Properties

Label 850.2.a.q.1.2
Level $850$
Weight $2$
Character 850.1
Self dual yes
Analytic conductor $6.787$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(1,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.12489\) of defining polynomial
Character \(\chi\) \(=\) 850.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.484862 q^{3} +1.00000 q^{4} +0.484862 q^{6} +2.64002 q^{7} +1.00000 q^{8} -2.76491 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +0.484862 q^{3} +1.00000 q^{4} +0.484862 q^{6} +2.64002 q^{7} +1.00000 q^{8} -2.76491 q^{9} +2.00000 q^{11} +0.484862 q^{12} +0.484862 q^{13} +2.64002 q^{14} +1.00000 q^{16} +1.00000 q^{17} -2.76491 q^{18} +5.76491 q^{19} +1.28005 q^{21} +2.00000 q^{22} -1.35998 q^{23} +0.484862 q^{24} +0.484862 q^{26} -2.79518 q^{27} +2.64002 q^{28} +8.15516 q^{29} -2.09461 q^{31} +1.00000 q^{32} +0.969724 q^{33} +1.00000 q^{34} -2.76491 q^{36} -11.1396 q^{37} +5.76491 q^{38} +0.235091 q^{39} -0.249771 q^{41} +1.28005 q^{42} +1.03028 q^{43} +2.00000 q^{44} -1.35998 q^{46} +6.01468 q^{47} +0.484862 q^{48} -0.0302761 q^{49} +0.484862 q^{51} +0.484862 q^{52} -7.70436 q^{53} -2.79518 q^{54} +2.64002 q^{56} +2.79518 q^{57} +8.15516 q^{58} +8.73463 q^{59} -11.3747 q^{61} -2.09461 q^{62} -7.29942 q^{63} +1.00000 q^{64} +0.969724 q^{66} -4.96972 q^{67} +1.00000 q^{68} -0.659401 q^{69} +8.34438 q^{71} -2.76491 q^{72} +0.484862 q^{73} -11.1396 q^{74} +5.76491 q^{76} +5.28005 q^{77} +0.235091 q^{78} +9.85952 q^{79} +6.93945 q^{81} -0.249771 q^{82} -17.5298 q^{83} +1.28005 q^{84} +1.03028 q^{86} +3.95413 q^{87} +2.00000 q^{88} -8.73463 q^{89} +1.28005 q^{91} -1.35998 q^{92} -1.01560 q^{93} +6.01468 q^{94} +0.484862 q^{96} +6.73463 q^{97} -0.0302761 q^{98} -5.52982 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + q^{3} + 3 q^{4} + q^{6} + 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + q^{3} + 3 q^{4} + q^{6} + 3 q^{8} + 8 q^{9} + 6 q^{11} + q^{12} + q^{13} + 3 q^{16} + 3 q^{17} + 8 q^{18} + q^{19} - 12 q^{21} + 6 q^{22} - 12 q^{23} + q^{24} + q^{26} + 7 q^{27} + 17 q^{29} + 3 q^{31} + 3 q^{32} + 2 q^{33} + 3 q^{34} + 8 q^{36} + 8 q^{37} + q^{38} + 17 q^{39} + 16 q^{41} - 12 q^{42} + 4 q^{43} + 6 q^{44} - 12 q^{46} - 15 q^{47} + q^{48} - q^{49} + q^{51} + q^{52} - 5 q^{53} + 7 q^{54} - 7 q^{57} + 17 q^{58} + 9 q^{59} - 9 q^{61} + 3 q^{62} - 28 q^{63} + 3 q^{64} + 2 q^{66} - 14 q^{67} + 3 q^{68} - 16 q^{69} - q^{71} + 8 q^{72} + q^{73} + 8 q^{74} + q^{76} + 17 q^{78} + 4 q^{79} + 19 q^{81} + 16 q^{82} - 20 q^{83} - 12 q^{84} + 4 q^{86} - 23 q^{87} + 6 q^{88} - 9 q^{89} - 12 q^{91} - 12 q^{92} - 37 q^{93} - 15 q^{94} + q^{96} + 3 q^{97} - q^{98} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.484862 0.279935 0.139968 0.990156i \(-0.455300\pi\)
0.139968 + 0.990156i \(0.455300\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0.484862 0.197944
\(7\) 2.64002 0.997835 0.498918 0.866649i \(-0.333731\pi\)
0.498918 + 0.866649i \(0.333731\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.76491 −0.921636
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0.484862 0.139968
\(13\) 0.484862 0.134477 0.0672383 0.997737i \(-0.478581\pi\)
0.0672383 + 0.997737i \(0.478581\pi\)
\(14\) 2.64002 0.705576
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −2.76491 −0.651695
\(19\) 5.76491 1.32256 0.661280 0.750139i \(-0.270013\pi\)
0.661280 + 0.750139i \(0.270013\pi\)
\(20\) 0 0
\(21\) 1.28005 0.279329
\(22\) 2.00000 0.426401
\(23\) −1.35998 −0.283575 −0.141787 0.989897i \(-0.545285\pi\)
−0.141787 + 0.989897i \(0.545285\pi\)
\(24\) 0.484862 0.0989720
\(25\) 0 0
\(26\) 0.484862 0.0950893
\(27\) −2.79518 −0.537934
\(28\) 2.64002 0.498918
\(29\) 8.15516 1.51438 0.757188 0.653197i \(-0.226573\pi\)
0.757188 + 0.653197i \(0.226573\pi\)
\(30\) 0 0
\(31\) −2.09461 −0.376203 −0.188101 0.982150i \(-0.560233\pi\)
−0.188101 + 0.982150i \(0.560233\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.969724 0.168807
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) −2.76491 −0.460818
\(37\) −11.1396 −1.83133 −0.915667 0.401939i \(-0.868337\pi\)
−0.915667 + 0.401939i \(0.868337\pi\)
\(38\) 5.76491 0.935192
\(39\) 0.235091 0.0376447
\(40\) 0 0
\(41\) −0.249771 −0.0390077 −0.0195038 0.999810i \(-0.506209\pi\)
−0.0195038 + 0.999810i \(0.506209\pi\)
\(42\) 1.28005 0.197516
\(43\) 1.03028 0.157116 0.0785578 0.996910i \(-0.474968\pi\)
0.0785578 + 0.996910i \(0.474968\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) −1.35998 −0.200518
\(47\) 6.01468 0.877331 0.438666 0.898650i \(-0.355451\pi\)
0.438666 + 0.898650i \(0.355451\pi\)
\(48\) 0.484862 0.0699838
\(49\) −0.0302761 −0.00432516
\(50\) 0 0
\(51\) 0.484862 0.0678943
\(52\) 0.484862 0.0672383
\(53\) −7.70436 −1.05827 −0.529137 0.848536i \(-0.677484\pi\)
−0.529137 + 0.848536i \(0.677484\pi\)
\(54\) −2.79518 −0.380376
\(55\) 0 0
\(56\) 2.64002 0.352788
\(57\) 2.79518 0.370231
\(58\) 8.15516 1.07083
\(59\) 8.73463 1.13715 0.568576 0.822631i \(-0.307494\pi\)
0.568576 + 0.822631i \(0.307494\pi\)
\(60\) 0 0
\(61\) −11.3747 −1.45638 −0.728188 0.685378i \(-0.759637\pi\)
−0.728188 + 0.685378i \(0.759637\pi\)
\(62\) −2.09461 −0.266016
\(63\) −7.29942 −0.919641
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0.969724 0.119365
\(67\) −4.96972 −0.607148 −0.303574 0.952808i \(-0.598180\pi\)
−0.303574 + 0.952808i \(0.598180\pi\)
\(68\) 1.00000 0.121268
\(69\) −0.659401 −0.0793825
\(70\) 0 0
\(71\) 8.34438 0.990296 0.495148 0.868809i \(-0.335114\pi\)
0.495148 + 0.868809i \(0.335114\pi\)
\(72\) −2.76491 −0.325848
\(73\) 0.484862 0.0567488 0.0283744 0.999597i \(-0.490967\pi\)
0.0283744 + 0.999597i \(0.490967\pi\)
\(74\) −11.1396 −1.29495
\(75\) 0 0
\(76\) 5.76491 0.661280
\(77\) 5.28005 0.601717
\(78\) 0.235091 0.0266188
\(79\) 9.85952 1.10928 0.554641 0.832090i \(-0.312856\pi\)
0.554641 + 0.832090i \(0.312856\pi\)
\(80\) 0 0
\(81\) 6.93945 0.771050
\(82\) −0.249771 −0.0275826
\(83\) −17.5298 −1.92415 −0.962074 0.272790i \(-0.912054\pi\)
−0.962074 + 0.272790i \(0.912054\pi\)
\(84\) 1.28005 0.139665
\(85\) 0 0
\(86\) 1.03028 0.111098
\(87\) 3.95413 0.423927
\(88\) 2.00000 0.213201
\(89\) −8.73463 −0.925869 −0.462935 0.886392i \(-0.653204\pi\)
−0.462935 + 0.886392i \(0.653204\pi\)
\(90\) 0 0
\(91\) 1.28005 0.134185
\(92\) −1.35998 −0.141787
\(93\) −1.01560 −0.105312
\(94\) 6.01468 0.620367
\(95\) 0 0
\(96\) 0.484862 0.0494860
\(97\) 6.73463 0.683798 0.341899 0.939737i \(-0.388930\pi\)
0.341899 + 0.939737i \(0.388930\pi\)
\(98\) −0.0302761 −0.00305835
\(99\) −5.52982 −0.555768
\(100\) 0 0
\(101\) 13.5298 1.34627 0.673134 0.739521i \(-0.264948\pi\)
0.673134 + 0.739521i \(0.264948\pi\)
\(102\) 0.484862 0.0480085
\(103\) −11.2195 −1.10549 −0.552745 0.833351i \(-0.686420\pi\)
−0.552745 + 0.833351i \(0.686420\pi\)
\(104\) 0.484862 0.0475446
\(105\) 0 0
\(106\) −7.70436 −0.748313
\(107\) −19.4693 −1.88216 −0.941082 0.338177i \(-0.890190\pi\)
−0.941082 + 0.338177i \(0.890190\pi\)
\(108\) −2.79518 −0.268967
\(109\) −12.6547 −1.21210 −0.606050 0.795426i \(-0.707247\pi\)
−0.606050 + 0.795426i \(0.707247\pi\)
\(110\) 0 0
\(111\) −5.40115 −0.512655
\(112\) 2.64002 0.249459
\(113\) 7.51514 0.706965 0.353482 0.935441i \(-0.384997\pi\)
0.353482 + 0.935441i \(0.384997\pi\)
\(114\) 2.79518 0.261793
\(115\) 0 0
\(116\) 8.15516 0.757188
\(117\) −1.34060 −0.123938
\(118\) 8.73463 0.804088
\(119\) 2.64002 0.242011
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −11.3747 −1.02981
\(123\) −0.121104 −0.0109196
\(124\) −2.09461 −0.188101
\(125\) 0 0
\(126\) −7.29942 −0.650284
\(127\) −14.7952 −1.31286 −0.656430 0.754387i \(-0.727934\pi\)
−0.656430 + 0.754387i \(0.727934\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.499542 0.0439822
\(130\) 0 0
\(131\) −2.49954 −0.218386 −0.109193 0.994021i \(-0.534827\pi\)
−0.109193 + 0.994021i \(0.534827\pi\)
\(132\) 0.969724 0.0844036
\(133\) 15.2195 1.31970
\(134\) −4.96972 −0.429319
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 2.06055 0.176045 0.0880224 0.996118i \(-0.471945\pi\)
0.0880224 + 0.996118i \(0.471945\pi\)
\(138\) −0.659401 −0.0561319
\(139\) −15.5904 −1.32236 −0.661179 0.750228i \(-0.729944\pi\)
−0.661179 + 0.750228i \(0.729944\pi\)
\(140\) 0 0
\(141\) 2.91629 0.245596
\(142\) 8.34438 0.700245
\(143\) 0.969724 0.0810924
\(144\) −2.76491 −0.230409
\(145\) 0 0
\(146\) 0.484862 0.0401275
\(147\) −0.0146797 −0.00121076
\(148\) −11.1396 −0.915667
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −15.8401 −1.28905 −0.644526 0.764582i \(-0.722945\pi\)
−0.644526 + 0.764582i \(0.722945\pi\)
\(152\) 5.76491 0.467596
\(153\) −2.76491 −0.223530
\(154\) 5.28005 0.425478
\(155\) 0 0
\(156\) 0.235091 0.0188224
\(157\) 1.34060 0.106991 0.0534957 0.998568i \(-0.482964\pi\)
0.0534957 + 0.998568i \(0.482964\pi\)
\(158\) 9.85952 0.784381
\(159\) −3.73555 −0.296248
\(160\) 0 0
\(161\) −3.59037 −0.282961
\(162\) 6.93945 0.545215
\(163\) 16.2498 1.27278 0.636390 0.771367i \(-0.280427\pi\)
0.636390 + 0.771367i \(0.280427\pi\)
\(164\) −0.249771 −0.0195038
\(165\) 0 0
\(166\) −17.5298 −1.36058
\(167\) −2.95035 −0.228305 −0.114152 0.993463i \(-0.536415\pi\)
−0.114152 + 0.993463i \(0.536415\pi\)
\(168\) 1.28005 0.0987578
\(169\) −12.7649 −0.981916
\(170\) 0 0
\(171\) −15.9394 −1.21892
\(172\) 1.03028 0.0785578
\(173\) −6.14048 −0.466852 −0.233426 0.972375i \(-0.574994\pi\)
−0.233426 + 0.972375i \(0.574994\pi\)
\(174\) 3.95413 0.299762
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) 4.23509 0.318329
\(178\) −8.73463 −0.654688
\(179\) −15.5904 −1.16528 −0.582639 0.812731i \(-0.697980\pi\)
−0.582639 + 0.812731i \(0.697980\pi\)
\(180\) 0 0
\(181\) 4.10929 0.305441 0.152721 0.988269i \(-0.451197\pi\)
0.152721 + 0.988269i \(0.451197\pi\)
\(182\) 1.28005 0.0948834
\(183\) −5.51514 −0.407691
\(184\) −1.35998 −0.100259
\(185\) 0 0
\(186\) −1.01560 −0.0744671
\(187\) 2.00000 0.146254
\(188\) 6.01468 0.438666
\(189\) −7.37935 −0.536769
\(190\) 0 0
\(191\) 6.06055 0.438526 0.219263 0.975666i \(-0.429635\pi\)
0.219263 + 0.975666i \(0.429635\pi\)
\(192\) 0.484862 0.0349919
\(193\) 12.5601 0.904095 0.452048 0.891994i \(-0.350694\pi\)
0.452048 + 0.891994i \(0.350694\pi\)
\(194\) 6.73463 0.483518
\(195\) 0 0
\(196\) −0.0302761 −0.00216258
\(197\) 26.0487 1.85590 0.927948 0.372710i \(-0.121571\pi\)
0.927948 + 0.372710i \(0.121571\pi\)
\(198\) −5.52982 −0.392987
\(199\) 3.37466 0.239223 0.119612 0.992821i \(-0.461835\pi\)
0.119612 + 0.992821i \(0.461835\pi\)
\(200\) 0 0
\(201\) −2.40963 −0.169962
\(202\) 13.5298 0.951955
\(203\) 21.5298 1.51110
\(204\) 0.484862 0.0339471
\(205\) 0 0
\(206\) −11.2195 −0.781699
\(207\) 3.76021 0.261353
\(208\) 0.484862 0.0336191
\(209\) 11.5298 0.797534
\(210\) 0 0
\(211\) 18.0294 1.24119 0.620596 0.784130i \(-0.286891\pi\)
0.620596 + 0.784130i \(0.286891\pi\)
\(212\) −7.70436 −0.529137
\(213\) 4.04587 0.277219
\(214\) −19.4693 −1.33089
\(215\) 0 0
\(216\) −2.79518 −0.190188
\(217\) −5.52982 −0.375388
\(218\) −12.6547 −0.857085
\(219\) 0.235091 0.0158860
\(220\) 0 0
\(221\) 0.484862 0.0326153
\(222\) −5.40115 −0.362502
\(223\) −23.2947 −1.55993 −0.779965 0.625823i \(-0.784763\pi\)
−0.779965 + 0.625823i \(0.784763\pi\)
\(224\) 2.64002 0.176394
\(225\) 0 0
\(226\) 7.51514 0.499900
\(227\) −17.4839 −1.16045 −0.580225 0.814456i \(-0.697035\pi\)
−0.580225 + 0.814456i \(0.697035\pi\)
\(228\) 2.79518 0.185116
\(229\) 0.719953 0.0475758 0.0237879 0.999717i \(-0.492427\pi\)
0.0237879 + 0.999717i \(0.492427\pi\)
\(230\) 0 0
\(231\) 2.56009 0.168442
\(232\) 8.15516 0.535413
\(233\) −11.0450 −0.723579 −0.361790 0.932260i \(-0.617834\pi\)
−0.361790 + 0.932260i \(0.617834\pi\)
\(234\) −1.34060 −0.0876377
\(235\) 0 0
\(236\) 8.73463 0.568576
\(237\) 4.78051 0.310527
\(238\) 2.64002 0.171127
\(239\) −5.59037 −0.361611 −0.180805 0.983519i \(-0.557870\pi\)
−0.180805 + 0.983519i \(0.557870\pi\)
\(240\) 0 0
\(241\) −8.37088 −0.539215 −0.269608 0.962970i \(-0.586894\pi\)
−0.269608 + 0.962970i \(0.586894\pi\)
\(242\) −7.00000 −0.449977
\(243\) 11.7502 0.753778
\(244\) −11.3747 −0.728188
\(245\) 0 0
\(246\) −0.121104 −0.00772133
\(247\) 2.79518 0.177853
\(248\) −2.09461 −0.133008
\(249\) −8.49954 −0.538637
\(250\) 0 0
\(251\) 19.4693 1.22889 0.614445 0.788960i \(-0.289380\pi\)
0.614445 + 0.788960i \(0.289380\pi\)
\(252\) −7.29942 −0.459821
\(253\) −2.71995 −0.171002
\(254\) −14.7952 −0.928332
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.9394 0.869519 0.434759 0.900547i \(-0.356833\pi\)
0.434759 + 0.900547i \(0.356833\pi\)
\(258\) 0.499542 0.0311001
\(259\) −29.4087 −1.82737
\(260\) 0 0
\(261\) −22.5483 −1.39570
\(262\) −2.49954 −0.154422
\(263\) −16.2645 −1.00291 −0.501454 0.865184i \(-0.667202\pi\)
−0.501454 + 0.865184i \(0.667202\pi\)
\(264\) 0.969724 0.0596824
\(265\) 0 0
\(266\) 15.2195 0.933167
\(267\) −4.23509 −0.259183
\(268\) −4.96972 −0.303574
\(269\) 10.4049 0.634400 0.317200 0.948359i \(-0.397257\pi\)
0.317200 + 0.948359i \(0.397257\pi\)
\(270\) 0 0
\(271\) −24.0294 −1.45968 −0.729840 0.683618i \(-0.760405\pi\)
−0.729840 + 0.683618i \(0.760405\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0.620646 0.0375632
\(274\) 2.06055 0.124483
\(275\) 0 0
\(276\) −0.659401 −0.0396913
\(277\) 18.9503 1.13862 0.569308 0.822124i \(-0.307211\pi\)
0.569308 + 0.822124i \(0.307211\pi\)
\(278\) −15.5904 −0.935048
\(279\) 5.79140 0.346722
\(280\) 0 0
\(281\) 19.6438 1.17185 0.585926 0.810365i \(-0.300731\pi\)
0.585926 + 0.810365i \(0.300731\pi\)
\(282\) 2.91629 0.173663
\(283\) 25.7943 1.53331 0.766655 0.642059i \(-0.221920\pi\)
0.766655 + 0.642059i \(0.221920\pi\)
\(284\) 8.34438 0.495148
\(285\) 0 0
\(286\) 0.969724 0.0573410
\(287\) −0.659401 −0.0389232
\(288\) −2.76491 −0.162924
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 3.26537 0.191419
\(292\) 0.484862 0.0283744
\(293\) −22.9239 −1.33923 −0.669613 0.742710i \(-0.733540\pi\)
−0.669613 + 0.742710i \(0.733540\pi\)
\(294\) −0.0146797 −0.000856139 0
\(295\) 0 0
\(296\) −11.1396 −0.647474
\(297\) −5.59037 −0.324386
\(298\) 10.0000 0.579284
\(299\) −0.659401 −0.0381341
\(300\) 0 0
\(301\) 2.71995 0.156775
\(302\) −15.8401 −0.911498
\(303\) 6.56009 0.376868
\(304\) 5.76491 0.330640
\(305\) 0 0
\(306\) −2.76491 −0.158059
\(307\) −10.4702 −0.597565 −0.298782 0.954321i \(-0.596580\pi\)
−0.298782 + 0.954321i \(0.596580\pi\)
\(308\) 5.28005 0.300859
\(309\) −5.43991 −0.309465
\(310\) 0 0
\(311\) −9.73841 −0.552215 −0.276107 0.961127i \(-0.589045\pi\)
−0.276107 + 0.961127i \(0.589045\pi\)
\(312\) 0.235091 0.0133094
\(313\) 9.50046 0.536998 0.268499 0.963280i \(-0.413472\pi\)
0.268499 + 0.963280i \(0.413472\pi\)
\(314\) 1.34060 0.0756544
\(315\) 0 0
\(316\) 9.85952 0.554641
\(317\) 13.0790 0.734591 0.367295 0.930104i \(-0.380284\pi\)
0.367295 + 0.930104i \(0.380284\pi\)
\(318\) −3.73555 −0.209479
\(319\) 16.3103 0.913203
\(320\) 0 0
\(321\) −9.43991 −0.526884
\(322\) −3.59037 −0.200083
\(323\) 5.76491 0.320768
\(324\) 6.93945 0.385525
\(325\) 0 0
\(326\) 16.2498 0.899992
\(327\) −6.13578 −0.339310
\(328\) −0.249771 −0.0137913
\(329\) 15.8789 0.875432
\(330\) 0 0
\(331\) 24.8851 1.36781 0.683904 0.729572i \(-0.260281\pi\)
0.683904 + 0.729572i \(0.260281\pi\)
\(332\) −17.5298 −0.962074
\(333\) 30.7999 1.68782
\(334\) −2.95035 −0.161436
\(335\) 0 0
\(336\) 1.28005 0.0698323
\(337\) 27.5445 1.50044 0.750222 0.661186i \(-0.229947\pi\)
0.750222 + 0.661186i \(0.229947\pi\)
\(338\) −12.7649 −0.694320
\(339\) 3.64380 0.197904
\(340\) 0 0
\(341\) −4.18922 −0.226859
\(342\) −15.9394 −0.861907
\(343\) −18.5601 −1.00215
\(344\) 1.03028 0.0555488
\(345\) 0 0
\(346\) −6.14048 −0.330114
\(347\) 4.48486 0.240760 0.120380 0.992728i \(-0.461589\pi\)
0.120380 + 0.992728i \(0.461589\pi\)
\(348\) 3.95413 0.211963
\(349\) 34.2186 1.83168 0.915839 0.401545i \(-0.131527\pi\)
0.915839 + 0.401545i \(0.131527\pi\)
\(350\) 0 0
\(351\) −1.35528 −0.0723394
\(352\) 2.00000 0.106600
\(353\) −4.90917 −0.261289 −0.130644 0.991429i \(-0.541705\pi\)
−0.130644 + 0.991429i \(0.541705\pi\)
\(354\) 4.23509 0.225093
\(355\) 0 0
\(356\) −8.73463 −0.462935
\(357\) 1.28005 0.0677473
\(358\) −15.5904 −0.823977
\(359\) −13.7796 −0.727259 −0.363629 0.931544i \(-0.618463\pi\)
−0.363629 + 0.931544i \(0.618463\pi\)
\(360\) 0 0
\(361\) 14.2342 0.749167
\(362\) 4.10929 0.215979
\(363\) −3.39403 −0.178141
\(364\) 1.28005 0.0670927
\(365\) 0 0
\(366\) −5.51514 −0.288281
\(367\) −4.39025 −0.229169 −0.114585 0.993413i \(-0.536554\pi\)
−0.114585 + 0.993413i \(0.536554\pi\)
\(368\) −1.35998 −0.0708937
\(369\) 0.690594 0.0359509
\(370\) 0 0
\(371\) −20.3397 −1.05598
\(372\) −1.01560 −0.0526562
\(373\) 0.220411 0.0114125 0.00570623 0.999984i \(-0.498184\pi\)
0.00570623 + 0.999984i \(0.498184\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 6.01468 0.310183
\(377\) 3.95413 0.203648
\(378\) −7.37935 −0.379553
\(379\) 26.3103 1.35147 0.675735 0.737144i \(-0.263826\pi\)
0.675735 + 0.737144i \(0.263826\pi\)
\(380\) 0 0
\(381\) −7.17362 −0.367516
\(382\) 6.06055 0.310085
\(383\) 36.1433 1.84684 0.923419 0.383793i \(-0.125382\pi\)
0.923419 + 0.383793i \(0.125382\pi\)
\(384\) 0.484862 0.0247430
\(385\) 0 0
\(386\) 12.5601 0.639292
\(387\) −2.84862 −0.144803
\(388\) 6.73463 0.341899
\(389\) 3.77959 0.191633 0.0958164 0.995399i \(-0.469454\pi\)
0.0958164 + 0.995399i \(0.469454\pi\)
\(390\) 0 0
\(391\) −1.35998 −0.0687770
\(392\) −0.0302761 −0.00152917
\(393\) −1.21193 −0.0611339
\(394\) 26.0487 1.31232
\(395\) 0 0
\(396\) −5.52982 −0.277884
\(397\) −12.2304 −0.613826 −0.306913 0.951738i \(-0.599296\pi\)
−0.306913 + 0.951738i \(0.599296\pi\)
\(398\) 3.37466 0.169156
\(399\) 7.37935 0.369430
\(400\) 0 0
\(401\) −11.7796 −0.588245 −0.294122 0.955768i \(-0.595027\pi\)
−0.294122 + 0.955768i \(0.595027\pi\)
\(402\) −2.40963 −0.120181
\(403\) −1.01560 −0.0505905
\(404\) 13.5298 0.673134
\(405\) 0 0
\(406\) 21.5298 1.06851
\(407\) −22.2791 −1.10434
\(408\) 0.484862 0.0240042
\(409\) −15.7649 −0.779525 −0.389762 0.920916i \(-0.627443\pi\)
−0.389762 + 0.920916i \(0.627443\pi\)
\(410\) 0 0
\(411\) 0.999083 0.0492811
\(412\) −11.2195 −0.552745
\(413\) 23.0596 1.13469
\(414\) 3.76021 0.184804
\(415\) 0 0
\(416\) 0.484862 0.0237723
\(417\) −7.55918 −0.370175
\(418\) 11.5298 0.563942
\(419\) 18.1892 0.888601 0.444301 0.895878i \(-0.353452\pi\)
0.444301 + 0.895878i \(0.353452\pi\)
\(420\) 0 0
\(421\) 9.03028 0.440109 0.220054 0.975488i \(-0.429377\pi\)
0.220054 + 0.975488i \(0.429377\pi\)
\(422\) 18.0294 0.877655
\(423\) −16.6300 −0.808580
\(424\) −7.70436 −0.374157
\(425\) 0 0
\(426\) 4.04587 0.196023
\(427\) −30.0294 −1.45322
\(428\) −19.4693 −0.941082
\(429\) 0.470182 0.0227006
\(430\) 0 0
\(431\) 20.4196 0.983578 0.491789 0.870714i \(-0.336343\pi\)
0.491789 + 0.870714i \(0.336343\pi\)
\(432\) −2.79518 −0.134483
\(433\) −11.5904 −0.556998 −0.278499 0.960437i \(-0.589837\pi\)
−0.278499 + 0.960437i \(0.589837\pi\)
\(434\) −5.52982 −0.265440
\(435\) 0 0
\(436\) −12.6547 −0.606050
\(437\) −7.84014 −0.375045
\(438\) 0.235091 0.0112331
\(439\) −2.01938 −0.0963796 −0.0481898 0.998838i \(-0.515345\pi\)
−0.0481898 + 0.998838i \(0.515345\pi\)
\(440\) 0 0
\(441\) 0.0837106 0.00398622
\(442\) 0.484862 0.0230625
\(443\) 27.4087 1.30223 0.651114 0.758980i \(-0.274302\pi\)
0.651114 + 0.758980i \(0.274302\pi\)
\(444\) −5.40115 −0.256327
\(445\) 0 0
\(446\) −23.2947 −1.10304
\(447\) 4.84862 0.229332
\(448\) 2.64002 0.124729
\(449\) 29.7190 1.40253 0.701264 0.712902i \(-0.252619\pi\)
0.701264 + 0.712902i \(0.252619\pi\)
\(450\) 0 0
\(451\) −0.499542 −0.0235225
\(452\) 7.51514 0.353482
\(453\) −7.68028 −0.360851
\(454\) −17.4839 −0.820562
\(455\) 0 0
\(456\) 2.79518 0.130897
\(457\) −39.4693 −1.84629 −0.923147 0.384447i \(-0.874392\pi\)
−0.923147 + 0.384447i \(0.874392\pi\)
\(458\) 0.719953 0.0336412
\(459\) −2.79518 −0.130468
\(460\) 0 0
\(461\) 14.6888 0.684124 0.342062 0.939677i \(-0.388875\pi\)
0.342062 + 0.939677i \(0.388875\pi\)
\(462\) 2.56009 0.119106
\(463\) −35.1055 −1.63149 −0.815746 0.578411i \(-0.803673\pi\)
−0.815746 + 0.578411i \(0.803673\pi\)
\(464\) 8.15516 0.378594
\(465\) 0 0
\(466\) −11.0450 −0.511648
\(467\) 9.96881 0.461301 0.230651 0.973037i \(-0.425915\pi\)
0.230651 + 0.973037i \(0.425915\pi\)
\(468\) −1.34060 −0.0619692
\(469\) −13.1202 −0.605834
\(470\) 0 0
\(471\) 0.650006 0.0299507
\(472\) 8.73463 0.402044
\(473\) 2.06055 0.0947443
\(474\) 4.78051 0.219576
\(475\) 0 0
\(476\) 2.64002 0.121005
\(477\) 21.3018 0.975344
\(478\) −5.59037 −0.255698
\(479\) −2.28383 −0.104351 −0.0521754 0.998638i \(-0.516615\pi\)
−0.0521754 + 0.998638i \(0.516615\pi\)
\(480\) 0 0
\(481\) −5.40115 −0.246271
\(482\) −8.37088 −0.381283
\(483\) −1.74083 −0.0792107
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 11.7502 0.533001
\(487\) 10.8292 0.490720 0.245360 0.969432i \(-0.421094\pi\)
0.245360 + 0.969432i \(0.421094\pi\)
\(488\) −11.3747 −0.514906
\(489\) 7.87890 0.356296
\(490\) 0 0
\(491\) 24.7952 1.11899 0.559496 0.828833i \(-0.310995\pi\)
0.559496 + 0.828833i \(0.310995\pi\)
\(492\) −0.121104 −0.00545981
\(493\) 8.15516 0.367290
\(494\) 2.79518 0.125761
\(495\) 0 0
\(496\) −2.09461 −0.0940507
\(497\) 22.0294 0.988152
\(498\) −8.49954 −0.380874
\(499\) 5.15138 0.230607 0.115304 0.993330i \(-0.463216\pi\)
0.115304 + 0.993330i \(0.463216\pi\)
\(500\) 0 0
\(501\) −1.43051 −0.0639105
\(502\) 19.4693 0.868956
\(503\) 29.0109 1.29353 0.646766 0.762688i \(-0.276121\pi\)
0.646766 + 0.762688i \(0.276121\pi\)
\(504\) −7.29942 −0.325142
\(505\) 0 0
\(506\) −2.71995 −0.120917
\(507\) −6.18922 −0.274873
\(508\) −14.7952 −0.656430
\(509\) −27.4693 −1.21755 −0.608777 0.793341i \(-0.708340\pi\)
−0.608777 + 0.793341i \(0.708340\pi\)
\(510\) 0 0
\(511\) 1.28005 0.0566259
\(512\) 1.00000 0.0441942
\(513\) −16.1140 −0.711450
\(514\) 13.9394 0.614843
\(515\) 0 0
\(516\) 0.499542 0.0219911
\(517\) 12.0294 0.529051
\(518\) −29.4087 −1.29214
\(519\) −2.97729 −0.130688
\(520\) 0 0
\(521\) 5.68968 0.249269 0.124635 0.992203i \(-0.460224\pi\)
0.124635 + 0.992203i \(0.460224\pi\)
\(522\) −22.5483 −0.986911
\(523\) −7.52982 −0.329256 −0.164628 0.986356i \(-0.552642\pi\)
−0.164628 + 0.986356i \(0.552642\pi\)
\(524\) −2.49954 −0.109193
\(525\) 0 0
\(526\) −16.2645 −0.709164
\(527\) −2.09461 −0.0912426
\(528\) 0.969724 0.0422018
\(529\) −21.1505 −0.919585
\(530\) 0 0
\(531\) −24.1505 −1.04804
\(532\) 15.2195 0.659849
\(533\) −0.121104 −0.00524561
\(534\) −4.23509 −0.183270
\(535\) 0 0
\(536\) −4.96972 −0.214659
\(537\) −7.55918 −0.326203
\(538\) 10.4049 0.448588
\(539\) −0.0605522 −0.00260817
\(540\) 0 0
\(541\) 26.0100 1.11826 0.559128 0.829081i \(-0.311136\pi\)
0.559128 + 0.829081i \(0.311136\pi\)
\(542\) −24.0294 −1.03215
\(543\) 1.99244 0.0855037
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 0.620646 0.0265612
\(547\) 11.5833 0.495264 0.247632 0.968854i \(-0.420348\pi\)
0.247632 + 0.968854i \(0.420348\pi\)
\(548\) 2.06055 0.0880224
\(549\) 31.4499 1.34225
\(550\) 0 0
\(551\) 47.0138 2.00285
\(552\) −0.659401 −0.0280660
\(553\) 26.0294 1.10688
\(554\) 18.9503 0.805123
\(555\) 0 0
\(556\) −15.5904 −0.661179
\(557\) −5.95413 −0.252284 −0.126142 0.992012i \(-0.540260\pi\)
−0.126142 + 0.992012i \(0.540260\pi\)
\(558\) 5.79140 0.245170
\(559\) 0.499542 0.0211284
\(560\) 0 0
\(561\) 0.969724 0.0409418
\(562\) 19.6438 0.828624
\(563\) 34.5289 1.45522 0.727610 0.685991i \(-0.240631\pi\)
0.727610 + 0.685991i \(0.240631\pi\)
\(564\) 2.91629 0.122798
\(565\) 0 0
\(566\) 25.7943 1.08421
\(567\) 18.3203 0.769380
\(568\) 8.34438 0.350122
\(569\) 12.7952 0.536402 0.268201 0.963363i \(-0.413571\pi\)
0.268201 + 0.963363i \(0.413571\pi\)
\(570\) 0 0
\(571\) −4.22041 −0.176619 −0.0883094 0.996093i \(-0.528146\pi\)
−0.0883094 + 0.996093i \(0.528146\pi\)
\(572\) 0.969724 0.0405462
\(573\) 2.93853 0.122759
\(574\) −0.659401 −0.0275229
\(575\) 0 0
\(576\) −2.76491 −0.115205
\(577\) 35.5592 1.48035 0.740174 0.672415i \(-0.234743\pi\)
0.740174 + 0.672415i \(0.234743\pi\)
\(578\) 1.00000 0.0415945
\(579\) 6.08991 0.253088
\(580\) 0 0
\(581\) −46.2791 −1.91998
\(582\) 3.26537 0.135354
\(583\) −15.4087 −0.638164
\(584\) 0.484862 0.0200637
\(585\) 0 0
\(586\) −22.9239 −0.946976
\(587\) 43.6803 1.80288 0.901439 0.432906i \(-0.142512\pi\)
0.901439 + 0.432906i \(0.142512\pi\)
\(588\) −0.0146797 −0.000605382 0
\(589\) −12.0752 −0.497551
\(590\) 0 0
\(591\) 12.6300 0.519530
\(592\) −11.1396 −0.457833
\(593\) −20.1505 −0.827480 −0.413740 0.910395i \(-0.635778\pi\)
−0.413740 + 0.910395i \(0.635778\pi\)
\(594\) −5.59037 −0.229376
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 1.63624 0.0669669
\(598\) −0.659401 −0.0269649
\(599\) 33.4986 1.36872 0.684358 0.729146i \(-0.260082\pi\)
0.684358 + 0.729146i \(0.260082\pi\)
\(600\) 0 0
\(601\) 7.93945 0.323857 0.161928 0.986803i \(-0.448229\pi\)
0.161928 + 0.986803i \(0.448229\pi\)
\(602\) 2.71995 0.110857
\(603\) 13.7408 0.559570
\(604\) −15.8401 −0.644526
\(605\) 0 0
\(606\) 6.56009 0.266486
\(607\) −38.9797 −1.58214 −0.791069 0.611727i \(-0.790475\pi\)
−0.791069 + 0.611727i \(0.790475\pi\)
\(608\) 5.76491 0.233798
\(609\) 10.4390 0.423009
\(610\) 0 0
\(611\) 2.91629 0.117980
\(612\) −2.76491 −0.111765
\(613\) −28.5142 −1.15168 −0.575839 0.817563i \(-0.695325\pi\)
−0.575839 + 0.817563i \(0.695325\pi\)
\(614\) −10.4702 −0.422542
\(615\) 0 0
\(616\) 5.28005 0.212739
\(617\) 1.07615 0.0433241 0.0216621 0.999765i \(-0.493104\pi\)
0.0216621 + 0.999765i \(0.493104\pi\)
\(618\) −5.43991 −0.218825
\(619\) −0.719953 −0.0289374 −0.0144687 0.999895i \(-0.504606\pi\)
−0.0144687 + 0.999895i \(0.504606\pi\)
\(620\) 0 0
\(621\) 3.80139 0.152544
\(622\) −9.73841 −0.390475
\(623\) −23.0596 −0.923865
\(624\) 0.235091 0.00941118
\(625\) 0 0
\(626\) 9.50046 0.379715
\(627\) 5.59037 0.223258
\(628\) 1.34060 0.0534957
\(629\) −11.1396 −0.444164
\(630\) 0 0
\(631\) 3.81078 0.151705 0.0758524 0.997119i \(-0.475832\pi\)
0.0758524 + 0.997119i \(0.475832\pi\)
\(632\) 9.85952 0.392191
\(633\) 8.74175 0.347453
\(634\) 13.0790 0.519434
\(635\) 0 0
\(636\) −3.73555 −0.148124
\(637\) −0.0146797 −0.000581632 0
\(638\) 16.3103 0.645732
\(639\) −23.0715 −0.912692
\(640\) 0 0
\(641\) 35.7796 1.41321 0.706604 0.707609i \(-0.250226\pi\)
0.706604 + 0.707609i \(0.250226\pi\)
\(642\) −9.43991 −0.372563
\(643\) −11.3094 −0.445999 −0.223000 0.974819i \(-0.571585\pi\)
−0.223000 + 0.974819i \(0.571585\pi\)
\(644\) −3.59037 −0.141480
\(645\) 0 0
\(646\) 5.76491 0.226817
\(647\) −49.4528 −1.94419 −0.972094 0.234591i \(-0.924625\pi\)
−0.972094 + 0.234591i \(0.924625\pi\)
\(648\) 6.93945 0.272607
\(649\) 17.4693 0.685729
\(650\) 0 0
\(651\) −2.68120 −0.105084
\(652\) 16.2498 0.636390
\(653\) 46.1311 1.80525 0.902624 0.430429i \(-0.141638\pi\)
0.902624 + 0.430429i \(0.141638\pi\)
\(654\) −6.13578 −0.239928
\(655\) 0 0
\(656\) −0.249771 −0.00975191
\(657\) −1.34060 −0.0523018
\(658\) 15.8789 0.619024
\(659\) −23.6732 −0.922176 −0.461088 0.887355i \(-0.652541\pi\)
−0.461088 + 0.887355i \(0.652541\pi\)
\(660\) 0 0
\(661\) −32.1287 −1.24966 −0.624830 0.780761i \(-0.714832\pi\)
−0.624830 + 0.780761i \(0.714832\pi\)
\(662\) 24.8851 0.967187
\(663\) 0.235091 0.00913018
\(664\) −17.5298 −0.680289
\(665\) 0 0
\(666\) 30.7999 1.19347
\(667\) −11.0908 −0.429439
\(668\) −2.95035 −0.114152
\(669\) −11.2947 −0.436679
\(670\) 0 0
\(671\) −22.7493 −0.878227
\(672\) 1.28005 0.0493789
\(673\) 47.7631 1.84113 0.920566 0.390588i \(-0.127728\pi\)
0.920566 + 0.390588i \(0.127728\pi\)
\(674\) 27.5445 1.06097
\(675\) 0 0
\(676\) −12.7649 −0.490958
\(677\) −8.82168 −0.339045 −0.169522 0.985526i \(-0.554222\pi\)
−0.169522 + 0.985526i \(0.554222\pi\)
\(678\) 3.64380 0.139939
\(679\) 17.7796 0.682318
\(680\) 0 0
\(681\) −8.47730 −0.324851
\(682\) −4.18922 −0.160413
\(683\) −28.5142 −1.09107 −0.545533 0.838089i \(-0.683673\pi\)
−0.545533 + 0.838089i \(0.683673\pi\)
\(684\) −15.9394 −0.609460
\(685\) 0 0
\(686\) −18.5601 −0.708628
\(687\) 0.349078 0.0133182
\(688\) 1.03028 0.0392789
\(689\) −3.73555 −0.142313
\(690\) 0 0
\(691\) −50.4078 −1.91760 −0.958801 0.284077i \(-0.908313\pi\)
−0.958801 + 0.284077i \(0.908313\pi\)
\(692\) −6.14048 −0.233426
\(693\) −14.5988 −0.554564
\(694\) 4.48486 0.170243
\(695\) 0 0
\(696\) 3.95413 0.149881
\(697\) −0.249771 −0.00946075
\(698\) 34.2186 1.29519
\(699\) −5.35528 −0.202555
\(700\) 0 0
\(701\) 10.4702 0.395453 0.197727 0.980257i \(-0.436644\pi\)
0.197727 + 0.980257i \(0.436644\pi\)
\(702\) −1.35528 −0.0511517
\(703\) −64.2186 −2.42205
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) −4.90917 −0.184759
\(707\) 35.7190 1.34335
\(708\) 4.23509 0.159164
\(709\) −5.90539 −0.221782 −0.110891 0.993833i \(-0.535370\pi\)
−0.110891 + 0.993833i \(0.535370\pi\)
\(710\) 0 0
\(711\) −27.2607 −1.02235
\(712\) −8.73463 −0.327344
\(713\) 2.84862 0.106682
\(714\) 1.28005 0.0479046
\(715\) 0 0
\(716\) −15.5904 −0.582639
\(717\) −2.71056 −0.101228
\(718\) −13.7796 −0.514250
\(719\) −43.8354 −1.63479 −0.817393 0.576080i \(-0.804582\pi\)
−0.817393 + 0.576080i \(0.804582\pi\)
\(720\) 0 0
\(721\) −29.6197 −1.10310
\(722\) 14.2342 0.529741
\(723\) −4.05872 −0.150945
\(724\) 4.10929 0.152721
\(725\) 0 0
\(726\) −3.39403 −0.125964
\(727\) −6.60597 −0.245002 −0.122501 0.992468i \(-0.539091\pi\)
−0.122501 + 0.992468i \(0.539091\pi\)
\(728\) 1.28005 0.0474417
\(729\) −15.1211 −0.560041
\(730\) 0 0
\(731\) 1.03028 0.0381061
\(732\) −5.51514 −0.203845
\(733\) 44.6188 1.64803 0.824017 0.566565i \(-0.191728\pi\)
0.824017 + 0.566565i \(0.191728\pi\)
\(734\) −4.39025 −0.162047
\(735\) 0 0
\(736\) −1.35998 −0.0501294
\(737\) −9.93945 −0.366124
\(738\) 0.690594 0.0254211
\(739\) 34.4149 1.26597 0.632987 0.774163i \(-0.281829\pi\)
0.632987 + 0.774163i \(0.281829\pi\)
\(740\) 0 0
\(741\) 1.35528 0.0497874
\(742\) −20.3397 −0.746693
\(743\) −28.0412 −1.02873 −0.514365 0.857571i \(-0.671973\pi\)
−0.514365 + 0.857571i \(0.671973\pi\)
\(744\) −1.01560 −0.0372336
\(745\) 0 0
\(746\) 0.220411 0.00806983
\(747\) 48.4683 1.77336
\(748\) 2.00000 0.0731272
\(749\) −51.3993 −1.87809
\(750\) 0 0
\(751\) −47.4040 −1.72980 −0.864899 0.501947i \(-0.832617\pi\)
−0.864899 + 0.501947i \(0.832617\pi\)
\(752\) 6.01468 0.219333
\(753\) 9.43991 0.344009
\(754\) 3.95413 0.144001
\(755\) 0 0
\(756\) −7.37935 −0.268385
\(757\) −35.9759 −1.30757 −0.653784 0.756682i \(-0.726819\pi\)
−0.653784 + 0.756682i \(0.726819\pi\)
\(758\) 26.3103 0.955634
\(759\) −1.31880 −0.0478695
\(760\) 0 0
\(761\) 13.1807 0.477801 0.238901 0.971044i \(-0.423213\pi\)
0.238901 + 0.971044i \(0.423213\pi\)
\(762\) −7.17362 −0.259873
\(763\) −33.4087 −1.20948
\(764\) 6.06055 0.219263
\(765\) 0 0
\(766\) 36.1433 1.30591
\(767\) 4.23509 0.152920
\(768\) 0.484862 0.0174959
\(769\) −6.11399 −0.220476 −0.110238 0.993905i \(-0.535161\pi\)
−0.110238 + 0.993905i \(0.535161\pi\)
\(770\) 0 0
\(771\) 6.75871 0.243409
\(772\) 12.5601 0.452048
\(773\) −44.5601 −1.60272 −0.801358 0.598186i \(-0.795889\pi\)
−0.801358 + 0.598186i \(0.795889\pi\)
\(774\) −2.84862 −0.102392
\(775\) 0 0
\(776\) 6.73463 0.241759
\(777\) −14.2592 −0.511545
\(778\) 3.77959 0.135505
\(779\) −1.43991 −0.0515900
\(780\) 0 0
\(781\) 16.6888 0.597171
\(782\) −1.35998 −0.0486327
\(783\) −22.7952 −0.814633
\(784\) −0.0302761 −0.00108129
\(785\) 0 0
\(786\) −1.21193 −0.0432282
\(787\) 26.3856 0.940543 0.470272 0.882522i \(-0.344156\pi\)
0.470272 + 0.882522i \(0.344156\pi\)
\(788\) 26.0487 0.927948
\(789\) −7.88601 −0.280750
\(790\) 0 0
\(791\) 19.8401 0.705434
\(792\) −5.52982 −0.196494
\(793\) −5.51514 −0.195848
\(794\) −12.2304 −0.434040
\(795\) 0 0
\(796\) 3.37466 0.119612
\(797\) −12.4390 −0.440612 −0.220306 0.975431i \(-0.570706\pi\)
−0.220306 + 0.975431i \(0.570706\pi\)
\(798\) 7.37935 0.261226
\(799\) 6.01468 0.212784
\(800\) 0 0
\(801\) 24.1505 0.853315
\(802\) −11.7796 −0.415952
\(803\) 0.969724 0.0342208
\(804\) −2.40963 −0.0849811
\(805\) 0 0
\(806\) −1.01560 −0.0357729
\(807\) 5.04496 0.177591
\(808\) 13.5298 0.475977
\(809\) 5.96125 0.209586 0.104793 0.994494i \(-0.466582\pi\)
0.104793 + 0.994494i \(0.466582\pi\)
\(810\) 0 0
\(811\) −27.8089 −0.976504 −0.488252 0.872703i \(-0.662365\pi\)
−0.488252 + 0.872703i \(0.662365\pi\)
\(812\) 21.5298 0.755548
\(813\) −11.6509 −0.408616
\(814\) −22.2791 −0.780883
\(815\) 0 0
\(816\) 0.484862 0.0169736
\(817\) 5.93945 0.207795
\(818\) −15.7649 −0.551207
\(819\) −3.53921 −0.123670
\(820\) 0 0
\(821\) −9.05677 −0.316083 −0.158042 0.987432i \(-0.550518\pi\)
−0.158042 + 0.987432i \(0.550518\pi\)
\(822\) 0.999083 0.0348470
\(823\) 6.54828 0.228259 0.114129 0.993466i \(-0.463592\pi\)
0.114129 + 0.993466i \(0.463592\pi\)
\(824\) −11.2195 −0.390850
\(825\) 0 0
\(826\) 23.0596 0.802347
\(827\) −15.7115 −0.546341 −0.273171 0.961966i \(-0.588072\pi\)
−0.273171 + 0.961966i \(0.588072\pi\)
\(828\) 3.76021 0.130676
\(829\) −1.87890 −0.0652567 −0.0326284 0.999468i \(-0.510388\pi\)
−0.0326284 + 0.999468i \(0.510388\pi\)
\(830\) 0 0
\(831\) 9.18830 0.318739
\(832\) 0.484862 0.0168096
\(833\) −0.0302761 −0.00104900
\(834\) −7.55918 −0.261753
\(835\) 0 0
\(836\) 11.5298 0.398767
\(837\) 5.85482 0.202372
\(838\) 18.1892 0.628336
\(839\) −48.6841 −1.68076 −0.840380 0.541997i \(-0.817668\pi\)
−0.840380 + 0.541997i \(0.817668\pi\)
\(840\) 0 0
\(841\) 37.5067 1.29333
\(842\) 9.03028 0.311204
\(843\) 9.52453 0.328042
\(844\) 18.0294 0.620596
\(845\) 0 0
\(846\) −16.6300 −0.571753
\(847\) −18.4802 −0.634986
\(848\) −7.70436 −0.264569
\(849\) 12.5067 0.429227
\(850\) 0 0
\(851\) 15.1495 0.519320
\(852\) 4.04587 0.138609
\(853\) −35.9494 −1.23089 −0.615443 0.788182i \(-0.711023\pi\)
−0.615443 + 0.788182i \(0.711023\pi\)
\(854\) −30.0294 −1.02758
\(855\) 0 0
\(856\) −19.4693 −0.665446
\(857\) 13.4158 0.458276 0.229138 0.973394i \(-0.426409\pi\)
0.229138 + 0.973394i \(0.426409\pi\)
\(858\) 0.470182 0.0160518
\(859\) −23.8860 −0.814980 −0.407490 0.913210i \(-0.633596\pi\)
−0.407490 + 0.913210i \(0.633596\pi\)
\(860\) 0 0
\(861\) −0.319718 −0.0108960
\(862\) 20.4196 0.695495
\(863\) 15.5979 0.530960 0.265480 0.964116i \(-0.414470\pi\)
0.265480 + 0.964116i \(0.414470\pi\)
\(864\) −2.79518 −0.0950941
\(865\) 0 0
\(866\) −11.5904 −0.393857
\(867\) 0.484862 0.0164668
\(868\) −5.52982 −0.187694
\(869\) 19.7190 0.668922
\(870\) 0 0
\(871\) −2.40963 −0.0816472
\(872\) −12.6547 −0.428542
\(873\) −18.6206 −0.630213
\(874\) −7.84014 −0.265197
\(875\) 0 0
\(876\) 0.235091 0.00794299
\(877\) −33.3893 −1.12748 −0.563739 0.825953i \(-0.690638\pi\)
−0.563739 + 0.825953i \(0.690638\pi\)
\(878\) −2.01938 −0.0681507
\(879\) −11.1149 −0.374896
\(880\) 0 0
\(881\) −35.1202 −1.18323 −0.591615 0.806221i \(-0.701509\pi\)
−0.591615 + 0.806221i \(0.701509\pi\)
\(882\) 0.0837106 0.00281868
\(883\) 22.2110 0.747460 0.373730 0.927537i \(-0.378079\pi\)
0.373730 + 0.927537i \(0.378079\pi\)
\(884\) 0.484862 0.0163077
\(885\) 0 0
\(886\) 27.4087 0.920814
\(887\) 5.17076 0.173617 0.0868085 0.996225i \(-0.472333\pi\)
0.0868085 + 0.996225i \(0.472333\pi\)
\(888\) −5.40115 −0.181251
\(889\) −39.0596 −1.31002
\(890\) 0 0
\(891\) 13.8789 0.464960
\(892\) −23.2947 −0.779965
\(893\) 34.6741 1.16032
\(894\) 4.84862 0.162162
\(895\) 0 0
\(896\) 2.64002 0.0881970
\(897\) −0.319718 −0.0106751
\(898\) 29.7190 0.991737
\(899\) −17.0819 −0.569713
\(900\) 0 0
\(901\) −7.70436 −0.256669
\(902\) −0.499542 −0.0166329
\(903\) 1.31880 0.0438870
\(904\) 7.51514 0.249950
\(905\) 0 0
\(906\) −7.68028 −0.255160
\(907\) 3.85482 0.127997 0.0639986 0.997950i \(-0.479615\pi\)
0.0639986 + 0.997950i \(0.479615\pi\)
\(908\) −17.4839 −0.580225
\(909\) −37.4087 −1.24077
\(910\) 0 0
\(911\) −22.6400 −0.750097 −0.375049 0.927005i \(-0.622374\pi\)
−0.375049 + 0.927005i \(0.622374\pi\)
\(912\) 2.79518 0.0925578
\(913\) −35.0596 −1.16030
\(914\) −39.4693 −1.30553
\(915\) 0 0
\(916\) 0.719953 0.0237879
\(917\) −6.59885 −0.217913
\(918\) −2.79518 −0.0922549
\(919\) 31.5298 1.04007 0.520036 0.854144i \(-0.325918\pi\)
0.520036 + 0.854144i \(0.325918\pi\)
\(920\) 0 0
\(921\) −5.07659 −0.167279
\(922\) 14.6888 0.483749
\(923\) 4.04587 0.133172
\(924\) 2.56009 0.0842209
\(925\) 0 0
\(926\) −35.1055 −1.15364
\(927\) 31.0209 1.01886
\(928\) 8.15516 0.267706
\(929\) −11.1589 −0.366113 −0.183057 0.983102i \(-0.558599\pi\)
−0.183057 + 0.983102i \(0.558599\pi\)
\(930\) 0 0
\(931\) −0.174539 −0.00572028
\(932\) −11.0450 −0.361790
\(933\) −4.72179 −0.154584
\(934\) 9.96881 0.326189
\(935\) 0 0
\(936\) −1.34060 −0.0438189
\(937\) −24.5307 −0.801384 −0.400692 0.916213i \(-0.631230\pi\)
−0.400692 + 0.916213i \(0.631230\pi\)
\(938\) −13.1202 −0.428389
\(939\) 4.60641 0.150325
\(940\) 0 0
\(941\) 35.3747 1.15318 0.576590 0.817033i \(-0.304383\pi\)
0.576590 + 0.817033i \(0.304383\pi\)
\(942\) 0.650006 0.0211783
\(943\) 0.339682 0.0110616
\(944\) 8.73463 0.284288
\(945\) 0 0
\(946\) 2.06055 0.0669943
\(947\) 2.23509 0.0726307 0.0363154 0.999340i \(-0.488438\pi\)
0.0363154 + 0.999340i \(0.488438\pi\)
\(948\) 4.78051 0.155264
\(949\) 0.235091 0.00763138
\(950\) 0 0
\(951\) 6.34152 0.205638
\(952\) 2.64002 0.0855637
\(953\) −5.65092 −0.183051 −0.0915257 0.995803i \(-0.529174\pi\)
−0.0915257 + 0.995803i \(0.529174\pi\)
\(954\) 21.3018 0.689673
\(955\) 0 0
\(956\) −5.59037 −0.180805
\(957\) 7.90826 0.255638
\(958\) −2.28383 −0.0737871
\(959\) 5.43991 0.175664
\(960\) 0 0
\(961\) −26.6126 −0.858471
\(962\) −5.40115 −0.174140
\(963\) 53.8307 1.73467
\(964\) −8.37088 −0.269608
\(965\) 0 0
\(966\) −1.74083 −0.0560104
\(967\) −40.9991 −1.31844 −0.659221 0.751949i \(-0.729114\pi\)
−0.659221 + 0.751949i \(0.729114\pi\)
\(968\) −7.00000 −0.224989
\(969\) 2.79518 0.0897943
\(970\) 0 0
\(971\) −45.3846 −1.45646 −0.728231 0.685332i \(-0.759657\pi\)
−0.728231 + 0.685332i \(0.759657\pi\)
\(972\) 11.7502 0.376889
\(973\) −41.1589 −1.31950
\(974\) 10.8292 0.346991
\(975\) 0 0
\(976\) −11.3747 −0.364094
\(977\) 4.72752 0.151247 0.0756233 0.997136i \(-0.475905\pi\)
0.0756233 + 0.997136i \(0.475905\pi\)
\(978\) 7.87890 0.251939
\(979\) −17.4693 −0.558320
\(980\) 0 0
\(981\) 34.9891 1.11712
\(982\) 24.7952 0.791246
\(983\) −14.3297 −0.457046 −0.228523 0.973538i \(-0.573390\pi\)
−0.228523 + 0.973538i \(0.573390\pi\)
\(984\) −0.121104 −0.00386067
\(985\) 0 0
\(986\) 8.15516 0.259713
\(987\) 7.69907 0.245064
\(988\) 2.79518 0.0889267
\(989\) −1.40115 −0.0445540
\(990\) 0 0
\(991\) 16.8827 0.536296 0.268148 0.963378i \(-0.413588\pi\)
0.268148 + 0.963378i \(0.413588\pi\)
\(992\) −2.09461 −0.0665039
\(993\) 12.0658 0.382898
\(994\) 22.0294 0.698729
\(995\) 0 0
\(996\) −8.49954 −0.269318
\(997\) −18.5189 −0.586500 −0.293250 0.956036i \(-0.594737\pi\)
−0.293250 + 0.956036i \(0.594737\pi\)
\(998\) 5.15138 0.163064
\(999\) 31.1371 0.985136
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.a.q.1.2 3
3.2 odd 2 7650.2.a.dj.1.3 3
4.3 odd 2 6800.2.a.bk.1.2 3
5.2 odd 4 170.2.c.b.69.5 yes 6
5.3 odd 4 170.2.c.b.69.2 6
5.4 even 2 850.2.a.p.1.2 3
15.2 even 4 1530.2.d.g.919.1 6
15.8 even 4 1530.2.d.g.919.4 6
15.14 odd 2 7650.2.a.do.1.1 3
20.3 even 4 1360.2.e.c.1089.3 6
20.7 even 4 1360.2.e.c.1089.4 6
20.19 odd 2 6800.2.a.bp.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.c.b.69.2 6 5.3 odd 4
170.2.c.b.69.5 yes 6 5.2 odd 4
850.2.a.p.1.2 3 5.4 even 2
850.2.a.q.1.2 3 1.1 even 1 trivial
1360.2.e.c.1089.3 6 20.3 even 4
1360.2.e.c.1089.4 6 20.7 even 4
1530.2.d.g.919.1 6 15.2 even 4
1530.2.d.g.919.4 6 15.8 even 4
6800.2.a.bk.1.2 3 4.3 odd 2
6800.2.a.bp.1.2 3 20.19 odd 2
7650.2.a.dj.1.3 3 3.2 odd 2
7650.2.a.do.1.1 3 15.14 odd 2