Properties

Label 85.3.p.a.14.14
Level $85$
Weight $3$
Character 85.14
Analytic conductor $2.316$
Analytic rank $0$
Dimension $128$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,3,Mod(14,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 85.p (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.31608224706\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 14.14
Character \(\chi\) \(=\) 85.14
Dual form 85.3.p.a.79.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20149 + 2.90065i) q^{2} +(3.75496 + 0.746907i) q^{3} +(-4.14176 + 4.14176i) q^{4} +(-4.40427 - 2.36695i) q^{5} +(2.34502 + 11.7892i) q^{6} +(-0.580455 + 0.868712i) q^{7} +(-5.38745 - 2.23156i) q^{8} +(5.22691 + 2.16506i) q^{9} +(1.57401 - 15.6191i) q^{10} +(4.88661 - 0.972007i) q^{11} +(-18.6456 + 12.4586i) q^{12} +(13.2648 - 13.2648i) q^{13} +(-3.21723 - 0.639948i) q^{14} +(-14.7699 - 12.1774i) q^{15} +5.12102i q^{16} +(-8.60301 - 14.6625i) q^{17} +17.7627i q^{18} +(-17.6068 + 7.29299i) q^{19} +(28.0447 - 8.43807i) q^{20} +(-2.82843 + 2.82843i) q^{21} +(8.69065 + 13.0065i) q^{22} +(8.83254 - 1.75690i) q^{23} +(-18.5629 - 12.4033i) q^{24} +(13.7951 + 20.8493i) q^{25} +(54.4141 + 22.5391i) q^{26} +(-10.6400 - 7.10940i) q^{27} +(-1.19389 - 6.00209i) q^{28} +(-5.27556 - 7.89544i) q^{29} +(17.5764 - 57.4733i) q^{30} +(-26.3385 - 5.23906i) q^{31} +(-36.4041 + 15.0791i) q^{32} +19.0750 q^{33} +(32.1943 - 42.5711i) q^{34} +(4.61267 - 2.45213i) q^{35} +(-30.6157 + 12.6814i) q^{36} +(71.0039 + 14.1236i) q^{37} +(-42.3088 - 42.3088i) q^{38} +(59.7164 - 39.9012i) q^{39} +(18.4458 + 22.5802i) q^{40} +(-26.0834 - 17.4284i) q^{41} +(-11.6026 - 4.80595i) q^{42} +(-14.7645 + 35.6447i) q^{43} +(-16.2133 + 24.2650i) q^{44} +(-17.8961 - 21.9073i) q^{45} +(15.7083 + 23.5092i) q^{46} +(-49.2053 + 49.2053i) q^{47} +(-3.82493 + 19.2292i) q^{48} +(18.3338 + 44.2616i) q^{49} +(-43.9019 + 65.0650i) q^{50} +(-21.3524 - 61.4826i) q^{51} +109.879i q^{52} +(-30.2734 - 73.0866i) q^{53} +(7.83807 - 39.4046i) q^{54} +(-23.8226 - 7.28537i) q^{55} +(5.06575 - 3.38483i) q^{56} +(-71.5601 + 14.2342i) q^{57} +(16.5634 - 24.7888i) q^{58} +(-36.6614 + 88.5085i) q^{59} +(111.609 - 10.7378i) q^{60} +(-3.34491 + 5.00601i) q^{61} +(-16.4487 - 82.6934i) q^{62} +(-4.91479 + 3.28396i) q^{63} +(-72.9937 - 72.9937i) q^{64} +(-89.8189 + 27.0246i) q^{65} +(22.9184 + 55.3298i) q^{66} +36.9104 q^{67} +(96.3600 + 25.0968i) q^{68} +34.4780 q^{69} +(12.6548 + 10.4335i) q^{70} +(14.0080 - 70.4230i) q^{71} +(-23.3283 - 23.3283i) q^{72} +(-14.8948 - 22.2917i) q^{73} +(44.3429 + 222.927i) q^{74} +(36.2275 + 88.5920i) q^{75} +(42.7174 - 103.129i) q^{76} +(-1.99206 + 4.80926i) q^{77} +(187.488 + 125.275i) q^{78} +(110.235 - 21.9271i) q^{79} +(12.1212 - 22.5543i) q^{80} +(-70.6471 - 70.6471i) q^{81} +(19.2147 - 96.5989i) q^{82} +(29.0278 - 12.0237i) q^{83} -23.4293i q^{84} +(3.18463 + 84.9403i) q^{85} -121.132 q^{86} +(-13.9124 - 33.5874i) q^{87} +(-28.4955 - 5.66810i) q^{88} +(1.37917 - 1.37917i) q^{89} +(42.0434 - 78.2317i) q^{90} +(3.82368 + 19.2229i) q^{91} +(-29.3056 + 43.8589i) q^{92} +(-94.9869 - 39.3449i) q^{93} +(-201.847 - 83.6077i) q^{94} +(94.8073 + 9.55420i) q^{95} +(-147.958 + 29.4308i) q^{96} +(-18.0086 + 12.0330i) q^{97} +(-106.360 + 106.360i) q^{98} +(27.6463 + 5.49919i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 16 q^{4} - 8 q^{5} - 16 q^{6} - 16 q^{9} + 16 q^{10} - 96 q^{11} - 16 q^{14} + 16 q^{15} - 16 q^{19} - 120 q^{20} + 224 q^{21} - 160 q^{24} - 240 q^{25} + 288 q^{26} - 176 q^{29} - 200 q^{30} + 48 q^{31}+ \cdots - 1664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20149 + 2.90065i 0.600744 + 1.45032i 0.872817 + 0.488047i \(0.162291\pi\)
−0.272073 + 0.962276i \(0.587709\pi\)
\(3\) 3.75496 + 0.746907i 1.25165 + 0.248969i 0.776039 0.630685i \(-0.217226\pi\)
0.475613 + 0.879654i \(0.342226\pi\)
\(4\) −4.14176 + 4.14176i −1.03544 + 1.03544i
\(5\) −4.40427 2.36695i −0.880853 0.473390i
\(6\) 2.34502 + 11.7892i 0.390836 + 1.96487i
\(7\) −0.580455 + 0.868712i −0.0829221 + 0.124102i −0.870612 0.491970i \(-0.836277\pi\)
0.787690 + 0.616072i \(0.211277\pi\)
\(8\) −5.38745 2.23156i −0.673432 0.278945i
\(9\) 5.22691 + 2.16506i 0.580768 + 0.240562i
\(10\) 1.57401 15.6191i 0.157401 1.56191i
\(11\) 4.88661 0.972007i 0.444237 0.0883643i 0.0320970 0.999485i \(-0.489781\pi\)
0.412140 + 0.911121i \(0.364781\pi\)
\(12\) −18.6456 + 12.4586i −1.55380 + 1.03822i
\(13\) 13.2648 13.2648i 1.02037 1.02037i 0.0205827 0.999788i \(-0.493448\pi\)
0.999788 0.0205827i \(-0.00655215\pi\)
\(14\) −3.21723 0.639948i −0.229802 0.0457106i
\(15\) −14.7699 12.1774i −0.984662 0.811824i
\(16\) 5.12102i 0.320064i
\(17\) −8.60301 14.6625i −0.506060 0.862499i
\(18\) 17.7627i 0.986817i
\(19\) −17.6068 + 7.29299i −0.926675 + 0.383841i −0.794416 0.607374i \(-0.792223\pi\)
−0.132259 + 0.991215i \(0.542223\pi\)
\(20\) 28.0447 8.43807i 1.40224 0.421904i
\(21\) −2.82843 + 2.82843i −0.134687 + 0.134687i
\(22\) 8.69065 + 13.0065i 0.395029 + 0.591203i
\(23\) 8.83254 1.75690i 0.384024 0.0763870i 0.000696607 1.00000i \(-0.499778\pi\)
0.383327 + 0.923613i \(0.374778\pi\)
\(24\) −18.5629 12.4033i −0.773454 0.516805i
\(25\) 13.7951 + 20.8493i 0.551804 + 0.833974i
\(26\) 54.4141 + 22.5391i 2.09285 + 0.866887i
\(27\) −10.6400 7.10940i −0.394073 0.263311i
\(28\) −1.19389 6.00209i −0.0426389 0.214360i
\(29\) −5.27556 7.89544i −0.181916 0.272257i 0.729292 0.684202i \(-0.239849\pi\)
−0.911208 + 0.411946i \(0.864849\pi\)
\(30\) 17.5764 57.4733i 0.585878 1.91578i
\(31\) −26.3385 5.23906i −0.849630 0.169002i −0.248974 0.968510i \(-0.580094\pi\)
−0.600655 + 0.799508i \(0.705094\pi\)
\(32\) −36.4041 + 15.0791i −1.13763 + 0.471221i
\(33\) 19.0750 0.578030
\(34\) 32.1943 42.5711i 0.946890 1.25209i
\(35\) 4.61267 2.45213i 0.131791 0.0700609i
\(36\) −30.6157 + 12.6814i −0.850437 + 0.352262i
\(37\) 71.0039 + 14.1236i 1.91902 + 0.381718i 0.999924 0.0123055i \(-0.00391705\pi\)
0.919100 + 0.394023i \(0.128917\pi\)
\(38\) −42.3088 42.3088i −1.11339 1.11339i
\(39\) 59.7164 39.9012i 1.53119 1.02311i
\(40\) 18.4458 + 22.5802i 0.461145 + 0.564505i
\(41\) −26.0834 17.4284i −0.636182 0.425083i 0.195217 0.980760i \(-0.437459\pi\)
−0.831398 + 0.555677i \(0.812459\pi\)
\(42\) −11.6026 4.80595i −0.276252 0.114427i
\(43\) −14.7645 + 35.6447i −0.343360 + 0.828945i 0.654011 + 0.756485i \(0.273085\pi\)
−0.997371 + 0.0724602i \(0.976915\pi\)
\(44\) −16.2133 + 24.2650i −0.368485 + 0.551476i
\(45\) −17.8961 21.9073i −0.397691 0.486829i
\(46\) 15.7083 + 23.5092i 0.341486 + 0.511069i
\(47\) −49.2053 + 49.2053i −1.04692 + 1.04692i −0.0480776 + 0.998844i \(0.515309\pi\)
−0.998844 + 0.0480776i \(0.984691\pi\)
\(48\) −3.82493 + 19.2292i −0.0796860 + 0.400608i
\(49\) 18.3338 + 44.2616i 0.374158 + 0.903298i
\(50\) −43.9019 + 65.0650i −0.878039 + 1.30130i
\(51\) −21.3524 61.4826i −0.418675 1.20554i
\(52\) 109.879i 2.11306i
\(53\) −30.2734 73.0866i −0.571197 1.37899i −0.900537 0.434780i \(-0.856826\pi\)
0.329340 0.944212i \(-0.393174\pi\)
\(54\) 7.83807 39.4046i 0.145149 0.729716i
\(55\) −23.8226 7.28537i −0.433138 0.132461i
\(56\) 5.06575 3.38483i 0.0904598 0.0604433i
\(57\) −71.5601 + 14.2342i −1.25544 + 0.249722i
\(58\) 16.5634 24.7888i 0.285575 0.427394i
\(59\) −36.6614 + 88.5085i −0.621380 + 1.50014i 0.228703 + 0.973496i \(0.426551\pi\)
−0.850083 + 0.526648i \(0.823449\pi\)
\(60\) 111.609 10.7378i 1.86015 0.178963i
\(61\) −3.34491 + 5.00601i −0.0548346 + 0.0820658i −0.857874 0.513860i \(-0.828215\pi\)
0.803039 + 0.595926i \(0.203215\pi\)
\(62\) −16.4487 82.6934i −0.265302 1.33376i
\(63\) −4.91479 + 3.28396i −0.0780126 + 0.0521263i
\(64\) −72.9937 72.9937i −1.14053 1.14053i
\(65\) −89.8189 + 27.0246i −1.38183 + 0.415764i
\(66\) 22.9184 + 55.3298i 0.347248 + 0.838331i
\(67\) 36.9104 0.550901 0.275450 0.961315i \(-0.411173\pi\)
0.275450 + 0.961315i \(0.411173\pi\)
\(68\) 96.3600 + 25.0968i 1.41706 + 0.369071i
\(69\) 34.4780 0.499682
\(70\) 12.6548 + 10.4335i 0.180783 + 0.149050i
\(71\) 14.0080 70.4230i 0.197296 0.991874i −0.747512 0.664249i \(-0.768752\pi\)
0.944808 0.327625i \(-0.106248\pi\)
\(72\) −23.3283 23.3283i −0.324004 0.324004i
\(73\) −14.8948 22.2917i −0.204039 0.305366i 0.715311 0.698806i \(-0.246285\pi\)
−0.919350 + 0.393440i \(0.871285\pi\)
\(74\) 44.3429 + 222.927i 0.599228 + 3.01252i
\(75\) 36.2275 + 88.5920i 0.483033 + 1.18123i
\(76\) 42.7174 103.129i 0.562071 1.35696i
\(77\) −1.99206 + 4.80926i −0.0258709 + 0.0624579i
\(78\) 187.488 + 125.275i 2.40369 + 1.60610i
\(79\) 110.235 21.9271i 1.39538 0.277559i 0.560576 0.828103i \(-0.310580\pi\)
0.834806 + 0.550544i \(0.185580\pi\)
\(80\) 12.1212 22.5543i 0.151515 0.281929i
\(81\) −70.6471 70.6471i −0.872186 0.872186i
\(82\) 19.2147 96.5989i 0.234326 1.17804i
\(83\) 29.0278 12.0237i 0.349732 0.144864i −0.200900 0.979612i \(-0.564387\pi\)
0.550632 + 0.834748i \(0.314387\pi\)
\(84\) 23.4293i 0.278920i
\(85\) 3.18463 + 84.9403i 0.0374663 + 0.999298i
\(86\) −121.132 −1.40851
\(87\) −13.9124 33.5874i −0.159912 0.386062i
\(88\) −28.4955 5.66810i −0.323812 0.0644102i
\(89\) 1.37917 1.37917i 0.0154963 0.0154963i −0.699316 0.714813i \(-0.746512\pi\)
0.714813 + 0.699316i \(0.246512\pi\)
\(90\) 42.0434 78.2317i 0.467149 0.869241i
\(91\) 3.82368 + 19.2229i 0.0420184 + 0.211241i
\(92\) −29.3056 + 43.8589i −0.318539 + 0.476727i
\(93\) −94.9869 39.3449i −1.02136 0.423063i
\(94\) −201.847 83.6077i −2.14731 0.889443i
\(95\) 94.8073 + 9.55420i 0.997971 + 0.100571i
\(96\) −147.958 + 29.4308i −1.54123 + 0.306570i
\(97\) −18.0086 + 12.0330i −0.185656 + 0.124051i −0.644925 0.764246i \(-0.723111\pi\)
0.459269 + 0.888297i \(0.348111\pi\)
\(98\) −106.360 + 106.360i −1.08530 + 1.08530i
\(99\) 27.6463 + 5.49919i 0.279256 + 0.0555474i
\(100\) −143.489 29.2169i −1.43489 0.292169i
\(101\) 30.6576i 0.303540i −0.988416 0.151770i \(-0.951503\pi\)
0.988416 0.151770i \(-0.0484974\pi\)
\(102\) 152.685 135.806i 1.49691 1.33144i
\(103\) 97.6583i 0.948138i −0.880488 0.474069i \(-0.842785\pi\)
0.880488 0.474069i \(-0.157215\pi\)
\(104\) −101.065 + 41.8624i −0.971777 + 0.402523i
\(105\) 19.1519 5.76241i 0.182399 0.0548800i
\(106\) 175.625 175.625i 1.65684 1.65684i
\(107\) 26.4718 + 39.6179i 0.247400 + 0.370261i 0.934298 0.356494i \(-0.116028\pi\)
−0.686897 + 0.726754i \(0.741028\pi\)
\(108\) 73.5135 14.6228i 0.680681 0.135396i
\(109\) 80.3163 + 53.6656i 0.736847 + 0.492345i 0.866477 0.499217i \(-0.166379\pi\)
−0.129630 + 0.991562i \(0.541379\pi\)
\(110\) −7.49027 77.8543i −0.0680934 0.707766i
\(111\) 256.068 + 106.067i 2.30692 + 0.955556i
\(112\) −4.44869 2.97252i −0.0397204 0.0265404i
\(113\) 22.4635 + 112.931i 0.198792 + 0.999393i 0.943341 + 0.331826i \(0.107665\pi\)
−0.744549 + 0.667568i \(0.767335\pi\)
\(114\) −127.267 190.468i −1.11638 1.67077i
\(115\) −43.0594 13.1683i −0.374429 0.114507i
\(116\) 54.5511 + 10.8509i 0.470268 + 0.0935421i
\(117\) 98.0531 40.6149i 0.838061 0.347136i
\(118\) −300.780 −2.54899
\(119\) 17.7311 + 1.03736i 0.149001 + 0.00871733i
\(120\) 52.3979 + 98.5649i 0.436649 + 0.821374i
\(121\) −88.8553 + 36.8051i −0.734341 + 0.304174i
\(122\) −18.5395 3.68774i −0.151963 0.0302274i
\(123\) −84.9248 84.9248i −0.690445 0.690445i
\(124\) 130.787 87.3888i 1.05473 0.704749i
\(125\) −11.4080 124.478i −0.0912642 0.995827i
\(126\) −15.4307 10.3104i −0.122466 0.0818289i
\(127\) 187.019 + 77.4657i 1.47259 + 0.609966i 0.967448 0.253071i \(-0.0814407\pi\)
0.505140 + 0.863037i \(0.331441\pi\)
\(128\) 63.7117 153.814i 0.497747 1.20167i
\(129\) −82.0633 + 122.816i −0.636149 + 0.952065i
\(130\) −186.305 228.063i −1.43312 1.75433i
\(131\) 73.7726 + 110.408i 0.563149 + 0.842813i 0.998344 0.0575237i \(-0.0183205\pi\)
−0.435195 + 0.900336i \(0.643320\pi\)
\(132\) −79.0040 + 79.0040i −0.598515 + 0.598515i
\(133\) 3.88446 19.5285i 0.0292065 0.146831i
\(134\) 44.3473 + 107.064i 0.330950 + 0.798985i
\(135\) 30.0337 + 56.4959i 0.222472 + 0.418488i
\(136\) 13.6282 + 98.1915i 0.100207 + 0.721996i
\(137\) 117.031i 0.854241i −0.904195 0.427121i \(-0.859528\pi\)
0.904195 0.427121i \(-0.140472\pi\)
\(138\) 41.4249 + 100.009i 0.300181 + 0.724700i
\(139\) −1.91522 + 9.62844i −0.0137785 + 0.0692694i −0.987063 0.160334i \(-0.948743\pi\)
0.973284 + 0.229603i \(0.0737429\pi\)
\(140\) −8.94843 + 29.2607i −0.0639174 + 0.209005i
\(141\) −221.516 + 148.012i −1.57103 + 1.04973i
\(142\) 221.103 43.9801i 1.55706 0.309719i
\(143\) 51.9265 77.7135i 0.363122 0.543451i
\(144\) −11.0873 + 26.7671i −0.0769951 + 0.185883i
\(145\) 4.54689 + 47.2606i 0.0313578 + 0.325935i
\(146\) 46.7644 69.9879i 0.320304 0.479369i
\(147\) 35.7831 + 179.894i 0.243423 + 1.22377i
\(148\) −352.577 + 235.585i −2.38228 + 1.59179i
\(149\) 107.462 + 107.462i 0.721220 + 0.721220i 0.968854 0.247633i \(-0.0796529\pi\)
−0.247633 + 0.968854i \(0.579653\pi\)
\(150\) −213.447 + 211.525i −1.42298 + 1.41017i
\(151\) 80.4585 + 194.244i 0.532838 + 1.28638i 0.929636 + 0.368479i \(0.120121\pi\)
−0.396798 + 0.917906i \(0.629879\pi\)
\(152\) 111.131 0.731123
\(153\) −13.2221 95.2654i −0.0864188 0.622650i
\(154\) −16.3434 −0.106126
\(155\) 103.601 + 85.4161i 0.668395 + 0.551072i
\(156\) −82.0697 + 412.592i −0.526088 + 2.64482i
\(157\) −165.129 165.129i −1.05178 1.05178i −0.998584 0.0531931i \(-0.983060\pi\)
−0.0531931 0.998584i \(-0.516940\pi\)
\(158\) 196.049 + 293.408i 1.24082 + 1.85701i
\(159\) −59.0866 297.048i −0.371614 1.86823i
\(160\) 196.025 + 19.7544i 1.22515 + 0.123465i
\(161\) −3.60065 + 8.69273i −0.0223643 + 0.0539921i
\(162\) 120.041 289.804i 0.740992 1.78891i
\(163\) 91.3742 + 61.0543i 0.560578 + 0.374566i 0.803341 0.595520i \(-0.203054\pi\)
−0.242763 + 0.970086i \(0.578054\pi\)
\(164\) 180.215 35.8471i 1.09887 0.218580i
\(165\) −84.0114 45.1495i −0.509160 0.273634i
\(166\) 69.7530 + 69.7530i 0.420199 + 0.420199i
\(167\) 0.281532 1.41536i 0.00168582 0.00847519i −0.979933 0.199326i \(-0.936125\pi\)
0.981619 + 0.190851i \(0.0611247\pi\)
\(168\) 21.5498 8.92623i 0.128273 0.0531323i
\(169\) 182.911i 1.08231i
\(170\) −242.556 + 111.292i −1.42680 + 0.654660i
\(171\) −107.819 −0.630521
\(172\) −86.4805 208.782i −0.502794 1.21385i
\(173\) 68.4309 + 13.6118i 0.395554 + 0.0786807i 0.388860 0.921297i \(-0.372869\pi\)
0.00669459 + 0.999978i \(0.497869\pi\)
\(174\) 80.7097 80.7097i 0.463849 0.463849i
\(175\) −26.1195 0.118121i −0.149254 0.000674976i
\(176\) 4.97767 + 25.0244i 0.0282822 + 0.142184i
\(177\) −203.770 + 304.963i −1.15124 + 1.72295i
\(178\) 5.65756 + 2.34344i 0.0317841 + 0.0131654i
\(179\) −109.696 45.4378i −0.612830 0.253842i 0.0546082 0.998508i \(-0.482609\pi\)
−0.667438 + 0.744666i \(0.732609\pi\)
\(180\) 164.856 + 16.6134i 0.915867 + 0.0922965i
\(181\) 228.748 45.5009i 1.26380 0.251386i 0.482699 0.875786i \(-0.339657\pi\)
0.781104 + 0.624400i \(0.214657\pi\)
\(182\) −51.1648 + 34.1873i −0.281125 + 0.187842i
\(183\) −16.2990 + 16.2990i −0.0890657 + 0.0890657i
\(184\) −51.5055 10.2451i −0.279921 0.0556798i
\(185\) −279.290 230.267i −1.50968 1.24468i
\(186\) 322.796i 1.73546i
\(187\) −56.2916 63.2876i −0.301024 0.338436i
\(188\) 407.593i 2.16805i
\(189\) 12.3520 5.11638i 0.0653547 0.0270708i
\(190\) 86.1964 + 286.482i 0.453665 + 1.50780i
\(191\) 100.280 100.280i 0.525027 0.525027i −0.394058 0.919085i \(-0.628929\pi\)
0.919085 + 0.394058i \(0.128929\pi\)
\(192\) −219.569 328.608i −1.14359 1.71150i
\(193\) 62.4627 12.4246i 0.323641 0.0643762i −0.0305963 0.999532i \(-0.509741\pi\)
0.354237 + 0.935156i \(0.384741\pi\)
\(194\) −56.5406 37.7792i −0.291446 0.194738i
\(195\) −357.451 + 34.3900i −1.83308 + 0.176359i
\(196\) −259.255 107.387i −1.32273 0.547892i
\(197\) −286.509 191.439i −1.45436 0.971773i −0.996574 0.0827116i \(-0.973642\pi\)
−0.457788 0.889062i \(-0.651358\pi\)
\(198\) 17.2655 + 86.7994i 0.0871994 + 0.438381i
\(199\) −88.1240 131.887i −0.442834 0.662748i 0.541166 0.840916i \(-0.317983\pi\)
−0.984000 + 0.178168i \(0.942983\pi\)
\(200\) −27.7940 143.109i −0.138970 0.715547i
\(201\) 138.597 + 27.5686i 0.689536 + 0.137157i
\(202\) 88.9268 36.8347i 0.440232 0.182350i
\(203\) 9.92109 0.0488723
\(204\) 343.083 + 166.209i 1.68178 + 0.814752i
\(205\) 73.6263 + 138.497i 0.359153 + 0.675597i
\(206\) 283.272 117.335i 1.37511 0.569588i
\(207\) 49.9707 + 9.93979i 0.241404 + 0.0480183i
\(208\) 67.9294 + 67.9294i 0.326584 + 0.326584i
\(209\) −78.9488 + 52.7519i −0.377746 + 0.252402i
\(210\) 39.7255 + 48.6294i 0.189169 + 0.231569i
\(211\) −166.378 111.170i −0.788520 0.526872i 0.0948821 0.995489i \(-0.469753\pi\)
−0.883402 + 0.468617i \(0.844753\pi\)
\(212\) 428.092 + 177.321i 2.01930 + 0.836422i
\(213\) 105.199 253.973i 0.493892 1.19236i
\(214\) −83.1120 + 124.386i −0.388374 + 0.581243i
\(215\) 149.396 122.042i 0.694864 0.567636i
\(216\) 41.4573 + 62.0452i 0.191932 + 0.287246i
\(217\) 19.8395 19.8395i 0.0914264 0.0914264i
\(218\) −59.1661 + 297.448i −0.271404 + 1.36444i
\(219\) −39.2796 94.8294i −0.179359 0.433011i
\(220\) 128.842 68.4932i 0.585644 0.311333i
\(221\) −308.613 80.3777i −1.39644 0.363700i
\(222\) 870.200i 3.91982i
\(223\) 117.622 + 283.965i 0.527454 + 1.27339i 0.933186 + 0.359395i \(0.117017\pi\)
−0.405731 + 0.913992i \(0.632983\pi\)
\(224\) 8.03156 40.3774i 0.0358552 0.180256i
\(225\) 26.9658 + 138.845i 0.119848 + 0.617088i
\(226\) −300.585 + 200.844i −1.33002 + 0.888692i
\(227\) 159.541 31.7347i 0.702825 0.139801i 0.169275 0.985569i \(-0.445857\pi\)
0.533550 + 0.845768i \(0.320857\pi\)
\(228\) 237.430 355.339i 1.04136 1.55850i
\(229\) −75.6844 + 182.718i −0.330500 + 0.797897i 0.668053 + 0.744114i \(0.267128\pi\)
−0.998553 + 0.0537829i \(0.982872\pi\)
\(230\) −13.5387 140.722i −0.0588637 0.611833i
\(231\) −11.0722 + 16.5707i −0.0479315 + 0.0717345i
\(232\) 10.8027 + 54.3090i 0.0465635 + 0.234091i
\(233\) 24.7396 16.5304i 0.106178 0.0709461i −0.501347 0.865246i \(-0.667162\pi\)
0.607526 + 0.794300i \(0.292162\pi\)
\(234\) 235.619 + 235.619i 1.00692 + 1.00692i
\(235\) 333.180 100.247i 1.41779 0.426582i
\(236\) −214.738 518.423i −0.909907 2.19671i
\(237\) 430.306 1.81564
\(238\) 18.2947 + 52.6781i 0.0768685 + 0.221337i
\(239\) −415.551 −1.73871 −0.869354 0.494190i \(-0.835465\pi\)
−0.869354 + 0.494190i \(0.835465\pi\)
\(240\) 62.3605 75.6371i 0.259836 0.315155i
\(241\) 26.4472 132.959i 0.109739 0.551697i −0.886325 0.463064i \(-0.846750\pi\)
0.996064 0.0886333i \(-0.0282499\pi\)
\(242\) −213.517 213.517i −0.882302 0.882302i
\(243\) −148.525 222.284i −0.611215 0.914748i
\(244\) −6.87988 34.5875i −0.0281962 0.141752i
\(245\) 24.0182 238.335i 0.0980335 0.972796i
\(246\) 144.301 348.373i 0.586589 1.41615i
\(247\) −136.811 + 330.292i −0.553892 + 1.33721i
\(248\) 130.206 + 87.0011i 0.525025 + 0.350811i
\(249\) 117.979 23.4674i 0.473810 0.0942466i
\(250\) 347.361 182.650i 1.38944 0.730599i
\(251\) 21.3651 + 21.3651i 0.0851199 + 0.0851199i 0.748385 0.663265i \(-0.230830\pi\)
−0.663265 + 0.748385i \(0.730830\pi\)
\(252\) 6.75451 33.9572i 0.0268036 0.134751i
\(253\) 41.4534 17.1706i 0.163848 0.0678679i
\(254\) 635.549i 2.50216i
\(255\) −51.4844 + 321.326i −0.201900 + 1.26010i
\(256\) 109.793 0.428880
\(257\) 23.0235 + 55.5836i 0.0895855 + 0.216279i 0.962322 0.271914i \(-0.0876565\pi\)
−0.872736 + 0.488192i \(0.837657\pi\)
\(258\) −454.845 90.4743i −1.76297 0.350676i
\(259\) −53.4838 + 53.4838i −0.206501 + 0.206501i
\(260\) 260.079 483.938i 1.00030 1.86130i
\(261\) −10.4808 52.6906i −0.0401564 0.201880i
\(262\) −231.619 + 346.643i −0.884043 + 1.32306i
\(263\) −300.430 124.442i −1.14232 0.473164i −0.270368 0.962757i \(-0.587145\pi\)
−0.871951 + 0.489593i \(0.837145\pi\)
\(264\) −102.766 42.5669i −0.389264 0.161238i
\(265\) −39.6598 + 393.548i −0.149660 + 1.48509i
\(266\) 61.3124 12.1958i 0.230498 0.0458489i
\(267\) 6.20886 4.14863i 0.0232541 0.0155379i
\(268\) −152.874 + 152.874i −0.570424 + 0.570424i
\(269\) −53.6514 10.6719i −0.199448 0.0396726i 0.0943555 0.995539i \(-0.469921\pi\)
−0.293803 + 0.955866i \(0.594921\pi\)
\(270\) −127.790 + 154.996i −0.473295 + 0.574060i
\(271\) 26.2090i 0.0967123i −0.998830 0.0483562i \(-0.984602\pi\)
0.998830 0.0483562i \(-0.0153983\pi\)
\(272\) 75.0868 44.0562i 0.276055 0.161971i
\(273\) 75.0372i 0.274861i
\(274\) 339.466 140.611i 1.23893 0.513180i
\(275\) 87.6770 + 88.4736i 0.318825 + 0.321722i
\(276\) −142.800 + 142.800i −0.517390 + 0.517390i
\(277\) −136.208 203.850i −0.491727 0.735921i 0.499755 0.866167i \(-0.333423\pi\)
−0.991482 + 0.130246i \(0.958423\pi\)
\(278\) −30.2298 + 6.01309i −0.108740 + 0.0216298i
\(279\) −126.326 84.4084i −0.452782 0.302539i
\(280\) −30.3226 + 2.91730i −0.108295 + 0.0104189i
\(281\) 164.221 + 68.0225i 0.584416 + 0.242073i 0.655246 0.755415i \(-0.272565\pi\)
−0.0708304 + 0.997488i \(0.522565\pi\)
\(282\) −695.479 464.704i −2.46624 1.64789i
\(283\) −76.8491 386.347i −0.271552 1.36518i −0.840055 0.542501i \(-0.817477\pi\)
0.568503 0.822681i \(-0.307523\pi\)
\(284\) 233.657 + 349.693i 0.822737 + 1.23131i
\(285\) 348.861 + 106.688i 1.22407 + 0.374343i
\(286\) 287.808 + 57.2487i 1.00632 + 0.200170i
\(287\) 30.2805 12.5426i 0.105507 0.0437024i
\(288\) −222.928 −0.774055
\(289\) −140.976 + 252.283i −0.487807 + 0.872951i
\(290\) −131.623 + 69.9719i −0.453874 + 0.241283i
\(291\) −76.6091 + 31.7325i −0.263262 + 0.109047i
\(292\) 154.018 + 30.6360i 0.527458 + 0.104918i
\(293\) 13.5860 + 13.5860i 0.0463687 + 0.0463687i 0.729911 0.683542i \(-0.239562\pi\)
−0.683542 + 0.729911i \(0.739562\pi\)
\(294\) −478.816 + 319.935i −1.62863 + 1.08821i
\(295\) 370.962 303.039i 1.25750 1.02725i
\(296\) −351.013 234.539i −1.18585 0.792362i
\(297\) −58.9037 24.3987i −0.198329 0.0821506i
\(298\) −182.595 + 440.823i −0.612734 + 1.47927i
\(299\) 93.8571 140.467i 0.313903 0.469790i
\(300\) −516.972 216.881i −1.72324 0.722937i
\(301\) −22.3948 33.5162i −0.0744013 0.111349i
\(302\) −466.764 + 466.764i −1.54558 + 1.54558i
\(303\) 22.8984 115.118i 0.0755722 0.379927i
\(304\) −37.3475 90.1649i −0.122854 0.296595i
\(305\) 26.5808 14.1306i 0.0871503 0.0463298i
\(306\) 260.445 152.813i 0.851128 0.499388i
\(307\) 59.3971i 0.193476i −0.995310 0.0967379i \(-0.969159\pi\)
0.995310 0.0967379i \(-0.0308409\pi\)
\(308\) −11.6681 28.1694i −0.0378836 0.0914591i
\(309\) 72.9417 366.702i 0.236057 1.18674i
\(310\) −123.286 + 403.137i −0.397698 + 1.30044i
\(311\) 381.722 255.059i 1.22740 0.820124i 0.238858 0.971054i \(-0.423227\pi\)
0.988544 + 0.150930i \(0.0482269\pi\)
\(312\) −410.761 + 81.7055i −1.31654 + 0.261877i
\(313\) −142.386 + 213.095i −0.454906 + 0.680815i −0.986047 0.166469i \(-0.946764\pi\)
0.531141 + 0.847284i \(0.321764\pi\)
\(314\) 280.581 677.382i 0.893569 2.15727i
\(315\) 29.4190 2.83037i 0.0933937 0.00898530i
\(316\) −365.751 + 547.384i −1.15744 + 1.73223i
\(317\) 57.9173 + 291.170i 0.182704 + 0.918517i 0.957967 + 0.286878i \(0.0926174\pi\)
−0.775263 + 0.631639i \(0.782383\pi\)
\(318\) 790.640 528.289i 2.48629 1.66129i
\(319\) −33.4540 33.4540i −0.104872 0.104872i
\(320\) 148.711 + 494.256i 0.464723 + 1.54455i
\(321\) 69.8097 + 168.536i 0.217476 + 0.525033i
\(322\) −29.5407 −0.0917413
\(323\) 258.405 + 195.418i 0.800016 + 0.605009i
\(324\) 585.206 1.80619
\(325\) 459.552 + 93.5731i 1.41401 + 0.287917i
\(326\) −67.3120 + 338.400i −0.206478 + 1.03804i
\(327\) 261.501 + 261.501i 0.799697 + 0.799697i
\(328\) 101.631 + 152.101i 0.309850 + 0.463724i
\(329\) −14.1838 71.3066i −0.0431118 0.216738i
\(330\) 30.0243 297.934i 0.0909827 0.902830i
\(331\) −153.858 + 371.447i −0.464828 + 1.12220i 0.501563 + 0.865121i \(0.332758\pi\)
−0.966392 + 0.257074i \(0.917242\pi\)
\(332\) −70.4267 + 170.025i −0.212129 + 0.512124i
\(333\) 340.553 + 227.550i 1.02268 + 0.683333i
\(334\) 4.44371 0.883909i 0.0133045 0.00264643i
\(335\) −162.563 87.3649i −0.485263 0.260791i
\(336\) −14.4844 14.4844i −0.0431084 0.0431084i
\(337\) 116.538 585.877i 0.345810 1.73851i −0.281340 0.959608i \(-0.590779\pi\)
0.627150 0.778898i \(-0.284221\pi\)
\(338\) 530.560 219.765i 1.56970 0.650193i
\(339\) 440.831i 1.30039i
\(340\) −364.992 338.612i −1.07351 0.995918i
\(341\) −133.798 −0.392371
\(342\) −129.543 312.745i −0.378781 0.914459i
\(343\) −99.3035 19.7527i −0.289515 0.0575880i
\(344\) 159.086 159.086i 0.462460 0.462460i
\(345\) −151.850 81.6078i −0.440146 0.236544i
\(346\) 42.7360 + 214.848i 0.123514 + 0.620949i
\(347\) 54.7921 82.0022i 0.157902 0.236318i −0.744080 0.668091i \(-0.767112\pi\)
0.901982 + 0.431773i \(0.142112\pi\)
\(348\) 196.732 + 81.4892i 0.565323 + 0.234164i
\(349\) 288.155 + 119.358i 0.825659 + 0.341999i 0.755183 0.655514i \(-0.227548\pi\)
0.0704764 + 0.997513i \(0.477548\pi\)
\(350\) −31.0396 75.9054i −0.0886846 0.216872i
\(351\) −235.442 + 46.8324i −0.670775 + 0.133426i
\(352\) −163.236 + 109.071i −0.463737 + 0.309859i
\(353\) 182.112 182.112i 0.515898 0.515898i −0.400429 0.916328i \(-0.631139\pi\)
0.916328 + 0.400429i \(0.131139\pi\)
\(354\) −1129.42 224.655i −3.19044 0.634618i
\(355\) −228.383 + 277.006i −0.643332 + 0.780297i
\(356\) 11.4244i 0.0320910i
\(357\) 65.8048 + 17.1388i 0.184327 + 0.0480077i
\(358\) 372.784i 1.04130i
\(359\) 218.420 90.4725i 0.608412 0.252013i −0.0571373 0.998366i \(-0.518197\pi\)
0.665549 + 0.746354i \(0.268197\pi\)
\(360\) 47.5271 + 157.961i 0.132020 + 0.438780i
\(361\) 1.54723 1.54723i 0.00428596 0.00428596i
\(362\) 406.820 + 608.850i 1.12381 + 1.68191i
\(363\) −361.138 + 71.8347i −0.994870 + 0.197892i
\(364\) −95.4534 63.7799i −0.262235 0.175220i
\(365\) 12.8375 + 133.434i 0.0351713 + 0.365572i
\(366\) −66.8608 27.6946i −0.182680 0.0756684i
\(367\) −194.644 130.057i −0.530366 0.354379i 0.261374 0.965238i \(-0.415824\pi\)
−0.791740 + 0.610858i \(0.790824\pi\)
\(368\) 8.99713 + 45.2316i 0.0244487 + 0.122912i
\(369\) −98.6023 147.569i −0.267215 0.399915i
\(370\) 332.358 1086.79i 0.898265 2.93726i
\(371\) 81.0635 + 16.1245i 0.218500 + 0.0434623i
\(372\) 556.369 230.456i 1.49562 0.619505i
\(373\) −258.982 −0.694321 −0.347160 0.937806i \(-0.612854\pi\)
−0.347160 + 0.937806i \(0.612854\pi\)
\(374\) 115.941 239.321i 0.310004 0.639896i
\(375\) 50.1372 475.931i 0.133699 1.26915i
\(376\) 374.896 155.287i 0.997063 0.412997i
\(377\) −174.711 34.7522i −0.463424 0.0921809i
\(378\) 29.6816 + 29.6816i 0.0785228 + 0.0785228i
\(379\) −499.058 + 333.460i −1.31678 + 0.879842i −0.997693 0.0678848i \(-0.978375\pi\)
−0.319083 + 0.947727i \(0.603375\pi\)
\(380\) −432.240 + 353.097i −1.13747 + 0.929204i
\(381\) 644.387 + 430.566i 1.69131 + 1.13009i
\(382\) 411.363 + 170.392i 1.07687 + 0.446052i
\(383\) 56.9029 137.376i 0.148572 0.358683i −0.832020 0.554746i \(-0.812816\pi\)
0.980591 + 0.196062i \(0.0628155\pi\)
\(384\) 354.119 529.977i 0.922185 1.38015i
\(385\) 20.1568 16.4661i 0.0523554 0.0427692i
\(386\) 111.087 + 166.254i 0.287791 + 0.430710i
\(387\) −154.345 + 154.345i −0.398825 + 0.398825i
\(388\) 24.7497 124.425i 0.0637878 0.320683i
\(389\) −119.943 289.569i −0.308338 0.744394i −0.999759 0.0219418i \(-0.993015\pi\)
0.691421 0.722452i \(-0.256985\pi\)
\(390\) −529.226 995.521i −1.35699 2.55262i
\(391\) −101.747 114.392i −0.260222 0.292563i
\(392\) 279.370i 0.712679i
\(393\) 194.548 + 469.680i 0.495033 + 1.19511i
\(394\) 211.061 1061.07i 0.535687 2.69308i
\(395\) −537.406 164.348i −1.36052 0.416071i
\(396\) −137.281 + 91.7279i −0.346668 + 0.231636i
\(397\) −772.130 + 153.586i −1.94491 + 0.386867i −0.947085 + 0.320984i \(0.895986\pi\)
−0.997827 + 0.0658832i \(0.979014\pi\)
\(398\) 276.678 414.077i 0.695170 1.04039i
\(399\) 29.1720 70.4273i 0.0731127 0.176510i
\(400\) −106.770 + 70.6450i −0.266925 + 0.176613i
\(401\) 236.884 354.522i 0.590734 0.884096i −0.408860 0.912597i \(-0.634074\pi\)
0.999594 + 0.0285015i \(0.00907354\pi\)
\(402\) 86.5555 + 435.144i 0.215312 + 1.08245i
\(403\) −418.871 + 279.881i −1.03938 + 0.694493i
\(404\) 126.976 + 126.976i 0.314298 + 0.314298i
\(405\) 143.930 + 478.366i 0.355384 + 1.18115i
\(406\) 11.9201 + 28.7776i 0.0293598 + 0.0708807i
\(407\) 360.697 0.886232
\(408\) −22.1667 + 378.884i −0.0543301 + 0.928637i
\(409\) 446.077 1.09065 0.545326 0.838224i \(-0.316406\pi\)
0.545326 + 0.838224i \(0.316406\pi\)
\(410\) −313.271 + 379.967i −0.764076 + 0.926749i
\(411\) 87.4114 439.447i 0.212680 1.06921i
\(412\) 404.477 + 404.477i 0.981740 + 0.981740i
\(413\) −55.6081 83.2234i −0.134644 0.201509i
\(414\) 31.2073 + 156.890i 0.0753800 + 0.378961i
\(415\) −156.305 15.7517i −0.376640 0.0379559i
\(416\) −282.873 + 682.915i −0.679982 + 1.64162i
\(417\) −14.3831 + 34.7239i −0.0344919 + 0.0832707i
\(418\) −247.871 165.622i −0.592992 0.396225i
\(419\) −276.806 + 55.0601i −0.660635 + 0.131408i −0.514011 0.857784i \(-0.671841\pi\)
−0.146624 + 0.989192i \(0.546841\pi\)
\(420\) −55.4560 + 103.189i −0.132038 + 0.245688i
\(421\) −234.445 234.445i −0.556877 0.556877i 0.371540 0.928417i \(-0.378830\pi\)
−0.928417 + 0.371540i \(0.878830\pi\)
\(422\) 122.564 616.172i 0.290437 1.46012i
\(423\) −363.724 + 150.659i −0.859867 + 0.356169i
\(424\) 461.307i 1.08799i
\(425\) 187.023 381.638i 0.440055 0.897971i
\(426\) 863.081 2.02601
\(427\) −2.40721 5.81152i −0.00563750 0.0136101i
\(428\) −273.728 54.4478i −0.639551 0.127215i
\(429\) 253.026 253.026i 0.589805 0.589805i
\(430\) 533.497 + 286.713i 1.24069 + 0.666774i
\(431\) 41.0749 + 206.498i 0.0953015 + 0.479113i 0.998730 + 0.0503750i \(0.0160416\pi\)
−0.903429 + 0.428738i \(0.858958\pi\)
\(432\) 36.4074 54.4875i 0.0842763 0.126128i
\(433\) −256.565 106.273i −0.592528 0.245433i 0.0662097 0.997806i \(-0.478909\pi\)
−0.658738 + 0.752373i \(0.728909\pi\)
\(434\) 81.3845 + 33.7106i 0.187522 + 0.0776741i
\(435\) −18.2259 + 180.858i −0.0418987 + 0.415765i
\(436\) −554.920 + 110.381i −1.27275 + 0.253166i
\(437\) −142.700 + 95.3491i −0.326545 + 0.218190i
\(438\) 227.873 227.873i 0.520257 0.520257i
\(439\) 141.565 + 28.1591i 0.322473 + 0.0641438i 0.353672 0.935369i \(-0.384933\pi\)
−0.0311997 + 0.999513i \(0.509933\pi\)
\(440\) 112.085 + 92.4111i 0.254740 + 0.210025i
\(441\) 271.045i 0.614614i
\(442\) −137.647 991.749i −0.311418 2.24378i
\(443\) 438.344i 0.989490i −0.869038 0.494745i \(-0.835261\pi\)
0.869038 0.494745i \(-0.164739\pi\)
\(444\) −1499.87 + 621.267i −3.37809 + 1.39925i
\(445\) −9.33869 + 2.80982i −0.0209858 + 0.00631419i
\(446\) −682.362 + 682.362i −1.52996 + 1.52996i
\(447\) 323.250 + 483.778i 0.723155 + 1.08228i
\(448\) 105.780 21.0409i 0.236116 0.0469664i
\(449\) 188.867 + 126.197i 0.420640 + 0.281063i 0.747823 0.663898i \(-0.231099\pi\)
−0.327183 + 0.944961i \(0.606099\pi\)
\(450\) −370.341 + 245.039i −0.822979 + 0.544530i
\(451\) −144.400 59.8125i −0.320178 0.132622i
\(452\) −560.773 374.696i −1.24065 0.828974i
\(453\) 157.036 + 789.473i 0.346658 + 1.74277i
\(454\) 283.738 + 424.644i 0.624974 + 0.935340i
\(455\) 28.6592 93.7133i 0.0629872 0.205963i
\(456\) 417.291 + 83.0043i 0.915112 + 0.182027i
\(457\) 291.671 120.814i 0.638230 0.264364i −0.0400151 0.999199i \(-0.512741\pi\)
0.678246 + 0.734835i \(0.262741\pi\)
\(458\) −620.935 −1.35575
\(459\) −12.7056 + 217.170i −0.0276810 + 0.473138i
\(460\) 232.881 123.801i 0.506264 0.269134i
\(461\) −639.723 + 264.982i −1.38769 + 0.574798i −0.946525 0.322630i \(-0.895433\pi\)
−0.441161 + 0.897428i \(0.645433\pi\)
\(462\) −61.3687 12.2070i −0.132833 0.0264221i
\(463\) 320.915 + 320.915i 0.693122 + 0.693122i 0.962918 0.269796i \(-0.0869563\pi\)
−0.269796 + 0.962918i \(0.586956\pi\)
\(464\) 40.4327 27.0163i 0.0871395 0.0582247i
\(465\) 325.220 + 398.114i 0.699398 + 0.856160i
\(466\) 77.6732 + 51.8996i 0.166681 + 0.111373i
\(467\) −78.5327 32.5293i −0.168164 0.0696559i 0.297013 0.954873i \(-0.404009\pi\)
−0.465177 + 0.885217i \(0.654009\pi\)
\(468\) −237.895 + 574.329i −0.508322 + 1.22720i
\(469\) −21.4248 + 32.0645i −0.0456818 + 0.0683677i
\(470\) 691.092 + 845.991i 1.47041 + 1.79998i
\(471\) −496.716 743.388i −1.05460 1.57832i
\(472\) 395.023 395.023i 0.836914 0.836914i
\(473\) −37.5015 + 188.533i −0.0792843 + 0.398589i
\(474\) 517.007 + 1248.17i 1.09073 + 2.63326i
\(475\) −394.942 266.483i −0.831457 0.561017i
\(476\) −77.7345 + 69.1415i −0.163308 + 0.145255i
\(477\) 447.560i 0.938282i
\(478\) −499.279 1205.37i −1.04452 2.52169i
\(479\) −50.1882 + 252.313i −0.104777 + 0.526749i 0.892373 + 0.451299i \(0.149039\pi\)
−0.997150 + 0.0754500i \(0.975961\pi\)
\(480\) 721.309 + 220.589i 1.50273 + 0.459561i
\(481\) 1129.20 754.508i 2.34761 1.56862i
\(482\) 417.443 83.0346i 0.866065 0.172271i
\(483\) −20.0129 + 29.9515i −0.0414347 + 0.0620113i
\(484\) 215.579 520.455i 0.445412 1.07532i
\(485\) 107.796 10.3710i 0.222260 0.0213834i
\(486\) 466.316 697.891i 0.959497 1.43599i
\(487\) −57.7733 290.446i −0.118631 0.596398i −0.993669 0.112344i \(-0.964164\pi\)
0.875038 0.484053i \(-0.160836\pi\)
\(488\) 29.1917 19.5053i 0.0598192 0.0399699i
\(489\) 297.504 + 297.504i 0.608393 + 0.608393i
\(490\) 720.183 216.688i 1.46976 0.442221i
\(491\) 192.066 + 463.688i 0.391173 + 0.944375i 0.989685 + 0.143261i \(0.0457589\pi\)
−0.598512 + 0.801114i \(0.704241\pi\)
\(492\) 703.476 1.42983
\(493\) −70.3809 + 145.277i −0.142761 + 0.294680i
\(494\) −1122.44 −2.27214
\(495\) −108.745 89.6573i −0.219688 0.181126i
\(496\) 26.8293 134.880i 0.0540914 0.271936i
\(497\) 53.0463 + 53.0463i 0.106733 + 0.106733i
\(498\) 209.820 + 314.019i 0.421326 + 0.630559i
\(499\) −98.3433 494.405i −0.197081 0.990792i −0.945017 0.327021i \(-0.893955\pi\)
0.747936 0.663771i \(-0.231045\pi\)
\(500\) 562.808 + 468.310i 1.12562 + 0.936619i
\(501\) 2.11428 5.10433i 0.00422012 0.0101883i
\(502\) −36.3027 + 87.6425i −0.0723162 + 0.174587i
\(503\) 504.248 + 336.928i 1.00248 + 0.669836i 0.944510 0.328482i \(-0.106537\pi\)
0.0579708 + 0.998318i \(0.481537\pi\)
\(504\) 33.8066 6.72454i 0.0670765 0.0133423i
\(505\) −72.5649 + 135.024i −0.143693 + 0.267375i
\(506\) 99.6116 + 99.6116i 0.196861 + 0.196861i
\(507\) 136.618 686.823i 0.269463 1.35468i
\(508\) −1095.43 + 453.742i −2.15636 + 0.893193i
\(509\) 586.035i 1.15135i 0.817680 + 0.575673i \(0.195260\pi\)
−0.817680 + 0.575673i \(0.804740\pi\)
\(510\) −993.911 + 236.731i −1.94884 + 0.464178i
\(511\) 28.0108 0.0548157
\(512\) −122.932 296.783i −0.240101 0.579655i
\(513\) 239.185 + 47.5768i 0.466247 + 0.0927423i
\(514\) −133.566 + 133.566i −0.259856 + 0.259856i
\(515\) −231.152 + 430.113i −0.448839 + 0.835171i
\(516\) −168.789 848.562i −0.327111 1.64450i
\(517\) −192.619 + 288.275i −0.372571 + 0.557592i
\(518\) −219.398 90.8776i −0.423548 0.175439i
\(519\) 246.788 + 102.223i 0.475507 + 0.196962i
\(520\) 544.202 + 54.8420i 1.04654 + 0.105465i
\(521\) 66.5951 13.2466i 0.127822 0.0254253i −0.130765 0.991413i \(-0.541743\pi\)
0.258587 + 0.965988i \(0.416743\pi\)
\(522\) 140.244 93.7083i 0.268667 0.179518i
\(523\) 354.673 354.673i 0.678152 0.678152i −0.281430 0.959582i \(-0.590809\pi\)
0.959582 + 0.281430i \(0.0908087\pi\)
\(524\) −762.833 151.737i −1.45579 0.289574i
\(525\) −97.9893 19.9524i −0.186646 0.0380045i
\(526\) 1020.96i 1.94098i
\(527\) 149.773 + 431.259i 0.284199 + 0.818329i
\(528\) 97.6835i 0.185007i
\(529\) −413.805 + 171.404i −0.782240 + 0.324015i
\(530\) −1189.20 + 357.804i −2.24377 + 0.675102i
\(531\) −383.252 + 383.252i −0.721755 + 0.721755i
\(532\) 64.7938 + 96.9708i 0.121793 + 0.182276i
\(533\) −577.177 + 114.808i −1.08288 + 0.215399i
\(534\) 19.4936 + 13.0252i 0.0365048 + 0.0243917i
\(535\) −22.8155 237.145i −0.0426457 0.443262i
\(536\) −198.853 82.3676i −0.370994 0.153671i
\(537\) −377.968 252.550i −0.703850 0.470298i
\(538\) −33.5060 168.446i −0.0622788 0.313097i
\(539\) 132.612 + 198.469i 0.246034 + 0.368216i
\(540\) −358.384 109.600i −0.663675 0.202963i
\(541\) −941.924 187.360i −1.74108 0.346322i −0.780677 0.624935i \(-0.785125\pi\)
−0.960404 + 0.278613i \(0.910125\pi\)
\(542\) 76.0232 31.4898i 0.140264 0.0580993i
\(543\) 892.925 1.64443
\(544\) 534.281 + 404.049i 0.982135 + 0.742736i
\(545\) −226.710 426.462i −0.415983 0.782499i
\(546\) −217.656 + 90.1562i −0.398638 + 0.165121i
\(547\) 407.466 + 81.0501i 0.744911 + 0.148172i 0.552931 0.833227i \(-0.313509\pi\)
0.191980 + 0.981399i \(0.438509\pi\)
\(548\) 484.714 + 484.714i 0.884515 + 0.884515i
\(549\) −28.3218 + 18.9240i −0.0515880 + 0.0344700i
\(550\) −151.288 + 360.620i −0.275069 + 0.655673i
\(551\) 150.467 + 100.539i 0.273080 + 0.182467i
\(552\) −185.749 76.9397i −0.336502 0.139384i
\(553\) −44.9382 + 108.490i −0.0812625 + 0.196185i
\(554\) 427.645 640.015i 0.771922 1.15526i
\(555\) −876.735 1073.24i −1.57970 1.93377i
\(556\) −31.9463 47.8110i −0.0574574 0.0859910i
\(557\) 36.0281 36.0281i 0.0646824 0.0646824i −0.674026 0.738708i \(-0.735436\pi\)
0.738708 + 0.674026i \(0.235436\pi\)
\(558\) 93.0598 467.843i 0.166774 0.838429i
\(559\) 276.971 + 668.668i 0.495477 + 1.19619i
\(560\) 12.5574 + 23.6216i 0.0224239 + 0.0421814i
\(561\) −164.102 279.687i −0.292518 0.498550i
\(562\) 558.075i 0.993016i
\(563\) −0.0280950 0.0678273i −4.99023e−5 0.000120475i 0.923855 0.382744i \(-0.125021\pi\)
−0.923904 + 0.382623i \(0.875021\pi\)
\(564\) 304.434 1530.49i 0.539776 2.71364i
\(565\) 168.368 550.550i 0.297996 0.974425i
\(566\) 1028.32 687.103i 1.81682 1.21396i
\(567\) 102.379 20.3645i 0.180563 0.0359163i
\(568\) −232.621 + 348.141i −0.409543 + 0.612925i
\(569\) 246.037 593.986i 0.432403 1.04391i −0.546108 0.837715i \(-0.683891\pi\)
0.978510 0.206198i \(-0.0661089\pi\)
\(570\) 109.688 + 1140.11i 0.192436 + 2.00019i
\(571\) −75.2274 + 112.586i −0.131747 + 0.197173i −0.891478 0.453065i \(-0.850331\pi\)
0.759731 + 0.650238i \(0.225331\pi\)
\(572\) 106.803 + 536.937i 0.186719 + 0.938701i
\(573\) 451.448 301.648i 0.787867 0.526436i
\(574\) 72.7633 + 72.7633i 0.126765 + 0.126765i
\(575\) 158.476 + 159.916i 0.275611 + 0.278115i
\(576\) −223.496 539.567i −0.388014 0.936748i
\(577\) 0.694820 0.00120419 0.000602097 1.00000i \(-0.499808\pi\)
0.000602097 1.00000i \(0.499808\pi\)
\(578\) −901.165 105.808i −1.55911 0.183059i
\(579\) 243.825 0.421113
\(580\) −214.574 176.910i −0.369955 0.305017i
\(581\) −6.40418 + 32.1960i −0.0110227 + 0.0554148i
\(582\) −184.090 184.090i −0.316306 0.316306i
\(583\) −218.975 327.719i −0.375600 0.562126i
\(584\) 30.5001 + 153.334i 0.0522261 + 0.262559i
\(585\) −527.985 53.2077i −0.902539 0.0909534i
\(586\) −23.0848 + 55.7317i −0.0393939 + 0.0951053i
\(587\) −181.654 + 438.552i −0.309462 + 0.747108i 0.690260 + 0.723561i \(0.257496\pi\)
−0.999723 + 0.0235471i \(0.992504\pi\)
\(588\) −893.282 596.872i −1.51919 1.01509i
\(589\) 501.946 99.8433i 0.852201 0.169513i
\(590\) 1324.72 + 711.931i 2.24528 + 1.20666i
\(591\) −932.842 932.842i −1.57841 1.57841i
\(592\) −72.3270 + 363.613i −0.122174 + 0.614210i
\(593\) 908.273 376.219i 1.53166 0.634433i 0.551772 0.833995i \(-0.313952\pi\)
0.979885 + 0.199561i \(0.0639517\pi\)
\(594\) 200.174i 0.336993i
\(595\) −75.6372 46.5375i −0.127121 0.0782142i
\(596\) −890.161 −1.49356
\(597\) −232.395 561.050i −0.389271 0.939782i
\(598\) 520.214 + 103.477i 0.869922 + 0.173038i
\(599\) 615.686 615.686i 1.02786 1.02786i 0.0282550 0.999601i \(-0.491005\pi\)
0.999601 0.0282550i \(-0.00899505\pi\)
\(600\) 2.52404 558.129i 0.00420673 0.930215i
\(601\) 12.9998 + 65.3544i 0.0216303 + 0.108743i 0.990092 0.140419i \(-0.0448449\pi\)
−0.968462 + 0.249162i \(0.919845\pi\)
\(602\) 70.3116 105.229i 0.116797 0.174799i
\(603\) 192.927 + 79.9130i 0.319945 + 0.132526i
\(604\) −1137.75 471.272i −1.88369 0.780252i
\(605\) 478.458 + 48.2166i 0.790840 + 0.0796969i
\(606\) 361.428 71.8926i 0.596417 0.118635i
\(607\) 982.189 656.278i 1.61810 1.08118i 0.680915 0.732363i \(-0.261582\pi\)
0.937190 0.348820i \(-0.113418\pi\)
\(608\) 530.989 530.989i 0.873337 0.873337i
\(609\) 37.2532 + 7.41013i 0.0611712 + 0.0121677i
\(610\) 72.9244 + 60.1240i 0.119548 + 0.0985639i
\(611\) 1305.40i 2.13650i
\(612\) 449.329 + 339.804i 0.734197 + 0.555235i
\(613\) 891.537i 1.45438i 0.686434 + 0.727192i \(0.259175\pi\)
−0.686434 + 0.727192i \(0.740825\pi\)
\(614\) 172.290 71.3649i 0.280603 0.116229i
\(615\) 173.019 + 575.044i 0.281331 + 0.935031i
\(616\) 21.4643 21.4643i 0.0348446 0.0348446i
\(617\) −564.833 845.333i −0.915451 1.37007i −0.928968 0.370161i \(-0.879303\pi\)
0.0135164 0.999909i \(-0.495697\pi\)
\(618\) 1151.31 229.010i 1.86297 0.370567i
\(619\) −41.0817 27.4499i −0.0663679 0.0443456i 0.521944 0.852980i \(-0.325207\pi\)
−0.588312 + 0.808634i \(0.700207\pi\)
\(620\) −782.864 + 75.3184i −1.26268 + 0.121481i
\(621\) −106.468 44.1007i −0.171447 0.0710156i
\(622\) 1198.47 + 800.792i 1.92680 + 1.28745i
\(623\) 0.397557 + 1.99865i 0.000638133 + 0.00320811i
\(624\) 204.335 + 305.809i 0.327460 + 0.490078i
\(625\) −244.390 + 575.238i −0.391024 + 0.920381i
\(626\) −789.188 156.979i −1.26068 0.250766i
\(627\) −335.850 + 139.114i −0.535646 + 0.221872i
\(628\) 1367.85 2.17810
\(629\) −403.761 1162.60i −0.641910 1.84833i
\(630\) 43.5565 + 81.9335i 0.0691373 + 0.130053i
\(631\) 476.068 197.194i 0.754466 0.312510i 0.0279037 0.999611i \(-0.491117\pi\)
0.726562 + 0.687101i \(0.241117\pi\)
\(632\) −642.819 127.865i −1.01712 0.202317i
\(633\) −541.707 541.707i −0.855777 0.855777i
\(634\) −774.994 + 517.835i −1.22239 + 0.816774i
\(635\) −640.323 783.843i −1.00838 1.23440i
\(636\) 1475.02 + 985.579i 2.31922 + 1.54965i
\(637\) 830.316 + 343.928i 1.30348 + 0.539919i
\(638\) 56.8438 137.233i 0.0890968 0.215099i
\(639\) 225.688 337.767i 0.353190 0.528586i
\(640\) −644.672 + 526.634i −1.00730 + 0.822865i
\(641\) 537.731 + 804.772i 0.838894 + 1.25549i 0.964677 + 0.263436i \(0.0848559\pi\)
−0.125782 + 0.992058i \(0.540144\pi\)
\(642\) −404.987 + 404.987i −0.630820 + 0.630820i
\(643\) −150.230 + 755.257i −0.233639 + 1.17458i 0.668692 + 0.743540i \(0.266855\pi\)
−0.902331 + 0.431044i \(0.858145\pi\)
\(644\) −21.0902 50.9162i −0.0327487 0.0790624i
\(645\) 652.129 346.676i 1.01105 0.537483i
\(646\) −256.368 + 984.334i −0.396855 + 1.52374i
\(647\) 209.835i 0.324320i −0.986765 0.162160i \(-0.948154\pi\)
0.986765 0.162160i \(-0.0518460\pi\)
\(648\) 222.955 + 538.261i 0.344066 + 0.830649i
\(649\) −93.1191 + 468.142i −0.143481 + 0.721328i
\(650\) 280.724 + 1445.43i 0.431883 + 2.22373i
\(651\) 89.3149 59.6783i 0.137196 0.0916717i
\(652\) −631.321 + 125.578i −0.968284 + 0.192604i
\(653\) −489.100 + 731.990i −0.749005 + 1.12097i 0.239664 + 0.970856i \(0.422963\pi\)
−0.988669 + 0.150110i \(0.952037\pi\)
\(654\) −444.332 + 1072.71i −0.679407 + 1.64023i
\(655\) −63.5829 660.884i −0.0970731 1.00898i
\(656\) 89.2512 133.574i 0.136054 0.203619i
\(657\) −29.5912 148.765i −0.0450398 0.226431i
\(658\) 189.794 126.816i 0.288440 0.192730i
\(659\) 209.585 + 209.585i 0.318035 + 0.318035i 0.848012 0.529977i \(-0.177800\pi\)
−0.529977 + 0.848012i \(0.677800\pi\)
\(660\) 534.953 160.956i 0.810535 0.243873i
\(661\) −230.404 556.245i −0.348569 0.841520i −0.996789 0.0800675i \(-0.974486\pi\)
0.648220 0.761453i \(-0.275514\pi\)
\(662\) −1262.29 −1.90679
\(663\) −1098.79 532.320i −1.65730 0.802895i
\(664\) −183.217 −0.275930
\(665\) −63.3312 + 76.8144i −0.0952348 + 0.115510i
\(666\) −250.873 + 1261.22i −0.376686 + 1.89373i
\(667\) −60.4682 60.4682i −0.0906569 0.0906569i
\(668\) 4.69603 + 7.02810i 0.00702998 + 0.0105211i
\(669\) 229.571 + 1154.13i 0.343155 + 1.72516i
\(670\) 58.0974 576.506i 0.0867125 0.860457i
\(671\) −11.4794 + 27.7137i −0.0171079 + 0.0413021i
\(672\) 60.3163 145.616i 0.0897564 0.216691i
\(673\) −74.5569 49.8174i −0.110783 0.0740228i 0.498945 0.866634i \(-0.333721\pi\)
−0.609728 + 0.792611i \(0.708721\pi\)
\(674\) 1839.44 365.888i 2.72914 0.542860i
\(675\) 1.44674 319.911i 0.00214332 0.473943i
\(676\) 757.573 + 757.573i 1.12067 + 1.12067i
\(677\) 63.4917 319.194i 0.0937838 0.471483i −0.905140 0.425113i \(-0.860234\pi\)
0.998924 0.0463706i \(-0.0147655\pi\)
\(678\) −1278.69 + 529.653i −1.88598 + 0.781199i
\(679\) 22.6289i 0.0333268i
\(680\) 172.392 464.719i 0.253518 0.683410i
\(681\) 622.773 0.914498
\(682\) −160.757 388.102i −0.235714 0.569065i
\(683\) 527.992 + 105.024i 0.773049 + 0.153769i 0.565826 0.824525i \(-0.308557\pi\)
0.207223 + 0.978294i \(0.433557\pi\)
\(684\) 446.560 446.560i 0.652866 0.652866i
\(685\) −277.007 + 515.436i −0.404389 + 0.752461i
\(686\) −62.0163 311.777i −0.0904028 0.454486i
\(687\) −420.665 + 629.570i −0.612322 + 0.916405i
\(688\) −182.537 75.6093i −0.265315 0.109897i
\(689\) −1371.05 567.908i −1.98992 0.824250i
\(690\) 54.2689 538.515i 0.0786506 0.780457i
\(691\) −1212.42 + 241.166i −1.75459 + 0.349010i −0.964521 0.264006i \(-0.914956\pi\)
−0.790070 + 0.613016i \(0.789956\pi\)
\(692\) −339.801 + 227.048i −0.491042 + 0.328103i
\(693\) −20.8246 + 20.8246i −0.0300500 + 0.0300500i
\(694\) 303.691 + 60.4080i 0.437596 + 0.0870432i
\(695\) 31.2251 37.8730i 0.0449283 0.0544935i
\(696\) 211.997i 0.304593i
\(697\) −31.1473 + 532.385i −0.0446876 + 0.763823i
\(698\) 979.243i 1.40293i
\(699\) 105.243 43.5929i 0.150562 0.0623647i
\(700\) 108.670 107.691i 0.155243 0.153845i
\(701\) 29.3444 29.3444i 0.0418608 0.0418608i −0.685867 0.727727i \(-0.740577\pi\)
0.727727 + 0.685867i \(0.240577\pi\)
\(702\) −418.725 626.666i −0.596474 0.892687i
\(703\) −1353.16 + 269.160i −1.92483 + 0.382873i
\(704\) −427.642 285.741i −0.607446 0.405882i
\(705\) 1325.95 127.568i 1.88078 0.180948i
\(706\) 747.048 + 309.438i 1.05814 + 0.438297i
\(707\) 26.6326 + 17.7953i 0.0376699 + 0.0251702i
\(708\) −419.118 2107.05i −0.591974 2.97605i
\(709\) −263.526 394.394i −0.371686 0.556268i 0.597728 0.801699i \(-0.296070\pi\)
−0.969414 + 0.245431i \(0.921070\pi\)
\(710\) −1077.89 329.639i −1.51816 0.464280i
\(711\) 623.663 + 124.054i 0.877163 + 0.174479i
\(712\) −10.5079 + 4.35253i −0.0147584 + 0.00611311i
\(713\) −241.841 −0.339187
\(714\) 29.3501 + 211.468i 0.0411066 + 0.296174i
\(715\) −412.642 + 219.363i −0.577121 + 0.306802i
\(716\) 642.528 266.144i 0.897386 0.371709i
\(717\) −1560.38 310.378i −2.17626 0.432884i
\(718\) 524.858 + 524.858i 0.731000 + 0.731000i
\(719\) 104.397 69.7559i 0.145198 0.0970179i −0.480850 0.876803i \(-0.659672\pi\)
0.626047 + 0.779785i \(0.284672\pi\)
\(720\) 112.188 91.6464i 0.155816 0.127287i
\(721\) 84.8369 + 56.6862i 0.117666 + 0.0786216i
\(722\) 6.34695 + 2.62899i 0.00879079 + 0.00364126i
\(723\) 198.616 479.502i 0.274711 0.663211i
\(724\) −758.967 + 1135.87i −1.04830 + 1.56889i
\(725\) 91.8377 218.911i 0.126673 0.301946i
\(726\) −642.270 961.224i −0.884669 1.32400i
\(727\) 445.987 445.987i 0.613462 0.613462i −0.330384 0.943846i \(-0.607178\pi\)
0.943846 + 0.330384i \(0.107178\pi\)
\(728\) 22.2972 112.095i 0.0306280 0.153977i
\(729\) −47.5752 114.857i −0.0652609 0.157554i
\(730\) −371.621 + 197.556i −0.509069 + 0.270625i
\(731\) 649.658 90.1673i 0.888725 0.123348i
\(732\) 135.013i 0.184444i
\(733\) −23.4312 56.5678i −0.0319661 0.0771730i 0.907090 0.420936i \(-0.138298\pi\)
−0.939056 + 0.343763i \(0.888298\pi\)
\(734\) 143.387 720.857i 0.195351 0.982093i
\(735\) 268.201 876.998i 0.364900 1.19319i
\(736\) −295.048 + 197.145i −0.400881 + 0.267860i
\(737\) 180.366 35.8771i 0.244731 0.0486799i
\(738\) 309.576 463.313i 0.419479 0.627795i
\(739\) −49.4883 + 119.475i −0.0669665 + 0.161672i −0.953820 0.300380i \(-0.902886\pi\)
0.886853 + 0.462052i \(0.152886\pi\)
\(740\) 2110.46 203.045i 2.85197 0.274385i
\(741\) −760.418 + 1138.05i −1.02620 + 1.53582i
\(742\) 50.6252 + 254.510i 0.0682280 + 0.343005i
\(743\) −782.654 + 522.953i −1.05337 + 0.703839i −0.956581 0.291466i \(-0.905857\pi\)
−0.0967887 + 0.995305i \(0.530857\pi\)
\(744\) 423.937 + 423.937i 0.569808 + 0.569808i
\(745\) −218.934 727.647i −0.293871 0.976707i
\(746\) −311.163 751.214i −0.417109 1.00699i
\(747\) 177.758 0.237962
\(748\) 495.268 + 28.9757i 0.662123 + 0.0387376i
\(749\) −49.7822 −0.0664650
\(750\) 1440.75 426.395i 1.92100 0.568527i
\(751\) −24.6690 + 124.020i −0.0328482 + 0.165139i −0.993728 0.111828i \(-0.964329\pi\)
0.960879 + 0.276967i \(0.0893294\pi\)
\(752\) −251.981 251.981i −0.335082 0.335082i
\(753\) 64.2672 + 96.1827i 0.0853483 + 0.127733i
\(754\) −109.109 548.529i −0.144707 0.727493i
\(755\) 105.405 1045.94i 0.139609 1.38536i
\(756\) −29.9683 + 72.3499i −0.0396406 + 0.0957009i
\(757\) 0.178855 0.431793i 0.000236268 0.000570401i −0.923761 0.382969i \(-0.874902\pi\)
0.923998 + 0.382398i \(0.124902\pi\)
\(758\) −1566.86 1046.94i −2.06710 1.38119i
\(759\) 168.481 33.5129i 0.221977 0.0441540i
\(760\) −489.449 263.041i −0.644012 0.346106i
\(761\) 964.333 + 964.333i 1.26719 + 1.26719i 0.947533 + 0.319659i \(0.103568\pi\)
0.319659 + 0.947533i \(0.396432\pi\)
\(762\) −474.696 + 2386.46i −0.622961 + 3.13184i
\(763\) −93.2399 + 38.6212i −0.122202 + 0.0506176i
\(764\) 830.672i 1.08727i
\(765\) −167.255 + 450.870i −0.218634 + 0.589373i
\(766\) 466.847 0.609460
\(767\) 687.742 + 1660.36i 0.896665 + 2.16474i
\(768\) 412.268 + 82.0053i 0.536808 + 0.106778i
\(769\) −88.1092 + 88.1092i −0.114576 + 0.114576i −0.762070 0.647494i \(-0.775817\pi\)
0.647494 + 0.762070i \(0.275817\pi\)
\(770\) 71.9807 + 38.6840i 0.0934814 + 0.0502389i
\(771\) 44.9364 + 225.910i 0.0582832 + 0.293010i
\(772\) −207.245 + 310.165i −0.268453 + 0.401768i
\(773\) 437.142 + 181.070i 0.565514 + 0.234244i 0.647077 0.762425i \(-0.275991\pi\)
−0.0815630 + 0.996668i \(0.525991\pi\)
\(774\) −633.145 262.257i −0.818017 0.338834i
\(775\) −254.112 621.414i −0.327886 0.801825i
\(776\) 123.873 24.6399i 0.159630 0.0317524i
\(777\) −240.777 + 160.882i −0.309880 + 0.207055i
\(778\) 695.827 695.827i 0.894380 0.894380i
\(779\) 586.352 + 116.633i 0.752698 + 0.149721i
\(780\) 1338.04 1622.91i 1.71544 2.08065i
\(781\) 357.746i 0.458061i
\(782\) 209.564 432.573i 0.267984 0.553162i
\(783\) 121.513i 0.155189i
\(784\) −226.665 + 93.8875i −0.289113 + 0.119755i
\(785\) 336.420 + 1118.12i 0.428561 + 1.42436i
\(786\) −1128.63 + 1128.63i −1.43592 + 1.43592i
\(787\) 813.939 + 1218.15i 1.03423 + 1.54783i 0.821079 + 0.570814i \(0.193372\pi\)
0.213150 + 0.977019i \(0.431628\pi\)
\(788\) 1979.55 393.756i 2.51211 0.499691i
\(789\) −1035.15 691.668i −1.31198 0.876639i
\(790\) −168.970 1756.29i −0.213886 2.22315i
\(791\) −111.144 46.0373i −0.140511 0.0582014i
\(792\) −136.671 91.3209i −0.172565 0.115304i
\(793\) 22.0342 + 110.773i 0.0277859 + 0.139689i
\(794\) −1373.20 2055.15i −1.72948 2.58834i
\(795\) −442.865 + 1448.13i −0.557063 + 1.82155i
\(796\) 911.232 + 181.255i 1.14476 + 0.227708i
\(797\) −185.650 + 76.8989i −0.232937 + 0.0964855i −0.496099 0.868266i \(-0.665235\pi\)
0.263162 + 0.964752i \(0.415235\pi\)
\(798\) 239.335 0.299918
\(799\) 1144.79 + 298.158i 1.43277 + 0.373163i
\(800\) −816.587 550.984i −1.02073 0.688730i
\(801\) 10.1948 4.22283i 0.0127276 0.00527195i
\(802\) 1312.96 + 261.164i 1.63710 + 0.325640i
\(803\) −94.4529 94.4529i −0.117625 0.117625i
\(804\) −688.217 + 459.852i −0.855991 + 0.571955i
\(805\) 36.4335 29.7626i 0.0452590 0.0369721i
\(806\) −1315.10 878.724i −1.63164 1.09023i
\(807\) −193.488 80.1452i −0.239762 0.0993125i
\(808\) −68.4141 + 165.166i −0.0846710 + 0.204414i
\(809\) −769.532 + 1151.69i −0.951214 + 1.42359i −0.0458543 + 0.998948i \(0.514601\pi\)
−0.905360 + 0.424645i \(0.860399\pi\)
\(810\) −1214.64 + 992.243i −1.49956 + 1.22499i
\(811\) 115.781 + 173.278i 0.142763 + 0.213660i 0.895960 0.444136i \(-0.146489\pi\)
−0.753197 + 0.657795i \(0.771489\pi\)
\(812\) −41.0907 + 41.0907i −0.0506043 + 0.0506043i
\(813\) 19.5757 98.4138i 0.0240784 0.121050i
\(814\) 433.372 + 1046.25i 0.532398 + 1.28532i
\(815\) −257.924 485.177i −0.316471 0.595309i
\(816\) 314.854 109.346i 0.385850 0.134003i
\(817\) 735.267i 0.899959i
\(818\) 535.955 + 1293.91i 0.655202 + 1.58180i
\(819\) −21.6327 + 108.755i −0.0264136 + 0.132790i
\(820\) −878.565 268.681i −1.07142 0.327659i
\(821\) 119.759 80.0205i 0.145870 0.0974671i −0.480494 0.876998i \(-0.659543\pi\)
0.626364 + 0.779531i \(0.284543\pi\)
\(822\) 1379.70 274.440i 1.67847 0.333869i
\(823\) 536.222 802.512i 0.651545 0.975106i −0.347751 0.937587i \(-0.613055\pi\)
0.999296 0.0375190i \(-0.0119455\pi\)
\(824\) −217.930 + 526.129i −0.264478 + 0.638506i
\(825\) 263.142 + 397.701i 0.318960 + 0.482062i
\(826\) 174.589 261.291i 0.211367 0.316333i
\(827\) 49.1297 + 246.992i 0.0594071 + 0.298660i 0.999054 0.0434859i \(-0.0138464\pi\)
−0.939647 + 0.342146i \(0.888846\pi\)
\(828\) −248.135 + 165.798i −0.299679 + 0.200239i
\(829\) 423.764 + 423.764i 0.511175 + 0.511175i 0.914886 0.403712i \(-0.132280\pi\)
−0.403712 + 0.914886i \(0.632280\pi\)
\(830\) −142.109 472.313i −0.171216 0.569051i
\(831\) −359.199 867.183i −0.432249 1.04354i
\(832\) −1936.50 −2.32752
\(833\) 491.259 649.601i 0.589747 0.779834i
\(834\) −118.003 −0.141490
\(835\) −4.59002 + 5.56724i −0.00549703 + 0.00666735i
\(836\) 108.501 545.473i 0.129786 0.652479i
\(837\) 242.994 + 242.994i 0.290316 + 0.290316i
\(838\) −492.289 736.762i −0.587457 0.879191i
\(839\) 39.9197 + 200.690i 0.0475800 + 0.239201i 0.997256 0.0740339i \(-0.0235873\pi\)
−0.949676 + 0.313235i \(0.898587\pi\)
\(840\) −116.039 11.6938i −0.138142 0.0139212i
\(841\) 287.330 693.677i 0.341653 0.824824i
\(842\) 398.360 961.726i 0.473111 1.14219i
\(843\) 565.835 + 378.079i 0.671216 + 0.448492i
\(844\) 1149.53 228.657i 1.36201 0.270920i
\(845\) −432.941 + 805.589i −0.512356 + 0.953359i
\(846\) −874.019 874.019i −1.03312 1.03312i
\(847\) 19.6035 98.5533i 0.0231446 0.116356i
\(848\) 374.278 155.031i 0.441365 0.182819i
\(849\) 1508.11i 1.77634i
\(850\) 1331.70 + 83.9561i 1.56671 + 0.0987719i
\(851\) 651.959 0.766109
\(852\) 616.185 + 1487.60i 0.723222 + 1.74601i
\(853\) 607.542 + 120.848i 0.712241 + 0.141674i 0.537896 0.843011i \(-0.319219\pi\)
0.174345 + 0.984685i \(0.444219\pi\)
\(854\) 13.9649 13.9649i 0.0163524 0.0163524i
\(855\) 474.864 + 255.202i 0.555396 + 0.298482i
\(856\) −54.2062 272.513i −0.0633250 0.318356i
\(857\) 576.776 863.206i 0.673018 1.00724i −0.325086 0.945684i \(-0.605393\pi\)
0.998104 0.0615575i \(-0.0196068\pi\)
\(858\) 1037.95 + 429.932i 1.20973 + 0.501087i
\(859\) −188.451 78.0591i −0.219385 0.0908721i 0.270284 0.962781i \(-0.412882\pi\)
−0.489669 + 0.871908i \(0.662882\pi\)
\(860\) −113.294 + 1124.23i −0.131737 + 1.30724i
\(861\) 123.070 24.4802i 0.142939 0.0284323i
\(862\) −549.626 + 367.248i −0.637617 + 0.426042i
\(863\) −1026.13 + 1026.13i −1.18902 + 1.18902i −0.211684 + 0.977338i \(0.567895\pi\)
−0.977338 + 0.211684i \(0.932105\pi\)
\(864\) 494.541 + 98.3704i 0.572386 + 0.113855i
\(865\) −269.170 221.922i −0.311179 0.256558i
\(866\) 871.889i 1.00680i
\(867\) −717.792 + 842.015i −0.827903 + 0.971182i
\(868\) 164.341i 0.189333i
\(869\) 517.363 214.299i 0.595354 0.246604i
\(870\) −546.502 + 164.431i −0.628164 + 0.189001i
\(871\) 489.609 489.609i 0.562123 0.562123i
\(872\) −312.942 468.351i −0.358879 0.537100i
\(873\) −120.182 + 23.9056i −0.137665 + 0.0273833i
\(874\) −448.026 299.362i −0.512616 0.342519i
\(875\) 114.758 + 62.3437i 0.131152 + 0.0712500i
\(876\) 555.447 + 230.074i 0.634072 + 0.262641i
\(877\) −552.307 369.040i −0.629768 0.420798i 0.199305 0.979937i \(-0.436131\pi\)
−0.829073 + 0.559140i \(0.811131\pi\)
\(878\) 88.4095 + 444.464i 0.100694 + 0.506224i
\(879\) 40.8674 + 61.1624i 0.0464931 + 0.0695818i
\(880\) 37.3085 121.996i 0.0423961 0.138632i
\(881\) −611.125 121.560i −0.693672 0.137980i −0.164352 0.986402i \(-0.552553\pi\)
−0.529321 + 0.848422i \(0.677553\pi\)
\(882\) −786.206 + 325.657i −0.891390 + 0.369226i
\(883\) 464.251 0.525765 0.262883 0.964828i \(-0.415327\pi\)
0.262883 + 0.964828i \(0.415327\pi\)
\(884\) 1611.10 945.293i 1.82251 1.06934i
\(885\) 1619.29 860.825i 1.82970 0.972684i
\(886\) 1271.48 526.665i 1.43508 0.594430i
\(887\) −728.743 144.956i −0.821582 0.163423i −0.233637 0.972324i \(-0.575063\pi\)
−0.587945 + 0.808901i \(0.700063\pi\)
\(888\) −1142.86 1142.86i −1.28700 1.28700i
\(889\) −175.851 + 117.500i −0.197808 + 0.132171i
\(890\) −19.3706 23.7123i −0.0217647 0.0266430i
\(891\) −413.894 276.555i −0.464527 0.310387i
\(892\) −1663.28 688.952i −1.86466 0.772368i
\(893\) 507.496 1225.20i 0.568304 1.37201i
\(894\) −1014.89 + 1518.89i −1.13522 + 1.69898i
\(895\) 375.584 + 459.766i 0.419647 + 0.513705i
\(896\) 96.6379 + 144.629i 0.107855 + 0.161416i
\(897\) 457.345 457.345i 0.509861 0.509861i
\(898\) −139.132 + 699.462i −0.154935 + 0.778911i
\(899\) 97.5859 + 235.593i 0.108549 + 0.262061i
\(900\) −686.747 463.376i −0.763052 0.514862i
\(901\) −811.187 + 1072.65i −0.900318 + 1.19051i
\(902\) 490.718i 0.544033i
\(903\) −59.0580 142.579i −0.0654020 0.157894i
\(904\) 130.992 658.541i 0.144903 0.728475i
\(905\) −1115.17 341.038i −1.23223 0.376837i
\(906\) −2101.31 + 1404.05i −2.31932 + 1.54972i
\(907\) −779.172 + 154.987i −0.859065 + 0.170879i −0.604919 0.796287i \(-0.706794\pi\)
−0.254146 + 0.967166i \(0.581794\pi\)
\(908\) −529.344 + 792.219i −0.582978 + 0.872488i
\(909\) 66.3754 160.244i 0.0730202 0.176286i
\(910\) 306.263 29.4652i 0.336553 0.0323793i
\(911\) 461.042 689.998i 0.506084 0.757408i −0.487178 0.873303i \(-0.661974\pi\)
0.993261 + 0.115895i \(0.0369736\pi\)
\(912\) −72.8935 366.461i −0.0799271 0.401821i
\(913\) 130.160 86.9703i 0.142563 0.0952577i
\(914\) 700.879 + 700.879i 0.766826 + 0.766826i
\(915\) 110.364 33.2063i 0.120617 0.0362910i
\(916\) −443.308 1070.24i −0.483961 1.16839i
\(917\) −138.735 −0.151292
\(918\) −645.201 + 224.073i −0.702833 + 0.244088i
\(919\) 470.363 0.511821 0.255910 0.966700i \(-0.417625\pi\)
0.255910 + 0.966700i \(0.417625\pi\)
\(920\) 202.594 + 167.033i 0.220211 + 0.181558i
\(921\) 44.3641 223.033i 0.0481695 0.242164i
\(922\) −1537.24 1537.24i −1.66729 1.66729i
\(923\) −748.335 1119.96i −0.810764 1.21339i
\(924\) −22.7735 114.490i −0.0246466 0.123907i
\(925\) 685.040 + 1675.22i 0.740584 + 1.81105i
\(926\) −545.286 + 1316.44i −0.588862 + 1.42164i
\(927\) 211.436 510.451i 0.228086 0.550648i
\(928\) 311.108 + 207.876i 0.335246 + 0.224004i
\(929\) −934.799 + 185.943i −1.00624 + 0.200154i −0.670587 0.741831i \(-0.733958\pi\)
−0.335655 + 0.941985i \(0.608958\pi\)
\(930\) −764.041 + 1421.68i −0.821549 + 1.52869i
\(931\) −645.599 645.599i −0.693446 0.693446i
\(932\) −34.0001 + 170.930i −0.0364808 + 0.183402i
\(933\) 1623.86 672.623i 1.74047 0.720925i
\(934\) 266.879i 0.285738i
\(935\) 98.1246 + 411.975i 0.104946 + 0.440615i
\(936\) −618.891 −0.661208
\(937\) −187.442 452.524i −0.200044 0.482950i 0.791742 0.610856i \(-0.209174\pi\)
−0.991786 + 0.127906i \(0.959174\pi\)
\(938\) −118.749 23.6207i −0.126598 0.0251820i
\(939\) −693.814 + 693.814i −0.738886 + 0.738886i
\(940\) −964.751 + 1795.15i −1.02633 + 1.90973i
\(941\) 30.6525 + 154.100i 0.0325743 + 0.163762i 0.993649 0.112528i \(-0.0358948\pi\)
−0.961074 + 0.276290i \(0.910895\pi\)
\(942\) 1559.51 2333.97i 1.65553 2.47768i
\(943\) −261.003 108.111i −0.276780 0.114646i
\(944\) −453.254 187.744i −0.480142 0.198881i
\(945\) −66.5118 6.70273i −0.0703829 0.00709284i
\(946\) −591.924 + 117.741i −0.625713 + 0.124462i
\(947\) −985.208 + 658.295i −1.04035 + 0.695137i −0.953595 0.301093i \(-0.902649\pi\)
−0.0867515 + 0.996230i \(0.527649\pi\)
\(948\) −1782.22 + 1782.22i −1.87998 + 1.87998i
\(949\) −493.273 98.1181i −0.519782 0.103391i
\(950\) 298.456 1465.76i 0.314164 1.54291i
\(951\) 1136.59i 1.19515i
\(952\) −93.2107 45.1567i −0.0979104 0.0474335i
\(953\) 1593.67i 1.67227i 0.548526 + 0.836134i \(0.315189\pi\)
−0.548526 + 0.836134i \(0.684811\pi\)
\(954\) 1298.22 537.738i 1.36081 0.563667i
\(955\) −679.018 + 204.302i −0.711014 + 0.213929i
\(956\) 1721.11 1721.11i 1.80033 1.80033i
\(957\) −100.631 150.606i −0.105153 0.157373i
\(958\) −792.171 + 157.573i −0.826901 + 0.164481i
\(959\) 101.666 + 67.9312i 0.106013 + 0.0708355i
\(960\) 189.241 + 1966.98i 0.197126 + 2.04894i
\(961\) −221.579 91.7808i −0.230571 0.0955055i
\(962\) 3545.28 + 2368.88i 3.68532 + 2.46245i
\(963\) 52.5909 + 264.392i 0.0546115 + 0.274551i
\(964\) 441.146 + 660.222i 0.457620 + 0.684877i
\(965\) −304.511 93.1247i −0.315555 0.0965023i
\(966\) −110.924 22.0641i −0.114828 0.0228407i
\(967\) 609.471 252.451i 0.630270 0.261066i −0.0445979 0.999005i \(-0.514201\pi\)
0.674868 + 0.737939i \(0.264201\pi\)
\(968\) 560.836 0.579376
\(969\) 824.340 + 926.791i 0.850713 + 0.956440i
\(970\) 159.598 + 300.218i 0.164534 + 0.309503i
\(971\) 405.286 167.875i 0.417390 0.172889i −0.164097 0.986444i \(-0.552471\pi\)
0.581487 + 0.813556i \(0.302471\pi\)
\(972\) 1535.80 + 305.490i 1.58004 + 0.314290i
\(973\) −7.25264 7.25264i −0.00745390 0.00745390i
\(974\) 773.067 516.547i 0.793703 0.530336i
\(975\) 1655.71 + 694.606i 1.69816 + 0.712416i
\(976\) −25.6359 17.1294i −0.0262663 0.0175506i
\(977\) −189.595 78.5328i −0.194058 0.0803816i 0.283538 0.958961i \(-0.408492\pi\)
−0.477596 + 0.878579i \(0.658492\pi\)
\(978\) −505.507 + 1220.40i −0.516878 + 1.24785i
\(979\) 5.39892 8.08005i 0.00551473 0.00825337i
\(980\) 887.648 + 1086.60i 0.905763 + 1.10878i
\(981\) 303.617 + 454.395i 0.309497 + 0.463195i
\(982\) −1114.23 + 1114.23i −1.13465 + 1.13465i
\(983\) 114.447 575.365i 0.116426 0.585315i −0.877891 0.478860i \(-0.841050\pi\)
0.994318 0.106455i \(-0.0339499\pi\)
\(984\) 268.014 + 647.043i 0.272372 + 0.657564i
\(985\) 808.736 + 1521.30i 0.821051 + 1.54447i
\(986\) −505.960 29.6013i −0.513144 0.0300216i
\(987\) 278.347i 0.282013i
\(988\) −801.349 1934.63i −0.811081 1.95812i
\(989\) −67.7839 + 340.773i −0.0685378 + 0.344563i
\(990\) 129.408 423.154i 0.130715 0.427428i
\(991\) −230.345 + 153.912i −0.232437 + 0.155310i −0.666335 0.745652i \(-0.732138\pi\)
0.433898 + 0.900962i \(0.357138\pi\)
\(992\) 1037.83 206.437i 1.04620 0.208102i
\(993\) −855.167 + 1279.85i −0.861195 + 1.28887i
\(994\) −90.1341 + 217.603i −0.0906782 + 0.218917i
\(995\) 75.9521 + 789.450i 0.0763337 + 0.793417i
\(996\) −391.442 + 585.835i −0.393014 + 0.588188i
\(997\) −44.2058 222.237i −0.0443388 0.222906i 0.952263 0.305280i \(-0.0987500\pi\)
−0.996602 + 0.0823735i \(0.973750\pi\)
\(998\) 1315.94 879.281i 1.31857 0.881043i
\(999\) −655.069 655.069i −0.655725 0.655725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.3.p.a.14.14 yes 128
5.2 odd 4 425.3.u.f.201.3 128
5.3 odd 4 425.3.u.f.201.14 128
5.4 even 2 inner 85.3.p.a.14.3 128
17.11 odd 16 inner 85.3.p.a.79.3 yes 128
85.28 even 16 425.3.u.f.351.14 128
85.62 even 16 425.3.u.f.351.3 128
85.79 odd 16 inner 85.3.p.a.79.14 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.p.a.14.3 128 5.4 even 2 inner
85.3.p.a.14.14 yes 128 1.1 even 1 trivial
85.3.p.a.79.3 yes 128 17.11 odd 16 inner
85.3.p.a.79.14 yes 128 85.79 odd 16 inner
425.3.u.f.201.3 128 5.2 odd 4
425.3.u.f.201.14 128 5.3 odd 4
425.3.u.f.351.3 128 85.62 even 16
425.3.u.f.351.14 128 85.28 even 16