1.43463 0.0610618
\(553\) −23.2961 −0.990652
\(554\) 1.67641 1.67641i 0.0712240 0.0712240i
\(555\) 4.93699 2.16460i 0.209564 0.0918822i
\(556\) 16.9967i 0.720823i
\(557\) 35.1772i 1.49051i 0.666781 + 0.745254i \(0.267672\pi\)
−0.666781 + 0.745254i \(0.732328\pi\)
\(558\) −1.46566 1.46566i −0.0620463 0.0620463i
\(559\) 0 0
\(560\) −22.5765 8.81362i −0.954030 0.372443i
\(561\) −2.39082 + 2.39082i −0.100940 + 0.100940i
\(562\) −1.49342 1.49342i −0.0629963 0.0629963i
\(563\) −29.6501 29.6501i −1.24960 1.24960i −0.955895 0.293708i \(-0.905111\pi\)
−0.293708 0.955895i \(-0.594889\pi\)
\(564\) −0.247042 0.247042i −0.0104024 0.0104024i
\(565\) −6.73679 15.3652i −0.283419 0.646417i
\(566\) 1.05426 + 1.05426i 0.0443140 + 0.0443140i
\(567\) 22.1108i 0.928566i
\(568\) 2.37657 2.37657i 0.0997186 0.0997186i
\(569\) 27.5482 1.15488 0.577441 0.816433i \(-0.304051\pi\)
0.577441 + 0.816433i \(0.304051\pi\)
\(570\) −0.0697392 + 0.178640i −0.00292105 + 0.00748241i
\(571\) 4.72029i 0.197538i −0.995110 0.0987690i \(-0.968510\pi\)
0.995110 0.0987690i \(-0.0314905\pi\)
\(572\) 0 0
\(573\) −1.65043 + 1.65043i −0.0689476 + 0.0689476i
\(574\) −1.65804 1.65804i −0.0692052 0.0692052i
\(575\) 1.63527 + 39.8528i 0.0681955 + 1.66197i
\(576\) 21.8701i 0.911252i
\(577\) 6.73701 0.280465 0.140233 0.990119i \(-0.455215\pi\)
0.140233 + 0.990119i \(0.455215\pi\)
\(578\) 1.46034i 0.0607422i
\(579\) −0.290630 + 0.290630i −0.0120782 + 0.0120782i
\(580\) 18.9120 + 7.38303i 0.785276 + 0.306564i
\(581\) −8.82236 −0.366013
\(582\) −0.375805 + 0.375805i −0.0155776 + 0.0155776i
\(583\) −7.60813 −0.315097
\(584\) 5.19417 0.214936
\(585\) 0 0
\(586\) −0.0918611 −0.00379475
\(587\) −5.19438 −0.214395 −0.107198 0.994238i \(-0.534188\pi\)
−0.107198 + 0.994238i \(0.534188\pi\)
\(588\) −0.354877 + 0.354877i −0.0146349 + 0.0146349i
\(589\) −10.4044 −0.428704
\(590\) 0.309609 + 0.706152i 0.0127464 + 0.0290718i
\(591\) −4.89285 + 4.89285i −0.201265 + 0.201265i
\(592\) 27.3177i 1.12275i
\(593\) −12.9267 −0.530836 −0.265418 0.964133i \(-0.585510\pi\)
−0.265418 + 0.964133i \(0.585510\pi\)
\(594\) 1.07702i 0.0441907i
\(595\) −13.8096 + 6.05474i −0.566137 + 0.248220i
\(596\) −17.0223 17.0223i −0.697262 0.697262i
\(597\) 0.529553 0.529553i 0.0216732 0.0216732i
\(598\) 0 0
\(599\) 16.7523i 0.684481i 0.939612 + 0.342241i \(0.111186\pi\)
−0.939612 + 0.342241i \(0.888814\pi\)
\(600\) 0.898442 0.0368656i 0.0366787 0.00150503i
\(601\) 12.5761 0.512988 0.256494 0.966546i \(-0.417433\pi\)
0.256494 + 0.966546i \(0.417433\pi\)
\(602\) 1.66922 1.66922i 0.0680324 0.0680324i
\(603\) 10.4212i 0.424384i
\(604\) −3.70774 3.70774i −0.150866 0.150866i
\(605\) 11.3418 + 4.42771i 0.461108 + 0.180012i
\(606\) −0.0322160 0.0322160i −0.00130868 0.00130868i
\(607\) 26.4935 + 26.4935i 1.07534 + 1.07534i 0.996920 + 0.0784195i \(0.0249874\pi\)
0.0784195 + 0.996920i \(0.475013\pi\)
\(608\) 2.09182 + 2.09182i 0.0848346 + 0.0848346i
\(609\) 3.09711 3.09711i 0.125501 0.125501i
\(610\) 0.137044 0.351045i 0.00554877 0.0142134i
\(611\) 0 0
\(612\) −9.79548 9.79548i −0.395959 0.395959i
\(613\) 17.2946i 0.698524i −0.937025 0.349262i \(-0.886432\pi\)
0.937025 0.349262i \(-0.113568\pi\)
\(614\) 1.86512i 0.0752703i
\(615\) −4.59926 1.79550i −0.185460 0.0724016i
\(616\) 4.17079 4.17079i 0.168046 0.168046i
\(617\) 12.1401 0.488742 0.244371 0.969682i \(-0.421419\pi\)
0.244371 + 0.969682i \(0.421419\pi\)
\(618\) 0.383150 0.0154126
\(619\) 2.99993 2.99993i 0.120577 0.120577i −0.644243 0.764821i \(-0.722828\pi\)
0.764821 + 0.644243i \(0.222828\pi\)
\(620\) 9.75238 + 22.2431i 0.391665 + 0.893303i
\(621\) 16.1357i 0.647502i
\(622\) 2.82249i 0.113172i
\(623\) 12.2514 + 12.2514i 0.490840 + 0.490840i
\(624\) 0 0
\(625\) 2.04819 + 24.9160i 0.0819276 + 0.996638i
\(626\) 1.22939 1.22939i 0.0491363 0.0491363i
\(627\) 1.87294 + 1.87294i 0.0747982 + 0.0747982i
\(628\) 20.4610 + 20.4610i 0.816481 + 0.816481i
\(629\) −12.0180 12.0180i −0.479188 0.479188i
\(630\) −0.855790 + 2.19214i −0.0340955 + 0.0873371i
\(631\) 15.3003 + 15.3003i 0.609096 + 0.609096i 0.942710 0.333614i \(-0.108268\pi\)
−0.333614 + 0.942710i \(0.608268\pi\)
\(632\) 4.38008i 0.174230i
\(633\) 4.85197 4.85197i 0.192848 0.192848i
\(634\) −2.27185 −0.0902265
\(635\) 14.8587 + 33.8896i 0.589651 + 1.34487i
\(636\) 1.27926i 0.0507260i
\(637\) 0 0
\(638\) −1.72409 + 1.72409i −0.0682572 + 0.0682572i
\(639\) 13.0963 + 13.0963i 0.518080 + 0.518080i
\(640\) 3.34343 8.56434i 0.132161 0.338535i
\(641\) 45.3182i 1.78996i 0.446106 + 0.894980i \(0.352810\pi\)
−0.446106 + 0.894980i \(0.647190\pi\)
\(642\) 0.223769 0.00883148
\(643\) 31.6498i 1.24814i 0.781367 + 0.624072i \(0.214523\pi\)
−0.781367 + 0.624072i \(0.785477\pi\)
\(644\) 31.1077 31.1077i 1.22581 1.22581i
\(645\) 1.80761 4.63028i 0.0711747 0.182317i
\(646\) 0.604623 0.0237886
\(647\) 26.8607 26.8607i 1.05600 1.05600i 0.0576668 0.998336i \(-0.481634\pi\)
0.998336 0.0576668i \(-0.0183661\pi\)
\(648\) −4.15722 −0.163311
\(649\) 10.6497 0.418038
\(650\) 0 0
\(651\) 5.23971 0.205361
\(652\) −37.0685 −1.45172
\(653\) 1.95007 1.95007i 0.0763122 0.0763122i −0.667920 0.744233i \(-0.732815\pi\)
0.744233 + 0.667920i \(0.232815\pi\)
\(654\) 0.415718 0.0162558
\(655\) −10.3175 + 26.4287i −0.403138 + 1.03265i
\(656\) −17.6920 + 17.6920i −0.690756 + 0.690756i
\(657\) 28.6228i 1.11668i
\(658\) 0.187120 0.00729470
\(659\) 2.08099i 0.0810639i −0.999178 0.0405320i \(-0.987095\pi\)
0.999178 0.0405320i \(-0.0129053\pi\)
\(660\) 2.24852 5.75967i 0.0875233 0.224195i
\(661\) −26.5742 26.5742i −1.03362 1.03362i −0.999415 0.0342010i \(-0.989111\pi\)
−0.0342010 0.999415i \(-0.510889\pi\)
\(662\) 1.66840 1.66840i 0.0648440 0.0648440i
\(663\) 0 0
\(664\) 1.65876i 0.0643723i
\(665\) 4.74323 + 10.8183i 0.183934 + 0.419515i
\(666\) −2.65251 −0.102783
\(667\) −25.8299 + 25.8299i −1.00014 + 1.00014i
\(668\) 40.9991i 1.58630i
\(669\) 3.26177 + 3.26177i 0.126107 + 0.126107i
\(670\) −0.386116 + 0.989052i −0.0149169 + 0.0382104i
\(671\) −3.68052 3.68052i −0.142085 0.142085i
\(672\) −1.05346 1.05346i −0.0406380 0.0406380i
\(673\) 12.7309 + 12.7309i 0.490741 + 0.490741i 0.908540 0.417799i \(-0.137198\pi\)
−0.417799 + 0.908540i \(0.637198\pi\)
\(674\) 0.635068 0.635068i 0.0244619 0.0244619i
\(675\) 0.414638 + 10.1050i 0.0159594 + 0.388943i
\(676\) 0 0
\(677\) 15.4021 + 15.4021i 0.591952 + 0.591952i 0.938158 0.346206i \(-0.112530\pi\)
−0.346206 + 0.938158i \(0.612530\pi\)
\(678\) 0.338793i 0.0130113i
\(679\) 32.7367i 1.25632i
\(680\) −1.13840 2.59644i −0.0436556 0.0995689i
\(681\) −3.57007 + 3.57007i −0.136805 + 0.136805i
\(682\) −2.91683 −0.111691
\(683\) −6.16751 −0.235993 −0.117997 0.993014i \(-0.537647\pi\)
−0.117997 + 0.993014i \(0.537647\pi\)
\(684\) −7.67369 + 7.67369i −0.293411 + 0.293411i
\(685\) −31.1301 12.1529i −1.18942 0.464337i
\(686\) 2.28761i 0.0873414i
\(687\) 1.29017i 0.0492230i
\(688\) −17.8113 17.8113i −0.679050 0.679050i
\(689\) 0 0
\(690\) −0.292911 + 0.750304i −0.0111509 + 0.0285636i
\(691\) 9.28463 9.28463i 0.353204 0.353204i −0.508096 0.861300i \(-0.669651\pi\)
0.861300 + 0.508096i \(0.169651\pi\)
\(692\) −25.4412 25.4412i −0.967131 0.967131i
\(693\) 22.9834 + 22.9834i 0.873069 + 0.873069i
\(694\) −1.72710 1.72710i −0.0655600 0.0655600i
\(695\) −17.8558 6.97070i −0.677308 0.264414i
\(696\) 0.582310 + 0.582310i 0.0220724 + 0.0220724i
\(697\) 15.5666i 0.589627i
\(698\) 0.233693 0.233693i 0.00884543 0.00884543i
\(699\) −6.78252 −0.256538
\(700\) 18.6820 20.2807i 0.706112 0.766539i
\(701\) 23.2292i 0.877354i −0.898645 0.438677i \(-0.855447\pi\)
0.898645 0.438677i \(-0.144553\pi\)
\(702\) 0 0
\(703\) −9.41478 + 9.41478i −0.355085 + 0.355085i
\(704\) −21.7620 21.7620i −0.820184 0.820184i
\(705\) 0.360845 0.158211i 0.0135902 0.00595856i
\(706\) 4.29642i 0.161698i
\(707\) −2.80636 −0.105544
\(708\) 1.79068i 0.0672980i
\(709\) 1.46763 1.46763i 0.0551179 0.0551179i −0.679011 0.734128i \(-0.737591\pi\)
0.734128 + 0.679011i \(0.237591\pi\)
\(710\) 0.757707 + 1.72817i 0.0284362 + 0.0648569i
\(711\) 24.1367 0.905198
\(712\) −2.30347 + 2.30347i −0.0863262 + 0.0863262i
\(713\) −43.6993 −1.63655
\(714\) −0.304493 −0.0113954
\(715\) 0 0
\(716\) −34.4251 −1.28653
\(717\) −4.95537 −0.185062
\(718\) −0.0918703 + 0.0918703i −0.00342857 + 0.00342857i
\(719\) 6.73696 0.251246 0.125623 0.992078i \(-0.459907\pi\)
0.125623 + 0.992078i \(0.459907\pi\)
\(720\) 23.3911 + 9.13165i 0.871735 + 0.340316i
\(721\) 16.6883 16.6883i 0.621504 0.621504i
\(722\) 2.02109i 0.0752173i
\(723\) 2.78698 0.103649
\(724\) 49.4269i 1.83694i
\(725\) −15.5123 + 16.8398i −0.576114 + 0.625416i
\(726\) 0.173854 + 0.173854i 0.00645232 + 0.00645232i
\(727\) −34.4733 + 34.4733i −1.27854 + 1.27854i −0.337062 + 0.941483i \(0.609433\pi\)
−0.941483 + 0.337062i \(0.890567\pi\)
\(728\) 0 0
\(729\) 20.8218i 0.771179i
\(730\) −1.06051 + 2.71653i −0.0392511 + 0.100543i
\(731\) −15.6716 −0.579635
\(732\) −0.618857 + 0.618857i −0.0228736 + 0.0228736i
\(733\) 28.7555i 1.06211i 0.847338 + 0.531054i \(0.178204\pi\)
−0.847338 + 0.531054i \(0.821796\pi\)
\(734\) −1.34379 1.34379i −0.0496002 0.0496002i
\(735\) −0.227271 0.518355i −0.00838300 0.0191198i
\(736\) 8.78585 + 8.78585i 0.323851 + 0.323851i
\(737\) 10.3697 + 10.3697i 0.381972 + 0.381972i
\(738\) 1.71787 + 1.71787i 0.0632355 + 0.0632355i
\(739\) −21.6960 + 21.6960i −0.798100 + 0.798100i −0.982796 0.184696i \(-0.940870\pi\)
0.184696 + 0.982796i \(0.440870\pi\)
\(740\) 28.9523 + 11.3027i 1.06431 + 0.415494i
\(741\) 0 0
\(742\) −0.484483 0.484483i −0.0177859 0.0177859i
\(743\) 52.9634i 1.94304i −0.236963 0.971519i \(-0.576152\pi\)
0.236963 0.971519i \(-0.423848\pi\)
\(744\) 0.985158i 0.0361176i
\(745\) 24.8638 10.9014i 0.910940 0.399398i
\(746\) 0.941490 0.941490i 0.0344704 0.0344704i
\(747\) 9.14070 0.334441
\(748\) −19.4941 −0.712776
\(749\) 9.74639 9.74639i 0.356125 0.356125i
\(750\) −0.164156 + 0.477409i −0.00599414 + 0.0174325i
\(751\) 46.6245i 1.70135i 0.525690 + 0.850676i \(0.323807\pi\)
−0.525690 + 0.850676i \(0.676193\pi\)
\(752\) 1.99665i 0.0728104i
\(753\) 1.13693 + 1.13693i 0.0414321 + 0.0414321i
\(754\) 0 0
\(755\) 5.41574 2.37451i 0.197099 0.0864172i
\(756\) 7.88765 7.88765i 0.286871 0.286871i
\(757\) −0.883345 0.883345i −0.0321057 0.0321057i 0.690872 0.722977i \(-0.257227\pi\)
−0.722977 + 0.690872i \(0.757227\pi\)
\(758\) −0.0975328 0.0975328i −0.00354255 0.00354255i
\(759\) 7.86654 + 7.86654i 0.285537 + 0.285537i
\(760\) −2.03403 + 0.891810i −0.0737819 + 0.0323493i
\(761\) −14.4328 14.4328i −0.523189 0.523189i 0.395344 0.918533i \(-0.370625\pi\)
−0.918533 + 0.395344i \(0.870625\pi\)
\(762\) 0.747246i 0.0270698i
\(763\) 18.1068 18.1068i 0.655509 0.655509i
\(764\) −13.4572 −0.486863
\(765\) 14.3079 6.27322i 0.517302 0.226809i
\(766\) 1.57656i 0.0569633i
\(767\) 0 0
\(768\) −3.55968 + 3.55968i −0.128449 + 0.128449i
\(769\) 26.1077 + 26.1077i 0.941469 + 0.941469i 0.998379 0.0569104i \(-0.0181249\pi\)
−0.0569104 + 0.998379i \(0.518125\pi\)
\(770\) 1.32975 + 3.03287i 0.0479208 + 0.109297i
\(771\) 5.96841i 0.214947i
\(772\) −2.36972 −0.0852882
\(773\) 21.3836i 0.769114i −0.923101 0.384557i \(-0.874354\pi\)
0.923101 0.384557i \(-0.125646\pi\)
\(774\) −1.72945 + 1.72945i −0.0621639 + 0.0621639i
\(775\) −27.3669 + 1.12294i −0.983047 + 0.0403372i
\(776\) −6.15508 −0.220954
\(777\) 4.74135 4.74135i 0.170095 0.170095i
\(778\) 0.967919 0.0347016
\(779\) 12.1947 0.436921
\(780\) 0 0
\(781\) 26.0630 0.932608
\(782\) 2.53947 0.0908114
\(783\) −6.54941 + 6.54941i −0.234057 + 0.234057i
\(784\) −2.86820 −0.102436
\(785\) −29.8865 + 13.1036i −1.06670 + 0.467688i
\(786\) −0.405116 + 0.405116i −0.0144500 + 0.0144500i
\(787\) 39.3828i 1.40385i 0.712252 + 0.701923i \(0.247675\pi\)
−0.712252 + 0.701923i \(0.752325\pi\)
\(788\) −39.8950 −1.42120
\(789\) 0.832807i 0.0296487i
\(790\) 2.29076 + 0.894291i 0.0815017 + 0.0318174i
\(791\) −14.7563 14.7563i −0.524673 0.524673i
\(792\) −4.32129 + 4.32129i −0.153550 + 0.153550i
\(793\) 0 0
\(794\) 0.795007i 0.0282138i
\(795\) −1.34391 0.524650i −0.0476637 0.0186074i
\(796\) 4.31784 0.153042
\(797\) 27.6949 27.6949i 0.981002 0.981002i −0.0188205 0.999823i \(-0.505991\pi\)
0.999823 + 0.0188205i \(0.00599112\pi\)
\(798\) 0.238537i 0.00844411i
\(799\) −0.878395 0.878395i −0.0310754 0.0310754i
\(800\) 5.72795 + 5.27641i 0.202514 + 0.186549i
\(801\) −12.6934 12.6934i −0.448500 0.448500i
\(802\) −0.224177 0.224177i −0.00791598 0.00791598i
\(803\) 28.4813 + 28.4813i 1.00508 + 1.00508i
\(804\) 1.74360 1.74360i 0.0614919 0.0614919i
\(805\) 19.9220 + 45.4378i 0.702158 + 1.60147i
\(806\) 0 0
\(807\) −2.36658 2.36658i −0.0833077 0.0833077i
\(808\) 0.527646i 0.0185625i
\(809\) 26.7479i 0.940406i 0.882558 + 0.470203i \(0.155819\pi\)
−0.882558 + 0.470203i \(0.844181\pi\)
\(810\) 0.848789 2.17421i 0.0298234 0.0763939i
\(811\) −7.93739 + 7.93739i −0.278720 + 0.278720i −0.832598 0.553878i \(-0.813147\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(812\) 25.2530 0.886207
\(813\) −7.53738 −0.264348
\(814\) −2.63940 + 2.63940i −0.0925109 + 0.0925109i
\(815\) 15.2025 38.9420i 0.532522 1.36408i
\(816\) 3.24907i 0.113740i
\(817\) 12.2770i 0.429517i
\(818\) 1.86963 + 1.86963i 0.0653700 + 0.0653700i
\(819\) 0 0
\(820\) −11.4305 26.0706i −0.399172 0.910425i
\(821\) 19.1010 19.1010i 0.666629 0.666629i −0.290305 0.956934i \(-0.593757\pi\)
0.956934 + 0.290305i \(0.0937569\pi\)
\(822\) −0.477182 0.477182i −0.0166436 0.0166436i
\(823\) −6.63054 6.63054i −0.231126 0.231126i 0.582036 0.813163i \(-0.302256\pi\)
−0.813163 + 0.582036i \(0.802256\pi\)
\(824\) 3.13769 + 3.13769i 0.109307 + 0.109307i
\(825\) 5.12860 + 4.72431i 0.178555 + 0.164479i
\(826\) 0.678170 + 0.678170i 0.0235965 + 0.0235965i
\(827\) 45.0330i 1.56595i −0.622052 0.782976i \(-0.713701\pi\)
0.622052 0.782976i \(-0.286299\pi\)
\(828\) −32.2302 + 32.2302i −1.12008 + 1.12008i
\(829\) 42.0151 1.45924 0.729622 0.683851i \(-0.239696\pi\)
0.729622 + 0.683851i \(0.239696\pi\)
\(830\) 0.867524 + 0.338672i 0.0301122 + 0.0117555i
\(831\) 6.20942i 0.215402i
\(832\) 0 0
\(833\) −1.26182 + 1.26182i −0.0437194 + 0.0437194i
\(834\) −0.273705 0.273705i −0.00947761 0.00947761i
\(835\) −43.0712 16.8146i −1.49054 0.581892i
\(836\) 15.2715i 0.528176i
\(837\) −11.0804 −0.382993
\(838\) 3.94962i 0.136437i
\(839\) −3.84087 + 3.84087i −0.132602 + 0.132602i −0.770292 0.637691i \(-0.779890\pi\)
0.637691 + 0.770292i \(0.279890\pi\)
\(840\) 1.02435 0.449122i 0.0353434 0.0154962i
\(841\) 8.03148 0.276948
\(842\) −1.21414 + 1.21414i −0.0418419 + 0.0418419i
\(843\) −5.53162 −0.190519
\(844\) 39.5617 1.36177
\(845\) 0 0
\(846\) −0.193872 −0.00666546
\(847\) 15.1446 0.520374
\(848\) −5.16964 + 5.16964i −0.177526 + 0.177526i
\(849\) 3.90498 0.134019
\(850\) 1.59036 0.0652568i 0.0545488 0.00223829i
\(851\) −39.5429 + 39.5429i −1.35551 + 1.35551i
\(852\) 4.38234i 0.150136i
\(853\) 23.0805 0.790260 0.395130 0.918625i \(-0.370700\pi\)
0.395130 + 0.918625i \(0.370700\pi\)
\(854\) 0.468748i 0.0160402i
\(855\) −4.91438 11.2086i −0.168068 0.383328i
\(856\) 1.83249 + 1.83249i 0.0626333 + 0.0626333i
\(857\) −37.6679 + 37.6679i −1.28671 + 1.28671i −0.349940 + 0.936772i \(0.613798\pi\)
−0.936772 + 0.349940i \(0.886202\pi\)
\(858\) 0 0
\(859\) 5.08674i 0.173557i 0.996228 + 0.0867787i \(0.0276573\pi\)
−0.996228 + 0.0867787i \(0.972343\pi\)
\(860\) 26.2465 11.5077i 0.894997 0.392408i
\(861\) −6.14135 −0.209297
\(862\) 0.585972 0.585972i 0.0199583 0.0199583i
\(863\) 45.1879i 1.53821i −0.639120 0.769107i \(-0.720701\pi\)
0.639120 0.769107i \(-0.279299\pi\)
\(864\) 2.22773 + 2.22773i 0.0757891 + 0.0757891i
\(865\) 37.1610 16.2931i 1.26351 0.553981i
\(866\) −1.14100 1.14100i −0.0387728 0.0387728i
\(867\) −2.70454 2.70454i −0.0918511 0.0918511i
\(868\) 21.3616 + 21.3616i 0.725061 + 0.725061i
\(869\) 24.0174 24.0174i 0.814735 0.814735i
\(870\) −0.423437 + 0.185654i −0.0143559 + 0.00629427i
\(871\) 0 0
\(872\) 3.40439 + 3.40439i 0.115287 + 0.115287i
\(873\) 33.9180i 1.14795i
\(874\) 1.98940i 0.0672924i
\(875\) 13.6439 + 27.9437i 0.461246 + 0.944669i
\(876\) 4.78896 4.78896i 0.161804 0.161804i
\(877\) 20.3282 0.686436 0.343218 0.939256i \(-0.388483\pi\)
0.343218 + 0.939256i \(0.388483\pi\)
\(878\) 4.52267 0.152633
\(879\) −0.170126 + 0.170126i −0.00573821 + 0.00573821i
\(880\) 32.3620 14.1890i 1.09092 0.478310i
\(881\) 33.0200i 1.11247i 0.831025 + 0.556236i \(0.187755\pi\)
−0.831025 + 0.556236i \(0.812245\pi\)
\(882\) 0.278498i 0.00937753i
\(883\) −15.9555 15.9555i −0.536944 0.536944i 0.385686 0.922630i \(-0.373965\pi\)
−0.922630 + 0.385686i \(0.873965\pi\)
\(884\) 0 0
\(885\) 1.88119 + 0.734395i 0.0632353 + 0.0246864i
\(886\) 0.708315 0.708315i 0.0237963 0.0237963i
\(887\) −0.446393 0.446393i −0.0149884 0.0149884i 0.699573 0.714561i \(-0.253374\pi\)
−0.714561 + 0.699573i \(0.753374\pi\)
\(888\) 0.891457 + 0.891457i 0.0299153 + 0.0299153i
\(889\) 32.5466 + 32.5466i 1.09158 + 1.09158i
\(890\) −0.734401 1.67501i −0.0246172 0.0561465i
\(891\) −22.7954 22.7954i −0.763675 0.763675i
\(892\) 26.5956i 0.890488i
\(893\) −0.688126 + 0.688126i −0.0230273 + 0.0230273i
\(894\) 0.548233 0.0183356
\(895\) 14.1184 36.1649i 0.471926 1.20886i
\(896\) 11.4359i 0.382046i
\(897\) 0 0
\(898\) 2.89072 2.89072i 0.0964647 0.0964647i
\(899\) −17.7374 17.7374i −0.591575 0.591575i
\(900\) −19.3561 + 21.0125i −0.645203 + 0.700417i
\(901\) 4.54860i 0.151536i
\(902\) 3.41875 0.113832
\(903\) 6.18278i 0.205750i
\(904\) 2.77444 2.77444i 0.0922765 0.0922765i
\(905\) 51.9250 + 20.2710i 1.72604 + 0.673830i
\(906\) 0.119414 0.00396726
\(907\) 27.6995 27.6995i 0.919748 0.919748i −0.0772631 0.997011i \(-0.524618\pi\)
0.997011 + 0.0772631i \(0.0246181\pi\)
\(908\) −29.1094 −0.966031
\(909\) 2.90763 0.0964400
\(910\) 0 0
\(911\) 6.21630 0.205955 0.102978 0.994684i \(-0.467163\pi\)
0.102978 + 0.994684i \(0.467163\pi\)
\(912\) 2.54529 0.0842829
\(913\) 9.09552 9.09552i 0.301018 0.301018i
\(914\) 0.408023 0.0134962
\(915\) −0.396328 0.903940i −0.0131022 0.0298833i
\(916\) 5.25986 5.25986i 0.173791 0.173791i
\(917\) 35.2900i 1.16538i
\(918\) 0.643907 0.0212521
\(919\) 22.9801i 0.758043i 0.925388 + 0.379022i \(0.123739\pi\)
−0.925388 + 0.379022i \(0.876261\pi\)
\(920\) −8.54309 + 3.74568i −0.281657 + 0.123492i
\(921\) 3.45420 + 3.45420i 0.113820 + 0.113820i
\(922\) −1.55017 + 1.55017i −0.0510520 + 0.0510520i
\(923\) 0 0
\(924\) 7.69084i 0.253010i
\(925\) −23.7478 + 25.7801i −0.780823 + 0.847644i
\(926\) −2.05351 −0.0674827
\(927\) −17.2905 + 17.2905i −0.567894 + 0.567894i
\(928\) 7.13229i 0.234129i
\(929\) −0.766865 0.766865i −0.0251600 0.0251600i 0.694415 0.719575i \(-0.255663\pi\)
−0.719575 + 0.694415i \(0.755663\pi\)
\(930\) −0.515234 0.201142i −0.0168952 0.00659570i
\(931\) 0.988497 + 0.988497i 0.0323967 + 0.0323967i
\(932\) −27.6514 27.6514i −0.905753 0.905753i
\(933\) 5.22724 + 5.22724i 0.171132 + 0.171132i
\(934\) 1.98032 1.98032i 0.0647980 0.0647980i
\(935\) 7.99493 20.4794i 0.261462 0.669746i
\(936\) 0 0
\(937\) −2.17699 2.17699i −0.0711191 0.0711191i 0.670653 0.741772i \(-0.266014\pi\)
−0.741772 + 0.670653i \(0.766014\pi\)
\(938\) 1.32067i 0.0431215i
\(939\) 4.55365i 0.148603i
\(940\) 2.11612 + 0.826112i 0.0690203 + 0.0269448i
\(941\) −22.9413 + 22.9413i −0.747866 + 0.747866i −0.974078 0.226212i \(-0.927366\pi\)
0.226212 + 0.974078i \(0.427366\pi\)
\(942\) −0.658980 −0.0214707
\(943\) 51.2190 1.66792
\(944\) 7.23636 7.23636i 0.235523 0.235523i
\(945\) 5.05141 + 11.5212i 0.164322 + 0.374784i
\(946\) 3.44181i 0.111903i
\(947\) 27.2986i 0.887086i 0.896253 + 0.443543i \(0.146279\pi\)
−0.896253 + 0.443543i \(0.853721\pi\)
\(948\) −4.03838 4.03838i −0.131161 0.131161i
\(949\) 0 0
\(950\) −0.0511215 1.24587i −0.00165860 0.0404214i
\(951\) −4.20745 + 4.20745i −0.136436 + 0.136436i
\(952\) −2.49355 2.49355i −0.0808164 0.0808164i
\(953\) 4.52281 + 4.52281i 0.146508 + 0.146508i 0.776556 0.630048i \(-0.216965\pi\)
−0.630048 + 0.776556i \(0.716965\pi\)
\(954\) 0.501965 + 0.501965i 0.0162517 + 0.0162517i
\(955\) 5.51905 14.1373i 0.178592 0.457472i
\(956\) −20.2024 20.2024i −0.653393 0.653393i
\(957\) 6.38600i 0.206430i
\(958\) −3.95981 + 3.95981i −0.127936 + 0.127936i
\(959\) −41.5678 −1.34229
\(960\) −2.34339 5.34476i −0.0756325 0.172501i
\(961\) 0.991728i 0.0319912i
\(962\) 0 0
\(963\) −10.0981 + 10.0981i −0.325406 + 0.325406i
\(964\) 11.3622 + 11.3622i 0.365951 + 0.365951i
\(965\) 0.971870 2.48949i 0.0312856 0.0801394i
\(966\) 1.00188i 0.0322348i
\(967\) −28.4424 −0.914647 −0.457324 0.889300i \(-0.651192\pi\)
−0.457324 + 0.889300i \(0.651192\pi\)
\(968\) 2.84744i 0.0915203i
\(969\) 1.11976 1.11976i 0.0359718 0.0359718i
\(970\) 1.25670 3.21908i 0.0403501 0.103358i
\(971\) −1.23984 −0.0397884 −0.0198942 0.999802i \(-0.506333\pi\)
−0.0198942 + 0.999802i \(0.506333\pi\)
\(972\) −12.3406 + 12.3406i −0.395824 + 0.395824i
\(973\) −23.8427 −0.764361
\(974\) 1.99799 0.0640197
\(975\) 0 0
\(976\) −5.00174 −0.160102
\(977\) −38.0451 −1.21717 −0.608586 0.793488i \(-0.708263\pi\)
−0.608586 + 0.793488i \(0.708263\pi\)
\(978\) 0.596928 0.596928i 0.0190876 0.0190876i
\(979\) −25.2614 −0.807357
\(980\) 1.18671 3.03982i 0.0379082 0.0971035i
\(981\) −18.7601 + 18.7601i −0.598965 + 0.598965i
\(982\) 3.67323i 0.117217i
\(983\) −34.5934 −1.10336 −0.551679 0.834056i \(-0.686013\pi\)
−0.551679 + 0.834056i \(0.686013\pi\)
\(984\) 1.15468i 0.0368099i
\(985\) 16.3618 41.9113i 0.521329 1.33541i
\(986\) 1.03076 + 1.03076i 0.0328262 + 0.0328262i
\(987\) 0.346545 0.346545i 0.0110307 0.0110307i
\(988\) 0 0
\(989\) 51.5644i 1.63965i
\(990\) −1.37773 3.14231i −0.0437871 0.0998690i
\(991\) 39.4972 1.25467 0.627335 0.778750i \(-0.284146\pi\)
0.627335 + 0.778750i \(0.284146\pi\)
\(992\) −6.03324 + 6.03324i −0.191555 + 0.191555i
\(993\) 6.17972i 0.196107i
\(994\) 1.65968 + 1.65968i 0.0526420 + 0.0526420i
\(995\) −1.77083 + 4.53606i −0.0561391 + 0.143803i
\(996\) −1.52936 1.52936i −0.0484595 0.0484595i
\(997\) 5.20122 + 5.20122i 0.164724 + 0.164724i 0.784656 0.619932i \(-0.212840\pi\)
−0.619932 + 0.784656i \(0.712840\pi\)
\(998\) −0.219905 0.219905i −0.00696096 0.00696096i
\(999\) −10.0265 + 10.0265i −0.317224 + 0.317224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.e.577.4 20
5.3 odd 4 845.2.f.e.408.7 20
13.2 odd 12 845.2.t.e.657.3 20
13.3 even 3 65.2.o.a.32.3 20
13.4 even 6 845.2.o.f.587.3 20
13.5 odd 4 845.2.f.d.437.7 20
13.6 odd 12 845.2.t.g.427.3 20
13.7 odd 12 65.2.t.a.37.3 yes 20
13.8 odd 4 845.2.f.e.437.4 20
13.9 even 3 845.2.o.e.587.3 20
13.10 even 6 845.2.o.g.357.3 20
13.11 odd 12 845.2.t.f.657.3 20
13.12 even 2 845.2.k.d.577.7 20
39.20 even 12 585.2.dp.a.37.3 20
39.29 odd 6 585.2.cf.a.487.3 20
65.3 odd 12 65.2.t.a.58.3 yes 20
65.7 even 12 325.2.s.b.193.3 20
65.8 even 4 inner 845.2.k.e.268.4 20
65.18 even 4 845.2.k.d.268.7 20
65.23 odd 12 845.2.t.g.188.3 20
65.28 even 12 845.2.o.f.488.3 20
65.29 even 6 325.2.s.b.32.3 20
65.33 even 12 65.2.o.a.63.3 yes 20
65.38 odd 4 845.2.f.d.408.4 20
65.42 odd 12 325.2.x.b.318.3 20
65.43 odd 12 845.2.t.e.418.3 20
65.48 odd 12 845.2.t.f.418.3 20
65.58 even 12 845.2.o.g.258.3 20
65.59 odd 12 325.2.x.b.232.3 20
65.63 even 12 845.2.o.e.488.3 20
195.68 even 12 585.2.dp.a.253.3 20
195.98 odd 12 585.2.cf.a.388.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.3 20 13.3 even 3
65.2.o.a.63.3 yes 20 65.33 even 12
65.2.t.a.37.3 yes 20 13.7 odd 12
65.2.t.a.58.3 yes 20 65.3 odd 12
325.2.s.b.32.3 20 65.29 even 6
325.2.s.b.193.3 20 65.7 even 12
325.2.x.b.232.3 20 65.59 odd 12
325.2.x.b.318.3 20 65.42 odd 12
585.2.cf.a.388.3 20 195.98 odd 12
585.2.cf.a.487.3 20 39.29 odd 6
585.2.dp.a.37.3 20 39.20 even 12
585.2.dp.a.253.3 20 195.68 even 12
845.2.f.d.408.4 20 65.38 odd 4
845.2.f.d.437.7 20 13.5 odd 4
845.2.f.e.408.7 20 5.3 odd 4
845.2.f.e.437.4 20 13.8 odd 4
845.2.k.d.268.7 20 65.18 even 4
845.2.k.d.577.7 20 13.12 even 2
845.2.k.e.268.4 20 65.8 even 4 inner
845.2.k.e.577.4 20 1.1 even 1 trivial
845.2.o.e.488.3 20 65.63 even 12
845.2.o.e.587.3 20 13.9 even 3
845.2.o.f.488.3 20 65.28 even 12
845.2.o.f.587.3 20 13.4 even 6
845.2.o.g.258.3 20 65.58 even 12
845.2.o.g.357.3 20 13.10 even 6
845.2.t.e.418.3 20 65.43 odd 12
845.2.t.e.657.3 20 13.2 odd 12
845.2.t.f.418.3 20 65.48 odd 12
845.2.t.f.657.3 20 13.11 odd 12
845.2.t.g.188.3 20 65.23 odd 12
845.2.t.g.427.3 20 13.6 odd 12