Properties

Label 845.2.t.g.188.3
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.3
Root \(0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.g.427.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.113711 + 0.0656513i) q^{2} +(0.332179 - 0.0890070i) q^{3} +(-0.991380 - 1.71712i) q^{4} +(-2.08297 + 0.813169i) q^{5} +(0.0436159 + 0.0116869i) q^{6} +(-1.39069 - 2.40874i) q^{7} -0.522947i q^{8} +(-2.49566 + 1.44087i) q^{9} +(-0.290243 - 0.0442830i) q^{10} +(3.91706 - 1.04957i) q^{11} +(-0.482151 - 0.482151i) q^{12} -0.365201i q^{14} +(-0.619540 + 0.455516i) q^{15} +(-1.94843 + 3.37478i) q^{16} +(-0.627499 + 2.34186i) q^{17} -0.378379 q^{18} +(-0.491577 + 1.83459i) q^{19} +(3.46132 + 2.77055i) q^{20} +(-0.676351 - 0.676351i) q^{21} +(0.514321 + 0.137812i) q^{22} +(2.06467 + 7.70544i) q^{23} +(-0.0465459 - 0.173712i) q^{24} +(3.67751 - 3.38761i) q^{25} +(-1.43027 + 1.43027i) q^{27} +(-2.75740 + 4.77595i) q^{28} +(-3.96565 - 2.28957i) q^{29} +(-0.100354 + 0.0111238i) q^{30} +(-3.87352 + 3.87352i) q^{31} +(-1.34889 + 0.778780i) q^{32} +(1.20775 - 0.697292i) q^{33} +(-0.225100 + 0.225100i) q^{34} +(4.85547 + 3.88646i) q^{35} +(4.94829 + 2.85689i) q^{36} +(-3.50510 + 6.07101i) q^{37} +(-0.176341 + 0.176341i) q^{38} +(0.425244 + 1.08928i) q^{40} +(1.66178 + 6.20184i) q^{41} +(-0.0325055 - 0.121312i) q^{42} +(-6.24368 - 1.67299i) q^{43} +(-5.68554 - 5.68554i) q^{44} +(4.02670 - 5.03067i) q^{45} +(-0.271096 + 1.01174i) q^{46} +0.512375 q^{47} +(-0.346847 + 1.29445i) q^{48} +(-0.368015 + 0.637420i) q^{49} +(0.640576 - 0.143776i) q^{50} +0.833767i q^{51} +(-1.32662 - 1.32662i) q^{53} +(-0.256537 + 0.0687390i) q^{54} +(-7.30564 + 5.37147i) q^{55} +(-1.25964 + 0.727255i) q^{56} +0.653165i q^{57} +(-0.300626 - 0.520700i) q^{58} +(-2.53667 - 0.679700i) q^{59} +(1.39638 + 0.612235i) q^{60} +(0.641767 + 1.11157i) q^{61} +(-0.694764 + 0.186162i) q^{62} +(6.94135 + 4.00759i) q^{63} +7.58920 q^{64} +0.183113 q^{66} +(-3.13180 - 1.80814i) q^{67} +(4.64334 - 1.24418i) q^{68} +(1.37168 + 2.37581i) q^{69} +(0.296970 + 0.760703i) q^{70} +(6.20800 + 1.66343i) q^{71} +(0.753497 + 1.30509i) q^{72} -9.93250i q^{73} +(-0.797139 + 0.460228i) q^{74} +(0.920070 - 1.45262i) q^{75} +(3.63755 - 0.974678i) q^{76} +(-7.97556 - 7.97556i) q^{77} +8.37577i q^{79} +(1.31425 - 8.61395i) q^{80} +(3.97480 - 6.88456i) q^{81} +(-0.218196 + 0.814318i) q^{82} -3.17194 q^{83} +(-0.490855 + 1.83190i) q^{84} +(-0.597266 - 5.38828i) q^{85} +(-0.600143 - 0.600143i) q^{86} +(-1.52109 - 0.407576i) q^{87} +(-0.548871 - 2.04842i) q^{88} +(-1.61226 - 6.01705i) q^{89} +(0.788152 - 0.307686i) q^{90} +(11.1843 - 11.1843i) q^{92} +(-0.941930 + 1.63147i) q^{93} +(0.0582629 + 0.0336381i) q^{94} +(-0.467892 - 4.22112i) q^{95} +(-0.378755 + 0.378755i) q^{96} +(-10.1931 + 5.88500i) q^{97} +(-0.0836950 + 0.0483213i) q^{98} +(-8.26335 + 8.26335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{6} + 2 q^{7} + 12 q^{9} - 2 q^{10} + 16 q^{11} - 24 q^{12} + 20 q^{15} - 2 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{21} + 16 q^{22} - 10 q^{23} - 32 q^{24} + 18 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.113711 + 0.0656513i 0.0804061 + 0.0464225i 0.539664 0.841881i \(-0.318551\pi\)
−0.459258 + 0.888303i \(0.651885\pi\)
\(3\) 0.332179 0.0890070i 0.191783 0.0513882i −0.161649 0.986848i \(-0.551681\pi\)
0.353432 + 0.935460i \(0.385015\pi\)
\(4\) −0.991380 1.71712i −0.495690 0.858560i
\(5\) −2.08297 + 0.813169i −0.931532 + 0.363660i
\(6\) 0.0436159 + 0.0116869i 0.0178061 + 0.00477114i
\(7\) −1.39069 2.40874i −0.525630 0.910418i −0.999554 0.0298522i \(-0.990496\pi\)
0.473924 0.880566i \(-0.342837\pi\)
\(8\) 0.522947i 0.184890i
\(9\) −2.49566 + 1.44087i −0.831885 + 0.480289i
\(10\) −0.290243 0.0442830i −0.0917828 0.0140035i
\(11\) 3.91706 1.04957i 1.18104 0.316459i 0.385701 0.922624i \(-0.373960\pi\)
0.795339 + 0.606165i \(0.207293\pi\)
\(12\) −0.482151 0.482151i −0.139185 0.139185i
\(13\) 0 0
\(14\) 0.365201i 0.0976042i
\(15\) −0.619540 + 0.455516i −0.159965 + 0.117614i
\(16\) −1.94843 + 3.37478i −0.487107 + 0.843694i
\(17\) −0.627499 + 2.34186i −0.152191 + 0.567984i 0.847139 + 0.531372i \(0.178323\pi\)
−0.999330 + 0.0366120i \(0.988343\pi\)
\(18\) −0.378379 −0.0891849
\(19\) −0.491577 + 1.83459i −0.112775 + 0.420883i −0.999111 0.0421602i \(-0.986576\pi\)
0.886335 + 0.463044i \(0.153243\pi\)
\(20\) 3.46132 + 2.77055i 0.773975 + 0.619513i
\(21\) −0.676351 0.676351i −0.147592 0.147592i
\(22\) 0.514321 + 0.137812i 0.109654 + 0.0293816i
\(23\) 2.06467 + 7.70544i 0.430513 + 1.60670i 0.751582 + 0.659640i \(0.229291\pi\)
−0.321069 + 0.947056i \(0.604042\pi\)
\(24\) −0.0465459 0.173712i −0.00950115 0.0354588i
\(25\) 3.67751 3.38761i 0.735502 0.677522i
\(26\) 0 0
\(27\) −1.43027 + 1.43027i −0.275256 + 0.275256i
\(28\) −2.75740 + 4.77595i −0.521099 + 0.902570i
\(29\) −3.96565 2.28957i −0.736403 0.425162i 0.0843571 0.996436i \(-0.473116\pi\)
−0.820760 + 0.571273i \(0.806450\pi\)
\(30\) −0.100354 + 0.0111238i −0.0183220 + 0.00203092i
\(31\) −3.87352 + 3.87352i −0.695704 + 0.695704i −0.963481 0.267777i \(-0.913711\pi\)
0.267777 + 0.963481i \(0.413711\pi\)
\(32\) −1.34889 + 0.778780i −0.238452 + 0.137670i
\(33\) 1.20775 0.697292i 0.210242 0.121383i
\(34\) −0.225100 + 0.225100i −0.0386043 + 0.0386043i
\(35\) 4.85547 + 3.88646i 0.820724 + 0.656932i
\(36\) 4.94829 + 2.85689i 0.824714 + 0.476149i
\(37\) −3.50510 + 6.07101i −0.576234 + 0.998067i 0.419672 + 0.907676i \(0.362145\pi\)
−0.995906 + 0.0903914i \(0.971188\pi\)
\(38\) −0.176341 + 0.176341i −0.0286063 + 0.0286063i
\(39\) 0 0
\(40\) 0.425244 + 1.08928i 0.0672370 + 0.172230i
\(41\) 1.66178 + 6.20184i 0.259526 + 0.968565i 0.965516 + 0.260343i \(0.0838357\pi\)
−0.705990 + 0.708222i \(0.749498\pi\)
\(42\) −0.0325055 0.121312i −0.00501570 0.0187189i
\(43\) −6.24368 1.67299i −0.952152 0.255128i −0.250877 0.968019i \(-0.580719\pi\)
−0.701275 + 0.712891i \(0.747386\pi\)
\(44\) −5.68554 5.68554i −0.857128 0.857128i
\(45\) 4.02670 5.03067i 0.600265 0.749928i
\(46\) −0.271096 + 1.01174i −0.0399709 + 0.149174i
\(47\) 0.512375 0.0747376 0.0373688 0.999302i \(-0.488102\pi\)
0.0373688 + 0.999302i \(0.488102\pi\)
\(48\) −0.346847 + 1.29445i −0.0500631 + 0.186838i
\(49\) −0.368015 + 0.637420i −0.0525736 + 0.0910601i
\(50\) 0.640576 0.143776i 0.0905911 0.0203331i
\(51\) 0.833767i 0.116751i
\(52\) 0 0
\(53\) −1.32662 1.32662i −0.182225 0.182225i 0.610100 0.792325i \(-0.291129\pi\)
−0.792325 + 0.610100i \(0.791129\pi\)
\(54\) −0.256537 + 0.0687390i −0.0349103 + 0.00935419i
\(55\) −7.30564 + 5.37147i −0.985092 + 0.724288i
\(56\) −1.25964 + 0.727255i −0.168327 + 0.0971835i
\(57\) 0.653165i 0.0865138i
\(58\) −0.300626 0.520700i −0.0394742 0.0683713i
\(59\) −2.53667 0.679700i −0.330247 0.0884894i 0.0898858 0.995952i \(-0.471350\pi\)
−0.420133 + 0.907463i \(0.638016\pi\)
\(60\) 1.39638 + 0.612235i 0.180271 + 0.0790392i
\(61\) 0.641767 + 1.11157i 0.0821698 + 0.142322i 0.904182 0.427148i \(-0.140482\pi\)
−0.822012 + 0.569470i \(0.807148\pi\)
\(62\) −0.694764 + 0.186162i −0.0882352 + 0.0236425i
\(63\) 6.94135 + 4.00759i 0.874528 + 0.504909i
\(64\) 7.58920 0.948650
\(65\) 0 0
\(66\) 0.183113 0.0225396
\(67\) −3.13180 1.80814i −0.382610 0.220900i 0.296343 0.955082i \(-0.404233\pi\)
−0.678953 + 0.734181i \(0.737566\pi\)
\(68\) 4.64334 1.24418i 0.563088 0.150879i
\(69\) 1.37168 + 2.37581i 0.165130 + 0.286014i
\(70\) 0.296970 + 0.760703i 0.0354948 + 0.0909214i
\(71\) 6.20800 + 1.66343i 0.736754 + 0.197413i 0.607635 0.794216i \(-0.292118\pi\)
0.129119 + 0.991629i \(0.458785\pi\)
\(72\) 0.753497 + 1.30509i 0.0888005 + 0.153807i
\(73\) 9.93250i 1.16251i −0.813721 0.581256i \(-0.802562\pi\)
0.813721 0.581256i \(-0.197438\pi\)
\(74\) −0.797139 + 0.460228i −0.0926655 + 0.0535005i
\(75\) 0.920070 1.45262i 0.106241 0.167734i
\(76\) 3.63755 0.974678i 0.417255 0.111803i
\(77\) −7.97556 7.97556i −0.908899 0.908899i
\(78\) 0 0
\(79\) 8.37577i 0.942347i 0.882040 + 0.471174i \(0.156169\pi\)
−0.882040 + 0.471174i \(0.843831\pi\)
\(80\) 1.31425 8.61395i 0.146938 0.963069i
\(81\) 3.97480 6.88456i 0.441645 0.764951i
\(82\) −0.218196 + 0.814318i −0.0240957 + 0.0899264i
\(83\) −3.17194 −0.348166 −0.174083 0.984731i \(-0.555696\pi\)
−0.174083 + 0.984731i \(0.555696\pi\)
\(84\) −0.490855 + 1.83190i −0.0535567 + 0.199876i
\(85\) −0.597266 5.38828i −0.0647826 0.584441i
\(86\) −0.600143 0.600143i −0.0647151 0.0647151i
\(87\) −1.52109 0.407576i −0.163078 0.0436967i
\(88\) −0.548871 2.04842i −0.0585099 0.218362i
\(89\) −1.61226 6.01705i −0.170900 0.637806i −0.997214 0.0745967i \(-0.976233\pi\)
0.826314 0.563210i \(-0.190434\pi\)
\(90\) 0.788152 0.307686i 0.0830785 0.0324330i
\(91\) 0 0
\(92\) 11.1843 11.1843i 1.16604 1.16604i
\(93\) −0.941930 + 1.63147i −0.0976736 + 0.169176i
\(94\) 0.0582629 + 0.0336381i 0.00600936 + 0.00346951i
\(95\) −0.467892 4.22112i −0.0480048 0.433078i
\(96\) −0.378755 + 0.378755i −0.0386565 + 0.0386565i
\(97\) −10.1931 + 5.88500i −1.03495 + 0.597531i −0.918400 0.395654i \(-0.870518\pi\)
−0.116554 + 0.993184i \(0.537185\pi\)
\(98\) −0.0836950 + 0.0483213i −0.00845447 + 0.00488119i
\(99\) −8.26335 + 8.26335i −0.830498 + 0.830498i
\(100\) −9.46275 2.95632i −0.946275 0.295632i
\(101\) 0.873807 + 0.504493i 0.0869471 + 0.0501989i 0.542843 0.839834i \(-0.317348\pi\)
−0.455896 + 0.890033i \(0.650681\pi\)
\(102\) −0.0547379 + 0.0948088i −0.00541986 + 0.00938747i
\(103\) −6.00002 + 6.00002i −0.591200 + 0.591200i −0.937955 0.346756i \(-0.887283\pi\)
0.346756 + 0.937955i \(0.387283\pi\)
\(104\) 0 0
\(105\) 1.95880 + 0.858830i 0.191160 + 0.0838132i
\(106\) −0.0637574 0.237946i −0.00619267 0.0231113i
\(107\) 1.28261 + 4.78678i 0.123995 + 0.462755i 0.999802 0.0199063i \(-0.00633678\pi\)
−0.875807 + 0.482662i \(0.839670\pi\)
\(108\) 3.87389 + 1.03801i 0.372765 + 0.0998821i
\(109\) 6.51002 + 6.51002i 0.623546 + 0.623546i 0.946436 0.322890i \(-0.104654\pi\)
−0.322890 + 0.946436i \(0.604654\pi\)
\(110\) −1.18338 + 0.131172i −0.112831 + 0.0125068i
\(111\) −0.623956 + 2.32864i −0.0592233 + 0.221024i
\(112\) 10.8386 1.02415
\(113\) 1.94191 7.24731i 0.182680 0.681769i −0.812436 0.583051i \(-0.801859\pi\)
0.995115 0.0987188i \(-0.0314744\pi\)
\(114\) −0.0428811 + 0.0742723i −0.00401619 + 0.00695624i
\(115\) −10.5665 14.3713i −0.985327 1.34013i
\(116\) 9.07933i 0.842995i
\(117\) 0 0
\(118\) −0.243826 0.243826i −0.0224460 0.0224460i
\(119\) 6.51358 1.74531i 0.597099 0.159992i
\(120\) 0.238211 + 0.323986i 0.0217456 + 0.0295758i
\(121\) 4.71551 2.72250i 0.428683 0.247500i
\(122\) 0.168531i 0.0152581i
\(123\) 1.10402 + 1.91221i 0.0995457 + 0.172418i
\(124\) 10.4914 + 2.81117i 0.942157 + 0.252450i
\(125\) −4.90544 + 10.0467i −0.438756 + 0.898606i
\(126\) 0.526207 + 0.911417i 0.0468782 + 0.0811955i
\(127\) −15.9847 + 4.28310i −1.41842 + 0.380064i −0.884922 0.465739i \(-0.845788\pi\)
−0.533495 + 0.845803i \(0.679122\pi\)
\(128\) 3.56075 + 2.05580i 0.314729 + 0.181709i
\(129\) −2.22292 −0.195718
\(130\) 0 0
\(131\) −12.6880 −1.10856 −0.554278 0.832332i \(-0.687006\pi\)
−0.554278 + 0.832332i \(0.687006\pi\)
\(132\) −2.39467 1.38256i −0.208429 0.120337i
\(133\) 5.10267 1.36726i 0.442458 0.118556i
\(134\) −0.237414 0.411213i −0.0205095 0.0355234i
\(135\) 1.81616 4.14226i 0.156310 0.356509i
\(136\) 1.22467 + 0.328148i 0.105014 + 0.0281385i
\(137\) −7.47254 12.9428i −0.638422 1.10578i −0.985779 0.168046i \(-0.946254\pi\)
0.347357 0.937733i \(-0.387079\pi\)
\(138\) 0.360209i 0.0306631i
\(139\) 7.42380 4.28613i 0.629679 0.363545i −0.150949 0.988542i \(-0.548233\pi\)
0.780628 + 0.624996i \(0.214900\pi\)
\(140\) 1.85991 12.1904i 0.157191 1.03028i
\(141\) 0.170200 0.0456050i 0.0143334 0.00384063i
\(142\) 0.596714 + 0.596714i 0.0500751 + 0.0500751i
\(143\) 0 0
\(144\) 11.2297i 0.935809i
\(145\) 10.1221 + 1.54436i 0.840597 + 0.128252i
\(146\) 0.652082 1.12944i 0.0539666 0.0934730i
\(147\) −0.0655118 + 0.244493i −0.00540332 + 0.0201655i
\(148\) 13.8995 1.14253
\(149\) 3.14239 11.7276i 0.257435 0.960759i −0.709285 0.704922i \(-0.750982\pi\)
0.966720 0.255837i \(-0.0823511\pi\)
\(150\) 0.199989 0.104775i 0.0163290 0.00855486i
\(151\) −1.86999 1.86999i −0.152177 0.152177i 0.626912 0.779090i \(-0.284318\pi\)
−0.779090 + 0.626912i \(0.784318\pi\)
\(152\) 0.959392 + 0.257068i 0.0778170 + 0.0208510i
\(153\) −1.80829 6.74861i −0.146191 0.545593i
\(154\) −0.383306 1.43052i −0.0308877 0.115274i
\(155\) 4.91859 11.2182i 0.395071 0.901071i
\(156\) 0 0
\(157\) −10.3194 + 10.3194i −0.823581 + 0.823581i −0.986620 0.163039i \(-0.947870\pi\)
0.163039 + 0.986620i \(0.447870\pi\)
\(158\) −0.549880 + 0.952420i −0.0437461 + 0.0757705i
\(159\) −0.558753 0.322596i −0.0443120 0.0255835i
\(160\) 2.17641 2.71905i 0.172060 0.214960i
\(161\) 15.6891 15.6891i 1.23647 1.23647i
\(162\) 0.903960 0.521902i 0.0710218 0.0410045i
\(163\) −16.1907 + 9.34772i −1.26815 + 0.732170i −0.974639 0.223784i \(-0.928159\pi\)
−0.293516 + 0.955954i \(0.594826\pi\)
\(164\) 9.00186 9.00186i 0.702927 0.702927i
\(165\) −1.94868 + 2.43454i −0.151704 + 0.189529i
\(166\) −0.360686 0.208242i −0.0279947 0.0161627i
\(167\) −10.3389 + 17.9075i −0.800049 + 1.38572i 0.119535 + 0.992830i \(0.461860\pi\)
−0.919583 + 0.392895i \(0.871474\pi\)
\(168\) −0.353695 + 0.353695i −0.0272882 + 0.0272882i
\(169\) 0 0
\(170\) 0.285831 0.651920i 0.0219223 0.0500000i
\(171\) −1.41659 5.28680i −0.108330 0.404292i
\(172\) 3.31713 + 12.3797i 0.252929 + 0.943944i
\(173\) 17.5278 + 4.69655i 1.33261 + 0.357072i 0.853688 0.520784i \(-0.174360\pi\)
0.478924 + 0.877856i \(0.341027\pi\)
\(174\) −0.146208 0.146208i −0.0110840 0.0110840i
\(175\) −13.2741 4.14706i −1.00343 0.313489i
\(176\) −4.09004 + 15.2642i −0.308298 + 1.15058i
\(177\) −0.903127 −0.0678832
\(178\) 0.211694 0.790055i 0.0158672 0.0592171i
\(179\) 8.68110 15.0361i 0.648856 1.12385i −0.334540 0.942382i \(-0.608581\pi\)
0.983396 0.181470i \(-0.0580857\pi\)
\(180\) −12.6303 1.92703i −0.941404 0.143632i
\(181\) 24.9284i 1.85291i 0.376406 + 0.926455i \(0.377160\pi\)
−0.376406 + 0.926455i \(0.622840\pi\)
\(182\) 0 0
\(183\) 0.312119 + 0.312119i 0.0230725 + 0.0230725i
\(184\) 4.02953 1.07971i 0.297061 0.0795973i
\(185\) 2.36425 15.4959i 0.173823 1.13928i
\(186\) −0.214216 + 0.123678i −0.0157071 + 0.00906850i
\(187\) 9.83181i 0.718973i
\(188\) −0.507958 0.879810i −0.0370467 0.0641667i
\(189\) 5.43421 + 1.45609i 0.395280 + 0.105915i
\(190\) 0.223918 0.510708i 0.0162447 0.0370506i
\(191\) −3.39354 5.87779i −0.245548 0.425302i 0.716737 0.697343i \(-0.245635\pi\)
−0.962286 + 0.272041i \(0.912301\pi\)
\(192\) 2.52097 0.675492i 0.181935 0.0487494i
\(193\) 1.03504 + 0.597582i 0.0745040 + 0.0430149i 0.536789 0.843716i \(-0.319637\pi\)
−0.462285 + 0.886731i \(0.652970\pi\)
\(194\) −1.54543 −0.110955
\(195\) 0 0
\(196\) 1.45937 0.104241
\(197\) −17.4253 10.0605i −1.24150 0.716780i −0.272100 0.962269i \(-0.587718\pi\)
−0.969399 + 0.245489i \(0.921051\pi\)
\(198\) −1.48214 + 0.397137i −0.105331 + 0.0282233i
\(199\) −1.08885 1.88594i −0.0771862 0.133690i 0.824849 0.565354i \(-0.191260\pi\)
−0.902035 + 0.431663i \(0.857927\pi\)
\(200\) −1.77154 1.92314i −0.125267 0.135987i
\(201\) −1.20125 0.321875i −0.0847299 0.0227033i
\(202\) 0.0662412 + 0.114733i 0.00466071 + 0.00807259i
\(203\) 12.7363i 0.893912i
\(204\) 1.43168 0.826580i 0.100237 0.0578721i
\(205\) −8.50458 11.5669i −0.593986 0.807870i
\(206\) −1.07618 + 0.288362i −0.0749810 + 0.0200911i
\(207\) −16.2552 16.2552i −1.12982 1.12982i
\(208\) 0 0
\(209\) 7.70215i 0.532769i
\(210\) 0.166355 + 0.226257i 0.0114796 + 0.0156132i
\(211\) 9.97642 17.2797i 0.686805 1.18958i −0.286061 0.958211i \(-0.592346\pi\)
0.972866 0.231370i \(-0.0743208\pi\)
\(212\) −0.962781 + 3.59315i −0.0661240 + 0.246778i
\(213\) 2.21022 0.151442
\(214\) −0.168410 + 0.628516i −0.0115123 + 0.0429645i
\(215\) 14.3658 1.59238i 0.979740 0.108600i
\(216\) 0.747956 + 0.747956i 0.0508919 + 0.0508919i
\(217\) 14.7171 + 3.94345i 0.999064 + 0.267698i
\(218\) 0.312872 + 1.16765i 0.0211904 + 0.0790835i
\(219\) −0.884062 3.29936i −0.0597394 0.222950i
\(220\) 16.4661 + 7.21950i 1.11015 + 0.486738i
\(221\) 0 0
\(222\) −0.223829 + 0.223829i −0.0150224 + 0.0150224i
\(223\) 6.70672 11.6164i 0.449115 0.777891i −0.549213 0.835682i \(-0.685073\pi\)
0.998329 + 0.0577915i \(0.0184059\pi\)
\(224\) 3.75176 + 2.16608i 0.250675 + 0.144727i
\(225\) −4.29671 + 13.7531i −0.286447 + 0.916874i
\(226\) 0.696612 0.696612i 0.0463380 0.0463380i
\(227\) 12.7144 7.34064i 0.843882 0.487215i −0.0147000 0.999892i \(-0.504679\pi\)
0.858582 + 0.512677i \(0.171346\pi\)
\(228\) 1.12156 0.647535i 0.0742773 0.0428840i
\(229\) −2.65280 + 2.65280i −0.175302 + 0.175302i −0.789304 0.614002i \(-0.789558\pi\)
0.614002 + 0.789304i \(0.289558\pi\)
\(230\) −0.258035 2.32788i −0.0170143 0.153496i
\(231\) −3.35919 1.93943i −0.221018 0.127605i
\(232\) −1.19732 + 2.07382i −0.0786081 + 0.136153i
\(233\) −13.9459 + 13.9459i −0.913629 + 0.913629i −0.996556 0.0829267i \(-0.973573\pi\)
0.0829267 + 0.996556i \(0.473573\pi\)
\(234\) 0 0
\(235\) −1.06726 + 0.416648i −0.0696205 + 0.0271791i
\(236\) 1.34768 + 5.02962i 0.0877266 + 0.327400i
\(237\) 0.745502 + 2.78225i 0.0484256 + 0.180727i
\(238\) 0.855249 + 0.229163i 0.0554376 + 0.0148545i
\(239\) 10.1890 + 10.1890i 0.659074 + 0.659074i 0.955161 0.296087i \(-0.0956818\pi\)
−0.296087 + 0.955161i \(0.595682\pi\)
\(240\) −0.330136 2.97835i −0.0213102 0.192252i
\(241\) 2.09750 7.82799i 0.135112 0.504245i −0.864885 0.501970i \(-0.832609\pi\)
0.999997 0.00227574i \(-0.000724392\pi\)
\(242\) 0.714943 0.0459582
\(243\) 2.27812 8.50205i 0.146141 0.545407i
\(244\) 1.27247 2.20398i 0.0814615 0.141095i
\(245\) 0.248233 1.62698i 0.0158590 0.103944i
\(246\) 0.289920i 0.0184846i
\(247\) 0 0
\(248\) 2.02564 + 2.02564i 0.128628 + 0.128628i
\(249\) −1.05365 + 0.282325i −0.0667725 + 0.0178916i
\(250\) −1.21738 + 0.820378i −0.0769942 + 0.0518853i
\(251\) −4.04904 + 2.33771i −0.255573 + 0.147555i −0.622313 0.782768i \(-0.713807\pi\)
0.366740 + 0.930323i \(0.380474\pi\)
\(252\) 15.8922i 1.00111i
\(253\) 16.1749 + 28.0157i 1.01690 + 1.76133i
\(254\) −2.09884 0.562382i −0.131693 0.0352870i
\(255\) −0.677993 1.73671i −0.0424576 0.108757i
\(256\) −7.31927 12.6773i −0.457454 0.792334i
\(257\) −16.7639 + 4.49187i −1.04570 + 0.280195i −0.740474 0.672085i \(-0.765399\pi\)
−0.305227 + 0.952280i \(0.598732\pi\)
\(258\) −0.252772 0.145938i −0.0157369 0.00908569i
\(259\) 19.4980 1.21154
\(260\) 0 0
\(261\) 13.1959 0.816804
\(262\) −1.44277 0.832984i −0.0891346 0.0514619i
\(263\) −2.33916 + 0.626777i −0.144239 + 0.0386487i −0.330216 0.943905i \(-0.607122\pi\)
0.185977 + 0.982554i \(0.440455\pi\)
\(264\) −0.364647 0.631587i −0.0224425 0.0388715i
\(265\) 3.84207 + 1.68454i 0.236016 + 0.103480i
\(266\) 0.669994 + 0.179524i 0.0410800 + 0.0110073i
\(267\) −1.07112 1.85523i −0.0655515 0.113538i
\(268\) 7.17023i 0.437992i
\(269\) −8.42829 + 4.86608i −0.513882 + 0.296690i −0.734428 0.678687i \(-0.762549\pi\)
0.220546 + 0.975377i \(0.429216\pi\)
\(270\) 0.478463 0.351789i 0.0291183 0.0214092i
\(271\) 21.1708 5.67269i 1.28603 0.344591i 0.449880 0.893089i \(-0.351467\pi\)
0.836152 + 0.548498i \(0.184800\pi\)
\(272\) −6.68061 6.68061i −0.405071 0.405071i
\(273\) 0 0
\(274\) 1.96233i 0.118548i
\(275\) 10.8495 17.1293i 0.654250 1.03294i
\(276\) 2.71970 4.71067i 0.163707 0.283549i
\(277\) 4.67325 17.4408i 0.280788 1.04792i −0.671074 0.741390i \(-0.734167\pi\)
0.951862 0.306526i \(-0.0991666\pi\)
\(278\) 1.12556 0.0675067
\(279\) 4.08574 15.2482i 0.244607 0.912885i
\(280\) 2.03241 2.53915i 0.121460 0.151743i
\(281\) −11.3739 11.3739i −0.678510 0.678510i 0.281153 0.959663i \(-0.409283\pi\)
−0.959663 + 0.281153i \(0.909283\pi\)
\(282\) 0.0223477 + 0.00598805i 0.00133079 + 0.000356583i
\(283\) 2.93892 + 10.9682i 0.174700 + 0.651991i 0.996602 + 0.0823620i \(0.0262464\pi\)
−0.821902 + 0.569629i \(0.807087\pi\)
\(284\) −3.29818 12.3090i −0.195711 0.730403i
\(285\) −0.531134 1.36052i −0.0314616 0.0805904i
\(286\) 0 0
\(287\) 12.6276 12.6276i 0.745384 0.745384i
\(288\) 2.24424 3.88713i 0.132243 0.229052i
\(289\) 9.63189 + 5.56098i 0.566582 + 0.327116i
\(290\) 1.04961 + 0.840142i 0.0616354 + 0.0493348i
\(291\) −2.86213 + 2.86213i −0.167781 + 0.167781i
\(292\) −17.0553 + 9.84688i −0.998086 + 0.576245i
\(293\) −0.605883 + 0.349807i −0.0353961 + 0.0204359i −0.517594 0.855627i \(-0.673172\pi\)
0.482198 + 0.876063i \(0.339839\pi\)
\(294\) −0.0235007 + 0.0235007i −0.00137059 + 0.00137059i
\(295\) 5.83652 0.646952i 0.339815 0.0376670i
\(296\) 3.17481 + 1.83298i 0.184532 + 0.106540i
\(297\) −4.10129 + 7.10364i −0.237981 + 0.412195i
\(298\) 1.12725 1.12725i 0.0653001 0.0653001i
\(299\) 0 0
\(300\) −3.40646 0.139776i −0.196672 0.00806999i
\(301\) 4.65320 + 17.3660i 0.268206 + 1.00096i
\(302\) −0.0898718 0.335406i −0.00517154 0.0193004i
\(303\) 0.335163 + 0.0898068i 0.0192546 + 0.00515926i
\(304\) −5.23352 5.23352i −0.300163 0.300163i
\(305\) −2.24068 1.79351i −0.128301 0.102696i
\(306\) 0.237433 0.886110i 0.0135731 0.0506555i
\(307\) 14.2048 0.810709 0.405355 0.914159i \(-0.367148\pi\)
0.405355 + 0.914159i \(0.367148\pi\)
\(308\) −5.78818 + 21.6018i −0.329812 + 1.23088i
\(309\) −1.45904 + 2.52712i −0.0830016 + 0.143763i
\(310\) 1.29579 0.952730i 0.0735960 0.0541114i
\(311\) 21.4961i 1.21893i −0.792812 0.609466i \(-0.791384\pi\)
0.792812 0.609466i \(-0.208616\pi\)
\(312\) 0 0
\(313\) −9.36303 9.36303i −0.529230 0.529230i 0.391113 0.920343i \(-0.372090\pi\)
−0.920343 + 0.391113i \(0.872090\pi\)
\(314\) −1.85092 + 0.495953i −0.104454 + 0.0279882i
\(315\) −17.7175 2.70319i −0.998265 0.152308i
\(316\) 14.3822 8.30357i 0.809062 0.467112i
\(317\) 17.3024i 0.971798i 0.874015 + 0.485899i \(0.161508\pi\)
−0.874015 + 0.485899i \(0.838492\pi\)
\(318\) −0.0423577 0.0733657i −0.00237530 0.00411414i
\(319\) −17.9368 4.80615i −1.00427 0.269093i
\(320\) −15.8081 + 6.17130i −0.883697 + 0.344986i
\(321\) 0.852114 + 1.47590i 0.0475603 + 0.0823769i
\(322\) 2.81404 0.754019i 0.156820 0.0420198i
\(323\) −3.98788 2.30240i −0.221892 0.128109i
\(324\) −15.7622 −0.875675
\(325\) 0 0
\(326\) −2.45476 −0.135957
\(327\) 2.74193 + 1.58305i 0.151629 + 0.0875429i
\(328\) 3.24323 0.869022i 0.179078 0.0479837i
\(329\) −0.712553 1.23418i −0.0392843 0.0680424i
\(330\) −0.381418 + 0.148901i −0.0209964 + 0.00819676i
\(331\) −17.3574 4.65090i −0.954049 0.255637i −0.251969 0.967735i \(-0.581078\pi\)
−0.702079 + 0.712099i \(0.747745\pi\)
\(332\) 3.14460 + 5.44661i 0.172582 + 0.298921i
\(333\) 20.2015i 1.10704i
\(334\) −2.35130 + 1.35753i −0.128658 + 0.0742805i
\(335\) 7.99376 + 1.21963i 0.436746 + 0.0666353i
\(336\) 3.60035 0.964712i 0.196415 0.0526293i
\(337\) 4.83668 + 4.83668i 0.263471 + 0.263471i 0.826462 0.562992i \(-0.190350\pi\)
−0.562992 + 0.826462i \(0.690350\pi\)
\(338\) 0 0
\(339\) 2.58024i 0.140140i
\(340\) −8.66020 + 6.36741i −0.469665 + 0.345321i
\(341\) −11.1073 + 19.2384i −0.601493 + 1.04182i
\(342\) 0.186002 0.694170i 0.0100579 0.0375364i
\(343\) −17.4224 −0.940723
\(344\) −0.874884 + 3.26511i −0.0471706 + 0.176043i
\(345\) −4.78910 3.83334i −0.257836 0.206380i
\(346\) 1.68477 + 1.68477i 0.0905740 + 0.0905740i
\(347\) −17.9682 4.81456i −0.964582 0.258459i −0.258043 0.966133i \(-0.583078\pi\)
−0.706539 + 0.707674i \(0.749744\pi\)
\(348\) 0.808124 + 3.01596i 0.0433200 + 0.161672i
\(349\) −0.651455 2.43126i −0.0348716 0.130143i 0.946296 0.323302i \(-0.104793\pi\)
−0.981167 + 0.193160i \(0.938126\pi\)
\(350\) −1.23716 1.34303i −0.0661290 0.0717881i
\(351\) 0 0
\(352\) −4.46629 + 4.46629i −0.238054 + 0.238054i
\(353\) −16.3608 + 28.3377i −0.870795 + 1.50826i −0.00962005 + 0.999954i \(0.503062\pi\)
−0.861175 + 0.508308i \(0.830271\pi\)
\(354\) −0.102696 0.0592915i −0.00545822 0.00315131i
\(355\) −14.2837 + 1.58329i −0.758101 + 0.0840320i
\(356\) −8.73364 + 8.73364i −0.462882 + 0.462882i
\(357\) 2.00833 1.15951i 0.106292 0.0613677i
\(358\) 1.97428 1.13985i 0.104344 0.0602430i
\(359\) 0.699684 0.699684i 0.0369279 0.0369279i −0.688402 0.725330i \(-0.741687\pi\)
0.725330 + 0.688402i \(0.241687\pi\)
\(360\) −2.63077 2.10575i −0.138654 0.110983i
\(361\) 13.3304 + 7.69632i 0.701601 + 0.405069i
\(362\) −1.63658 + 2.83464i −0.0860167 + 0.148985i
\(363\) 1.32407 1.32407i 0.0694956 0.0694956i
\(364\) 0 0
\(365\) 8.07680 + 20.6891i 0.422759 + 1.08292i
\(366\) 0.0150005 + 0.0559825i 0.000784087 + 0.00292625i
\(367\) 3.74601 + 13.9803i 0.195540 + 0.729767i 0.992126 + 0.125241i \(0.0399705\pi\)
−0.796586 + 0.604525i \(0.793363\pi\)
\(368\) −30.0270 8.04571i −1.56526 0.419411i
\(369\) −13.0833 13.0833i −0.681087 0.681087i
\(370\) 1.28617 1.60685i 0.0668649 0.0835361i
\(371\) −1.35057 + 5.04039i −0.0701180 + 0.261684i
\(372\) 3.73524 0.193663
\(373\) −2.62454 + 9.79493i −0.135894 + 0.507162i 0.864099 + 0.503322i \(0.167889\pi\)
−0.999993 + 0.00384023i \(0.998778\pi\)
\(374\) −0.645471 + 1.11799i −0.0333765 + 0.0578098i
\(375\) −0.735254 + 3.77393i −0.0379683 + 0.194885i
\(376\) 0.267945i 0.0138182i
\(377\) 0 0
\(378\) 0.522337 + 0.522337i 0.0268661 + 0.0268661i
\(379\) −1.01470 + 0.271887i −0.0521215 + 0.0139659i −0.284786 0.958591i \(-0.591922\pi\)
0.232664 + 0.972557i \(0.425256\pi\)
\(380\) −6.78432 + 4.98817i −0.348028 + 0.255887i
\(381\) −4.92857 + 2.84551i −0.252498 + 0.145780i
\(382\) 0.891162i 0.0455958i
\(383\) −6.00353 10.3984i −0.306766 0.531334i 0.670887 0.741560i \(-0.265914\pi\)
−0.977653 + 0.210225i \(0.932580\pi\)
\(384\) 1.36579 + 0.365961i 0.0696975 + 0.0186754i
\(385\) 23.0983 + 10.1274i 1.17720 + 0.516138i
\(386\) 0.0784640 + 0.135904i 0.00399371 + 0.00691732i
\(387\) 17.9926 4.82111i 0.914616 0.245071i
\(388\) 20.2105 + 11.6685i 1.02603 + 0.592380i
\(389\) 7.37166 0.373758 0.186879 0.982383i \(-0.440163\pi\)
0.186879 + 0.982383i \(0.440163\pi\)
\(390\) 0 0
\(391\) −19.3406 −0.978097
\(392\) 0.333337 + 0.192452i 0.0168361 + 0.00972030i
\(393\) −4.21468 + 1.12932i −0.212603 + 0.0569667i
\(394\) −1.32097 2.28798i −0.0665494 0.115267i
\(395\) −6.81091 17.4465i −0.342694 0.877826i
\(396\) 22.3813 + 5.99704i 1.12470 + 0.301363i
\(397\) 3.02739 + 5.24359i 0.151940 + 0.263168i 0.931941 0.362611i \(-0.118115\pi\)
−0.780001 + 0.625779i \(0.784781\pi\)
\(398\) 0.285937i 0.0143327i
\(399\) 1.57330 0.908347i 0.0787637 0.0454742i
\(400\) 4.26706 + 19.0113i 0.213353 + 0.950565i
\(401\) 2.33226 0.624928i 0.116468 0.0312074i −0.200114 0.979773i \(-0.564131\pi\)
0.316582 + 0.948565i \(0.397465\pi\)
\(402\) −0.115465 0.115465i −0.00575886 0.00575886i
\(403\) 0 0
\(404\) 2.00058i 0.0995324i
\(405\) −2.68107 + 17.5725i −0.133224 + 0.873184i
\(406\) −0.836154 + 1.44826i −0.0414976 + 0.0718760i
\(407\) −7.35772 + 27.4594i −0.364709 + 1.36111i
\(408\) 0.436016 0.0215860
\(409\) −5.21187 + 19.4510i −0.257710 + 0.961788i 0.708852 + 0.705357i \(0.249213\pi\)
−0.966563 + 0.256431i \(0.917453\pi\)
\(410\) −0.207683 1.87363i −0.0102567 0.0925319i
\(411\) −3.63422 3.63422i −0.179263 0.179263i
\(412\) 16.2511 + 4.35446i 0.800632 + 0.214529i
\(413\) 1.89050 + 7.05543i 0.0930253 + 0.347175i
\(414\) −0.781227 2.91558i −0.0383952 0.143293i
\(415\) 6.60706 2.57933i 0.324328 0.126614i
\(416\) 0 0
\(417\) 2.08453 2.08453i 0.102080 0.102080i
\(418\) −0.505656 + 0.875822i −0.0247324 + 0.0428378i
\(419\) −26.0503 15.0401i −1.27264 0.734759i −0.297156 0.954829i \(-0.596038\pi\)
−0.975484 + 0.220070i \(0.929371\pi\)
\(420\) −0.467206 4.21493i −0.0227973 0.205668i
\(421\) −9.24685 + 9.24685i −0.450664 + 0.450664i −0.895575 0.444911i \(-0.853235\pi\)
0.444911 + 0.895575i \(0.353235\pi\)
\(422\) 2.26887 1.30993i 0.110447 0.0637664i
\(423\) −1.27871 + 0.738265i −0.0621731 + 0.0358957i
\(424\) −0.693751 + 0.693751i −0.0336915 + 0.0336915i
\(425\) 5.62567 + 10.7379i 0.272885 + 0.520866i
\(426\) 0.251327 + 0.145104i 0.0121769 + 0.00703031i
\(427\) 1.78499 3.09170i 0.0863818 0.149618i
\(428\) 6.94792 6.94792i 0.335840 0.335840i
\(429\) 0 0
\(430\) 1.73810 + 0.762061i 0.0838185 + 0.0367499i
\(431\) 1.63348 + 6.09624i 0.0786821 + 0.293646i 0.994043 0.108989i \(-0.0347613\pi\)
−0.915361 + 0.402634i \(0.868095\pi\)
\(432\) −2.04006 7.61362i −0.0981527 0.366311i
\(433\) 11.8706 + 3.18071i 0.570463 + 0.152855i 0.532509 0.846424i \(-0.321249\pi\)
0.0379543 + 0.999279i \(0.487916\pi\)
\(434\) 1.41461 + 1.41461i 0.0679036 + 0.0679036i
\(435\) 3.49982 0.387939i 0.167803 0.0186002i
\(436\) 4.72458 17.6324i 0.226266 0.844438i
\(437\) −15.1513 −0.724783
\(438\) 0.116080 0.433215i 0.00554650 0.0206998i
\(439\) −17.2223 + 29.8300i −0.821977 + 1.42371i 0.0822306 + 0.996613i \(0.473796\pi\)
−0.904208 + 0.427093i \(0.859538\pi\)
\(440\) 2.80899 + 3.82046i 0.133913 + 0.182133i
\(441\) 2.12104i 0.101002i
\(442\) 0 0
\(443\) −5.39452 5.39452i −0.256301 0.256301i 0.567247 0.823548i \(-0.308009\pi\)
−0.823548 + 0.567247i \(0.808009\pi\)
\(444\) 4.61713 1.23716i 0.219119 0.0587128i
\(445\) 8.25118 + 11.2223i 0.391143 + 0.531987i
\(446\) 1.52526 0.880610i 0.0722232 0.0416981i
\(447\) 4.17534i 0.197487i
\(448\) −10.5542 18.2804i −0.498639 0.863668i
\(449\) 30.0741 + 8.05832i 1.41928 + 0.380296i 0.885229 0.465155i \(-0.154002\pi\)
0.534053 + 0.845451i \(0.320668\pi\)
\(450\) −1.39149 + 1.28180i −0.0655957 + 0.0604247i
\(451\) 13.0186 + 22.5489i 0.613021 + 1.06178i
\(452\) −14.3697 + 3.85034i −0.675892 + 0.181105i
\(453\) −0.787612 0.454728i −0.0370053 0.0213650i
\(454\) 1.92769 0.0904710
\(455\) 0 0
\(456\) 0.341570 0.0159955
\(457\) 2.69118 + 1.55375i 0.125888 + 0.0726814i 0.561622 0.827394i \(-0.310178\pi\)
−0.435734 + 0.900076i \(0.643511\pi\)
\(458\) −0.475812 + 0.127494i −0.0222333 + 0.00595738i
\(459\) −2.45200 4.24698i −0.114449 0.198232i
\(460\) −14.2018 + 32.3913i −0.662163 + 1.51025i
\(461\) 16.1274 + 4.32132i 0.751126 + 0.201264i 0.614018 0.789292i \(-0.289552\pi\)
0.137109 + 0.990556i \(0.456219\pi\)
\(462\) −0.254652 0.441070i −0.0118475 0.0205205i
\(463\) 15.6396i 0.726832i −0.931627 0.363416i \(-0.881610\pi\)
0.931627 0.363416i \(-0.118390\pi\)
\(464\) 15.4536 8.92212i 0.717414 0.414199i
\(465\) 0.635348 4.16425i 0.0294636 0.193112i
\(466\) −2.50138 + 0.670243i −0.115874 + 0.0310484i
\(467\) 15.0821 + 15.0821i 0.697916 + 0.697916i 0.963961 0.266045i \(-0.0857169\pi\)
−0.266045 + 0.963961i \(0.585717\pi\)
\(468\) 0 0
\(469\) 10.0582i 0.464447i
\(470\) −0.148713 0.0226895i −0.00685963 0.00104659i
\(471\) −2.50939 + 4.34640i −0.115627 + 0.200272i
\(472\) −0.355447 + 1.32655i −0.0163608 + 0.0610592i
\(473\) −26.2128 −1.20527
\(474\) −0.0978863 + 0.365317i −0.00449607 + 0.0167796i
\(475\) 4.40709 + 8.41199i 0.202211 + 0.385969i
\(476\) −9.45433 9.45433i −0.433339 0.433339i
\(477\) 5.22226 + 1.39930i 0.239111 + 0.0640696i
\(478\) 0.489686 + 1.82753i 0.0223977 + 0.0835894i
\(479\) 11.0386 + 41.1964i 0.504364 + 1.88231i 0.469522 + 0.882921i \(0.344426\pi\)
0.0348421 + 0.999393i \(0.488907\pi\)
\(480\) 0.480942 1.09693i 0.0219519 0.0500676i
\(481\) 0 0
\(482\) 0.752428 0.752428i 0.0342722 0.0342722i
\(483\) 3.81514 6.60802i 0.173595 0.300675i
\(484\) −9.34972 5.39806i −0.424987 0.245366i
\(485\) 16.4464 20.5470i 0.746794 0.932990i
\(486\) 0.817218 0.817218i 0.0370698 0.0370698i
\(487\) −13.1780 + 7.60834i −0.597154 + 0.344767i −0.767921 0.640545i \(-0.778709\pi\)
0.170767 + 0.985311i \(0.445375\pi\)
\(488\) 0.581293 0.335610i 0.0263139 0.0151923i
\(489\) −4.54620 + 4.54620i −0.205586 + 0.205586i
\(490\) 0.135041 0.168710i 0.00610051 0.00762154i
\(491\) 24.2273 + 13.9876i 1.09336 + 0.631254i 0.934470 0.356042i \(-0.115874\pi\)
0.158894 + 0.987296i \(0.449207\pi\)
\(492\) 2.18900 3.79145i 0.0986876 0.170932i
\(493\) 7.85029 7.85029i 0.353559 0.353559i
\(494\) 0 0
\(495\) 10.4928 23.9318i 0.471616 1.07565i
\(496\) −5.52498 20.6195i −0.248079 0.925844i
\(497\) −4.62661 17.2668i −0.207532 0.774520i
\(498\) −0.138347 0.0370700i −0.00619949 0.00166115i
\(499\) 1.67479 + 1.67479i 0.0749740 + 0.0749740i 0.743599 0.668625i \(-0.233117\pi\)
−0.668625 + 0.743599i \(0.733117\pi\)
\(500\) 22.1146 1.53689i 0.988994 0.0687317i
\(501\) −1.84047 + 6.86873i −0.0822261 + 0.306872i
\(502\) −0.613896 −0.0273995
\(503\) 5.99415 22.3705i 0.267266 0.997451i −0.693583 0.720377i \(-0.743969\pi\)
0.960849 0.277073i \(-0.0893645\pi\)
\(504\) 2.09575 3.62995i 0.0933523 0.161691i
\(505\) −2.23035 0.340289i −0.0992493 0.0151427i
\(506\) 4.24760i 0.188829i
\(507\) 0 0
\(508\) 23.2016 + 23.2016i 1.02940 + 1.02940i
\(509\) −5.82068 + 1.55965i −0.257997 + 0.0691301i −0.385499 0.922708i \(-0.625971\pi\)
0.127502 + 0.991838i \(0.459304\pi\)
\(510\) 0.0369217 0.241995i 0.00163492 0.0107157i
\(511\) −23.9248 + 13.8130i −1.05837 + 0.611051i
\(512\) 10.1453i 0.448362i
\(513\) −1.92087 3.32705i −0.0848086 0.146893i
\(514\) −2.20114 0.589794i −0.0970881 0.0260147i
\(515\) 7.61882 17.3769i 0.335725 0.765717i
\(516\) 2.20376 + 3.81703i 0.0970152 + 0.168035i
\(517\) 2.00701 0.537776i 0.0882681 0.0236514i
\(518\) 2.21714 + 1.28007i 0.0974155 + 0.0562429i
\(519\) 6.24038 0.273922
\(520\) 0 0
\(521\) 27.8183 1.21874 0.609371 0.792886i \(-0.291422\pi\)
0.609371 + 0.792886i \(0.291422\pi\)
\(522\) 1.50052 + 0.866326i 0.0656760 + 0.0379180i
\(523\) 0.529059 0.141761i 0.0231341 0.00619877i −0.247233 0.968956i \(-0.579521\pi\)
0.270368 + 0.962757i \(0.412855\pi\)
\(524\) 12.5786 + 21.7868i 0.549500 + 0.951762i
\(525\) −4.77850 0.196075i −0.208551 0.00855742i
\(526\) −0.307138 0.0822974i −0.0133919 0.00358834i
\(527\) −6.64060 11.5019i −0.289269 0.501029i
\(528\) 5.43449i 0.236506i
\(529\) −35.1924 + 20.3183i −1.53010 + 0.883406i
\(530\) 0.326295 + 0.443788i 0.0141733 + 0.0192769i
\(531\) 7.31002 1.95871i 0.317228 0.0850010i
\(532\) −7.40643 7.40643i −0.321110 0.321110i
\(533\) 0 0
\(534\) 0.281282i 0.0121722i
\(535\) −6.56410 8.92772i −0.283791 0.385979i
\(536\) −0.945563 + 1.63776i −0.0408421 + 0.0707406i
\(537\) 1.54536 5.76736i 0.0666871 0.248880i
\(538\) −1.27786 −0.0550923
\(539\) −0.772518 + 2.88308i −0.0332747 + 0.124183i
\(540\) −8.91326 + 0.987995i −0.383566 + 0.0425165i
\(541\) 29.7507 + 29.7507i 1.27908 + 1.27908i 0.941182 + 0.337899i \(0.109716\pi\)
0.337899 + 0.941182i \(0.390284\pi\)
\(542\) 2.77978 + 0.744839i 0.119402 + 0.0319936i
\(543\) 2.21880 + 8.28067i 0.0952177 + 0.355357i
\(544\) −0.977367 3.64758i −0.0419043 0.156389i
\(545\) −18.8539 8.26641i −0.807612 0.354094i
\(546\) 0 0
\(547\) −14.2594 + 14.2594i −0.609688 + 0.609688i −0.942864 0.333176i \(-0.891880\pi\)
0.333176 + 0.942864i \(0.391880\pi\)
\(548\) −14.8162 + 25.6625i −0.632919 + 1.09625i
\(549\) −3.20326 1.84940i −0.136712 0.0789306i
\(550\) 2.35827 1.23551i 0.100557 0.0526825i
\(551\) 6.14984 6.14984i 0.261992 0.261992i
\(552\) 1.24242 0.717314i 0.0528811 0.0305309i
\(553\) 20.1750 11.6481i 0.857930 0.495326i
\(554\) 1.67641 1.67641i 0.0712240 0.0712240i
\(555\) −0.593894 5.35786i −0.0252094 0.227428i
\(556\) −14.7196 8.49837i −0.624251 0.360411i
\(557\) 17.5886 30.4644i 0.745254 1.29082i −0.204822 0.978799i \(-0.565662\pi\)
0.950076 0.312018i \(-0.101005\pi\)
\(558\) 1.46566 1.46566i 0.0620463 0.0620463i
\(559\) 0 0
\(560\) −22.5765 + 8.81362i −0.954030 + 0.372443i
\(561\) 0.875100 + 3.26592i 0.0369468 + 0.137887i
\(562\) −0.546631 2.04005i −0.0230582 0.0860545i
\(563\) −40.5028 10.8527i −1.70699 0.457387i −0.732306 0.680975i \(-0.761556\pi\)
−0.974684 + 0.223589i \(0.928223\pi\)
\(564\) −0.247042 0.247042i −0.0104024 0.0104024i
\(565\) 1.84835 + 16.6750i 0.0777607 + 0.701523i
\(566\) −0.385887 + 1.44015i −0.0162201 + 0.0605341i
\(567\) −22.1108 −0.928566
\(568\) 0.869884 3.24645i 0.0364995 0.136218i
\(569\) 13.7741 23.8575i 0.577441 1.00016i −0.418331 0.908295i \(-0.637385\pi\)
0.995772 0.0918621i \(-0.0292819\pi\)
\(570\) 0.0289241 0.189576i 0.00121150 0.00794048i
\(571\) 4.72029i 0.197538i −0.995110 0.0987690i \(-0.968510\pi\)
0.995110 0.0987690i \(-0.0314905\pi\)
\(572\) 0 0
\(573\) −1.65043 1.65043i −0.0689476 0.0689476i
\(574\) 2.26492 0.606884i 0.0945360 0.0253308i
\(575\) 33.6959 + 21.3426i 1.40521 + 0.890046i
\(576\) −18.9400 + 10.9350i −0.789168 + 0.455626i
\(577\) 6.73701i 0.280465i 0.990119 + 0.140233i \(0.0447851\pi\)
−0.990119 + 0.140233i \(0.955215\pi\)
\(578\) 0.730170 + 1.26469i 0.0303711 + 0.0526043i
\(579\) 0.397008 + 0.106378i 0.0164991 + 0.00442092i
\(580\) −7.38303 18.9120i −0.306564 0.785276i
\(581\) 4.41118 + 7.64038i 0.183006 + 0.316977i
\(582\) −0.513359 + 0.137554i −0.0212794 + 0.00570180i
\(583\) −6.58884 3.80407i −0.272882 0.157548i
\(584\) −5.19417 −0.214936
\(585\) 0 0
\(586\) −0.0918611 −0.00379475
\(587\) 4.49847 + 2.59719i 0.185672 + 0.107198i 0.589955 0.807436i \(-0.299146\pi\)
−0.404283 + 0.914634i \(0.632479\pi\)
\(588\) 0.484772 0.129894i 0.0199916 0.00535674i
\(589\) −5.20218 9.01044i −0.214352 0.371269i
\(590\) 0.706152 + 0.309609i 0.0290718 + 0.0127464i
\(591\) −6.68376 1.79091i −0.274933 0.0736681i
\(592\) −13.6589 23.6578i −0.561375 0.972331i
\(593\) 12.9267i 0.530836i 0.964133 + 0.265418i \(0.0855100\pi\)
−0.964133 + 0.265418i \(0.914490\pi\)
\(594\) −0.932726 + 0.538510i −0.0382702 + 0.0220953i
\(595\) −12.1483 + 8.93206i −0.498033 + 0.366179i
\(596\) −23.2529 + 6.23060i −0.952477 + 0.255215i
\(597\) −0.529553 0.529553i −0.0216732 0.0216732i
\(598\) 0 0
\(599\) 16.7523i 0.684481i −0.939612 0.342241i \(-0.888814\pi\)
0.939612 0.342241i \(-0.111186\pi\)
\(600\) −0.759641 0.481148i −0.0310122 0.0196428i
\(601\) −6.28803 + 10.8912i −0.256494 + 0.444261i −0.965300 0.261142i \(-0.915901\pi\)
0.708806 + 0.705403i \(0.249234\pi\)
\(602\) −0.610977 + 2.28020i −0.0249016 + 0.0929340i
\(603\) 10.4212 0.424384
\(604\) −1.35713 + 5.06486i −0.0552207 + 0.206086i
\(605\) −7.60840 + 9.50539i −0.309325 + 0.386449i
\(606\) 0.0322160 + 0.0322160i 0.00130868 + 0.00130868i
\(607\) −36.1909 9.69731i −1.46894 0.393602i −0.566374 0.824149i \(-0.691654\pi\)
−0.902568 + 0.430547i \(0.858321\pi\)
\(608\) −0.765660 2.85748i −0.0310516 0.115886i
\(609\) 1.13362 + 4.23072i 0.0459366 + 0.171438i
\(610\) −0.137044 0.351045i −0.00554877 0.0142134i
\(611\) 0 0
\(612\) −9.79548 + 9.79548i −0.395959 + 0.395959i
\(613\) 8.64732 14.9776i 0.349262 0.604940i −0.636856 0.770982i \(-0.719766\pi\)
0.986119 + 0.166043i \(0.0530990\pi\)
\(614\) 1.61524 + 0.932562i 0.0651860 + 0.0376351i
\(615\) −3.85458 3.08532i −0.155432 0.124412i
\(616\) −4.17079 + 4.17079i −0.168046 + 0.168046i
\(617\) 10.5136 6.07005i 0.423263 0.244371i −0.273210 0.961955i \(-0.588085\pi\)
0.696472 + 0.717584i \(0.254752\pi\)
\(618\) −0.331818 + 0.191575i −0.0133477 + 0.00770628i
\(619\) 2.99993 2.99993i 0.120577 0.120577i −0.644243 0.764821i \(-0.722828\pi\)
0.764821 + 0.644243i \(0.222828\pi\)
\(620\) −24.1393 + 2.67573i −0.969456 + 0.107460i
\(621\) −13.9739 8.06784i −0.560753 0.323751i
\(622\) 1.41125 2.44435i 0.0565858 0.0980095i
\(623\) −12.2514 + 12.2514i −0.490840 + 0.490840i
\(624\) 0 0
\(625\) 2.04819 24.9160i 0.0819276 0.996638i
\(626\) −0.449988 1.67938i −0.0179851 0.0671215i
\(627\) 0.685545 + 2.55849i 0.0273780 + 0.102176i
\(628\) 27.9502 + 7.48923i 1.11533 + 0.298853i
\(629\) −12.0180 12.0180i −0.479188 0.479188i
\(630\) −1.83721 1.47056i −0.0731961 0.0585884i
\(631\) −5.60031 + 20.9006i −0.222945 + 0.832041i 0.760273 + 0.649604i \(0.225065\pi\)
−0.983218 + 0.182437i \(0.941601\pi\)
\(632\) 4.38008 0.174230
\(633\) 1.77594 6.62791i 0.0705874 0.263436i
\(634\) −1.13592 + 1.96748i −0.0451133 + 0.0781385i
\(635\) 29.8128 21.9199i 1.18309 0.869863i
\(636\) 1.27926i 0.0507260i
\(637\) 0 0
\(638\) −1.72409 1.72409i −0.0682572 0.0682572i
\(639\) −17.8898 + 4.79356i −0.707710 + 0.189630i
\(640\) −9.08865 1.38667i −0.359260 0.0548131i
\(641\) 39.2467 22.6591i 1.55015 0.894980i 0.552022 0.833829i \(-0.313856\pi\)
0.998129 0.0611509i \(-0.0194771\pi\)
\(642\) 0.223769i 0.00883148i
\(643\) −15.8249 27.4095i −0.624072 1.08092i −0.988719 0.149779i \(-0.952144\pi\)
0.364647 0.931146i \(-0.381190\pi\)
\(644\) −42.4939 11.3862i −1.67449 0.448679i
\(645\) 4.63028 1.80761i 0.182317 0.0711747i
\(646\) −0.302312 0.523619i −0.0118943 0.0206015i
\(647\) 36.6924 9.83169i 1.44253 0.386524i 0.549109 0.835751i \(-0.314967\pi\)
0.893418 + 0.449227i \(0.148301\pi\)
\(648\) −3.60026 2.07861i −0.141431 0.0816555i
\(649\) −10.6497 −0.418038
\(650\) 0 0
\(651\) 5.23971 0.205361
\(652\) 32.1023 + 18.5343i 1.25722 + 0.725858i
\(653\) −2.66385 + 0.713775i −0.104244 + 0.0279322i −0.310564 0.950552i \(-0.600518\pi\)
0.206320 + 0.978485i \(0.433851\pi\)
\(654\) 0.207859 + 0.360022i 0.00812792 + 0.0140780i
\(655\) 26.4287 10.3175i 1.03265 0.403138i
\(656\) −24.1677 6.47571i −0.943590 0.252834i
\(657\) 14.3114 + 24.7881i 0.558342 + 0.967076i
\(658\) 0.187120i 0.00729470i
\(659\) 1.80219 1.04050i 0.0702034 0.0405320i −0.464487 0.885580i \(-0.653761\pi\)
0.534691 + 0.845048i \(0.320428\pi\)
\(660\) 6.11228 + 0.932564i 0.237920 + 0.0363000i
\(661\) −36.3010 + 9.72683i −1.41195 + 0.378330i −0.882619 0.470089i \(-0.844222\pi\)
−0.529326 + 0.848418i \(0.677555\pi\)
\(662\) −1.66840 1.66840i −0.0648440 0.0648440i
\(663\) 0 0
\(664\) 1.65876i 0.0643723i
\(665\) −9.51689 + 6.99729i −0.369049 + 0.271343i
\(666\) 1.32626 2.29714i 0.0513914 0.0890125i
\(667\) 9.45440 35.2843i 0.366076 1.36621i
\(668\) 40.9991 1.58630
\(669\) 1.19389 4.45566i 0.0461585 0.172266i
\(670\) 0.828912 + 0.663486i 0.0320237 + 0.0256327i
\(671\) 3.68052 + 3.68052i 0.142085 + 0.142085i
\(672\) 1.43905 + 0.385592i 0.0555125 + 0.0148745i
\(673\) −4.65984 17.3908i −0.179624 0.670364i −0.995718 0.0924454i \(-0.970532\pi\)
0.816094 0.577919i \(-0.196135\pi\)
\(674\) 0.232451 + 0.867519i 0.00895368 + 0.0334156i
\(675\) −0.414638 + 10.1050i −0.0159594 + 0.388943i
\(676\) 0 0
\(677\) 15.4021 15.4021i 0.591952 0.591952i −0.346206 0.938158i \(-0.612530\pi\)
0.938158 + 0.346206i \(0.112530\pi\)
\(678\) 0.169396 0.293403i 0.00650563 0.0112681i
\(679\) 28.3508 + 16.3684i 1.08801 + 0.628160i
\(680\) −2.81778 + 0.312338i −0.108057 + 0.0119776i
\(681\) 3.57007 3.57007i 0.136805 0.136805i
\(682\) −2.52605 + 1.45841i −0.0967273 + 0.0558455i
\(683\) 5.34122 3.08376i 0.204376 0.117997i −0.394319 0.918974i \(-0.629019\pi\)
0.598695 + 0.800977i \(0.295686\pi\)
\(684\) −7.67369 + 7.67369i −0.293411 + 0.293411i
\(685\) 26.0897 + 20.8830i 0.996838 + 0.797900i
\(686\) −1.98113 1.14381i −0.0756398 0.0436707i
\(687\) −0.645085 + 1.11732i −0.0246115 + 0.0426284i
\(688\) 17.8113 17.8113i 0.679050 0.679050i
\(689\) 0 0
\(690\) −0.292911 0.750304i −0.0111509 0.0285636i
\(691\) −3.39841 12.6830i −0.129282 0.482486i 0.870674 0.491860i \(-0.163683\pi\)
−0.999956 + 0.00937405i \(0.997016\pi\)
\(692\) −9.31214 34.7534i −0.353994 1.32112i
\(693\) 31.3960 + 8.41252i 1.19263 + 0.319565i
\(694\) −1.72710 1.72710i −0.0655600 0.0655600i
\(695\) −11.9782 + 14.9647i −0.454359 + 0.567643i
\(696\) −0.213140 + 0.795450i −0.00807906 + 0.0301515i
\(697\) −15.5666 −0.589627
\(698\) 0.0855377 0.319231i 0.00323765 0.0120831i
\(699\) −3.39126 + 5.87383i −0.128269 + 0.222169i
\(700\) 6.03870 + 26.9046i 0.228241 + 1.01690i
\(701\) 23.2292i 0.877354i −0.898645 0.438677i \(-0.855447\pi\)
0.898645 0.438677i \(-0.144553\pi\)
\(702\) 0 0
\(703\) −9.41478 9.41478i −0.355085 0.355085i
\(704\) 29.7274 7.96543i 1.12039 0.300208i
\(705\) −0.317437 + 0.233395i −0.0119554 + 0.00879017i
\(706\) −3.72081 + 2.14821i −0.140034 + 0.0808490i
\(707\) 2.80636i 0.105544i
\(708\) 0.895342 + 1.55078i 0.0336490 + 0.0582818i
\(709\) −2.00482 0.537189i −0.0752925 0.0201746i 0.220976 0.975279i \(-0.429076\pi\)
−0.296269 + 0.955105i \(0.595742\pi\)
\(710\) −1.72817 0.757707i −0.0648569 0.0284362i
\(711\) −12.0684 20.9030i −0.452599 0.783925i
\(712\) −3.14660 + 0.843128i −0.117924 + 0.0315976i
\(713\) −37.8447 21.8496i −1.41729 0.818275i
\(714\) 0.304493 0.0113954
\(715\) 0 0
\(716\) −34.4251 −1.28653
\(717\) 4.29148 + 2.47769i 0.160268 + 0.0925309i
\(718\) 0.125497 0.0336269i 0.00468351 0.00125494i
\(719\) 3.36848 + 5.83438i 0.125623 + 0.217586i 0.921976 0.387246i \(-0.126574\pi\)
−0.796353 + 0.604832i \(0.793240\pi\)
\(720\) 9.13165 + 23.3911i 0.340316 + 0.871735i
\(721\) 22.7966 + 6.10834i 0.848991 + 0.227486i
\(722\) 1.01055 + 1.75032i 0.0376086 + 0.0651401i
\(723\) 2.78698i 0.103649i
\(724\) 42.8050 24.7135i 1.59083 0.918469i
\(725\) −22.3399 + 5.01416i −0.829683 + 0.186221i
\(726\) 0.237489 0.0636349i 0.00881403 0.00236171i
\(727\) 34.4733 + 34.4733i 1.27854 + 1.27854i 0.941483 + 0.337062i \(0.109433\pi\)
0.337062 + 0.941483i \(0.390567\pi\)
\(728\) 0 0
\(729\) 20.8218i 0.771179i
\(730\) −0.439841 + 2.88284i −0.0162792 + 0.106699i
\(731\) 7.83580 13.5720i 0.289817 0.501979i
\(732\) 0.226517 0.845374i 0.00837232 0.0312459i
\(733\) 28.7555 1.06211 0.531054 0.847338i \(-0.321796\pi\)
0.531054 + 0.847338i \(0.321796\pi\)
\(734\) −0.491861 + 1.83565i −0.0181549 + 0.0677551i
\(735\) −0.0623555 0.562544i −0.00230002 0.0207498i
\(736\) −8.78585 8.78585i −0.323851 0.323851i
\(737\) −14.1652 3.79556i −0.521783 0.139811i
\(738\) −0.628783 2.34665i −0.0231458 0.0863813i
\(739\) −7.94129 29.6373i −0.292125 1.09023i −0.943474 0.331447i \(-0.892463\pi\)
0.651349 0.758778i \(-0.274203\pi\)
\(740\) −28.9523 + 11.3027i −1.06431 + 0.415494i
\(741\) 0 0
\(742\) −0.484483 + 0.484483i −0.0177859 + 0.0177859i
\(743\) 26.4817 45.8676i 0.971519 1.68272i 0.280543 0.959841i \(-0.409485\pi\)
0.690976 0.722878i \(-0.257181\pi\)
\(744\) 0.853172 + 0.492579i 0.0312788 + 0.0180588i
\(745\) 2.99099 + 26.9834i 0.109581 + 0.988596i
\(746\) −0.941490 + 0.941490i −0.0344704 + 0.0344704i
\(747\) 7.91608 4.57035i 0.289634 0.167220i
\(748\) 16.8824 9.74706i 0.617282 0.356388i
\(749\) 9.74639 9.74639i 0.356125 0.356125i
\(750\) −0.331370 + 0.380868i −0.0120999 + 0.0139073i
\(751\) −40.3780 23.3123i −1.47341 0.850676i −0.473862 0.880599i \(-0.657140\pi\)
−0.999552 + 0.0299230i \(0.990474\pi\)
\(752\) −0.998326 + 1.72915i −0.0364052 + 0.0630557i
\(753\) −1.13693 + 1.13693i −0.0414321 + 0.0414321i
\(754\) 0 0
\(755\) 5.41574 + 2.37451i 0.197099 + 0.0864172i
\(756\) −2.88708 10.7747i −0.105002 0.391873i
\(757\) −0.323327 1.20667i −0.0117515 0.0438572i 0.959801 0.280681i \(-0.0905603\pi\)
−0.971553 + 0.236824i \(0.923894\pi\)
\(758\) −0.133232 0.0356995i −0.00483922 0.00129666i
\(759\) 7.86654 + 7.86654i 0.285537 + 0.285537i
\(760\) −2.20742 + 0.244683i −0.0800716 + 0.00887558i
\(761\) 5.28278 19.7156i 0.191501 0.714690i −0.801644 0.597801i \(-0.796041\pi\)
0.993145 0.116889i \(-0.0372921\pi\)
\(762\) −0.747246 −0.0270698
\(763\) 6.62754 24.7343i 0.239933 0.895442i
\(764\) −6.72858 + 11.6542i −0.243432 + 0.421636i
\(765\) 9.25436 + 12.5867i 0.334592 + 0.455073i
\(766\) 1.57656i 0.0569633i
\(767\) 0 0
\(768\) −3.55968 3.55968i −0.128449 0.128449i
\(769\) −35.6638 + 9.55609i −1.28607 + 0.344602i −0.836167 0.548476i \(-0.815208\pi\)
−0.449904 + 0.893077i \(0.648542\pi\)
\(770\) 1.96167 + 2.66803i 0.0706935 + 0.0961491i
\(771\) −5.16879 + 2.98420i −0.186150 + 0.107473i
\(772\) 2.36972i 0.0852882i
\(773\) 10.6918 + 18.5187i 0.384557 + 0.666072i 0.991708 0.128515i \(-0.0410209\pi\)
−0.607151 + 0.794587i \(0.707688\pi\)
\(774\) 2.36248 + 0.633024i 0.0849175 + 0.0227536i
\(775\) −1.12294 + 27.3669i −0.0403372 + 0.983047i
\(776\) 3.07754 + 5.33045i 0.110477 + 0.191352i
\(777\) 6.47681 1.73545i 0.232354 0.0622591i
\(778\) 0.838242 + 0.483959i 0.0300524 + 0.0173508i
\(779\) −12.1947 −0.436921
\(780\) 0 0
\(781\) 26.0630 0.932608
\(782\) −2.19925 1.26974i −0.0786449 0.0454057i
\(783\) 8.94666 2.39725i 0.319728 0.0856708i
\(784\) −1.43410 2.48393i −0.0512179 0.0887120i
\(785\) 13.1036 29.8865i 0.467688 1.06670i
\(786\) −0.553399 0.148283i −0.0197391 0.00528907i
\(787\) 19.6914 + 34.1065i 0.701923 + 1.21577i 0.967790 + 0.251757i \(0.0810085\pi\)
−0.265867 + 0.964010i \(0.585658\pi\)
\(788\) 39.8950i 1.42120i
\(789\) −0.721232 + 0.416404i −0.0256766 + 0.0148244i
\(790\) 0.370904 2.43101i 0.0131962 0.0864913i
\(791\) −20.1575 + 5.40118i −0.716717 + 0.192044i
\(792\) 4.32129 + 4.32129i 0.153550 + 0.153550i
\(793\) 0 0
\(794\) 0.795007i 0.0282138i
\(795\) 1.42619 + 0.217597i 0.0505817 + 0.00771736i
\(796\) −2.15892 + 3.73936i −0.0765209 + 0.132538i
\(797\) −10.1370 + 37.8319i −0.359072 + 1.34007i 0.516210 + 0.856462i \(0.327342\pi\)
−0.875282 + 0.483612i \(0.839324\pi\)
\(798\) 0.238537 0.00844411
\(799\) −0.321515 + 1.19991i −0.0113744 + 0.0424498i
\(800\) −2.32234 + 7.43348i −0.0821073 + 0.262813i
\(801\) 12.6934 + 12.6934i 0.448500 + 0.448500i
\(802\) 0.306232 + 0.0820546i 0.0108134 + 0.00289745i
\(803\) −10.4249 38.9062i −0.367887 1.37297i
\(804\) 0.638201 + 2.38180i 0.0225076 + 0.0839996i
\(805\) −19.9220 + 45.4378i −0.702158 + 1.60147i
\(806\) 0 0
\(807\) −2.36658 + 2.36658i −0.0833077 + 0.0833077i
\(808\) 0.263823 0.456954i 0.00928125 0.0160756i
\(809\) 23.1644 + 13.3740i 0.814416 + 0.470203i 0.848487 0.529216i \(-0.177514\pi\)
−0.0340712 + 0.999419i \(0.510847\pi\)
\(810\) −1.45853 + 1.82218i −0.0512474 + 0.0640248i
\(811\) 7.93739 7.93739i 0.278720 0.278720i −0.553878 0.832598i \(-0.686853\pi\)
0.832598 + 0.553878i \(0.186853\pi\)
\(812\) 21.8697 12.6265i 0.767477 0.443103i
\(813\) 6.52757 3.76869i 0.228932 0.132174i
\(814\) −2.63940 + 2.63940i −0.0925109 + 0.0925109i
\(815\) 26.1235 32.6368i 0.915065 1.14322i
\(816\) −2.81378 1.62453i −0.0985019 0.0568701i
\(817\) 6.13849 10.6322i 0.214759 0.371973i
\(818\) −1.86963 + 1.86963i −0.0653700 + 0.0653700i
\(819\) 0 0
\(820\) −11.4305 + 26.0706i −0.399172 + 0.910425i
\(821\) −6.99144 26.0924i −0.244003 0.910632i −0.973882 0.227055i \(-0.927090\pi\)
0.729879 0.683577i \(-0.239576\pi\)
\(822\) −0.174661 0.651843i −0.00609200 0.0227356i
\(823\) −9.05749 2.42695i −0.315724 0.0845980i 0.0974771 0.995238i \(-0.468923\pi\)
−0.413201 + 0.910640i \(0.635589\pi\)
\(824\) 3.13769 + 3.13769i 0.109307 + 0.109307i
\(825\) 2.07934 6.65567i 0.0723935 0.231721i
\(826\) −0.248227 + 0.926397i −0.00863693 + 0.0322335i
\(827\) 45.0330 1.56595 0.782976 0.622052i \(-0.213701\pi\)
0.782976 + 0.622052i \(0.213701\pi\)
\(828\) −11.7971 + 44.0273i −0.409976 + 1.53005i
\(829\) 21.0075 36.3861i 0.729622 1.26374i −0.227421 0.973796i \(-0.573029\pi\)
0.957043 0.289946i \(-0.0936372\pi\)
\(830\) 0.920634 + 0.140463i 0.0319557 + 0.00487555i
\(831\) 6.20942i 0.215402i
\(832\) 0 0
\(833\) −1.26182 1.26182i −0.0437194 0.0437194i
\(834\) 0.373887 0.100183i 0.0129467 0.00346905i
\(835\) 6.97378 45.7081i 0.241338 1.58179i
\(836\) 13.2255 7.63575i 0.457414 0.264088i
\(837\) 11.0804i 0.382993i
\(838\) −1.97481 3.42047i −0.0682186 0.118158i
\(839\) 5.24673 + 1.40586i 0.181137 + 0.0485356i 0.348247 0.937403i \(-0.386777\pi\)
−0.167110 + 0.985938i \(0.553444\pi\)
\(840\) 0.449122 1.02435i 0.0154962 0.0353434i
\(841\) −4.01574 6.95547i −0.138474 0.239844i
\(842\) −1.65854 + 0.444405i −0.0571571 + 0.0153152i
\(843\) −4.79053 2.76581i −0.164994 0.0952596i
\(844\) −39.5617 −1.36177
\(845\) 0 0
\(846\) −0.193872 −0.00666546
\(847\) −13.1156 7.57228i −0.450657 0.260187i
\(848\) 7.06186 1.89222i 0.242505 0.0649791i
\(849\) 1.95249 + 3.38181i 0.0670093 + 0.116063i
\(850\) −0.0652568 + 1.59036i −0.00223829 + 0.0545488i
\(851\) −54.0166 14.4737i −1.85167 0.496152i
\(852\) −2.19117 3.79522i −0.0750682 0.130022i
\(853\) 23.0805i 0.790260i −0.918625 0.395130i \(-0.870700\pi\)
0.918625 0.395130i \(-0.129300\pi\)
\(854\) 0.405948 0.234374i 0.0138912 0.00802012i
\(855\) 7.24978 + 9.86030i 0.247937 + 0.337215i
\(856\) 2.50323 0.670738i 0.0855586 0.0229254i
\(857\) 37.6679 + 37.6679i 1.28671 + 1.28671i 0.936772 + 0.349940i \(0.113798\pi\)
0.349940 + 0.936772i \(0.386202\pi\)
\(858\) 0 0
\(859\) 5.08674i 0.173557i −0.996228 0.0867787i \(-0.972343\pi\)
0.996228 0.0867787i \(-0.0276573\pi\)
\(860\) −16.9763 23.0892i −0.578886 0.787333i
\(861\) 3.07068 5.31857i 0.104648 0.181256i
\(862\) −0.214481 + 0.800452i −0.00730524 + 0.0272635i
\(863\) −45.1879 −1.53821 −0.769107 0.639120i \(-0.779299\pi\)
−0.769107 + 0.639120i \(0.779299\pi\)
\(864\) 0.815407 3.04314i 0.0277407 0.103530i
\(865\) −40.3289 + 4.47028i −1.37122 + 0.151994i
\(866\) 1.14100 + 1.14100i 0.0387728 + 0.0387728i
\(867\) 3.69447 + 0.989932i 0.125471 + 0.0336198i
\(868\) −7.81890 29.1805i −0.265391 0.990452i
\(869\) 8.79099 + 32.8084i 0.298214 + 1.11295i
\(870\) 0.423437 + 0.185654i 0.0143559 + 0.00629427i
\(871\) 0 0
\(872\) 3.40439 3.40439i 0.115287 0.115287i
\(873\) 16.9590 29.3738i 0.573975 0.994154i
\(874\) −1.72287 0.994699i −0.0582769 0.0336462i
\(875\) 31.0219 2.15591i 1.04873 0.0728832i
\(876\) −4.78896 + 4.78896i −0.161804 + 0.161804i
\(877\) 17.6048 10.1641i 0.594471 0.343218i −0.172392 0.985028i \(-0.555150\pi\)
0.766863 + 0.641810i \(0.221816\pi\)
\(878\) −3.91675 + 2.26134i −0.132184 + 0.0763164i
\(879\) −0.170126 + 0.170126i −0.00573821 + 0.00573821i
\(880\) −3.89298 35.1208i −0.131232 1.18392i
\(881\) −28.5961 16.5100i −0.963428 0.556236i −0.0662019 0.997806i \(-0.521088\pi\)
−0.897227 + 0.441571i \(0.854421\pi\)
\(882\) 0.139249 0.241187i 0.00468876 0.00812118i
\(883\) 15.9555 15.9555i 0.536944 0.536944i −0.385686 0.922630i \(-0.626035\pi\)
0.922630 + 0.385686i \(0.126035\pi\)
\(884\) 0 0
\(885\) 1.88119 0.734395i 0.0632353 0.0246864i
\(886\) −0.259261 0.967576i −0.00871005 0.0325063i
\(887\) −0.163391 0.609784i −0.00548614 0.0204745i 0.963129 0.269042i \(-0.0867070\pi\)
−0.968615 + 0.248567i \(0.920040\pi\)
\(888\) 1.21775 + 0.326296i 0.0408651 + 0.0109498i
\(889\) 32.5466 + 32.5466i 1.09158 + 1.09158i
\(890\) 0.201495 + 1.81780i 0.00675413 + 0.0609329i
\(891\) 8.34370 31.1391i 0.279524 1.04320i
\(892\) −26.5956 −0.890488
\(893\) −0.251872 + 0.939998i −0.00842856 + 0.0314558i
\(894\) 0.274116 0.474784i 0.00916782 0.0158791i
\(895\) −5.85556 + 38.3790i −0.195730 + 1.28287i
\(896\) 11.4359i 0.382046i
\(897\) 0 0
\(898\) 2.89072 + 2.89072i 0.0964647 + 0.0964647i
\(899\) 24.2297 6.49233i 0.808106 0.216531i
\(900\) 27.8754 6.25660i 0.929181 0.208553i
\(901\) 3.93920 2.27430i 0.131234 0.0757679i
\(902\) 3.41875i 0.113832i
\(903\) 3.09139 + 5.35444i 0.102875 + 0.178185i
\(904\) −3.78996 1.01552i −0.126052 0.0337755i
\(905\) −20.2710 51.9250i −0.673830 1.72604i
\(906\) −0.0597070 0.103416i −0.00198363 0.00343575i
\(907\) 37.8383 10.1387i 1.25640 0.336651i 0.431594 0.902068i \(-0.357951\pi\)
0.824805 + 0.565417i \(0.191285\pi\)
\(908\) −25.2095 14.5547i −0.836607 0.483015i
\(909\) −2.90763 −0.0964400
\(910\) 0 0
\(911\) 6.21630 0.205955 0.102978 0.994684i \(-0.467163\pi\)
0.102978 + 0.994684i \(0.467163\pi\)
\(912\) −2.20429 1.27264i −0.0729912 0.0421415i
\(913\) −12.4247 + 3.32919i −0.411198 + 0.110180i
\(914\) 0.204012 + 0.353358i 0.00674810 + 0.0116881i
\(915\) −0.903940 0.396328i −0.0298833 0.0131022i
\(916\) 7.18510 + 1.92524i 0.237402 + 0.0636117i
\(917\) 17.6450 + 30.5621i 0.582690 + 1.00925i
\(918\) 0.643907i 0.0212521i
\(919\) −19.9013 + 11.4900i −0.656485 + 0.379022i −0.790936 0.611899i \(-0.790406\pi\)
0.134452 + 0.990920i \(0.457073\pi\)
\(920\) −7.51540 + 5.52569i −0.247776 + 0.182177i
\(921\) 4.71852 1.26432i 0.155481 0.0416609i
\(922\) 1.55017 + 1.55017i 0.0510520 + 0.0510520i
\(923\) 0 0
\(924\) 7.69084i 0.253010i
\(925\) 7.67617 + 34.2001i 0.252391 + 1.12449i
\(926\) 1.02676 1.77840i 0.0337413 0.0584417i
\(927\) 6.32875 23.6192i 0.207863 0.775757i
\(928\) 7.13229 0.234129
\(929\) −0.280692 + 1.04756i −0.00920921 + 0.0343692i −0.970378 0.241593i \(-0.922330\pi\)
0.961168 + 0.275963i \(0.0889966\pi\)
\(930\) 0.345635 0.431811i 0.0113338 0.0141596i
\(931\) −0.988497 0.988497i −0.0323967 0.0323967i
\(932\) 37.7726 + 10.1211i 1.23728 + 0.331529i
\(933\) −1.91330 7.14054i −0.0626387 0.233771i
\(934\) 0.724846 + 2.70516i 0.0237177 + 0.0885157i
\(935\) −7.99493 20.4794i −0.261462 0.669746i
\(936\) 0 0
\(937\) −2.17699 + 2.17699i −0.0711191 + 0.0711191i −0.741772 0.670653i \(-0.766014\pi\)
0.670653 + 0.741772i \(0.266014\pi\)
\(938\) −0.660337 + 1.14374i −0.0215608 + 0.0373443i
\(939\) −3.94358 2.27682i −0.128694 0.0743014i
\(940\) 1.77350 + 1.41956i 0.0578450 + 0.0463009i
\(941\) 22.9413 22.9413i 0.747866 0.747866i −0.226212 0.974078i \(-0.572634\pi\)
0.974078 + 0.226212i \(0.0726342\pi\)
\(942\) −0.570694 + 0.329490i −0.0185942 + 0.0107354i
\(943\) −44.3569 + 25.6095i −1.44446 + 0.833959i
\(944\) 7.23636 7.23636i 0.235523 0.235523i
\(945\) −12.5033 + 1.38594i −0.406733 + 0.0450846i
\(946\) −2.98069 1.72090i −0.0969107 0.0559514i
\(947\) 13.6493 23.6413i 0.443543 0.768239i −0.554406 0.832246i \(-0.687055\pi\)
0.997949 + 0.0640069i \(0.0203880\pi\)
\(948\) 4.03838 4.03838i 0.131161 0.131161i
\(949\) 0 0
\(950\) −0.0511215 + 1.24587i −0.00165860 + 0.0404214i
\(951\) 1.54003 + 5.74748i 0.0499390 + 0.186375i
\(952\) −0.912703 3.40625i −0.0295809 0.110397i
\(953\) 6.17827 + 1.65546i 0.200134 + 0.0536257i 0.357493 0.933916i \(-0.383631\pi\)
−0.157360 + 0.987541i \(0.550298\pi\)
\(954\) 0.501965 + 0.501965i 0.0162517 + 0.0162517i
\(955\) 11.8483 + 9.48372i 0.383401 + 0.306886i
\(956\) 7.39460 27.5970i 0.239158 0.892551i
\(957\) −6.38600 −0.206430
\(958\) −1.44939 + 5.40920i −0.0468277 + 0.174763i
\(959\) −20.7839 + 35.9988i −0.671147 + 1.16246i
\(960\) −4.70181 + 3.45700i −0.151750 + 0.111574i
\(961\) 0.991728i 0.0319912i
\(962\) 0 0
\(963\) −10.0981 10.0981i −0.325406 0.325406i
\(964\) −15.5210 + 4.15885i −0.499899 + 0.133947i
\(965\) −2.64189 0.403080i −0.0850456 0.0129756i
\(966\) 0.867650 0.500938i 0.0279162 0.0161174i
\(967\) 28.4424i 0.914647i −0.889300 0.457324i \(-0.848808\pi\)
0.889300 0.457324i \(-0.151192\pi\)
\(968\) −1.42372 2.46596i −0.0457602 0.0792589i
\(969\) −1.52962 0.409860i −0.0491384 0.0131666i
\(970\) 3.21908 1.25670i 0.103358 0.0403501i
\(971\) 0.619921 + 1.07374i 0.0198942 + 0.0344578i 0.875801 0.482672i \(-0.160334\pi\)
−0.855907 + 0.517130i \(0.827000\pi\)
\(972\) −16.8575 + 4.51696i −0.540705 + 0.144882i
\(973\) −20.6484 11.9213i −0.661956 0.382180i
\(974\) −1.99799 −0.0640197
\(975\) 0 0
\(976\) −5.00174 −0.160102
\(977\) 32.9480 + 19.0226i 1.05410 + 0.608586i 0.923795 0.382888i \(-0.125071\pi\)
0.130307 + 0.991474i \(0.458404\pi\)
\(978\) −0.815418 + 0.218491i −0.0260742 + 0.00698656i
\(979\) −12.6307 21.8770i −0.403678 0.699192i
\(980\) −3.03982 + 1.18671i −0.0971035 + 0.0379082i
\(981\) −25.6268 6.86669i −0.818202 0.219236i
\(982\) 1.83661 + 3.18111i 0.0586087 + 0.101513i
\(983\) 34.5934i 1.10336i 0.834056 + 0.551679i \(0.186013\pi\)
−0.834056 + 0.551679i \(0.813987\pi\)
\(984\) 0.999984 0.577341i 0.0318783 0.0184050i
\(985\) 44.4772 + 6.78598i 1.41716 + 0.216219i
\(986\) 1.40805 0.377285i 0.0448414 0.0120152i
\(987\) −0.346545 0.346545i −0.0110307 0.0110307i
\(988\) 0 0
\(989\) 51.5644i 1.63965i
\(990\) 2.76430 2.03245i 0.0878553 0.0645955i
\(991\) −19.7486 + 34.2056i −0.627335 + 1.08658i 0.360750 + 0.932663i \(0.382521\pi\)
−0.988084 + 0.153913i \(0.950813\pi\)
\(992\) 2.20832 8.24156i 0.0701142 0.261670i
\(993\) −6.17972 −0.196107
\(994\) 0.607486 2.26717i 0.0192683 0.0719103i
\(995\) 3.80162 + 3.04293i 0.120519 + 0.0964673i
\(996\) 1.52936 + 1.52936i 0.0484595 + 0.0484595i
\(997\) −7.10500 1.90378i −0.225018 0.0602933i 0.144549 0.989498i \(-0.453827\pi\)
−0.369566 + 0.929204i \(0.620494\pi\)
\(998\) 0.0804906 + 0.300395i 0.00254789 + 0.00950884i
\(999\) −3.66995 13.6964i −0.116112 0.433336i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.g.188.3 20
5.2 odd 4 845.2.o.g.357.3 20
13.2 odd 12 65.2.o.a.63.3 yes 20
13.3 even 3 845.2.t.e.418.3 20
13.4 even 6 845.2.f.e.408.7 20
13.5 odd 4 845.2.o.e.488.3 20
13.6 odd 12 845.2.k.e.268.4 20
13.7 odd 12 845.2.k.d.268.7 20
13.8 odd 4 845.2.o.f.488.3 20
13.9 even 3 845.2.f.d.408.4 20
13.10 even 6 845.2.t.f.418.3 20
13.11 odd 12 845.2.o.g.258.3 20
13.12 even 2 65.2.t.a.58.3 yes 20
39.2 even 12 585.2.cf.a.388.3 20
39.38 odd 2 585.2.dp.a.253.3 20
65.2 even 12 65.2.t.a.37.3 yes 20
65.7 even 12 845.2.f.d.437.7 20
65.12 odd 4 65.2.o.a.32.3 20
65.17 odd 12 845.2.k.e.577.4 20
65.22 odd 12 845.2.k.d.577.7 20
65.28 even 12 325.2.x.b.232.3 20
65.32 even 12 845.2.f.e.437.4 20
65.37 even 12 inner 845.2.t.g.427.3 20
65.38 odd 4 325.2.s.b.32.3 20
65.42 odd 12 845.2.o.f.587.3 20
65.47 even 4 845.2.t.e.657.3 20
65.54 odd 12 325.2.s.b.193.3 20
65.57 even 4 845.2.t.f.657.3 20
65.62 odd 12 845.2.o.e.587.3 20
65.64 even 2 325.2.x.b.318.3 20
195.2 odd 12 585.2.dp.a.37.3 20
195.77 even 4 585.2.cf.a.487.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.3 20 65.12 odd 4
65.2.o.a.63.3 yes 20 13.2 odd 12
65.2.t.a.37.3 yes 20 65.2 even 12
65.2.t.a.58.3 yes 20 13.12 even 2
325.2.s.b.32.3 20 65.38 odd 4
325.2.s.b.193.3 20 65.54 odd 12
325.2.x.b.232.3 20 65.28 even 12
325.2.x.b.318.3 20 65.64 even 2
585.2.cf.a.388.3 20 39.2 even 12
585.2.cf.a.487.3 20 195.77 even 4
585.2.dp.a.37.3 20 195.2 odd 12
585.2.dp.a.253.3 20 39.38 odd 2
845.2.f.d.408.4 20 13.9 even 3
845.2.f.d.437.7 20 65.7 even 12
845.2.f.e.408.7 20 13.4 even 6
845.2.f.e.437.4 20 65.32 even 12
845.2.k.d.268.7 20 13.7 odd 12
845.2.k.d.577.7 20 65.22 odd 12
845.2.k.e.268.4 20 13.6 odd 12
845.2.k.e.577.4 20 65.17 odd 12
845.2.o.e.488.3 20 13.5 odd 4
845.2.o.e.587.3 20 65.62 odd 12
845.2.o.f.488.3 20 13.8 odd 4
845.2.o.f.587.3 20 65.42 odd 12
845.2.o.g.258.3 20 13.11 odd 12
845.2.o.g.357.3 20 5.2 odd 4
845.2.t.e.418.3 20 13.3 even 3
845.2.t.e.657.3 20 65.47 even 4
845.2.t.f.418.3 20 13.10 even 6
845.2.t.f.657.3 20 65.57 even 4
845.2.t.g.188.3 20 1.1 even 1 trivial
845.2.t.g.427.3 20 65.37 even 12 inner