Properties

Label 845.2.t.g.188.5
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.5
Root \(2.25081i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.g.427.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.94926 + 1.12540i) q^{2} +(-1.91913 + 0.514229i) q^{3} +(1.53307 + 2.65535i) q^{4} +(-0.247944 - 2.22228i) q^{5} +(-4.31958 - 1.15743i) q^{6} +(-0.638592 - 1.10607i) q^{7} +2.39966i q^{8} +(0.820542 - 0.473740i) q^{9} +(2.01765 - 4.61083i) q^{10} +(5.27612 - 1.41373i) q^{11} +(-4.30760 - 4.30760i) q^{12} -2.87469i q^{14} +(1.61860 + 4.13734i) q^{15} +(0.365551 - 0.633152i) q^{16} +(0.833802 - 3.11179i) q^{17} +2.13259 q^{18} +(0.315395 - 1.17707i) q^{19} +(5.52081 - 4.06528i) q^{20} +(1.79431 + 1.79431i) q^{21} +(11.8755 + 3.18204i) q^{22} +(0.0428736 + 0.160006i) q^{23} +(-1.23397 - 4.60524i) q^{24} +(-4.87705 + 1.10200i) q^{25} +(2.88358 - 2.88358i) q^{27} +(1.95801 - 3.39137i) q^{28} +(8.41068 + 4.85591i) q^{29} +(-1.50111 + 9.88630i) q^{30} +(-0.233305 + 0.233305i) q^{31} +(5.58143 - 3.22244i) q^{32} +(-9.39857 + 5.42627i) q^{33} +(5.12732 - 5.12732i) q^{34} +(-2.29967 + 1.69337i) q^{35} +(2.51589 + 1.45255i) q^{36} +(0.660816 - 1.14457i) q^{37} +(1.93947 - 1.93947i) q^{38} +(5.33270 - 0.594981i) q^{40} +(-0.129579 - 0.483595i) q^{41} +(1.47825 + 5.51690i) q^{42} +(-6.43569 - 1.72444i) q^{43} +(11.8426 + 11.8426i) q^{44} +(-1.25623 - 1.70601i) q^{45} +(-0.0965002 + 0.360144i) q^{46} -3.20027 q^{47} +(-0.375953 + 1.40308i) q^{48} +(2.68440 - 4.64952i) q^{49} +(-10.7468 - 3.34056i) q^{50} +6.40069i q^{51} +(4.49845 + 4.49845i) q^{53} +(8.86603 - 2.37565i) q^{54} +(-4.44989 - 11.3745i) q^{55} +(2.65420 - 1.53240i) q^{56} +2.42113i q^{57} +(10.9297 + 18.9308i) q^{58} +(-0.00222123 - 0.000595178i) q^{59} +(-8.50465 + 10.6407i) q^{60} +(-0.695993 - 1.20550i) q^{61} +(-0.717332 + 0.192209i) q^{62} +(-1.04798 - 0.605053i) q^{63} +13.0440 q^{64} -24.4270 q^{66} +(-5.26055 - 3.03718i) q^{67} +(9.54117 - 2.55655i) q^{68} +(-0.164560 - 0.285026i) q^{69} +(-6.38837 + 0.712764i) q^{70} +(-11.7428 - 3.14648i) q^{71} +(1.13681 + 1.96902i) q^{72} -7.34614i q^{73} +(2.57620 - 1.48737i) q^{74} +(8.79299 - 4.62280i) q^{75} +(3.60906 - 0.967044i) q^{76} +(-4.93298 - 4.93298i) q^{77} +11.1774i q^{79} +(-1.49768 - 0.655369i) q^{80} +(-5.47236 + 9.47841i) q^{81} +(0.291657 - 1.08848i) q^{82} -2.65539 q^{83} +(-2.01373 + 7.51533i) q^{84} +(-7.12201 - 1.08139i) q^{85} +(-10.6041 - 10.6041i) q^{86} +(-18.6382 - 4.99409i) q^{87} +(3.39247 + 12.6609i) q^{88} +(1.86638 + 6.96542i) q^{89} +(-0.528764 - 4.73922i) q^{90} +(-0.359145 + 0.359145i) q^{92} +(0.327769 - 0.567713i) q^{93} +(-6.23815 - 3.60160i) q^{94} +(-2.69398 - 0.409048i) q^{95} +(-9.05440 + 9.05440i) q^{96} +(3.62059 - 2.09035i) q^{97} +(10.4652 - 6.04207i) q^{98} +(3.65954 - 3.65954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{6} + 2 q^{7} + 12 q^{9} - 2 q^{10} + 16 q^{11} - 24 q^{12} + 20 q^{15} - 2 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{21} + 16 q^{22} - 10 q^{23} - 32 q^{24} + 18 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.94926 + 1.12540i 1.37833 + 0.795780i 0.991959 0.126562i \(-0.0403943\pi\)
0.386373 + 0.922342i \(0.373728\pi\)
\(3\) −1.91913 + 0.514229i −1.10801 + 0.296890i −0.766022 0.642815i \(-0.777767\pi\)
−0.341987 + 0.939705i \(0.611100\pi\)
\(4\) 1.53307 + 2.65535i 0.766533 + 1.32767i
\(5\) −0.247944 2.22228i −0.110884 0.993833i
\(6\) −4.31958 1.15743i −1.76346 0.472518i
\(7\) −0.638592 1.10607i −0.241365 0.418057i 0.719738 0.694245i \(-0.244262\pi\)
−0.961103 + 0.276189i \(0.910928\pi\)
\(8\) 2.39966i 0.848406i
\(9\) 0.820542 0.473740i 0.273514 0.157913i
\(10\) 2.01765 4.61083i 0.638038 1.45807i
\(11\) 5.27612 1.41373i 1.59081 0.426257i 0.648560 0.761163i \(-0.275371\pi\)
0.942251 + 0.334907i \(0.108705\pi\)
\(12\) −4.30760 4.30760i −1.24350 1.24350i
\(13\) 0 0
\(14\) 2.87469i 0.768294i
\(15\) 1.61860 + 4.13734i 0.417920 + 1.06826i
\(16\) 0.365551 0.633152i 0.0913876 0.158288i
\(17\) 0.833802 3.11179i 0.202227 0.754721i −0.788050 0.615611i \(-0.788909\pi\)
0.990277 0.139110i \(-0.0444241\pi\)
\(18\) 2.13259 0.502657
\(19\) 0.315395 1.17707i 0.0723567 0.270039i −0.920264 0.391297i \(-0.872026\pi\)
0.992621 + 0.121259i \(0.0386931\pi\)
\(20\) 5.52081 4.06528i 1.23449 0.909024i
\(21\) 1.79431 + 1.79431i 0.391551 + 0.391551i
\(22\) 11.8755 + 3.18204i 2.53187 + 0.678413i
\(23\) 0.0428736 + 0.160006i 0.00893976 + 0.0333637i 0.970252 0.242099i \(-0.0778358\pi\)
−0.961312 + 0.275462i \(0.911169\pi\)
\(24\) −1.23397 4.60524i −0.251883 0.940042i
\(25\) −4.87705 + 1.10200i −0.975409 + 0.220401i
\(26\) 0 0
\(27\) 2.88358 2.88358i 0.554946 0.554946i
\(28\) 1.95801 3.39137i 0.370029 0.640908i
\(29\) 8.41068 + 4.85591i 1.56182 + 0.901719i 0.997073 + 0.0764575i \(0.0243610\pi\)
0.564751 + 0.825262i \(0.308972\pi\)
\(30\) −1.50111 + 9.88630i −0.274065 + 1.80498i
\(31\) −0.233305 + 0.233305i −0.0419027 + 0.0419027i −0.727748 0.685845i \(-0.759433\pi\)
0.685845 + 0.727748i \(0.259433\pi\)
\(32\) 5.58143 3.22244i 0.986667 0.569652i
\(33\) −9.39857 + 5.42627i −1.63608 + 0.944592i
\(34\) 5.12732 5.12732i 0.879328 0.879328i
\(35\) −2.29967 + 1.69337i −0.388715 + 0.286232i
\(36\) 2.51589 + 1.45255i 0.419315 + 0.242091i
\(37\) 0.660816 1.14457i 0.108638 0.188166i −0.806581 0.591124i \(-0.798685\pi\)
0.915219 + 0.402958i \(0.132018\pi\)
\(38\) 1.93947 1.93947i 0.314623 0.314623i
\(39\) 0 0
\(40\) 5.33270 0.594981i 0.843175 0.0940747i
\(41\) −0.129579 0.483595i −0.0202368 0.0755249i 0.955069 0.296384i \(-0.0957807\pi\)
−0.975306 + 0.220859i \(0.929114\pi\)
\(42\) 1.47825 + 5.51690i 0.228099 + 0.851277i
\(43\) −6.43569 1.72444i −0.981434 0.262974i −0.267786 0.963479i \(-0.586292\pi\)
−0.713648 + 0.700504i \(0.752959\pi\)
\(44\) 11.8426 + 11.8426i 1.78534 + 1.78534i
\(45\) −1.25623 1.70601i −0.187268 0.254317i
\(46\) −0.0965002 + 0.360144i −0.0142282 + 0.0531003i
\(47\) −3.20027 −0.466808 −0.233404 0.972380i \(-0.574986\pi\)
−0.233404 + 0.972380i \(0.574986\pi\)
\(48\) −0.375953 + 1.40308i −0.0542642 + 0.202517i
\(49\) 2.68440 4.64952i 0.383486 0.664217i
\(50\) −10.7468 3.34056i −1.51983 0.472427i
\(51\) 6.40069i 0.896276i
\(52\) 0 0
\(53\) 4.49845 + 4.49845i 0.617909 + 0.617909i 0.944995 0.327086i \(-0.106067\pi\)
−0.327086 + 0.944995i \(0.606067\pi\)
\(54\) 8.86603 2.37565i 1.20651 0.323285i
\(55\) −4.44989 11.3745i −0.600024 1.53374i
\(56\) 2.65420 1.53240i 0.354682 0.204776i
\(57\) 2.42113i 0.320687i
\(58\) 10.9297 + 18.9308i 1.43514 + 2.48574i
\(59\) −0.00222123 0.000595178i −0.000289180 7.74855e-5i 0.258674 0.965965i \(-0.416714\pi\)
−0.258964 + 0.965887i \(0.583381\pi\)
\(60\) −8.50465 + 10.6407i −1.09795 + 1.37371i
\(61\) −0.695993 1.20550i −0.0891128 0.154348i 0.818024 0.575185i \(-0.195070\pi\)
−0.907136 + 0.420837i \(0.861736\pi\)
\(62\) −0.717332 + 0.192209i −0.0911013 + 0.0244105i
\(63\) −1.04798 0.605053i −0.132033 0.0762295i
\(64\) 13.0440 1.63050
\(65\) 0 0
\(66\) −24.4270 −3.00675
\(67\) −5.26055 3.03718i −0.642678 0.371050i 0.142967 0.989727i \(-0.454336\pi\)
−0.785645 + 0.618677i \(0.787669\pi\)
\(68\) 9.54117 2.55655i 1.15704 0.310027i
\(69\) −0.164560 0.285026i −0.0198107 0.0343131i
\(70\) −6.38837 + 0.712764i −0.763557 + 0.0851916i
\(71\) −11.7428 3.14648i −1.39361 0.373418i −0.517567 0.855643i \(-0.673162\pi\)
−0.876048 + 0.482225i \(0.839829\pi\)
\(72\) 1.13681 + 1.96902i 0.133975 + 0.232051i
\(73\) 7.34614i 0.859801i −0.902876 0.429901i \(-0.858549\pi\)
0.902876 0.429901i \(-0.141451\pi\)
\(74\) 2.57620 1.48737i 0.299477 0.172903i
\(75\) 8.79299 4.62280i 1.01533 0.533795i
\(76\) 3.60906 0.967044i 0.413987 0.110928i
\(77\) −4.93298 4.93298i −0.562166 0.562166i
\(78\) 0 0
\(79\) 11.1774i 1.25756i 0.777584 + 0.628779i \(0.216445\pi\)
−0.777584 + 0.628779i \(0.783555\pi\)
\(80\) −1.49768 0.655369i −0.167445 0.0732725i
\(81\) −5.47236 + 9.47841i −0.608040 + 1.05316i
\(82\) 0.291657 1.08848i 0.0322081 0.120202i
\(83\) −2.65539 −0.291467 −0.145733 0.989324i \(-0.546554\pi\)
−0.145733 + 0.989324i \(0.546554\pi\)
\(84\) −2.01373 + 7.51533i −0.219716 + 0.819990i
\(85\) −7.12201 1.08139i −0.772490 0.117293i
\(86\) −10.6041 10.6041i −1.14347 1.14347i
\(87\) −18.6382 4.99409i −1.99823 0.535423i
\(88\) 3.39247 + 12.6609i 0.361639 + 1.34965i
\(89\) 1.86638 + 6.96542i 0.197836 + 0.738333i 0.991515 + 0.129996i \(0.0414964\pi\)
−0.793679 + 0.608337i \(0.791837\pi\)
\(90\) −0.528764 4.73922i −0.0557367 0.499558i
\(91\) 0 0
\(92\) −0.359145 + 0.359145i −0.0374434 + 0.0374434i
\(93\) 0.327769 0.567713i 0.0339881 0.0588691i
\(94\) −6.23815 3.60160i −0.643416 0.371477i
\(95\) −2.69398 0.409048i −0.276397 0.0419675i
\(96\) −9.05440 + 9.05440i −0.924111 + 0.924111i
\(97\) 3.62059 2.09035i 0.367616 0.212243i −0.304801 0.952416i \(-0.598590\pi\)
0.672416 + 0.740173i \(0.265257\pi\)
\(98\) 10.4652 6.04207i 1.05714 0.610341i
\(99\) 3.65954 3.65954i 0.367797 0.367797i
\(100\) −10.4030 11.2608i −1.04030 1.12608i
\(101\) −7.47319 4.31465i −0.743610 0.429323i 0.0797704 0.996813i \(-0.474581\pi\)
−0.823380 + 0.567490i \(0.807915\pi\)
\(102\) −7.20336 + 12.4766i −0.713239 + 1.23537i
\(103\) 1.07603 1.07603i 0.106025 0.106025i −0.652104 0.758129i \(-0.726114\pi\)
0.758129 + 0.652104i \(0.226114\pi\)
\(104\) 0 0
\(105\) 3.54258 4.43236i 0.345720 0.432554i
\(106\) 3.70606 + 13.8312i 0.359964 + 1.34340i
\(107\) 3.75956 + 14.0309i 0.363451 + 1.35642i 0.869509 + 0.493917i \(0.164435\pi\)
−0.506058 + 0.862499i \(0.668898\pi\)
\(108\) 12.0776 + 3.23619i 1.16217 + 0.311403i
\(109\) 4.72405 + 4.72405i 0.452481 + 0.452481i 0.896177 0.443696i \(-0.146333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(110\) 4.12691 27.1797i 0.393486 2.59149i
\(111\) −0.679621 + 2.53638i −0.0645068 + 0.240743i
\(112\) −0.933751 −0.0882311
\(113\) 2.94919 11.0065i 0.277437 1.03541i −0.676754 0.736209i \(-0.736614\pi\)
0.954191 0.299199i \(-0.0967193\pi\)
\(114\) −2.72475 + 4.71941i −0.255197 + 0.442013i
\(115\) 0.344949 0.134950i 0.0321666 0.0125841i
\(116\) 29.7777i 2.76479i
\(117\) 0 0
\(118\) −0.00365994 0.00365994i −0.000336925 0.000336925i
\(119\) −3.97433 + 1.06492i −0.364326 + 0.0976210i
\(120\) −9.92818 + 3.88407i −0.906315 + 0.354566i
\(121\) 16.3126 9.41807i 1.48296 0.856188i
\(122\) 3.13309i 0.283657i
\(123\) 0.497357 + 0.861447i 0.0448452 + 0.0776741i
\(124\) −0.977176 0.261833i −0.0877530 0.0235133i
\(125\) 3.65819 + 10.5649i 0.327199 + 0.944956i
\(126\) −1.36186 2.35881i −0.121324 0.210139i
\(127\) −0.506651 + 0.135757i −0.0449580 + 0.0120465i −0.281228 0.959641i \(-0.590742\pi\)
0.236270 + 0.971687i \(0.424075\pi\)
\(128\) 14.2632 + 8.23486i 1.26070 + 0.727865i
\(129\) 13.2377 1.16551
\(130\) 0 0
\(131\) 5.09883 0.445486 0.222743 0.974877i \(-0.428499\pi\)
0.222743 + 0.974877i \(0.428499\pi\)
\(132\) −28.8173 16.6377i −2.50822 1.44812i
\(133\) −1.50334 + 0.402818i −0.130356 + 0.0349287i
\(134\) −6.83610 11.8405i −0.590549 1.02286i
\(135\) −7.12309 5.69316i −0.613058 0.489989i
\(136\) 7.46723 + 2.00084i 0.640310 + 0.171571i
\(137\) 1.90173 + 3.29390i 0.162476 + 0.281417i 0.935756 0.352648i \(-0.114719\pi\)
−0.773280 + 0.634065i \(0.781385\pi\)
\(138\) 0.740785i 0.0630598i
\(139\) −1.28017 + 0.739106i −0.108583 + 0.0626902i −0.553308 0.832977i \(-0.686635\pi\)
0.444725 + 0.895667i \(0.353301\pi\)
\(140\) −8.02204 3.51037i −0.677986 0.296680i
\(141\) 6.14173 1.64567i 0.517227 0.138591i
\(142\) −19.3487 19.3487i −1.62371 1.62371i
\(143\) 0 0
\(144\) 0.692704i 0.0577253i
\(145\) 8.70580 19.8949i 0.722977 1.65218i
\(146\) 8.26737 14.3195i 0.684213 1.18509i
\(147\) −2.76079 + 10.3034i −0.227706 + 0.849811i
\(148\) 4.05230 0.333097
\(149\) 4.45586 16.6295i 0.365038 1.36234i −0.502331 0.864675i \(-0.667524\pi\)
0.867369 0.497665i \(-0.165809\pi\)
\(150\) 22.3423 + 0.884644i 1.82424 + 0.0722308i
\(151\) 10.0539 + 10.0539i 0.818178 + 0.818178i 0.985844 0.167666i \(-0.0536230\pi\)
−0.167666 + 0.985844i \(0.553623\pi\)
\(152\) 2.82457 + 0.756840i 0.229103 + 0.0613879i
\(153\) −0.790011 2.94836i −0.0638686 0.238361i
\(154\) −4.06405 15.1672i −0.327491 1.22221i
\(155\) 0.576314 + 0.460621i 0.0462907 + 0.0369980i
\(156\) 0 0
\(157\) 3.07230 3.07230i 0.245196 0.245196i −0.573799 0.818996i \(-0.694531\pi\)
0.818996 + 0.573799i \(0.194531\pi\)
\(158\) −12.5791 + 21.7876i −1.00074 + 1.73333i
\(159\) −10.9463 6.31986i −0.868100 0.501198i
\(160\) −8.54504 11.6045i −0.675545 0.917417i
\(161\) 0.149600 0.149600i 0.0117902 0.0117902i
\(162\) −21.3341 + 12.3172i −1.67616 + 0.967733i
\(163\) −7.97177 + 4.60251i −0.624398 + 0.360496i −0.778579 0.627546i \(-0.784059\pi\)
0.154182 + 0.988043i \(0.450726\pi\)
\(164\) 1.08546 1.08546i 0.0847602 0.0847602i
\(165\) 14.3890 + 19.5408i 1.12018 + 1.52125i
\(166\) −5.17603 2.98838i −0.401738 0.231944i
\(167\) −6.31936 + 10.9455i −0.489007 + 0.846985i −0.999920 0.0126474i \(-0.995974\pi\)
0.510913 + 0.859632i \(0.329307\pi\)
\(168\) −4.30574 + 4.30574i −0.332195 + 0.332195i
\(169\) 0 0
\(170\) −12.6656 10.1230i −0.971409 0.776402i
\(171\) −0.298831 1.11525i −0.0228522 0.0852854i
\(172\) −5.28736 19.7327i −0.403157 1.50460i
\(173\) −13.2481 3.54983i −1.00724 0.269888i −0.282762 0.959190i \(-0.591251\pi\)
−0.724474 + 0.689302i \(0.757917\pi\)
\(174\) −30.7103 30.7103i −2.32814 2.32814i
\(175\) 4.33334 + 4.69064i 0.327570 + 0.354579i
\(176\) 1.03358 3.85738i 0.0779092 0.290761i
\(177\) 0.00456889 0.000343419
\(178\) −4.20086 + 15.6778i −0.314867 + 1.17510i
\(179\) −6.32126 + 10.9487i −0.472473 + 0.818347i −0.999504 0.0314989i \(-0.989972\pi\)
0.527031 + 0.849846i \(0.323305\pi\)
\(180\) 2.60417 5.95116i 0.194103 0.443573i
\(181\) 8.16619i 0.606988i 0.952833 + 0.303494i \(0.0981533\pi\)
−0.952833 + 0.303494i \(0.901847\pi\)
\(182\) 0 0
\(183\) 1.95560 + 1.95560i 0.144562 + 0.144562i
\(184\) −0.383960 + 0.102882i −0.0283059 + 0.00758455i
\(185\) −2.70739 1.18473i −0.199052 0.0871030i
\(186\) 1.27781 0.737745i 0.0936937 0.0540941i
\(187\) 17.5970i 1.28682i
\(188\) −4.90623 8.49784i −0.357824 0.619769i
\(189\) −5.03089 1.34802i −0.365943 0.0980542i
\(190\) −4.79091 3.82916i −0.347569 0.277796i
\(191\) 7.37692 + 12.7772i 0.533775 + 0.924526i 0.999222 + 0.0394498i \(0.0125605\pi\)
−0.465446 + 0.885076i \(0.654106\pi\)
\(192\) −25.0330 + 6.70758i −1.80660 + 0.484078i
\(193\) −13.0743 7.54845i −0.941109 0.543349i −0.0508011 0.998709i \(-0.516177\pi\)
−0.890308 + 0.455359i \(0.849511\pi\)
\(194\) 9.40995 0.675595
\(195\) 0 0
\(196\) 16.4614 1.17582
\(197\) 13.3121 + 7.68576i 0.948450 + 0.547588i 0.892599 0.450851i \(-0.148879\pi\)
0.0558510 + 0.998439i \(0.482213\pi\)
\(198\) 11.2518 3.01492i 0.799633 0.214261i
\(199\) 5.72810 + 9.92136i 0.406054 + 0.703307i 0.994444 0.105271i \(-0.0335710\pi\)
−0.588389 + 0.808578i \(0.700238\pi\)
\(200\) −2.64443 11.7032i −0.186989 0.827544i
\(201\) 11.6575 + 3.12361i 0.822254 + 0.220322i
\(202\) −9.71144 16.8207i −0.683294 1.18350i
\(203\) 12.4038i 0.870574i
\(204\) −16.9961 + 9.81268i −1.18996 + 0.687025i
\(205\) −1.04255 + 0.407865i −0.0728152 + 0.0284865i
\(206\) 3.30843 0.886492i 0.230509 0.0617648i
\(207\) 0.110981 + 0.110981i 0.00771372 + 0.00771372i
\(208\) 0 0
\(209\) 6.65626i 0.460423i
\(210\) 11.8936 4.65297i 0.820735 0.321085i
\(211\) −1.59195 + 2.75735i −0.109595 + 0.189823i −0.915606 0.402076i \(-0.868289\pi\)
0.806011 + 0.591900i \(0.201622\pi\)
\(212\) −5.04852 + 18.8414i −0.346734 + 1.29403i
\(213\) 24.1539 1.65500
\(214\) −8.46205 + 31.5808i −0.578454 + 2.15882i
\(215\) −2.23649 + 14.7295i −0.152527 + 1.00454i
\(216\) 6.91961 + 6.91961i 0.470820 + 0.470820i
\(217\) 0.407038 + 0.109066i 0.0276316 + 0.00740386i
\(218\) 3.89192 + 14.5248i 0.263594 + 0.983746i
\(219\) 3.77760 + 14.0982i 0.255266 + 0.952667i
\(220\) 23.3813 29.2539i 1.57636 1.97230i
\(221\) 0 0
\(222\) −4.17921 + 4.17921i −0.280490 + 0.280490i
\(223\) −5.93874 + 10.2862i −0.397688 + 0.688815i −0.993440 0.114353i \(-0.963521\pi\)
0.595753 + 0.803168i \(0.296854\pi\)
\(224\) −7.12851 4.11565i −0.476294 0.274988i
\(225\) −3.47976 + 3.21469i −0.231984 + 0.214313i
\(226\) 18.1355 18.1355i 1.20636 1.20636i
\(227\) −23.9600 + 13.8333i −1.59028 + 0.918149i −0.597022 + 0.802225i \(0.703650\pi\)
−0.993258 + 0.115924i \(0.963017\pi\)
\(228\) −6.42896 + 3.71176i −0.425768 + 0.245817i
\(229\) −12.9000 + 12.9000i −0.852455 + 0.852455i −0.990435 0.137980i \(-0.955939\pi\)
0.137980 + 0.990435i \(0.455939\pi\)
\(230\) 0.824266 + 0.125155i 0.0543505 + 0.00825246i
\(231\) 12.0037 + 6.93034i 0.789786 + 0.455983i
\(232\) −11.6525 + 20.1827i −0.765024 + 1.32506i
\(233\) −16.3545 + 16.3545i −1.07142 + 1.07142i −0.0741712 + 0.997246i \(0.523631\pi\)
−0.997246 + 0.0741712i \(0.976369\pi\)
\(234\) 0 0
\(235\) 0.793489 + 7.11190i 0.0517615 + 0.463929i
\(236\) −0.00182489 0.00681059i −0.000118790 0.000443332i
\(237\) −5.74774 21.4509i −0.373356 1.39338i
\(238\) −8.94546 2.39693i −0.579848 0.155370i
\(239\) 2.61794 + 2.61794i 0.169341 + 0.169341i 0.786690 0.617349i \(-0.211793\pi\)
−0.617349 + 0.786690i \(0.711793\pi\)
\(240\) 3.21124 + 0.487588i 0.207285 + 0.0314737i
\(241\) −5.38613 + 20.1013i −0.346951 + 1.29484i 0.543365 + 0.839496i \(0.317150\pi\)
−0.890316 + 0.455343i \(0.849517\pi\)
\(242\) 42.3965 2.72535
\(243\) 2.46169 9.18717i 0.157918 0.589357i
\(244\) 2.13401 3.69621i 0.136616 0.236625i
\(245\) −10.9981 4.81267i −0.702643 0.307470i
\(246\) 2.23891i 0.142748i
\(247\) 0 0
\(248\) −0.559851 0.559851i −0.0355505 0.0355505i
\(249\) 5.09603 1.36548i 0.322948 0.0865336i
\(250\) −4.75905 + 24.7107i −0.300989 + 1.56284i
\(251\) −2.05050 + 1.18386i −0.129427 + 0.0747245i −0.563315 0.826242i \(-0.690474\pi\)
0.433889 + 0.900966i \(0.357141\pi\)
\(252\) 3.71034i 0.233730i
\(253\) 0.452413 + 0.783602i 0.0284430 + 0.0492647i
\(254\) −1.14037 0.305562i −0.0715533 0.0191727i
\(255\) 14.2241 1.58701i 0.890749 0.0993827i
\(256\) 5.49109 + 9.51085i 0.343193 + 0.594428i
\(257\) 0.840391 0.225182i 0.0524221 0.0140465i −0.232513 0.972593i \(-0.574695\pi\)
0.284935 + 0.958547i \(0.408028\pi\)
\(258\) 25.8036 + 14.8977i 1.60646 + 0.927492i
\(259\) −1.68797 −0.104885
\(260\) 0 0
\(261\) 9.20175 0.569574
\(262\) 9.93892 + 5.73824i 0.614028 + 0.354509i
\(263\) 14.6707 3.93099i 0.904632 0.242395i 0.223627 0.974675i \(-0.428210\pi\)
0.681004 + 0.732279i \(0.261543\pi\)
\(264\) −13.0212 22.5533i −0.801398 1.38806i
\(265\) 8.88144 11.1122i 0.545582 0.682615i
\(266\) −3.38372 0.906665i −0.207469 0.0555912i
\(267\) −7.16363 12.4078i −0.438407 0.759343i
\(268\) 18.6248i 1.13769i
\(269\) 21.1150 12.1908i 1.28741 0.743285i 0.309216 0.950992i \(-0.399933\pi\)
0.978191 + 0.207707i \(0.0666000\pi\)
\(270\) −7.47763 19.1138i −0.455074 1.16323i
\(271\) 12.6697 3.39484i 0.769630 0.206222i 0.147422 0.989074i \(-0.452903\pi\)
0.622208 + 0.782852i \(0.286236\pi\)
\(272\) −1.66544 1.66544i −0.100982 0.100982i
\(273\) 0 0
\(274\) 8.56086i 0.517181i
\(275\) −24.1740 + 12.7091i −1.45775 + 0.766390i
\(276\) 0.504562 0.873927i 0.0303711 0.0526042i
\(277\) 3.16472 11.8109i 0.190149 0.709647i −0.803320 0.595548i \(-0.796935\pi\)
0.993469 0.114099i \(-0.0363982\pi\)
\(278\) −3.32717 −0.199550
\(279\) −0.0809104 + 0.301962i −0.00484398 + 0.0180780i
\(280\) −4.06352 5.51841i −0.242841 0.329788i
\(281\) 6.43529 + 6.43529i 0.383897 + 0.383897i 0.872504 0.488607i \(-0.162495\pi\)
−0.488607 + 0.872504i \(0.662495\pi\)
\(282\) 13.8239 + 3.70409i 0.823198 + 0.220575i
\(283\) 7.07953 + 26.4212i 0.420834 + 1.57057i 0.772855 + 0.634583i \(0.218828\pi\)
−0.352021 + 0.935992i \(0.614505\pi\)
\(284\) −9.64751 36.0050i −0.572474 2.13650i
\(285\) 5.38044 0.600307i 0.318710 0.0355591i
\(286\) 0 0
\(287\) −0.452144 + 0.452144i −0.0266892 + 0.0266892i
\(288\) 3.05320 5.28829i 0.179911 0.311616i
\(289\) 5.73440 + 3.31076i 0.337318 + 0.194750i
\(290\) 39.3596 28.9826i 2.31127 1.70192i
\(291\) −5.87346 + 5.87346i −0.344308 + 0.344308i
\(292\) 19.5066 11.2621i 1.14154 0.659066i
\(293\) 22.6241 13.0620i 1.32171 0.763092i 0.337713 0.941249i \(-0.390347\pi\)
0.984002 + 0.178157i \(0.0570135\pi\)
\(294\) −16.9770 + 16.9770i −0.990118 + 0.990118i
\(295\) −0.000771909 0.00508377i −4.49423e−5 0.000295989i
\(296\) 2.74657 + 1.58573i 0.159641 + 0.0921688i
\(297\) 11.1375 19.2908i 0.646265 1.11936i
\(298\) 27.4005 27.4005i 1.58727 1.58727i
\(299\) 0 0
\(300\) 25.7554 + 16.2614i 1.48699 + 0.938852i
\(301\) 2.20243 + 8.21957i 0.126946 + 0.473768i
\(302\) 8.28296 + 30.9124i 0.476631 + 1.77881i
\(303\) 16.5607 + 4.43743i 0.951388 + 0.254924i
\(304\) −0.629972 0.629972i −0.0361314 0.0361314i
\(305\) −2.50638 + 1.84559i −0.143515 + 0.105678i
\(306\) 1.77816 6.63619i 0.101651 0.379366i
\(307\) −14.7038 −0.839189 −0.419595 0.907712i \(-0.637828\pi\)
−0.419595 + 0.907712i \(0.637828\pi\)
\(308\) 5.53620 20.6614i 0.315454 1.17729i
\(309\) −1.51172 + 2.61837i −0.0859985 + 0.148954i
\(310\) 0.604999 + 1.54645i 0.0343617 + 0.0878327i
\(311\) 31.8525i 1.80619i −0.429440 0.903095i \(-0.641289\pi\)
0.429440 0.903095i \(-0.358711\pi\)
\(312\) 0 0
\(313\) −11.9865 11.9865i −0.677519 0.677519i 0.281919 0.959438i \(-0.409029\pi\)
−0.959438 + 0.281919i \(0.909029\pi\)
\(314\) 9.44628 2.53112i 0.533084 0.142840i
\(315\) −1.08476 + 2.47893i −0.0611190 + 0.139672i
\(316\) −29.6799 + 17.1357i −1.66963 + 0.963959i
\(317\) 15.5627i 0.874088i 0.899440 + 0.437044i \(0.143975\pi\)
−0.899440 + 0.437044i \(0.856025\pi\)
\(318\) −14.2248 24.6380i −0.797686 1.38163i
\(319\) 51.2407 + 13.7299i 2.86893 + 0.768728i
\(320\) −3.23418 28.9874i −0.180796 1.62044i
\(321\) −14.4302 24.9938i −0.805413 1.39502i
\(322\) 0.459970 0.123249i 0.0256331 0.00686837i
\(323\) −3.39983 1.96289i −0.189171 0.109218i
\(324\) −33.5580 −1.86433
\(325\) 0 0
\(326\) −20.7187 −1.14750
\(327\) −11.4953 6.63680i −0.635691 0.367016i
\(328\) 1.16046 0.310945i 0.0640758 0.0171691i
\(329\) 2.04367 + 3.53974i 0.112671 + 0.195152i
\(330\) 6.05653 + 54.2835i 0.333401 + 2.98821i
\(331\) 16.4820 + 4.41633i 0.905930 + 0.242743i 0.681561 0.731761i \(-0.261301\pi\)
0.224369 + 0.974504i \(0.427968\pi\)
\(332\) −4.07089 7.05098i −0.223419 0.386973i
\(333\) 1.25222i 0.0686212i
\(334\) −24.6361 + 14.2237i −1.34803 + 0.778284i
\(335\) −5.44513 + 12.4435i −0.297499 + 0.679858i
\(336\) 1.79199 0.480161i 0.0977609 0.0261949i
\(337\) 25.0560 + 25.0560i 1.36489 + 1.36489i 0.867568 + 0.497319i \(0.165682\pi\)
0.497319 + 0.867568i \(0.334318\pi\)
\(338\) 0 0
\(339\) 22.6395i 1.22961i
\(340\) −8.04704 20.5693i −0.436412 1.11552i
\(341\) −0.901114 + 1.56077i −0.0487980 + 0.0845207i
\(342\) 0.672610 2.51022i 0.0363706 0.135737i
\(343\) −15.7972 −0.852971
\(344\) 4.13806 15.4435i 0.223109 0.832655i
\(345\) −0.592605 + 0.436368i −0.0319048 + 0.0234933i
\(346\) −21.8290 21.8290i −1.17354 1.17354i
\(347\) −12.4604 3.33874i −0.668907 0.179233i −0.0916446 0.995792i \(-0.529212\pi\)
−0.577262 + 0.816559i \(0.695879\pi\)
\(348\) −15.3125 57.1472i −0.820838 3.06341i
\(349\) 6.94957 + 25.9362i 0.372002 + 1.38833i 0.857676 + 0.514191i \(0.171908\pi\)
−0.485674 + 0.874140i \(0.661426\pi\)
\(350\) 3.16792 + 14.0200i 0.169332 + 0.749402i
\(351\) 0 0
\(352\) 24.8926 24.8926i 1.32678 1.32678i
\(353\) 11.6558 20.1885i 0.620378 1.07453i −0.369038 0.929414i \(-0.620313\pi\)
0.989415 0.145111i \(-0.0463540\pi\)
\(354\) 0.00890593 + 0.00514184i 0.000473345 + 0.000273286i
\(355\) −4.08078 + 26.8759i −0.216586 + 1.42643i
\(356\) −15.6343 + 15.6343i −0.828617 + 0.828617i
\(357\) 7.07964 4.08743i 0.374694 0.216330i
\(358\) −24.6435 + 14.2279i −1.30245 + 0.751970i
\(359\) −9.17222 + 9.17222i −0.484091 + 0.484091i −0.906435 0.422344i \(-0.861207\pi\)
0.422344 + 0.906435i \(0.361207\pi\)
\(360\) 4.09384 3.01452i 0.215764 0.158879i
\(361\) 15.1685 + 8.75751i 0.798340 + 0.460922i
\(362\) −9.19026 + 15.9180i −0.483029 + 0.836631i
\(363\) −26.4629 + 26.4629i −1.38894 + 1.38894i
\(364\) 0 0
\(365\) −16.3252 + 1.82143i −0.854499 + 0.0953382i
\(366\) 1.61113 + 6.01280i 0.0842149 + 0.314294i
\(367\) 3.84780 + 14.3602i 0.200853 + 0.749595i 0.990674 + 0.136256i \(0.0435071\pi\)
−0.789820 + 0.613338i \(0.789826\pi\)
\(368\) 0.116981 + 0.0313449i 0.00609805 + 0.00163397i
\(369\) −0.335423 0.335423i −0.0174614 0.0174614i
\(370\) −3.94410 5.35625i −0.205044 0.278458i
\(371\) 2.10294 7.84829i 0.109179 0.407463i
\(372\) 2.00997 0.104212
\(373\) 1.59980 5.97055i 0.0828348 0.309144i −0.912061 0.410055i \(-0.865509\pi\)
0.994895 + 0.100912i \(0.0321760\pi\)
\(374\) 19.8037 34.3010i 1.02403 1.77366i
\(375\) −12.4533 18.3943i −0.643087 0.949877i
\(376\) 7.67955i 0.396043i
\(377\) 0 0
\(378\) −8.28942 8.28942i −0.426362 0.426362i
\(379\) −17.6464 + 4.72834i −0.906435 + 0.242878i −0.681778 0.731559i \(-0.738793\pi\)
−0.224657 + 0.974438i \(0.572126\pi\)
\(380\) −3.04389 7.78056i −0.156148 0.399134i
\(381\) 0.902517 0.521068i 0.0462373 0.0266951i
\(382\) 33.2081i 1.69907i
\(383\) 5.12171 + 8.87106i 0.261707 + 0.453290i 0.966696 0.255929i \(-0.0823812\pi\)
−0.704989 + 0.709219i \(0.749048\pi\)
\(384\) −31.6075 8.46920i −1.61296 0.432192i
\(385\) −9.73936 + 12.1856i −0.496364 + 0.621034i
\(386\) −16.9901 29.4277i −0.864774 1.49783i
\(387\) −6.09769 + 1.63387i −0.309963 + 0.0830543i
\(388\) 11.1012 + 6.40929i 0.563579 + 0.325382i
\(389\) −3.41200 −0.172995 −0.0864977 0.996252i \(-0.527568\pi\)
−0.0864977 + 0.996252i \(0.527568\pi\)
\(390\) 0 0
\(391\) 0.533655 0.0269881
\(392\) 11.1572 + 6.44164i 0.563526 + 0.325352i
\(393\) −9.78529 + 2.62196i −0.493603 + 0.132260i
\(394\) 17.2992 + 29.9630i 0.871519 + 1.50952i
\(395\) 24.8393 2.77138i 1.24980 0.139443i
\(396\) 15.3277 + 4.10703i 0.770244 + 0.206386i
\(397\) −5.96603 10.3335i −0.299426 0.518622i 0.676578 0.736371i \(-0.263462\pi\)
−0.976005 + 0.217749i \(0.930129\pi\)
\(398\) 25.7857i 1.29252i
\(399\) 2.67795 1.54612i 0.134065 0.0774027i
\(400\) −1.08507 + 3.49075i −0.0542536 + 0.174538i
\(401\) −3.93721 + 1.05497i −0.196615 + 0.0526828i −0.355783 0.934569i \(-0.615786\pi\)
0.159168 + 0.987252i \(0.449119\pi\)
\(402\) 19.2081 + 19.2081i 0.958011 + 0.958011i
\(403\) 0 0
\(404\) 26.4586i 1.31636i
\(405\) 22.4205 + 9.81100i 1.11408 + 0.487512i
\(406\) 13.9592 24.1781i 0.692786 1.19994i
\(407\) 1.86844 6.97310i 0.0926149 0.345644i
\(408\) −15.3595 −0.760406
\(409\) 1.79597 6.70266i 0.0888051 0.331425i −0.907202 0.420694i \(-0.861786\pi\)
0.996008 + 0.0892692i \(0.0284531\pi\)
\(410\) −2.49122 0.378261i −0.123033 0.0186810i
\(411\) −5.34348 5.34348i −0.263574 0.263574i
\(412\) 4.50687 + 1.20761i 0.222037 + 0.0594948i
\(413\) 0.000760151 0.00283692i 3.74046e−5 0.000139596i
\(414\) 0.0914320 + 0.341229i 0.00449364 + 0.0167705i
\(415\) 0.658389 + 5.90102i 0.0323190 + 0.289670i
\(416\) 0 0
\(417\) 2.07674 2.07674i 0.101698 0.101698i
\(418\) 7.49098 12.9748i 0.366396 0.634616i
\(419\) −18.3846 10.6144i −0.898147 0.518546i −0.0215487 0.999768i \(-0.506860\pi\)
−0.876599 + 0.481222i \(0.840193\pi\)
\(420\) 17.2004 + 2.61168i 0.839296 + 0.127437i
\(421\) 3.15727 3.15727i 0.153876 0.153876i −0.625971 0.779847i \(-0.715297\pi\)
0.779847 + 0.625971i \(0.215297\pi\)
\(422\) −6.20625 + 3.58318i −0.302116 + 0.174427i
\(423\) −2.62596 + 1.51610i −0.127678 + 0.0737152i
\(424\) −10.7947 + 10.7947i −0.524238 + 0.524238i
\(425\) −0.637290 + 16.0952i −0.0309131 + 0.780733i
\(426\) 47.0822 + 27.1829i 2.28114 + 1.31702i
\(427\) −0.888911 + 1.53964i −0.0430174 + 0.0745084i
\(428\) −31.4932 + 31.4932i −1.52228 + 1.52228i
\(429\) 0 0
\(430\) −20.9361 + 26.1946i −1.00963 + 1.26321i
\(431\) −9.27711 34.6226i −0.446863 1.66771i −0.710971 0.703221i \(-0.751744\pi\)
0.264109 0.964493i \(-0.414922\pi\)
\(432\) −0.771651 2.87984i −0.0371261 0.138556i
\(433\) 7.81733 + 2.09465i 0.375677 + 0.100662i 0.441716 0.897155i \(-0.354370\pi\)
−0.0660397 + 0.997817i \(0.521036\pi\)
\(434\) 0.670679 + 0.670679i 0.0321936 + 0.0321936i
\(435\) −6.47703 + 42.6575i −0.310550 + 2.04527i
\(436\) −5.30171 + 19.7863i −0.253906 + 0.947590i
\(437\) 0.201861 0.00965633
\(438\) −8.50264 + 31.7323i −0.406272 + 1.51623i
\(439\) 14.3336 24.8265i 0.684104 1.18490i −0.289613 0.957144i \(-0.593527\pi\)
0.973717 0.227759i \(-0.0731399\pi\)
\(440\) 27.2949 10.6782i 1.30123 0.509064i
\(441\) 5.08683i 0.242230i
\(442\) 0 0
\(443\) −17.1586 17.1586i −0.815229 0.815229i 0.170184 0.985412i \(-0.445564\pi\)
−0.985412 + 0.170184i \(0.945564\pi\)
\(444\) −7.77688 + 2.08381i −0.369074 + 0.0988931i
\(445\) 15.0163 5.87465i 0.711843 0.278485i
\(446\) −23.1523 + 13.3670i −1.09629 + 0.632944i
\(447\) 34.2054i 1.61786i
\(448\) −8.32978 14.4276i −0.393545 0.681640i
\(449\) −8.85389 2.37239i −0.417841 0.111960i 0.0437720 0.999042i \(-0.486062\pi\)
−0.461613 + 0.887081i \(0.652729\pi\)
\(450\) −10.4008 + 2.35012i −0.490297 + 0.110786i
\(451\) −1.36735 2.36832i −0.0643860 0.111520i
\(452\) 33.7475 9.04261i 1.58735 0.425329i
\(453\) −24.4648 14.1248i −1.14946 0.663639i
\(454\) −62.2722 −2.92258
\(455\) 0 0
\(456\) −5.80989 −0.272073
\(457\) 18.6021 + 10.7399i 0.870167 + 0.502391i 0.867404 0.497605i \(-0.165787\pi\)
0.00276341 + 0.999996i \(0.499120\pi\)
\(458\) −39.6631 + 10.6277i −1.85333 + 0.496599i
\(459\) −6.56877 11.3775i −0.306604 0.531054i
\(460\) 0.887168 + 0.709072i 0.0413644 + 0.0330607i
\(461\) 4.90591 + 1.31453i 0.228491 + 0.0612240i 0.371248 0.928534i \(-0.378930\pi\)
−0.142757 + 0.989758i \(0.545597\pi\)
\(462\) 15.5989 + 27.0180i 0.725725 + 1.25699i
\(463\) 20.0793i 0.933163i 0.884478 + 0.466581i \(0.154515\pi\)
−0.884478 + 0.466581i \(0.845485\pi\)
\(464\) 6.14905 3.55016i 0.285463 0.164812i
\(465\) −1.34289 0.587633i −0.0622748 0.0272508i
\(466\) −50.2844 + 13.4737i −2.32938 + 0.624156i
\(467\) −21.4507 21.4507i −0.992618 0.992618i 0.00735447 0.999973i \(-0.497659\pi\)
−0.999973 + 0.00735447i \(0.997659\pi\)
\(468\) 0 0
\(469\) 7.75807i 0.358234i
\(470\) −6.45704 + 14.7559i −0.297841 + 0.680639i
\(471\) −4.31627 + 7.47600i −0.198883 + 0.344476i
\(472\) 0.00142822 0.00533020i 6.57392e−5 0.000245342i
\(473\) −36.3934 −1.67337
\(474\) 12.9371 48.2818i 0.594219 2.21766i
\(475\) −0.241062 + 6.08820i −0.0110607 + 0.279346i
\(476\) −8.92064 8.92064i −0.408877 0.408877i
\(477\) 5.82226 + 1.56007i 0.266583 + 0.0714306i
\(478\) 2.15680 + 8.04928i 0.0986497 + 0.368166i
\(479\) −8.05179 30.0497i −0.367896 1.37300i −0.863453 0.504430i \(-0.831703\pi\)
0.495557 0.868575i \(-0.334964\pi\)
\(480\) 22.3664 + 17.8764i 1.02088 + 0.815943i
\(481\) 0 0
\(482\) −33.1210 + 33.1210i −1.50862 + 1.50862i
\(483\) −0.210173 + 0.364031i −0.00956321 + 0.0165640i
\(484\) 50.0165 + 28.8770i 2.27348 + 1.31259i
\(485\) −5.54305 7.52768i −0.251697 0.341814i
\(486\) 15.1377 15.1377i 0.686662 0.686662i
\(487\) 16.8282 9.71579i 0.762560 0.440264i −0.0676540 0.997709i \(-0.521551\pi\)
0.830214 + 0.557445i \(0.188218\pi\)
\(488\) 2.89277 1.67014i 0.130950 0.0756039i
\(489\) 12.9321 12.9321i 0.584810 0.584810i
\(490\) −16.0219 21.7584i −0.723797 0.982945i
\(491\) −30.5824 17.6568i −1.38017 0.796839i −0.387987 0.921665i \(-0.626830\pi\)
−0.992179 + 0.124825i \(0.960163\pi\)
\(492\) −1.52496 + 2.64131i −0.0687506 + 0.119079i
\(493\) 22.1234 22.1234i 0.996389 0.996389i
\(494\) 0 0
\(495\) −9.03988 7.22515i −0.406312 0.324746i
\(496\) 0.0624327 + 0.233002i 0.00280331 + 0.0104621i
\(497\) 4.01863 + 14.9977i 0.180260 + 0.672740i
\(498\) 11.4702 + 3.07343i 0.513991 + 0.137723i
\(499\) 9.44430 + 9.44430i 0.422785 + 0.422785i 0.886161 0.463377i \(-0.153362\pi\)
−0.463377 + 0.886161i \(0.653362\pi\)
\(500\) −22.4453 + 25.9105i −1.00378 + 1.15875i
\(501\) 6.49919 24.2553i 0.290363 1.08365i
\(502\) −5.32928 −0.237857
\(503\) −6.24460 + 23.3052i −0.278433 + 1.03913i 0.675073 + 0.737751i \(0.264112\pi\)
−0.953506 + 0.301375i \(0.902554\pi\)
\(504\) 1.45192 2.51480i 0.0646736 0.112018i
\(505\) −7.73542 + 17.6773i −0.344221 + 0.786630i
\(506\) 2.03659i 0.0905374i
\(507\) 0 0
\(508\) −1.13721 1.13721i −0.0504555 0.0504555i
\(509\) −3.59537 + 0.963376i −0.159362 + 0.0427009i −0.337618 0.941283i \(-0.609621\pi\)
0.178256 + 0.983984i \(0.442954\pi\)
\(510\) 29.5125 + 12.9144i 1.30683 + 0.571858i
\(511\) −8.12538 + 4.69119i −0.359446 + 0.207526i
\(512\) 8.22064i 0.363304i
\(513\) −2.48471 4.30365i −0.109703 0.190011i
\(514\) 1.89156 + 0.506841i 0.0834330 + 0.0223558i
\(515\) −2.65804 2.12445i −0.117127 0.0936144i
\(516\) 20.2942 + 35.1506i 0.893403 + 1.54742i
\(517\) −16.8850 + 4.52433i −0.742603 + 0.198980i
\(518\) −3.29028 1.89964i −0.144567 0.0834656i
\(519\) 27.2503 1.19615
\(520\) 0 0
\(521\) 45.2323 1.98166 0.990832 0.135103i \(-0.0431364\pi\)
0.990832 + 0.135103i \(0.0431364\pi\)
\(522\) 17.9366 + 10.3557i 0.785062 + 0.453256i
\(523\) −1.10259 + 0.295439i −0.0482131 + 0.0129187i −0.282845 0.959166i \(-0.591278\pi\)
0.234632 + 0.972084i \(0.424612\pi\)
\(524\) 7.81683 + 13.5392i 0.341480 + 0.591461i
\(525\) −10.7283 6.77362i −0.468221 0.295625i
\(526\) 33.0208 + 8.84790i 1.43978 + 0.385787i
\(527\) 0.531466 + 0.920525i 0.0231510 + 0.0400987i
\(528\) 7.93430i 0.345296i
\(529\) 19.8948 11.4863i 0.864992 0.499403i
\(530\) 29.8179 11.6653i 1.29521 0.506706i
\(531\) −0.00210457 0.000563919i −9.13307e−5 2.44720e-5i
\(532\) −3.37434 3.37434i −0.146296 0.146296i
\(533\) 0 0
\(534\) 32.2479i 1.39550i
\(535\) 30.2484 11.8337i 1.30775 0.511614i
\(536\) 7.28818 12.6235i 0.314801 0.545252i
\(537\) 6.50114 24.2626i 0.280545 1.04701i
\(538\) 54.8782 2.36597
\(539\) 7.59005 28.3265i 0.326927 1.22011i
\(540\) 4.19714 27.6423i 0.180616 1.18953i
\(541\) −22.3573 22.3573i −0.961218 0.961218i 0.0380580 0.999276i \(-0.487883\pi\)
−0.999276 + 0.0380580i \(0.987883\pi\)
\(542\) 28.5171 + 7.64112i 1.22491 + 0.328214i
\(543\) −4.19929 15.6720i −0.180209 0.672548i
\(544\) −5.37376 20.0551i −0.230398 0.859857i
\(545\) 9.32685 11.6694i 0.399518 0.499864i
\(546\) 0 0
\(547\) −5.20384 + 5.20384i −0.222500 + 0.222500i −0.809550 0.587050i \(-0.800289\pi\)
0.587050 + 0.809550i \(0.300289\pi\)
\(548\) −5.83096 + 10.0995i −0.249086 + 0.431430i
\(549\) −1.14218 0.659440i −0.0487472 0.0281442i
\(550\) −61.4242 2.43209i −2.61914 0.103705i
\(551\) 8.36844 8.36844i 0.356507 0.356507i
\(552\) 0.683964 0.394887i 0.0291114 0.0168075i
\(553\) 12.3630 7.13781i 0.525730 0.303530i
\(554\) 19.4608 19.4608i 0.826812 0.826812i
\(555\) 5.80505 + 0.881427i 0.246411 + 0.0374145i
\(556\) −3.92517 2.26620i −0.166464 0.0961081i
\(557\) 3.29321 5.70401i 0.139538 0.241687i −0.787784 0.615952i \(-0.788772\pi\)
0.927322 + 0.374265i \(0.122105\pi\)
\(558\) −0.497544 + 0.497544i −0.0210627 + 0.0210627i
\(559\) 0 0
\(560\) 0.231518 + 2.07505i 0.00978343 + 0.0876871i
\(561\) 9.04887 + 33.7709i 0.382044 + 1.42581i
\(562\) 5.30173 + 19.7863i 0.223640 + 0.834636i
\(563\) 28.3543 + 7.59751i 1.19499 + 0.320197i 0.800856 0.598856i \(-0.204378\pi\)
0.394134 + 0.919053i \(0.371045\pi\)
\(564\) 13.7855 + 13.7855i 0.580475 + 0.580475i
\(565\) −25.1908 3.82492i −1.05979 0.160916i
\(566\) −15.9347 + 59.4689i −0.669783 + 2.49967i
\(567\) 13.9784 0.587039
\(568\) 7.55046 28.1787i 0.316810 1.18235i
\(569\) −16.9543 + 29.3658i −0.710763 + 1.23108i 0.253808 + 0.967255i \(0.418317\pi\)
−0.964571 + 0.263823i \(0.915016\pi\)
\(570\) 11.1634 + 4.88501i 0.467585 + 0.204611i
\(571\) 33.5525i 1.40413i −0.712113 0.702065i \(-0.752262\pi\)
0.712113 0.702065i \(-0.247738\pi\)
\(572\) 0 0
\(573\) −20.7277 20.7277i −0.865910 0.865910i
\(574\) −1.39019 + 0.372500i −0.0580253 + 0.0155478i
\(575\) −0.385424 0.733112i −0.0160733 0.0305729i
\(576\) 10.7031 6.17945i 0.445964 0.257477i
\(577\) 11.0413i 0.459654i 0.973232 + 0.229827i \(0.0738160\pi\)
−0.973232 + 0.229827i \(0.926184\pi\)
\(578\) 7.45188 + 12.9070i 0.309957 + 0.536862i
\(579\) 28.9729 + 7.76326i 1.20407 + 0.322630i
\(580\) 66.1743 7.38321i 2.74774 0.306571i
\(581\) 1.69571 + 2.93706i 0.0703499 + 0.121850i
\(582\) −18.0589 + 4.83886i −0.748565 + 0.200577i
\(583\) 30.0940 + 17.3748i 1.24636 + 0.719589i
\(584\) 17.6282 0.729461
\(585\) 0 0
\(586\) 58.8002 2.42902
\(587\) −20.3567 11.7529i −0.840209 0.485095i 0.0171260 0.999853i \(-0.494548\pi\)
−0.857335 + 0.514758i \(0.827882\pi\)
\(588\) −31.5916 + 8.46495i −1.30282 + 0.349089i
\(589\) 0.201033 + 0.348199i 0.00828342 + 0.0143473i
\(590\) −0.00722594 + 0.00904086i −0.000297487 + 0.000372206i
\(591\) −29.4999 7.90448i −1.21346 0.325147i
\(592\) −0.483123 0.836794i −0.0198563 0.0343920i
\(593\) 30.6582i 1.25898i 0.777007 + 0.629491i \(0.216737\pi\)
−0.777007 + 0.629491i \(0.783263\pi\)
\(594\) 43.4198 25.0684i 1.78153 1.02857i
\(595\) 3.35196 + 8.56804i 0.137417 + 0.351255i
\(596\) 50.9882 13.6622i 2.08856 0.559627i
\(597\) −16.0948 16.0948i −0.658717 0.658717i
\(598\) 0 0
\(599\) 7.49378i 0.306188i −0.988212 0.153094i \(-0.951076\pi\)
0.988212 0.153094i \(-0.0489237\pi\)
\(600\) 11.0931 + 21.1002i 0.452875 + 0.861410i
\(601\) 7.04653 12.2049i 0.287434 0.497850i −0.685763 0.727825i \(-0.740531\pi\)
0.973196 + 0.229975i \(0.0738645\pi\)
\(602\) −4.95724 + 18.5007i −0.202042 + 0.754030i
\(603\) −5.75533 −0.234375
\(604\) −11.2834 + 42.1101i −0.459113 + 1.71343i
\(605\) −24.9742 33.9159i −1.01534 1.37888i
\(606\) 27.2872 + 27.2872i 1.10847 + 1.10847i
\(607\) −14.5660 3.90296i −0.591218 0.158416i −0.0492080 0.998789i \(-0.515670\pi\)
−0.542010 + 0.840372i \(0.682336\pi\)
\(608\) −2.03268 7.58608i −0.0824363 0.307656i
\(609\) 6.37837 + 23.8044i 0.258465 + 0.964604i
\(610\) −6.96260 + 0.776832i −0.281908 + 0.0314530i
\(611\) 0 0
\(612\) 6.61779 6.61779i 0.267508 0.267508i
\(613\) 5.95807 10.3197i 0.240644 0.416808i −0.720254 0.693711i \(-0.755975\pi\)
0.960898 + 0.276903i \(0.0893080\pi\)
\(614\) −28.6614 16.5477i −1.15668 0.667810i
\(615\) 1.79106 1.31886i 0.0722225 0.0531814i
\(616\) 11.8375 11.8375i 0.476945 0.476945i
\(617\) −33.6292 + 19.4158i −1.35386 + 0.781652i −0.988788 0.149326i \(-0.952290\pi\)
−0.365074 + 0.930979i \(0.618956\pi\)
\(618\) −5.89344 + 3.40258i −0.237069 + 0.136872i
\(619\) 14.9567 14.9567i 0.601159 0.601159i −0.339461 0.940620i \(-0.610245\pi\)
0.940620 + 0.339461i \(0.110245\pi\)
\(620\) −0.339582 + 2.23648i −0.0136379 + 0.0898191i
\(621\) 0.585021 + 0.337762i 0.0234761 + 0.0135539i
\(622\) 35.8469 62.0887i 1.43733 2.48953i
\(623\) 6.51241 6.51241i 0.260914 0.260914i
\(624\) 0 0
\(625\) 22.5712 10.7490i 0.902847 0.429961i
\(626\) −9.87514 36.8545i −0.394690 1.47300i
\(627\) 3.42284 + 12.7742i 0.136695 + 0.510153i
\(628\) 12.8681 + 3.44799i 0.513492 + 0.137590i
\(629\) −3.01067 3.01067i −0.120043 0.120043i
\(630\) −4.90426 + 3.61128i −0.195390 + 0.143877i
\(631\) 10.1085 37.7256i 0.402415 1.50183i −0.406360 0.913713i \(-0.633202\pi\)
0.808775 0.588119i \(-0.200131\pi\)
\(632\) −26.8219 −1.06692
\(633\) 1.63726 6.11032i 0.0650751 0.242864i
\(634\) −17.5143 + 30.3357i −0.695582 + 1.20478i
\(635\) 0.427310 + 1.09226i 0.0169573 + 0.0433450i
\(636\) 38.7550i 1.53674i
\(637\) 0 0
\(638\) 84.4296 + 84.4296i 3.34260 + 3.34260i
\(639\) −11.1261 + 2.98122i −0.440141 + 0.117935i
\(640\) 14.7637 33.7386i 0.583585 1.33363i
\(641\) −7.55607 + 4.36250i −0.298447 + 0.172308i −0.641745 0.766918i \(-0.721789\pi\)
0.343298 + 0.939226i \(0.388456\pi\)
\(642\) 64.9590i 2.56373i
\(643\) 7.39852 + 12.8146i 0.291769 + 0.505359i 0.974228 0.225565i \(-0.0724228\pi\)
−0.682459 + 0.730924i \(0.739089\pi\)
\(644\) 0.626588 + 0.167894i 0.0246910 + 0.00661594i
\(645\) −3.28220 29.4178i −0.129237 1.15832i
\(646\) −4.41809 7.65235i −0.173827 0.301078i
\(647\) 32.7213 8.76765i 1.28641 0.344692i 0.450113 0.892972i \(-0.351384\pi\)
0.836295 + 0.548280i \(0.184717\pi\)
\(648\) −22.7449 13.1318i −0.893505 0.515865i
\(649\) −0.0125609 −0.000493060
\(650\) 0 0
\(651\) −0.837243 −0.0328141
\(652\) −24.4425 14.1119i −0.957242 0.552664i
\(653\) 19.5581 5.24059i 0.765369 0.205080i 0.145044 0.989425i \(-0.453667\pi\)
0.620325 + 0.784345i \(0.287001\pi\)
\(654\) −14.9382 25.8737i −0.584128 1.01174i
\(655\) −1.26422 11.3310i −0.0493973 0.442739i
\(656\) −0.353557 0.0947353i −0.0138041 0.00369879i
\(657\) −3.48016 6.02782i −0.135774 0.235168i
\(658\) 9.19981i 0.358646i
\(659\) −26.2317 + 15.1449i −1.02184 + 0.589961i −0.914637 0.404276i \(-0.867523\pi\)
−0.107205 + 0.994237i \(0.534190\pi\)
\(660\) −29.8284 + 68.1652i −1.16107 + 2.65333i
\(661\) 21.1339 5.66280i 0.822012 0.220257i 0.176786 0.984249i \(-0.443430\pi\)
0.645226 + 0.763992i \(0.276763\pi\)
\(662\) 27.1574 + 27.1574i 1.05550 + 1.05550i
\(663\) 0 0
\(664\) 6.37202i 0.247282i
\(665\) 1.26792 + 3.24096i 0.0491677 + 0.125679i
\(666\) 1.40925 2.44090i 0.0546074 0.0945829i
\(667\) −0.416380 + 1.55395i −0.0161223 + 0.0601693i
\(668\) −38.7520 −1.49936
\(669\) 6.10774 22.7944i 0.236139 0.881282i
\(670\) −24.6179 + 18.1275i −0.951071 + 0.700326i
\(671\) −5.37640 5.37640i −0.207553 0.207553i
\(672\) 15.7969 + 4.23277i 0.609379 + 0.163283i
\(673\) 0.148622 + 0.554664i 0.00572895 + 0.0213807i 0.968731 0.248113i \(-0.0798104\pi\)
−0.963002 + 0.269494i \(0.913144\pi\)
\(674\) 20.6424 + 77.0386i 0.795117 + 2.96742i
\(675\) −10.8857 + 17.2411i −0.418989 + 0.663610i
\(676\) 0 0
\(677\) −11.5229 + 11.5229i −0.442862 + 0.442862i −0.892973 0.450111i \(-0.851385\pi\)
0.450111 + 0.892973i \(0.351385\pi\)
\(678\) −25.4786 + 44.1302i −0.978498 + 1.69481i
\(679\) −4.62416 2.66976i −0.177459 0.102456i
\(680\) 2.59496 17.0904i 0.0995124 0.655386i
\(681\) 38.8688 38.8688i 1.48946 1.48946i
\(682\) −3.51300 + 2.02823i −0.134520 + 0.0776650i
\(683\) −17.4121 + 10.0529i −0.666256 + 0.384663i −0.794657 0.607059i \(-0.792349\pi\)
0.128400 + 0.991722i \(0.459016\pi\)
\(684\) 2.50325 2.50325i 0.0957143 0.0957143i
\(685\) 6.84843 5.04288i 0.261665 0.192679i
\(686\) −30.7929 17.7783i −1.17568 0.678777i
\(687\) 18.1232 31.3902i 0.691442 1.19761i
\(688\) −3.44440 + 3.44440i −0.131317 + 0.131317i
\(689\) 0 0
\(690\) −1.64623 + 0.183673i −0.0626709 + 0.00699232i
\(691\) 11.2156 + 41.8571i 0.426661 + 1.59232i 0.760269 + 0.649608i \(0.225067\pi\)
−0.333608 + 0.942712i \(0.608266\pi\)
\(692\) −10.8842 40.6205i −0.413756 1.54416i
\(693\) −6.38467 1.71077i −0.242534 0.0649867i
\(694\) −20.5310 20.5310i −0.779346 0.779346i
\(695\) 1.95991 + 2.66164i 0.0743436 + 0.100962i
\(696\) 11.9841 44.7253i 0.454256 1.69531i
\(697\) −1.61289 −0.0610926
\(698\) −15.6421 + 58.3773i −0.592064 + 2.20961i
\(699\) 22.9764 39.7962i 0.869046 1.50523i
\(700\) −5.81200 + 18.6976i −0.219673 + 0.706702i
\(701\) 8.03468i 0.303466i −0.988422 0.151733i \(-0.951515\pi\)
0.988422 0.151733i \(-0.0484853\pi\)
\(702\) 0 0
\(703\) −1.13882 1.13882i −0.0429514 0.0429514i
\(704\) 68.8216 18.4407i 2.59381 0.695010i
\(705\) −5.17995 13.2406i −0.195088 0.498670i
\(706\) 45.4404 26.2350i 1.71017 0.987369i
\(707\) 11.0212i 0.414495i
\(708\) 0.00700440 + 0.0121320i 0.000263242 + 0.000455948i
\(709\) −21.9526 5.88217i −0.824446 0.220910i −0.178157 0.984002i \(-0.557013\pi\)
−0.646289 + 0.763092i \(0.723680\pi\)
\(710\) −38.2008 + 47.7956i −1.43365 + 1.79374i
\(711\) 5.29519 + 9.17153i 0.198585 + 0.343959i
\(712\) −16.7146 + 4.47866i −0.626406 + 0.167845i
\(713\) −0.0473328 0.0273276i −0.00177263 0.00102343i
\(714\) 18.4000 0.688604
\(715\) 0 0
\(716\) −38.7636 −1.44866
\(717\) −6.37039 3.67794i −0.237906 0.137355i
\(718\) −28.2014 + 7.55655i −1.05247 + 0.282008i
\(719\) 21.4786 + 37.2021i 0.801018 + 1.38740i 0.918946 + 0.394382i \(0.129041\pi\)
−0.117928 + 0.993022i \(0.537625\pi\)
\(720\) −1.53938 + 0.171752i −0.0573693 + 0.00640081i
\(721\) −1.87732 0.503026i −0.0699149 0.0187336i
\(722\) 19.7115 + 34.1413i 0.733585 + 1.27061i
\(723\) 41.3467i 1.53770i
\(724\) −21.6841 + 12.5193i −0.805882 + 0.465276i
\(725\) −46.3705 14.4139i −1.72216 0.535319i
\(726\) −81.3643 + 21.8015i −3.01971 + 0.809129i
\(727\) −1.42786 1.42786i −0.0529563 0.0529563i 0.680133 0.733089i \(-0.261922\pi\)
−0.733089 + 0.680133i \(0.761922\pi\)
\(728\) 0 0
\(729\) 13.9369i 0.516183i
\(730\) −33.8718 14.8220i −1.25365 0.548586i
\(731\) −10.7322 + 18.5887i −0.396945 + 0.687528i
\(732\) −2.19473 + 8.19086i −0.0811197 + 0.302743i
\(733\) −32.1064 −1.18588 −0.592939 0.805247i \(-0.702033\pi\)
−0.592939 + 0.805247i \(0.702033\pi\)
\(734\) −8.66065 + 32.3220i −0.319670 + 1.19303i
\(735\) 23.5816 + 3.58058i 0.869820 + 0.132072i
\(736\) 0.754907 + 0.754907i 0.0278262 + 0.0278262i
\(737\) −32.0491 8.58752i −1.18054 0.316325i
\(738\) −0.276339 1.03131i −0.0101722 0.0379631i
\(739\) −5.31771 19.8460i −0.195615 0.730046i −0.992107 0.125396i \(-0.959980\pi\)
0.796492 0.604650i \(-0.206687\pi\)
\(740\) −1.00474 9.00534i −0.0369351 0.331043i
\(741\) 0 0
\(742\) 12.9317 12.9317i 0.474736 0.474736i
\(743\) 11.2520 19.4891i 0.412797 0.714985i −0.582398 0.812904i \(-0.697885\pi\)
0.995194 + 0.0979193i \(0.0312187\pi\)
\(744\) 1.36232 + 0.786533i 0.0499449 + 0.0288357i
\(745\) −38.0601 5.77897i −1.39442 0.211725i
\(746\) 9.83771 9.83771i 0.360184 0.360184i
\(747\) −2.17886 + 1.25796i −0.0797202 + 0.0460265i
\(748\) 46.7261 26.9773i 1.70848 0.986389i
\(749\) 13.1184 13.1184i 0.479334 0.479334i
\(750\) −3.57372 49.8702i −0.130494 1.82100i
\(751\) 1.44204 + 0.832560i 0.0526207 + 0.0303806i 0.526080 0.850435i \(-0.323661\pi\)
−0.473459 + 0.880816i \(0.656995\pi\)
\(752\) −1.16986 + 2.02626i −0.0426605 + 0.0738901i
\(753\) 3.32640 3.32640i 0.121221 0.121221i
\(754\) 0 0
\(755\) 19.8498 24.8355i 0.722410 0.903855i
\(756\) −4.13321 15.4254i −0.150324 0.561015i
\(757\) −10.1014 37.6990i −0.367143 1.37019i −0.864493 0.502645i \(-0.832360\pi\)
0.497350 0.867550i \(-0.334306\pi\)
\(758\) −39.7186 10.6426i −1.44265 0.386556i
\(759\) −1.27119 1.27119i −0.0461412 0.0461412i
\(760\) 0.981575 6.46463i 0.0356055 0.234497i
\(761\) 4.20973 15.7109i 0.152603 0.569521i −0.846696 0.532077i \(-0.821412\pi\)
0.999299 0.0374441i \(-0.0119216\pi\)
\(762\) 2.34565 0.0849739
\(763\) 2.20841 8.24188i 0.0799496 0.298376i
\(764\) −22.6186 + 39.1766i −0.818313 + 1.41736i
\(765\) −6.35620 + 2.48665i −0.229809 + 0.0899052i
\(766\) 23.0560i 0.833045i
\(767\) 0 0
\(768\) −15.4289 15.4289i −0.556741 0.556741i
\(769\) −38.5504 + 10.3296i −1.39016 + 0.372493i −0.874803 0.484479i \(-0.839009\pi\)
−0.515362 + 0.856973i \(0.672342\pi\)
\(770\) −32.6982 + 12.7921i −1.17836 + 0.460995i
\(771\) −1.49702 + 0.864306i −0.0539139 + 0.0311272i
\(772\) 46.2891i 1.66598i
\(773\) 10.2944 + 17.8304i 0.370262 + 0.641313i 0.989606 0.143807i \(-0.0459345\pi\)
−0.619343 + 0.785120i \(0.712601\pi\)
\(774\) −13.7247 3.67753i −0.493325 0.132186i
\(775\) 0.880735 1.39494i 0.0316369 0.0501077i
\(776\) 5.01612 + 8.68818i 0.180068 + 0.311887i
\(777\) 3.23942 0.868001i 0.116214 0.0311394i
\(778\) −6.65087 3.83988i −0.238445 0.137666i
\(779\) −0.610095 −0.0218589
\(780\) 0 0
\(781\) −66.4048 −2.37615
\(782\) 1.04023 + 0.600577i 0.0371986 + 0.0214766i
\(783\) 38.2553 10.2505i 1.36713 0.366322i
\(784\) −1.96257 3.39927i −0.0700917 0.121402i
\(785\) −7.58927 6.06575i −0.270873 0.216496i
\(786\) −22.0248 5.90153i −0.785599 0.210501i
\(787\) 14.3244 + 24.8106i 0.510611 + 0.884404i 0.999924 + 0.0122960i \(0.00391402\pi\)
−0.489314 + 0.872108i \(0.662753\pi\)
\(788\) 47.1311i 1.67898i
\(789\) −26.1334 + 15.0881i −0.930375 + 0.537152i
\(790\) 51.5371 + 22.5521i 1.83361 + 0.802369i
\(791\) −14.0574 + 3.76666i −0.499822 + 0.133927i
\(792\) 8.78163 + 8.78163i 0.312042 + 0.312042i
\(793\) 0 0
\(794\) 26.8568i 0.953111i
\(795\) −11.3304 + 25.8927i −0.401848 + 0.918321i
\(796\) −17.5631 + 30.4202i −0.622508 + 1.07822i
\(797\) −2.27363 + 8.48530i −0.0805361 + 0.300565i −0.994432 0.105385i \(-0.966393\pi\)
0.913895 + 0.405950i \(0.133059\pi\)
\(798\) 6.96002 0.246382
\(799\) −2.66840 + 9.95859i −0.0944011 + 0.352310i
\(800\) −23.6698 + 21.8667i −0.836852 + 0.773106i
\(801\) 4.83124 + 4.83124i 0.170703 + 0.170703i
\(802\) −8.86190 2.37454i −0.312924 0.0838479i
\(803\) −10.3855 38.7592i −0.366496 1.36778i
\(804\) 9.57739 + 35.7433i 0.337768 + 1.26057i
\(805\) −0.369546 0.295361i −0.0130248 0.0104101i
\(806\) 0 0
\(807\) −34.2536 + 34.2536i −1.20578 + 1.20578i
\(808\) 10.3537 17.9331i 0.364241 0.630884i
\(809\) −0.820571 0.473757i −0.0288497 0.0166564i 0.485506 0.874233i \(-0.338635\pi\)
−0.514356 + 0.857577i \(0.671969\pi\)
\(810\) 32.6620 + 44.3563i 1.14762 + 1.55852i
\(811\) −28.8041 + 28.8041i −1.01145 + 1.01145i −0.0115151 + 0.999934i \(0.503665\pi\)
−0.999934 + 0.0115151i \(0.996335\pi\)
\(812\) 32.9363 19.0158i 1.15584 0.667324i
\(813\) −22.5690 + 13.0302i −0.791531 + 0.456991i
\(814\) 11.4896 11.4896i 0.402711 0.402711i
\(815\) 12.2046 + 16.5743i 0.427509 + 0.580574i
\(816\) 4.05261 + 2.33978i 0.141870 + 0.0819086i
\(817\) −4.05958 + 7.03139i −0.142027 + 0.245997i
\(818\) 11.0440 11.0440i 0.386145 0.386145i
\(819\) 0 0
\(820\) −2.68133 2.14306i −0.0936361 0.0748390i
\(821\) −0.348249 1.29968i −0.0121540 0.0453592i 0.959583 0.281427i \(-0.0908078\pi\)
−0.971737 + 0.236068i \(0.924141\pi\)
\(822\) −4.40224 16.4294i −0.153546 0.573041i
\(823\) −31.9429 8.55907i −1.11346 0.298350i −0.345225 0.938520i \(-0.612197\pi\)
−0.768234 + 0.640169i \(0.778864\pi\)
\(824\) 2.58211 + 2.58211i 0.0899520 + 0.0899520i
\(825\) 39.8575 36.8214i 1.38766 1.28196i
\(826\) −0.00171095 + 0.00638537i −5.95317e−5 + 0.000222175i
\(827\) 26.4195 0.918697 0.459349 0.888256i \(-0.348083\pi\)
0.459349 + 0.888256i \(0.348083\pi\)
\(828\) −0.124552 + 0.464834i −0.00432848 + 0.0161541i
\(829\) 1.23034 2.13101i 0.0427314 0.0740130i −0.843869 0.536550i \(-0.819727\pi\)
0.886600 + 0.462537i \(0.153061\pi\)
\(830\) −5.35766 + 12.2435i −0.185967 + 0.424980i
\(831\) 24.2940i 0.842748i
\(832\) 0 0
\(833\) −12.2301 12.2301i −0.423747 0.423747i
\(834\) 6.38526 1.71093i 0.221104 0.0592445i
\(835\) 25.8907 + 11.3295i 0.895985 + 0.392074i
\(836\) 17.6747 10.2045i 0.611292 0.352929i
\(837\) 1.34551i 0.0465075i
\(838\) −23.8909 41.3802i −0.825297 1.42946i
\(839\) −48.6308 13.0306i −1.67892 0.449866i −0.711428 0.702759i \(-0.751951\pi\)
−0.967494 + 0.252893i \(0.918618\pi\)
\(840\) 10.6361 + 8.50096i 0.366981 + 0.293311i
\(841\) 32.6597 + 56.5682i 1.12619 + 1.95063i
\(842\) 9.70754 2.60113i 0.334544 0.0896408i
\(843\) −15.6594 9.04093i −0.539337 0.311386i
\(844\) −9.76228 −0.336032
\(845\) 0 0
\(846\) −6.82488 −0.234644
\(847\) −20.8342 12.0286i −0.715870 0.413308i
\(848\) 4.49261 1.20379i 0.154277 0.0413384i
\(849\) −27.1730 47.0651i −0.932576 1.61527i
\(850\) −19.3559 + 30.6565i −0.663900 + 1.05151i
\(851\) 0.211470 + 0.0566632i 0.00724909 + 0.00194239i
\(852\) 37.0296 + 64.1371i 1.26861 + 2.19730i
\(853\) 42.9612i 1.47096i −0.677545 0.735481i \(-0.736956\pi\)
0.677545 0.735481i \(-0.263044\pi\)
\(854\) −3.46543 + 2.00077i −0.118585 + 0.0684649i
\(855\) −2.40431 + 0.940605i −0.0822255 + 0.0321680i
\(856\) −33.6693 + 9.02166i −1.15079 + 0.308354i
\(857\) 29.0789 + 29.0789i 0.993316 + 0.993316i 0.999978 0.00666151i \(-0.00212044\pi\)
−0.00666151 + 0.999978i \(0.502120\pi\)
\(858\) 0 0
\(859\) 42.1283i 1.43740i 0.695321 + 0.718700i \(0.255262\pi\)
−0.695321 + 0.718700i \(0.744738\pi\)
\(860\) −42.5406 + 16.6426i −1.45062 + 0.567508i
\(861\) 0.635216 1.10023i 0.0216481 0.0374956i
\(862\) 20.8810 77.9289i 0.711209 2.65427i
\(863\) −6.80768 −0.231736 −0.115868 0.993265i \(-0.536965\pi\)
−0.115868 + 0.993265i \(0.536965\pi\)
\(864\) 6.80234 25.3867i 0.231420 0.863672i
\(865\) −4.60391 + 30.3212i −0.156537 + 1.03095i
\(866\) 12.8806 + 12.8806i 0.437702 + 0.437702i
\(867\) −12.7075 3.40497i −0.431570 0.115639i
\(868\) 0.334410 + 1.24803i 0.0113506 + 0.0423610i
\(869\) 15.8019 + 58.9734i 0.536042 + 2.00054i
\(870\) −60.6323 + 75.8612i −2.05563 + 2.57194i
\(871\) 0 0
\(872\) −11.3361 + 11.3361i −0.383888 + 0.383888i
\(873\) 1.98056 3.43044i 0.0670320 0.116103i
\(874\) 0.393479 + 0.227175i 0.0133096 + 0.00768432i
\(875\) 9.34949 10.7929i 0.316071 0.364867i
\(876\) −31.6443 + 31.6443i −1.06916 + 1.06916i
\(877\) 41.2933 23.8407i 1.39437 0.805043i 0.400579 0.916262i \(-0.368809\pi\)
0.993796 + 0.111219i \(0.0354756\pi\)
\(878\) 55.8796 32.2621i 1.88585 1.08879i
\(879\) −36.7017 + 36.7017i −1.23792 + 1.23792i
\(880\) −8.82845 1.34049i −0.297607 0.0451880i
\(881\) 4.43737 + 2.56192i 0.149499 + 0.0863133i 0.572884 0.819637i \(-0.305825\pi\)
−0.423385 + 0.905950i \(0.639158\pi\)
\(882\) 5.72474 9.91554i 0.192762 0.333873i
\(883\) −14.8283 + 14.8283i −0.499014 + 0.499014i −0.911131 0.412117i \(-0.864789\pi\)
0.412117 + 0.911131i \(0.364789\pi\)
\(884\) 0 0
\(885\) −0.00113283 0.0101533i −3.80796e−5 0.000341301i
\(886\) −14.1361 52.7568i −0.474913 1.77240i
\(887\) −2.72597 10.1735i −0.0915293 0.341592i 0.904941 0.425537i \(-0.139915\pi\)
−0.996470 + 0.0839449i \(0.973248\pi\)
\(888\) −6.08644 1.63086i −0.204248 0.0547280i
\(889\) 0.473700 + 0.473700i 0.0158874 + 0.0158874i
\(890\) 35.8820 + 5.44825i 1.20277 + 0.182626i
\(891\) −15.4729 + 57.7457i −0.518362 + 1.93455i
\(892\) −36.4179 −1.21936
\(893\) −1.00935 + 3.76695i −0.0337767 + 0.126056i
\(894\) −38.4949 + 66.6751i −1.28746 + 2.22995i
\(895\) 25.8985 + 11.3329i 0.865691 + 0.378818i
\(896\) 21.0349i 0.702725i
\(897\) 0 0
\(898\) −14.5886 14.5886i −0.486828 0.486828i
\(899\) −3.09515 + 0.829344i −0.103229 + 0.0276602i
\(900\) −13.8708 4.31163i −0.462361 0.143721i
\(901\) 17.7490 10.2474i 0.591307 0.341391i
\(902\) 6.15528i 0.204948i
\(903\) −8.45347 14.6418i −0.281314 0.487250i
\(904\) 26.4119 + 7.07704i 0.878446 + 0.235379i
\(905\) 18.1476 2.02476i 0.603245 0.0673053i
\(906\) −31.7921 55.0656i −1.05622 1.82943i
\(907\) 20.8031 5.57417i 0.690755 0.185087i 0.103669 0.994612i \(-0.466942\pi\)
0.587086 + 0.809525i \(0.300275\pi\)
\(908\) −73.4645 42.4147i −2.43800 1.40758i
\(909\) −8.17608 −0.271184
\(910\) 0 0
\(911\) −16.6400 −0.551309 −0.275654 0.961257i \(-0.588895\pi\)
−0.275654 + 0.961257i \(0.588895\pi\)
\(912\) 1.53295 + 0.885047i 0.0507609 + 0.0293068i
\(913\) −14.0102 + 3.75401i −0.463669 + 0.124240i
\(914\) 24.1734 + 41.8696i 0.799586 + 1.38492i
\(915\) 3.86101 4.83077i 0.127641 0.159700i
\(916\) −54.0305 14.4774i −1.78522 0.478347i
\(917\) −3.25607 5.63968i −0.107525 0.186239i
\(918\) 29.5701i 0.975958i
\(919\) 5.95358 3.43730i 0.196390 0.113386i −0.398580 0.917133i \(-0.630497\pi\)
0.594971 + 0.803747i \(0.297164\pi\)
\(920\) 0.323833 + 0.827758i 0.0106765 + 0.0272904i
\(921\) 28.2184 7.56111i 0.929829 0.249147i
\(922\) 8.08349 + 8.08349i 0.266216 + 0.266216i
\(923\) 0 0
\(924\) 42.4987i 1.39810i
\(925\) −1.96152 + 6.31033i −0.0644942 + 0.207482i
\(926\) −22.5973 + 39.1396i −0.742593 + 1.28621i
\(927\) 0.373170 1.39269i 0.0122565 0.0457419i
\(928\) 62.5915 2.05467
\(929\) −11.5057 + 42.9399i −0.377490 + 1.40881i 0.472182 + 0.881501i \(0.343467\pi\)
−0.849672 + 0.527312i \(0.823200\pi\)
\(930\) −1.95630 2.65674i −0.0641497 0.0871178i
\(931\) −4.62617 4.62617i −0.151617 0.151617i
\(932\) −68.4993 18.3543i −2.24377 0.601216i
\(933\) 16.3795 + 61.1290i 0.536240 + 2.00127i
\(934\) −17.6722 65.9535i −0.578252 2.15806i
\(935\) −39.1054 + 4.36307i −1.27888 + 0.142688i
\(936\) 0 0
\(937\) 13.1724 13.1724i 0.430323 0.430323i −0.458415 0.888738i \(-0.651583\pi\)
0.888738 + 0.458415i \(0.151583\pi\)
\(938\) −8.73096 + 15.1225i −0.285076 + 0.493766i
\(939\) 29.1675 + 16.8399i 0.951846 + 0.549548i
\(940\) −17.6681 + 13.0100i −0.576270 + 0.424339i
\(941\) −40.0251 + 40.0251i −1.30478 + 1.30478i −0.379650 + 0.925130i \(0.623955\pi\)
−0.925130 + 0.379650i \(0.876045\pi\)
\(942\) −16.8270 + 9.71510i −0.548255 + 0.316535i
\(943\) 0.0718228 0.0414669i 0.00233887 0.00135035i
\(944\) −0.00118881 + 0.00118881i −3.86925e−5 + 3.86925e-5i
\(945\) −1.74830 + 11.5143i −0.0568723 + 0.374559i
\(946\) −70.9401 40.9573i −2.30646 1.33164i
\(947\) −29.4472 + 51.0040i −0.956904 + 1.65741i −0.226955 + 0.973905i \(0.572877\pi\)
−0.729949 + 0.683501i \(0.760456\pi\)
\(948\) 48.1479 48.1479i 1.56377 1.56377i
\(949\) 0 0
\(950\) −7.32157 + 11.5962i −0.237543 + 0.376229i
\(951\) −8.00278 29.8668i −0.259508 0.968497i
\(952\) −2.55544 9.53703i −0.0828223 0.309097i
\(953\) −17.2456 4.62094i −0.558640 0.149687i −0.0315583 0.999502i \(-0.510047\pi\)
−0.527081 + 0.849815i \(0.676714\pi\)
\(954\) 9.59336 + 9.59336i 0.310596 + 0.310596i
\(955\) 26.5654 19.5616i 0.859638 0.632999i
\(956\) −2.93807 + 10.9650i −0.0950240 + 0.354634i
\(957\) −105.398 −3.40703
\(958\) 18.1230 67.6360i 0.585528 2.18522i
\(959\) 2.42886 4.20691i 0.0784320 0.135848i
\(960\) 21.1129 + 53.9673i 0.681417 + 1.74179i
\(961\) 30.8911i 0.996488i
\(962\) 0 0
\(963\) 9.73187 + 9.73187i 0.313605 + 0.313605i
\(964\) −61.6333 + 16.5146i −1.98507 + 0.531899i
\(965\) −13.5331 + 30.9263i −0.435645 + 0.995554i
\(966\) −0.819363 + 0.473059i −0.0263626 + 0.0152204i
\(967\) 23.2093i 0.746360i −0.927759 0.373180i \(-0.878267\pi\)
0.927759 0.373180i \(-0.121733\pi\)
\(968\) 22.6001 + 39.1446i 0.726395 + 1.25815i
\(969\) 7.53407 + 2.01875i 0.242029 + 0.0648515i
\(970\) −2.33314 20.9115i −0.0749127 0.671429i
\(971\) −21.1932 36.7078i −0.680123 1.17801i −0.974943 0.222455i \(-0.928593\pi\)
0.294820 0.955553i \(-0.404740\pi\)
\(972\) 28.1691 7.54788i 0.903523 0.242098i
\(973\) 1.63501 + 0.943975i 0.0524161 + 0.0302624i
\(974\) 43.7367 1.40141
\(975\) 0 0
\(976\) −1.01768 −0.0325752
\(977\) 21.1395 + 12.2049i 0.676312 + 0.390469i 0.798464 0.602043i \(-0.205646\pi\)
−0.122152 + 0.992511i \(0.538980\pi\)
\(978\) 39.7618 10.6541i 1.27144 0.340682i
\(979\) 19.6945 + 34.1118i 0.629438 + 1.09022i
\(980\) −4.08152 36.5819i −0.130379 1.16857i
\(981\) 6.11424 + 1.63831i 0.195213 + 0.0523071i
\(982\) −39.7420 68.8352i −1.26822 2.19662i
\(983\) 4.47004i 0.142572i 0.997456 + 0.0712860i \(0.0227103\pi\)
−0.997456 + 0.0712860i \(0.977290\pi\)
\(984\) −2.06718 + 1.19349i −0.0658992 + 0.0380469i
\(985\) 13.7792 31.4889i 0.439043 1.00332i
\(986\) 68.0220 18.2264i 2.16626 0.580448i
\(987\) −5.74230 5.74230i −0.182779 0.182779i
\(988\) 0 0
\(989\) 1.10369i 0.0350952i
\(990\) −9.48982 24.2572i −0.301606 0.770944i
\(991\) 24.7675 42.8986i 0.786766 1.36272i −0.141172 0.989985i \(-0.545087\pi\)
0.927938 0.372734i \(-0.121580\pi\)
\(992\) −0.550363 + 2.05398i −0.0174740 + 0.0652140i
\(993\) −33.9020 −1.07585
\(994\) −9.04516 + 33.7570i −0.286895 + 1.07071i
\(995\) 20.6278 15.1894i 0.653945 0.481536i
\(996\) 11.4384 + 11.4384i 0.362439 + 0.362439i
\(997\) 33.8485 + 9.06967i 1.07199 + 0.287239i 0.751311 0.659948i \(-0.229422\pi\)
0.320681 + 0.947187i \(0.396088\pi\)
\(998\) 7.78071 + 29.0380i 0.246294 + 0.919182i
\(999\) −1.39494 5.20597i −0.0441338 0.164710i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.g.188.5 20
5.2 odd 4 845.2.o.g.357.1 20
13.2 odd 12 65.2.o.a.63.5 yes 20
13.3 even 3 845.2.t.e.418.1 20
13.4 even 6 845.2.f.e.408.10 20
13.5 odd 4 845.2.o.e.488.5 20
13.6 odd 12 845.2.k.e.268.1 20
13.7 odd 12 845.2.k.d.268.10 20
13.8 odd 4 845.2.o.f.488.1 20
13.9 even 3 845.2.f.d.408.1 20
13.10 even 6 845.2.t.f.418.5 20
13.11 odd 12 845.2.o.g.258.1 20
13.12 even 2 65.2.t.a.58.1 yes 20
39.2 even 12 585.2.cf.a.388.1 20
39.38 odd 2 585.2.dp.a.253.5 20
65.2 even 12 65.2.t.a.37.1 yes 20
65.7 even 12 845.2.f.d.437.10 20
65.12 odd 4 65.2.o.a.32.5 20
65.17 odd 12 845.2.k.e.577.1 20
65.22 odd 12 845.2.k.d.577.10 20
65.28 even 12 325.2.x.b.232.5 20
65.32 even 12 845.2.f.e.437.1 20
65.37 even 12 inner 845.2.t.g.427.5 20
65.38 odd 4 325.2.s.b.32.1 20
65.42 odd 12 845.2.o.f.587.1 20
65.47 even 4 845.2.t.e.657.1 20
65.54 odd 12 325.2.s.b.193.1 20
65.57 even 4 845.2.t.f.657.5 20
65.62 odd 12 845.2.o.e.587.5 20
65.64 even 2 325.2.x.b.318.5 20
195.2 odd 12 585.2.dp.a.37.5 20
195.77 even 4 585.2.cf.a.487.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.5 20 65.12 odd 4
65.2.o.a.63.5 yes 20 13.2 odd 12
65.2.t.a.37.1 yes 20 65.2 even 12
65.2.t.a.58.1 yes 20 13.12 even 2
325.2.s.b.32.1 20 65.38 odd 4
325.2.s.b.193.1 20 65.54 odd 12
325.2.x.b.232.5 20 65.28 even 12
325.2.x.b.318.5 20 65.64 even 2
585.2.cf.a.388.1 20 39.2 even 12
585.2.cf.a.487.1 20 195.77 even 4
585.2.dp.a.37.5 20 195.2 odd 12
585.2.dp.a.253.5 20 39.38 odd 2
845.2.f.d.408.1 20 13.9 even 3
845.2.f.d.437.10 20 65.7 even 12
845.2.f.e.408.10 20 13.4 even 6
845.2.f.e.437.1 20 65.32 even 12
845.2.k.d.268.10 20 13.7 odd 12
845.2.k.d.577.10 20 65.22 odd 12
845.2.k.e.268.1 20 13.6 odd 12
845.2.k.e.577.1 20 65.17 odd 12
845.2.o.e.488.5 20 13.5 odd 4
845.2.o.e.587.5 20 65.62 odd 12
845.2.o.f.488.1 20 13.8 odd 4
845.2.o.f.587.1 20 65.42 odd 12
845.2.o.g.258.1 20 13.11 odd 12
845.2.o.g.357.1 20 5.2 odd 4
845.2.t.e.418.1 20 13.3 even 3
845.2.t.e.657.1 20 65.47 even 4
845.2.t.f.418.5 20 13.10 even 6
845.2.t.f.657.5 20 65.57 even 4
845.2.t.g.188.5 20 1.1 even 1 trivial
845.2.t.g.427.5 20 65.37 even 12 inner