Properties

Label 8464.2.a.bw.1.3
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8464,2,Mod(1,8464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.68251\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.372786 q^{3} -3.39788 q^{5} +0.453800 q^{7} -2.86103 q^{9} -3.01732 q^{11} +0.904073 q^{13} +1.26668 q^{15} -6.29602 q^{17} +6.58658 q^{19} -0.169170 q^{21} +6.54557 q^{25} +2.18491 q^{27} -1.55435 q^{29} +7.55271 q^{31} +1.12481 q^{33} -1.54196 q^{35} -1.24173 q^{37} -0.337025 q^{39} +7.68240 q^{41} +6.23295 q^{43} +9.72143 q^{45} +10.0111 q^{47} -6.79407 q^{49} +2.34706 q^{51} +9.36780 q^{53} +10.2525 q^{55} -2.45538 q^{57} +6.77225 q^{59} -3.14442 q^{61} -1.29833 q^{63} -3.07193 q^{65} -7.08842 q^{67} -12.7073 q^{71} -1.41500 q^{73} -2.44009 q^{75} -1.36926 q^{77} -0.944707 q^{79} +7.76859 q^{81} -7.89585 q^{83} +21.3931 q^{85} +0.579438 q^{87} +11.1184 q^{89} +0.410268 q^{91} -2.81554 q^{93} -22.3804 q^{95} -1.46278 q^{97} +8.63265 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} - 8 q^{5} + 7 q^{7} - q^{9} + 5 q^{11} - 7 q^{13} - q^{15} - 13 q^{17} + 12 q^{19} - 6 q^{21} + q^{25} + 20 q^{27} - 4 q^{29} - 6 q^{31} - 9 q^{33} - 9 q^{35} - 14 q^{37} + 6 q^{39} + q^{41}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.372786 −0.215228 −0.107614 0.994193i \(-0.534321\pi\)
−0.107614 + 0.994193i \(0.534321\pi\)
\(4\) 0 0
\(5\) −3.39788 −1.51958 −0.759788 0.650170i \(-0.774698\pi\)
−0.759788 + 0.650170i \(0.774698\pi\)
\(6\) 0 0
\(7\) 0.453800 0.171520 0.0857601 0.996316i \(-0.472668\pi\)
0.0857601 + 0.996316i \(0.472668\pi\)
\(8\) 0 0
\(9\) −2.86103 −0.953677
\(10\) 0 0
\(11\) −3.01732 −0.909756 −0.454878 0.890554i \(-0.650317\pi\)
−0.454878 + 0.890554i \(0.650317\pi\)
\(12\) 0 0
\(13\) 0.904073 0.250745 0.125372 0.992110i \(-0.459987\pi\)
0.125372 + 0.992110i \(0.459987\pi\)
\(14\) 0 0
\(15\) 1.26668 0.327055
\(16\) 0 0
\(17\) −6.29602 −1.52701 −0.763504 0.645803i \(-0.776523\pi\)
−0.763504 + 0.645803i \(0.776523\pi\)
\(18\) 0 0
\(19\) 6.58658 1.51107 0.755533 0.655111i \(-0.227378\pi\)
0.755533 + 0.655111i \(0.227378\pi\)
\(20\) 0 0
\(21\) −0.169170 −0.0369159
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 6.54557 1.30911
\(26\) 0 0
\(27\) 2.18491 0.420486
\(28\) 0 0
\(29\) −1.55435 −0.288635 −0.144317 0.989531i \(-0.546099\pi\)
−0.144317 + 0.989531i \(0.546099\pi\)
\(30\) 0 0
\(31\) 7.55271 1.35651 0.678254 0.734828i \(-0.262737\pi\)
0.678254 + 0.734828i \(0.262737\pi\)
\(32\) 0 0
\(33\) 1.12481 0.195805
\(34\) 0 0
\(35\) −1.54196 −0.260638
\(36\) 0 0
\(37\) −1.24173 −0.204139 −0.102069 0.994777i \(-0.532546\pi\)
−0.102069 + 0.994777i \(0.532546\pi\)
\(38\) 0 0
\(39\) −0.337025 −0.0539672
\(40\) 0 0
\(41\) 7.68240 1.19979 0.599895 0.800079i \(-0.295209\pi\)
0.599895 + 0.800079i \(0.295209\pi\)
\(42\) 0 0
\(43\) 6.23295 0.950516 0.475258 0.879846i \(-0.342355\pi\)
0.475258 + 0.879846i \(0.342355\pi\)
\(44\) 0 0
\(45\) 9.72143 1.44919
\(46\) 0 0
\(47\) 10.0111 1.46027 0.730137 0.683301i \(-0.239456\pi\)
0.730137 + 0.683301i \(0.239456\pi\)
\(48\) 0 0
\(49\) −6.79407 −0.970581
\(50\) 0 0
\(51\) 2.34706 0.328655
\(52\) 0 0
\(53\) 9.36780 1.28677 0.643383 0.765544i \(-0.277530\pi\)
0.643383 + 0.765544i \(0.277530\pi\)
\(54\) 0 0
\(55\) 10.2525 1.38244
\(56\) 0 0
\(57\) −2.45538 −0.325223
\(58\) 0 0
\(59\) 6.77225 0.881671 0.440836 0.897588i \(-0.354682\pi\)
0.440836 + 0.897588i \(0.354682\pi\)
\(60\) 0 0
\(61\) −3.14442 −0.402602 −0.201301 0.979529i \(-0.564517\pi\)
−0.201301 + 0.979529i \(0.564517\pi\)
\(62\) 0 0
\(63\) −1.29833 −0.163575
\(64\) 0 0
\(65\) −3.07193 −0.381026
\(66\) 0 0
\(67\) −7.08842 −0.865989 −0.432994 0.901397i \(-0.642543\pi\)
−0.432994 + 0.901397i \(0.642543\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.7073 −1.50808 −0.754042 0.656826i \(-0.771899\pi\)
−0.754042 + 0.656826i \(0.771899\pi\)
\(72\) 0 0
\(73\) −1.41500 −0.165614 −0.0828068 0.996566i \(-0.526388\pi\)
−0.0828068 + 0.996566i \(0.526388\pi\)
\(74\) 0 0
\(75\) −2.44009 −0.281758
\(76\) 0 0
\(77\) −1.36926 −0.156042
\(78\) 0 0
\(79\) −0.944707 −0.106288 −0.0531439 0.998587i \(-0.516924\pi\)
−0.0531439 + 0.998587i \(0.516924\pi\)
\(80\) 0 0
\(81\) 7.76859 0.863177
\(82\) 0 0
\(83\) −7.89585 −0.866682 −0.433341 0.901230i \(-0.642665\pi\)
−0.433341 + 0.901230i \(0.642665\pi\)
\(84\) 0 0
\(85\) 21.3931 2.32041
\(86\) 0 0
\(87\) 0.579438 0.0621223
\(88\) 0 0
\(89\) 11.1184 1.17855 0.589276 0.807931i \(-0.299413\pi\)
0.589276 + 0.807931i \(0.299413\pi\)
\(90\) 0 0
\(91\) 0.410268 0.0430078
\(92\) 0 0
\(93\) −2.81554 −0.291958
\(94\) 0 0
\(95\) −22.3804 −2.29618
\(96\) 0 0
\(97\) −1.46278 −0.148523 −0.0742614 0.997239i \(-0.523660\pi\)
−0.0742614 + 0.997239i \(0.523660\pi\)
\(98\) 0 0
\(99\) 8.63265 0.867614
\(100\) 0 0
\(101\) 2.39300 0.238113 0.119056 0.992887i \(-0.462013\pi\)
0.119056 + 0.992887i \(0.462013\pi\)
\(102\) 0 0
\(103\) −11.3298 −1.11636 −0.558181 0.829719i \(-0.688500\pi\)
−0.558181 + 0.829719i \(0.688500\pi\)
\(104\) 0 0
\(105\) 0.574819 0.0560966
\(106\) 0 0
\(107\) −3.14915 −0.304440 −0.152220 0.988347i \(-0.548642\pi\)
−0.152220 + 0.988347i \(0.548642\pi\)
\(108\) 0 0
\(109\) −4.97465 −0.476485 −0.238243 0.971206i \(-0.576571\pi\)
−0.238243 + 0.971206i \(0.576571\pi\)
\(110\) 0 0
\(111\) 0.462898 0.0439363
\(112\) 0 0
\(113\) −9.32983 −0.877677 −0.438838 0.898566i \(-0.644610\pi\)
−0.438838 + 0.898566i \(0.644610\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.58658 −0.239129
\(118\) 0 0
\(119\) −2.85713 −0.261913
\(120\) 0 0
\(121\) −1.89578 −0.172343
\(122\) 0 0
\(123\) −2.86389 −0.258228
\(124\) 0 0
\(125\) −5.25166 −0.469723
\(126\) 0 0
\(127\) 2.81554 0.249839 0.124919 0.992167i \(-0.460133\pi\)
0.124919 + 0.992167i \(0.460133\pi\)
\(128\) 0 0
\(129\) −2.32355 −0.204578
\(130\) 0 0
\(131\) 4.44047 0.387966 0.193983 0.981005i \(-0.437859\pi\)
0.193983 + 0.981005i \(0.437859\pi\)
\(132\) 0 0
\(133\) 2.98899 0.259178
\(134\) 0 0
\(135\) −7.42405 −0.638960
\(136\) 0 0
\(137\) −8.55865 −0.731215 −0.365607 0.930769i \(-0.619139\pi\)
−0.365607 + 0.930769i \(0.619139\pi\)
\(138\) 0 0
\(139\) −1.44220 −0.122326 −0.0611629 0.998128i \(-0.519481\pi\)
−0.0611629 + 0.998128i \(0.519481\pi\)
\(140\) 0 0
\(141\) −3.73201 −0.314292
\(142\) 0 0
\(143\) −2.72788 −0.228117
\(144\) 0 0
\(145\) 5.28148 0.438603
\(146\) 0 0
\(147\) 2.53273 0.208896
\(148\) 0 0
\(149\) −2.48672 −0.203720 −0.101860 0.994799i \(-0.532479\pi\)
−0.101860 + 0.994799i \(0.532479\pi\)
\(150\) 0 0
\(151\) −2.57153 −0.209268 −0.104634 0.994511i \(-0.533367\pi\)
−0.104634 + 0.994511i \(0.533367\pi\)
\(152\) 0 0
\(153\) 18.0131 1.45627
\(154\) 0 0
\(155\) −25.6632 −2.06132
\(156\) 0 0
\(157\) 4.78622 0.381982 0.190991 0.981592i \(-0.438830\pi\)
0.190991 + 0.981592i \(0.438830\pi\)
\(158\) 0 0
\(159\) −3.49218 −0.276948
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 15.8815 1.24393 0.621967 0.783044i \(-0.286334\pi\)
0.621967 + 0.783044i \(0.286334\pi\)
\(164\) 0 0
\(165\) −3.82198 −0.297541
\(166\) 0 0
\(167\) 5.26720 0.407588 0.203794 0.979014i \(-0.434673\pi\)
0.203794 + 0.979014i \(0.434673\pi\)
\(168\) 0 0
\(169\) −12.1827 −0.937127
\(170\) 0 0
\(171\) −18.8444 −1.44107
\(172\) 0 0
\(173\) −1.69121 −0.128580 −0.0642901 0.997931i \(-0.520478\pi\)
−0.0642901 + 0.997931i \(0.520478\pi\)
\(174\) 0 0
\(175\) 2.97038 0.224539
\(176\) 0 0
\(177\) −2.52460 −0.189760
\(178\) 0 0
\(179\) −11.0822 −0.828320 −0.414160 0.910204i \(-0.635925\pi\)
−0.414160 + 0.910204i \(0.635925\pi\)
\(180\) 0 0
\(181\) −2.59329 −0.192758 −0.0963789 0.995345i \(-0.530726\pi\)
−0.0963789 + 0.995345i \(0.530726\pi\)
\(182\) 0 0
\(183\) 1.17220 0.0866512
\(184\) 0 0
\(185\) 4.21924 0.310205
\(186\) 0 0
\(187\) 18.9971 1.38921
\(188\) 0 0
\(189\) 0.991510 0.0721218
\(190\) 0 0
\(191\) −14.3769 −1.04028 −0.520138 0.854082i \(-0.674119\pi\)
−0.520138 + 0.854082i \(0.674119\pi\)
\(192\) 0 0
\(193\) 13.7505 0.989780 0.494890 0.868956i \(-0.335208\pi\)
0.494890 + 0.868956i \(0.335208\pi\)
\(194\) 0 0
\(195\) 1.14517 0.0820074
\(196\) 0 0
\(197\) −3.22770 −0.229964 −0.114982 0.993368i \(-0.536681\pi\)
−0.114982 + 0.993368i \(0.536681\pi\)
\(198\) 0 0
\(199\) 9.42764 0.668308 0.334154 0.942519i \(-0.391549\pi\)
0.334154 + 0.942519i \(0.391549\pi\)
\(200\) 0 0
\(201\) 2.64246 0.186385
\(202\) 0 0
\(203\) −0.705362 −0.0495067
\(204\) 0 0
\(205\) −26.1039 −1.82317
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −19.8738 −1.37470
\(210\) 0 0
\(211\) 26.6649 1.83568 0.917842 0.396946i \(-0.129930\pi\)
0.917842 + 0.396946i \(0.129930\pi\)
\(212\) 0 0
\(213\) 4.73711 0.324582
\(214\) 0 0
\(215\) −21.1788 −1.44438
\(216\) 0 0
\(217\) 3.42742 0.232668
\(218\) 0 0
\(219\) 0.527493 0.0356446
\(220\) 0 0
\(221\) −5.69206 −0.382889
\(222\) 0 0
\(223\) 26.3203 1.76254 0.881269 0.472616i \(-0.156690\pi\)
0.881269 + 0.472616i \(0.156690\pi\)
\(224\) 0 0
\(225\) −18.7271 −1.24847
\(226\) 0 0
\(227\) 3.84884 0.255456 0.127728 0.991809i \(-0.459232\pi\)
0.127728 + 0.991809i \(0.459232\pi\)
\(228\) 0 0
\(229\) −21.9552 −1.45084 −0.725422 0.688305i \(-0.758355\pi\)
−0.725422 + 0.688305i \(0.758355\pi\)
\(230\) 0 0
\(231\) 0.510440 0.0335845
\(232\) 0 0
\(233\) −12.5694 −0.823447 −0.411724 0.911309i \(-0.635073\pi\)
−0.411724 + 0.911309i \(0.635073\pi\)
\(234\) 0 0
\(235\) −34.0166 −2.21900
\(236\) 0 0
\(237\) 0.352173 0.0228761
\(238\) 0 0
\(239\) −24.4477 −1.58139 −0.790695 0.612210i \(-0.790281\pi\)
−0.790695 + 0.612210i \(0.790281\pi\)
\(240\) 0 0
\(241\) 14.3863 0.926705 0.463353 0.886174i \(-0.346646\pi\)
0.463353 + 0.886174i \(0.346646\pi\)
\(242\) 0 0
\(243\) −9.45074 −0.606265
\(244\) 0 0
\(245\) 23.0854 1.47487
\(246\) 0 0
\(247\) 5.95475 0.378891
\(248\) 0 0
\(249\) 2.94346 0.186534
\(250\) 0 0
\(251\) −5.90345 −0.372623 −0.186311 0.982491i \(-0.559653\pi\)
−0.186311 + 0.982491i \(0.559653\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −7.97504 −0.499416
\(256\) 0 0
\(257\) 0.890964 0.0555768 0.0277884 0.999614i \(-0.491154\pi\)
0.0277884 + 0.999614i \(0.491154\pi\)
\(258\) 0 0
\(259\) −0.563495 −0.0350139
\(260\) 0 0
\(261\) 4.44703 0.275264
\(262\) 0 0
\(263\) −5.81974 −0.358861 −0.179430 0.983771i \(-0.557425\pi\)
−0.179430 + 0.983771i \(0.557425\pi\)
\(264\) 0 0
\(265\) −31.8307 −1.95534
\(266\) 0 0
\(267\) −4.14480 −0.253657
\(268\) 0 0
\(269\) −12.1895 −0.743210 −0.371605 0.928391i \(-0.621192\pi\)
−0.371605 + 0.928391i \(0.621192\pi\)
\(270\) 0 0
\(271\) −15.7102 −0.954327 −0.477164 0.878814i \(-0.658335\pi\)
−0.477164 + 0.878814i \(0.658335\pi\)
\(272\) 0 0
\(273\) −0.152942 −0.00925647
\(274\) 0 0
\(275\) −19.7501 −1.19097
\(276\) 0 0
\(277\) 22.1047 1.32814 0.664070 0.747670i \(-0.268828\pi\)
0.664070 + 0.747670i \(0.268828\pi\)
\(278\) 0 0
\(279\) −21.6085 −1.29367
\(280\) 0 0
\(281\) −32.2014 −1.92097 −0.960486 0.278328i \(-0.910220\pi\)
−0.960486 + 0.278328i \(0.910220\pi\)
\(282\) 0 0
\(283\) 25.0460 1.48883 0.744415 0.667717i \(-0.232729\pi\)
0.744415 + 0.667717i \(0.232729\pi\)
\(284\) 0 0
\(285\) 8.34309 0.494202
\(286\) 0 0
\(287\) 3.48627 0.205788
\(288\) 0 0
\(289\) 22.6398 1.33175
\(290\) 0 0
\(291\) 0.545303 0.0319662
\(292\) 0 0
\(293\) 9.35234 0.546369 0.273185 0.961962i \(-0.411923\pi\)
0.273185 + 0.961962i \(0.411923\pi\)
\(294\) 0 0
\(295\) −23.0113 −1.33977
\(296\) 0 0
\(297\) −6.59257 −0.382540
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.82851 0.163033
\(302\) 0 0
\(303\) −0.892077 −0.0512485
\(304\) 0 0
\(305\) 10.6844 0.611785
\(306\) 0 0
\(307\) −24.3747 −1.39114 −0.695568 0.718460i \(-0.744847\pi\)
−0.695568 + 0.718460i \(0.744847\pi\)
\(308\) 0 0
\(309\) 4.22360 0.240272
\(310\) 0 0
\(311\) −12.5420 −0.711189 −0.355595 0.934640i \(-0.615722\pi\)
−0.355595 + 0.934640i \(0.615722\pi\)
\(312\) 0 0
\(313\) −10.0373 −0.567344 −0.283672 0.958921i \(-0.591553\pi\)
−0.283672 + 0.958921i \(0.591553\pi\)
\(314\) 0 0
\(315\) 4.41158 0.248565
\(316\) 0 0
\(317\) −31.9320 −1.79348 −0.896739 0.442560i \(-0.854071\pi\)
−0.896739 + 0.442560i \(0.854071\pi\)
\(318\) 0 0
\(319\) 4.68996 0.262587
\(320\) 0 0
\(321\) 1.17396 0.0655239
\(322\) 0 0
\(323\) −41.4692 −2.30741
\(324\) 0 0
\(325\) 5.91767 0.328253
\(326\) 0 0
\(327\) 1.85448 0.102553
\(328\) 0 0
\(329\) 4.54305 0.250466
\(330\) 0 0
\(331\) 30.7148 1.68824 0.844120 0.536154i \(-0.180123\pi\)
0.844120 + 0.536154i \(0.180123\pi\)
\(332\) 0 0
\(333\) 3.55262 0.194682
\(334\) 0 0
\(335\) 24.0856 1.31594
\(336\) 0 0
\(337\) −27.9610 −1.52313 −0.761566 0.648088i \(-0.775569\pi\)
−0.761566 + 0.648088i \(0.775569\pi\)
\(338\) 0 0
\(339\) 3.47803 0.188901
\(340\) 0 0
\(341\) −22.7890 −1.23409
\(342\) 0 0
\(343\) −6.25974 −0.337994
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.0252 0.806596 0.403298 0.915069i \(-0.367864\pi\)
0.403298 + 0.915069i \(0.367864\pi\)
\(348\) 0 0
\(349\) 28.0511 1.50154 0.750770 0.660564i \(-0.229683\pi\)
0.750770 + 0.660564i \(0.229683\pi\)
\(350\) 0 0
\(351\) 1.97532 0.105435
\(352\) 0 0
\(353\) 0.637776 0.0339454 0.0169727 0.999856i \(-0.494597\pi\)
0.0169727 + 0.999856i \(0.494597\pi\)
\(354\) 0 0
\(355\) 43.1780 2.29165
\(356\) 0 0
\(357\) 1.06510 0.0563709
\(358\) 0 0
\(359\) −9.91391 −0.523236 −0.261618 0.965171i \(-0.584256\pi\)
−0.261618 + 0.965171i \(0.584256\pi\)
\(360\) 0 0
\(361\) 24.3830 1.28332
\(362\) 0 0
\(363\) 0.706719 0.0370931
\(364\) 0 0
\(365\) 4.80801 0.251663
\(366\) 0 0
\(367\) 7.90826 0.412808 0.206404 0.978467i \(-0.433824\pi\)
0.206404 + 0.978467i \(0.433824\pi\)
\(368\) 0 0
\(369\) −21.9796 −1.14421
\(370\) 0 0
\(371\) 4.25111 0.220706
\(372\) 0 0
\(373\) 17.1900 0.890063 0.445032 0.895515i \(-0.353192\pi\)
0.445032 + 0.895515i \(0.353192\pi\)
\(374\) 0 0
\(375\) 1.95774 0.101097
\(376\) 0 0
\(377\) −1.40524 −0.0723736
\(378\) 0 0
\(379\) 11.2191 0.576287 0.288144 0.957587i \(-0.406962\pi\)
0.288144 + 0.957587i \(0.406962\pi\)
\(380\) 0 0
\(381\) −1.04959 −0.0537723
\(382\) 0 0
\(383\) −5.48600 −0.280322 −0.140161 0.990129i \(-0.544762\pi\)
−0.140161 + 0.990129i \(0.544762\pi\)
\(384\) 0 0
\(385\) 4.65257 0.237117
\(386\) 0 0
\(387\) −17.8327 −0.906485
\(388\) 0 0
\(389\) 18.9648 0.961553 0.480776 0.876843i \(-0.340355\pi\)
0.480776 + 0.876843i \(0.340355\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.65534 −0.0835010
\(394\) 0 0
\(395\) 3.21000 0.161513
\(396\) 0 0
\(397\) 14.3520 0.720307 0.360154 0.932893i \(-0.382724\pi\)
0.360154 + 0.932893i \(0.382724\pi\)
\(398\) 0 0
\(399\) −1.11425 −0.0557823
\(400\) 0 0
\(401\) −8.79712 −0.439307 −0.219654 0.975578i \(-0.570493\pi\)
−0.219654 + 0.975578i \(0.570493\pi\)
\(402\) 0 0
\(403\) 6.82820 0.340137
\(404\) 0 0
\(405\) −26.3967 −1.31166
\(406\) 0 0
\(407\) 3.74669 0.185717
\(408\) 0 0
\(409\) −8.33825 −0.412300 −0.206150 0.978520i \(-0.566093\pi\)
−0.206150 + 0.978520i \(0.566093\pi\)
\(410\) 0 0
\(411\) 3.19054 0.157378
\(412\) 0 0
\(413\) 3.07324 0.151224
\(414\) 0 0
\(415\) 26.8291 1.31699
\(416\) 0 0
\(417\) 0.537631 0.0263279
\(418\) 0 0
\(419\) −4.16460 −0.203454 −0.101727 0.994812i \(-0.532437\pi\)
−0.101727 + 0.994812i \(0.532437\pi\)
\(420\) 0 0
\(421\) −1.96849 −0.0959384 −0.0479692 0.998849i \(-0.515275\pi\)
−0.0479692 + 0.998849i \(0.515275\pi\)
\(422\) 0 0
\(423\) −28.6422 −1.39263
\(424\) 0 0
\(425\) −41.2110 −1.99903
\(426\) 0 0
\(427\) −1.42694 −0.0690544
\(428\) 0 0
\(429\) 1.01691 0.0490970
\(430\) 0 0
\(431\) 7.65653 0.368802 0.184401 0.982851i \(-0.440965\pi\)
0.184401 + 0.982851i \(0.440965\pi\)
\(432\) 0 0
\(433\) −6.30458 −0.302979 −0.151489 0.988459i \(-0.548407\pi\)
−0.151489 + 0.988459i \(0.548407\pi\)
\(434\) 0 0
\(435\) −1.96886 −0.0943995
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −11.4992 −0.548827 −0.274413 0.961612i \(-0.588484\pi\)
−0.274413 + 0.961612i \(0.588484\pi\)
\(440\) 0 0
\(441\) 19.4380 0.925621
\(442\) 0 0
\(443\) 16.0601 0.763039 0.381520 0.924361i \(-0.375401\pi\)
0.381520 + 0.924361i \(0.375401\pi\)
\(444\) 0 0
\(445\) −37.7791 −1.79090
\(446\) 0 0
\(447\) 0.927013 0.0438462
\(448\) 0 0
\(449\) 20.4873 0.966854 0.483427 0.875385i \(-0.339392\pi\)
0.483427 + 0.875385i \(0.339392\pi\)
\(450\) 0 0
\(451\) −23.1803 −1.09152
\(452\) 0 0
\(453\) 0.958628 0.0450403
\(454\) 0 0
\(455\) −1.39404 −0.0653536
\(456\) 0 0
\(457\) −41.0150 −1.91860 −0.959299 0.282391i \(-0.908873\pi\)
−0.959299 + 0.282391i \(0.908873\pi\)
\(458\) 0 0
\(459\) −13.7562 −0.642085
\(460\) 0 0
\(461\) −30.8859 −1.43850 −0.719250 0.694751i \(-0.755514\pi\)
−0.719250 + 0.694751i \(0.755514\pi\)
\(462\) 0 0
\(463\) −9.33001 −0.433602 −0.216801 0.976216i \(-0.569562\pi\)
−0.216801 + 0.976216i \(0.569562\pi\)
\(464\) 0 0
\(465\) 9.56687 0.443653
\(466\) 0 0
\(467\) 28.2709 1.30822 0.654111 0.756399i \(-0.273043\pi\)
0.654111 + 0.756399i \(0.273043\pi\)
\(468\) 0 0
\(469\) −3.21672 −0.148535
\(470\) 0 0
\(471\) −1.78423 −0.0822131
\(472\) 0 0
\(473\) −18.8068 −0.864738
\(474\) 0 0
\(475\) 43.1129 1.97816
\(476\) 0 0
\(477\) −26.8016 −1.22716
\(478\) 0 0
\(479\) −23.1267 −1.05669 −0.528344 0.849030i \(-0.677187\pi\)
−0.528344 + 0.849030i \(0.677187\pi\)
\(480\) 0 0
\(481\) −1.12261 −0.0511867
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.97034 0.225692
\(486\) 0 0
\(487\) −37.5582 −1.70193 −0.850963 0.525226i \(-0.823981\pi\)
−0.850963 + 0.525226i \(0.823981\pi\)
\(488\) 0 0
\(489\) −5.92039 −0.267729
\(490\) 0 0
\(491\) 26.5270 1.19715 0.598573 0.801069i \(-0.295735\pi\)
0.598573 + 0.801069i \(0.295735\pi\)
\(492\) 0 0
\(493\) 9.78619 0.440748
\(494\) 0 0
\(495\) −29.3327 −1.31841
\(496\) 0 0
\(497\) −5.76659 −0.258667
\(498\) 0 0
\(499\) −5.80206 −0.259736 −0.129868 0.991531i \(-0.541455\pi\)
−0.129868 + 0.991531i \(0.541455\pi\)
\(500\) 0 0
\(501\) −1.96354 −0.0877244
\(502\) 0 0
\(503\) −22.8156 −1.01730 −0.508649 0.860974i \(-0.669855\pi\)
−0.508649 + 0.860974i \(0.669855\pi\)
\(504\) 0 0
\(505\) −8.13113 −0.361831
\(506\) 0 0
\(507\) 4.54152 0.201696
\(508\) 0 0
\(509\) −38.0127 −1.68488 −0.842441 0.538789i \(-0.818882\pi\)
−0.842441 + 0.538789i \(0.818882\pi\)
\(510\) 0 0
\(511\) −0.642128 −0.0284061
\(512\) 0 0
\(513\) 14.3911 0.635381
\(514\) 0 0
\(515\) 38.4974 1.69640
\(516\) 0 0
\(517\) −30.2068 −1.32849
\(518\) 0 0
\(519\) 0.630459 0.0276741
\(520\) 0 0
\(521\) 6.91255 0.302844 0.151422 0.988469i \(-0.451615\pi\)
0.151422 + 0.988469i \(0.451615\pi\)
\(522\) 0 0
\(523\) 3.04463 0.133132 0.0665662 0.997782i \(-0.478796\pi\)
0.0665662 + 0.997782i \(0.478796\pi\)
\(524\) 0 0
\(525\) −1.10731 −0.0483271
\(526\) 0 0
\(527\) −47.5520 −2.07140
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −19.3756 −0.840830
\(532\) 0 0
\(533\) 6.94545 0.300841
\(534\) 0 0
\(535\) 10.7004 0.462619
\(536\) 0 0
\(537\) 4.13127 0.178277
\(538\) 0 0
\(539\) 20.4999 0.882992
\(540\) 0 0
\(541\) −8.16110 −0.350873 −0.175436 0.984491i \(-0.556134\pi\)
−0.175436 + 0.984491i \(0.556134\pi\)
\(542\) 0 0
\(543\) 0.966742 0.0414869
\(544\) 0 0
\(545\) 16.9033 0.724056
\(546\) 0 0
\(547\) −26.5513 −1.13525 −0.567625 0.823287i \(-0.692138\pi\)
−0.567625 + 0.823287i \(0.692138\pi\)
\(548\) 0 0
\(549\) 8.99629 0.383952
\(550\) 0 0
\(551\) −10.2378 −0.436146
\(552\) 0 0
\(553\) −0.428708 −0.0182305
\(554\) 0 0
\(555\) −1.57287 −0.0667647
\(556\) 0 0
\(557\) −37.6883 −1.59691 −0.798453 0.602058i \(-0.794348\pi\)
−0.798453 + 0.602058i \(0.794348\pi\)
\(558\) 0 0
\(559\) 5.63504 0.238337
\(560\) 0 0
\(561\) −7.08184 −0.298996
\(562\) 0 0
\(563\) 1.20624 0.0508371 0.0254186 0.999677i \(-0.491908\pi\)
0.0254186 + 0.999677i \(0.491908\pi\)
\(564\) 0 0
\(565\) 31.7016 1.33370
\(566\) 0 0
\(567\) 3.52538 0.148052
\(568\) 0 0
\(569\) −21.9143 −0.918693 −0.459347 0.888257i \(-0.651916\pi\)
−0.459347 + 0.888257i \(0.651916\pi\)
\(570\) 0 0
\(571\) 43.9461 1.83909 0.919543 0.392990i \(-0.128559\pi\)
0.919543 + 0.392990i \(0.128559\pi\)
\(572\) 0 0
\(573\) 5.35950 0.223896
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9.50349 0.395635 0.197818 0.980239i \(-0.436615\pi\)
0.197818 + 0.980239i \(0.436615\pi\)
\(578\) 0 0
\(579\) −5.12598 −0.213028
\(580\) 0 0
\(581\) −3.58313 −0.148653
\(582\) 0 0
\(583\) −28.2657 −1.17064
\(584\) 0 0
\(585\) 8.78888 0.363375
\(586\) 0 0
\(587\) 6.40486 0.264357 0.132178 0.991226i \(-0.457803\pi\)
0.132178 + 0.991226i \(0.457803\pi\)
\(588\) 0 0
\(589\) 49.7465 2.04977
\(590\) 0 0
\(591\) 1.20324 0.0494947
\(592\) 0 0
\(593\) −24.3804 −1.00118 −0.500591 0.865684i \(-0.666884\pi\)
−0.500591 + 0.865684i \(0.666884\pi\)
\(594\) 0 0
\(595\) 9.70818 0.397996
\(596\) 0 0
\(597\) −3.51449 −0.143838
\(598\) 0 0
\(599\) −26.4384 −1.08025 −0.540123 0.841586i \(-0.681622\pi\)
−0.540123 + 0.841586i \(0.681622\pi\)
\(600\) 0 0
\(601\) 5.40212 0.220357 0.110179 0.993912i \(-0.464858\pi\)
0.110179 + 0.993912i \(0.464858\pi\)
\(602\) 0 0
\(603\) 20.2802 0.825874
\(604\) 0 0
\(605\) 6.44162 0.261889
\(606\) 0 0
\(607\) 11.6313 0.472099 0.236050 0.971741i \(-0.424147\pi\)
0.236050 + 0.971741i \(0.424147\pi\)
\(608\) 0 0
\(609\) 0.262949 0.0106552
\(610\) 0 0
\(611\) 9.05079 0.366156
\(612\) 0 0
\(613\) −18.6980 −0.755206 −0.377603 0.925968i \(-0.623252\pi\)
−0.377603 + 0.925968i \(0.623252\pi\)
\(614\) 0 0
\(615\) 9.73114 0.392397
\(616\) 0 0
\(617\) 21.8332 0.878972 0.439486 0.898250i \(-0.355161\pi\)
0.439486 + 0.898250i \(0.355161\pi\)
\(618\) 0 0
\(619\) −14.7251 −0.591851 −0.295925 0.955211i \(-0.595628\pi\)
−0.295925 + 0.955211i \(0.595628\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.04555 0.202146
\(624\) 0 0
\(625\) −14.8834 −0.595334
\(626\) 0 0
\(627\) 7.40867 0.295874
\(628\) 0 0
\(629\) 7.81794 0.311722
\(630\) 0 0
\(631\) −12.6084 −0.501931 −0.250966 0.967996i \(-0.580748\pi\)
−0.250966 + 0.967996i \(0.580748\pi\)
\(632\) 0 0
\(633\) −9.94027 −0.395090
\(634\) 0 0
\(635\) −9.56687 −0.379650
\(636\) 0 0
\(637\) −6.14233 −0.243368
\(638\) 0 0
\(639\) 36.3561 1.43823
\(640\) 0 0
\(641\) 33.3733 1.31816 0.659082 0.752071i \(-0.270945\pi\)
0.659082 + 0.752071i \(0.270945\pi\)
\(642\) 0 0
\(643\) 26.4979 1.04498 0.522488 0.852646i \(-0.325004\pi\)
0.522488 + 0.852646i \(0.325004\pi\)
\(644\) 0 0
\(645\) 7.89515 0.310871
\(646\) 0 0
\(647\) −26.5871 −1.04525 −0.522624 0.852563i \(-0.675047\pi\)
−0.522624 + 0.852563i \(0.675047\pi\)
\(648\) 0 0
\(649\) −20.4340 −0.802106
\(650\) 0 0
\(651\) −1.27769 −0.0500767
\(652\) 0 0
\(653\) 2.99182 0.117079 0.0585395 0.998285i \(-0.481356\pi\)
0.0585395 + 0.998285i \(0.481356\pi\)
\(654\) 0 0
\(655\) −15.0882 −0.589544
\(656\) 0 0
\(657\) 4.04837 0.157942
\(658\) 0 0
\(659\) 32.6733 1.27277 0.636386 0.771371i \(-0.280429\pi\)
0.636386 + 0.771371i \(0.280429\pi\)
\(660\) 0 0
\(661\) −45.7904 −1.78104 −0.890521 0.454943i \(-0.849660\pi\)
−0.890521 + 0.454943i \(0.849660\pi\)
\(662\) 0 0
\(663\) 2.12192 0.0824084
\(664\) 0 0
\(665\) −10.1562 −0.393841
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −9.81183 −0.379347
\(670\) 0 0
\(671\) 9.48773 0.366270
\(672\) 0 0
\(673\) 10.6910 0.412108 0.206054 0.978541i \(-0.433938\pi\)
0.206054 + 0.978541i \(0.433938\pi\)
\(674\) 0 0
\(675\) 14.3015 0.550464
\(676\) 0 0
\(677\) −24.6110 −0.945878 −0.472939 0.881095i \(-0.656807\pi\)
−0.472939 + 0.881095i \(0.656807\pi\)
\(678\) 0 0
\(679\) −0.663809 −0.0254746
\(680\) 0 0
\(681\) −1.43479 −0.0549813
\(682\) 0 0
\(683\) 12.0787 0.462180 0.231090 0.972932i \(-0.425771\pi\)
0.231090 + 0.972932i \(0.425771\pi\)
\(684\) 0 0
\(685\) 29.0812 1.11114
\(686\) 0 0
\(687\) 8.18460 0.312262
\(688\) 0 0
\(689\) 8.46918 0.322650
\(690\) 0 0
\(691\) 34.2727 1.30379 0.651897 0.758307i \(-0.273973\pi\)
0.651897 + 0.758307i \(0.273973\pi\)
\(692\) 0 0
\(693\) 3.91749 0.148813
\(694\) 0 0
\(695\) 4.90042 0.185883
\(696\) 0 0
\(697\) −48.3685 −1.83209
\(698\) 0 0
\(699\) 4.68568 0.177229
\(700\) 0 0
\(701\) 35.0524 1.32391 0.661956 0.749543i \(-0.269727\pi\)
0.661956 + 0.749543i \(0.269727\pi\)
\(702\) 0 0
\(703\) −8.17874 −0.308467
\(704\) 0 0
\(705\) 12.6809 0.477590
\(706\) 0 0
\(707\) 1.08594 0.0408411
\(708\) 0 0
\(709\) −16.7861 −0.630417 −0.315208 0.949022i \(-0.602074\pi\)
−0.315208 + 0.949022i \(0.602074\pi\)
\(710\) 0 0
\(711\) 2.70284 0.101364
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 9.26899 0.346641
\(716\) 0 0
\(717\) 9.11375 0.340359
\(718\) 0 0
\(719\) −17.6938 −0.659869 −0.329934 0.944004i \(-0.607027\pi\)
−0.329934 + 0.944004i \(0.607027\pi\)
\(720\) 0 0
\(721\) −5.14147 −0.191478
\(722\) 0 0
\(723\) −5.36302 −0.199453
\(724\) 0 0
\(725\) −10.1741 −0.377856
\(726\) 0 0
\(727\) 37.5601 1.39303 0.696513 0.717544i \(-0.254734\pi\)
0.696513 + 0.717544i \(0.254734\pi\)
\(728\) 0 0
\(729\) −19.7827 −0.732692
\(730\) 0 0
\(731\) −39.2428 −1.45145
\(732\) 0 0
\(733\) −11.6236 −0.429326 −0.214663 0.976688i \(-0.568865\pi\)
−0.214663 + 0.976688i \(0.568865\pi\)
\(734\) 0 0
\(735\) −8.60591 −0.317434
\(736\) 0 0
\(737\) 21.3880 0.787839
\(738\) 0 0
\(739\) 17.7700 0.653679 0.326840 0.945080i \(-0.394016\pi\)
0.326840 + 0.945080i \(0.394016\pi\)
\(740\) 0 0
\(741\) −2.21984 −0.0815480
\(742\) 0 0
\(743\) −30.8254 −1.13087 −0.565437 0.824791i \(-0.691293\pi\)
−0.565437 + 0.824791i \(0.691293\pi\)
\(744\) 0 0
\(745\) 8.44956 0.309568
\(746\) 0 0
\(747\) 22.5903 0.826535
\(748\) 0 0
\(749\) −1.42908 −0.0522175
\(750\) 0 0
\(751\) −43.0469 −1.57080 −0.785401 0.618987i \(-0.787543\pi\)
−0.785401 + 0.618987i \(0.787543\pi\)
\(752\) 0 0
\(753\) 2.20072 0.0801988
\(754\) 0 0
\(755\) 8.73773 0.317999
\(756\) 0 0
\(757\) −28.9420 −1.05192 −0.525958 0.850511i \(-0.676293\pi\)
−0.525958 + 0.850511i \(0.676293\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.5033 1.43199 0.715996 0.698104i \(-0.245973\pi\)
0.715996 + 0.698104i \(0.245973\pi\)
\(762\) 0 0
\(763\) −2.25750 −0.0817268
\(764\) 0 0
\(765\) −61.2063 −2.21292
\(766\) 0 0
\(767\) 6.12260 0.221074
\(768\) 0 0
\(769\) −23.9365 −0.863171 −0.431586 0.902072i \(-0.642046\pi\)
−0.431586 + 0.902072i \(0.642046\pi\)
\(770\) 0 0
\(771\) −0.332139 −0.0119617
\(772\) 0 0
\(773\) −41.2014 −1.48191 −0.740955 0.671554i \(-0.765627\pi\)
−0.740955 + 0.671554i \(0.765627\pi\)
\(774\) 0 0
\(775\) 49.4368 1.77582
\(776\) 0 0
\(777\) 0.210063 0.00753597
\(778\) 0 0
\(779\) 50.6007 1.81296
\(780\) 0 0
\(781\) 38.3421 1.37199
\(782\) 0 0
\(783\) −3.39610 −0.121367
\(784\) 0 0
\(785\) −16.2630 −0.580451
\(786\) 0 0
\(787\) −37.8061 −1.34764 −0.673821 0.738894i \(-0.735348\pi\)
−0.673821 + 0.738894i \(0.735348\pi\)
\(788\) 0 0
\(789\) 2.16952 0.0772369
\(790\) 0 0
\(791\) −4.23387 −0.150539
\(792\) 0 0
\(793\) −2.84279 −0.100950
\(794\) 0 0
\(795\) 11.8660 0.420844
\(796\) 0 0
\(797\) 5.39760 0.191193 0.0955964 0.995420i \(-0.469524\pi\)
0.0955964 + 0.995420i \(0.469524\pi\)
\(798\) 0 0
\(799\) −63.0302 −2.22985
\(800\) 0 0
\(801\) −31.8102 −1.12396
\(802\) 0 0
\(803\) 4.26952 0.150668
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.54409 0.159959
\(808\) 0 0
\(809\) 7.19945 0.253119 0.126560 0.991959i \(-0.459606\pi\)
0.126560 + 0.991959i \(0.459606\pi\)
\(810\) 0 0
\(811\) −41.4698 −1.45620 −0.728101 0.685470i \(-0.759597\pi\)
−0.728101 + 0.685470i \(0.759597\pi\)
\(812\) 0 0
\(813\) 5.85654 0.205398
\(814\) 0 0
\(815\) −53.9633 −1.89025
\(816\) 0 0
\(817\) 41.0538 1.43629
\(818\) 0 0
\(819\) −1.17379 −0.0410155
\(820\) 0 0
\(821\) 37.8483 1.32092 0.660458 0.750863i \(-0.270362\pi\)
0.660458 + 0.750863i \(0.270362\pi\)
\(822\) 0 0
\(823\) 22.6896 0.790910 0.395455 0.918485i \(-0.370587\pi\)
0.395455 + 0.918485i \(0.370587\pi\)
\(824\) 0 0
\(825\) 7.36255 0.256331
\(826\) 0 0
\(827\) 31.6752 1.10145 0.550727 0.834685i \(-0.314351\pi\)
0.550727 + 0.834685i \(0.314351\pi\)
\(828\) 0 0
\(829\) 26.0097 0.903353 0.451676 0.892182i \(-0.350826\pi\)
0.451676 + 0.892182i \(0.350826\pi\)
\(830\) 0 0
\(831\) −8.24030 −0.285853
\(832\) 0 0
\(833\) 42.7755 1.48208
\(834\) 0 0
\(835\) −17.8973 −0.619362
\(836\) 0 0
\(837\) 16.5020 0.570392
\(838\) 0 0
\(839\) −3.18028 −0.109796 −0.0548978 0.998492i \(-0.517483\pi\)
−0.0548978 + 0.998492i \(0.517483\pi\)
\(840\) 0 0
\(841\) −26.5840 −0.916690
\(842\) 0 0
\(843\) 12.0042 0.413447
\(844\) 0 0
\(845\) 41.3952 1.42404
\(846\) 0 0
\(847\) −0.860303 −0.0295604
\(848\) 0 0
\(849\) −9.33679 −0.320438
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −54.3522 −1.86098 −0.930492 0.366311i \(-0.880621\pi\)
−0.930492 + 0.366311i \(0.880621\pi\)
\(854\) 0 0
\(855\) 64.0310 2.18981
\(856\) 0 0
\(857\) 26.6282 0.909603 0.454802 0.890593i \(-0.349710\pi\)
0.454802 + 0.890593i \(0.349710\pi\)
\(858\) 0 0
\(859\) −6.55996 −0.223823 −0.111912 0.993718i \(-0.535697\pi\)
−0.111912 + 0.993718i \(0.535697\pi\)
\(860\) 0 0
\(861\) −1.29963 −0.0442913
\(862\) 0 0
\(863\) 25.9098 0.881981 0.440990 0.897512i \(-0.354627\pi\)
0.440990 + 0.897512i \(0.354627\pi\)
\(864\) 0 0
\(865\) 5.74652 0.195388
\(866\) 0 0
\(867\) −8.43980 −0.286631
\(868\) 0 0
\(869\) 2.85048 0.0966961
\(870\) 0 0
\(871\) −6.40845 −0.217142
\(872\) 0 0
\(873\) 4.18506 0.141643
\(874\) 0 0
\(875\) −2.38320 −0.0805669
\(876\) 0 0
\(877\) −5.27634 −0.178169 −0.0890847 0.996024i \(-0.528394\pi\)
−0.0890847 + 0.996024i \(0.528394\pi\)
\(878\) 0 0
\(879\) −3.48642 −0.117594
\(880\) 0 0
\(881\) 54.6253 1.84037 0.920187 0.391479i \(-0.128036\pi\)
0.920187 + 0.391479i \(0.128036\pi\)
\(882\) 0 0
\(883\) −22.8734 −0.769751 −0.384876 0.922968i \(-0.625756\pi\)
−0.384876 + 0.922968i \(0.625756\pi\)
\(884\) 0 0
\(885\) 8.57827 0.288355
\(886\) 0 0
\(887\) 22.6121 0.759239 0.379619 0.925143i \(-0.376055\pi\)
0.379619 + 0.925143i \(0.376055\pi\)
\(888\) 0 0
\(889\) 1.27769 0.0428524
\(890\) 0 0
\(891\) −23.4403 −0.785280
\(892\) 0 0
\(893\) 65.9391 2.20657
\(894\) 0 0
\(895\) 37.6558 1.25870
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.7395 −0.391535
\(900\) 0 0
\(901\) −58.9799 −1.96490
\(902\) 0 0
\(903\) −1.05443 −0.0350892
\(904\) 0 0
\(905\) 8.81169 0.292910
\(906\) 0 0
\(907\) 18.3571 0.609537 0.304768 0.952427i \(-0.401421\pi\)
0.304768 + 0.952427i \(0.401421\pi\)
\(908\) 0 0
\(909\) −6.84646 −0.227083
\(910\) 0 0
\(911\) 0.160638 0.00532219 0.00266110 0.999996i \(-0.499153\pi\)
0.00266110 + 0.999996i \(0.499153\pi\)
\(912\) 0 0
\(913\) 23.8243 0.788470
\(914\) 0 0
\(915\) −3.98298 −0.131673
\(916\) 0 0
\(917\) 2.01508 0.0665439
\(918\) 0 0
\(919\) −39.6364 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(920\) 0 0
\(921\) 9.08653 0.299411
\(922\) 0 0
\(923\) −11.4884 −0.378144
\(924\) 0 0
\(925\) −8.12781 −0.267241
\(926\) 0 0
\(927\) 32.4150 1.06465
\(928\) 0 0
\(929\) 19.3949 0.636325 0.318163 0.948036i \(-0.396934\pi\)
0.318163 + 0.948036i \(0.396934\pi\)
\(930\) 0 0
\(931\) −44.7497 −1.46661
\(932\) 0 0
\(933\) 4.67546 0.153068
\(934\) 0 0
\(935\) −64.5498 −2.11100
\(936\) 0 0
\(937\) −4.14245 −0.135328 −0.0676640 0.997708i \(-0.521555\pi\)
−0.0676640 + 0.997708i \(0.521555\pi\)
\(938\) 0 0
\(939\) 3.74178 0.122108
\(940\) 0 0
\(941\) −18.7445 −0.611052 −0.305526 0.952184i \(-0.598832\pi\)
−0.305526 + 0.952184i \(0.598832\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −3.36903 −0.109595
\(946\) 0 0
\(947\) −38.4454 −1.24931 −0.624654 0.780901i \(-0.714760\pi\)
−0.624654 + 0.780901i \(0.714760\pi\)
\(948\) 0 0
\(949\) −1.27927 −0.0415267
\(950\) 0 0
\(951\) 11.9038 0.386006
\(952\) 0 0
\(953\) −10.0715 −0.326249 −0.163124 0.986606i \(-0.552157\pi\)
−0.163124 + 0.986606i \(0.552157\pi\)
\(954\) 0 0
\(955\) 48.8509 1.58078
\(956\) 0 0
\(957\) −1.74835 −0.0565161
\(958\) 0 0
\(959\) −3.88391 −0.125418
\(960\) 0 0
\(961\) 26.0435 0.840112
\(962\) 0 0
\(963\) 9.00981 0.290337
\(964\) 0 0
\(965\) −46.7224 −1.50405
\(966\) 0 0
\(967\) 21.0441 0.676732 0.338366 0.941015i \(-0.390126\pi\)
0.338366 + 0.941015i \(0.390126\pi\)
\(968\) 0 0
\(969\) 15.4591 0.496619
\(970\) 0 0
\(971\) 0.704336 0.0226032 0.0113016 0.999936i \(-0.496403\pi\)
0.0113016 + 0.999936i \(0.496403\pi\)
\(972\) 0 0
\(973\) −0.654470 −0.0209813
\(974\) 0 0
\(975\) −2.20602 −0.0706493
\(976\) 0 0
\(977\) 11.3046 0.361665 0.180833 0.983514i \(-0.442121\pi\)
0.180833 + 0.983514i \(0.442121\pi\)
\(978\) 0 0
\(979\) −33.5479 −1.07220
\(980\) 0 0
\(981\) 14.2326 0.454413
\(982\) 0 0
\(983\) −33.4117 −1.06567 −0.532833 0.846220i \(-0.678873\pi\)
−0.532833 + 0.846220i \(0.678873\pi\)
\(984\) 0 0
\(985\) 10.9673 0.349449
\(986\) 0 0
\(987\) −1.69358 −0.0539073
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −9.03825 −0.287109 −0.143555 0.989642i \(-0.545853\pi\)
−0.143555 + 0.989642i \(0.545853\pi\)
\(992\) 0 0
\(993\) −11.4501 −0.363356
\(994\) 0 0
\(995\) −32.0340 −1.01555
\(996\) 0 0
\(997\) 53.9256 1.70784 0.853921 0.520403i \(-0.174218\pi\)
0.853921 + 0.520403i \(0.174218\pi\)
\(998\) 0 0
\(999\) −2.71306 −0.0858374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.bw.1.3 5
4.3 odd 2 1058.2.a.l.1.3 5
12.11 even 2 9522.2.a.bu.1.5 5
23.5 odd 22 368.2.m.b.209.1 10
23.14 odd 22 368.2.m.b.81.1 10
23.22 odd 2 8464.2.a.bx.1.3 5
92.51 even 22 46.2.c.a.25.1 10
92.83 even 22 46.2.c.a.35.1 yes 10
92.91 even 2 1058.2.a.m.1.3 5
276.83 odd 22 414.2.i.f.127.1 10
276.143 odd 22 414.2.i.f.163.1 10
276.275 odd 2 9522.2.a.bp.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.2.c.a.25.1 10 92.51 even 22
46.2.c.a.35.1 yes 10 92.83 even 22
368.2.m.b.81.1 10 23.14 odd 22
368.2.m.b.209.1 10 23.5 odd 22
414.2.i.f.127.1 10 276.83 odd 22
414.2.i.f.163.1 10 276.143 odd 22
1058.2.a.l.1.3 5 4.3 odd 2
1058.2.a.m.1.3 5 92.91 even 2
8464.2.a.bw.1.3 5 1.1 even 1 trivial
8464.2.a.bx.1.3 5 23.22 odd 2
9522.2.a.bp.1.1 5 276.275 odd 2
9522.2.a.bu.1.5 5 12.11 even 2