Properties

Label 850.2.a.q.1.2
Level 850850
Weight 22
Character 850.1
Self dual yes
Analytic conductor 6.7876.787
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(1,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 850=25217 850 = 2 \cdot 5^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.787284171816.78728417181
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x26x2 x^{3} - x^{2} - 6x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 170)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 3.124893.12489 of defining polynomial
Character χ\chi == 850.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+0.484862q3+1.00000q4+0.484862q6+2.64002q7+1.00000q82.76491q9+2.00000q11+0.484862q12+0.484862q13+2.64002q14+1.00000q16+1.00000q172.76491q18+5.76491q19+1.28005q21+2.00000q221.35998q23+0.484862q24+0.484862q262.79518q27+2.64002q28+8.15516q292.09461q31+1.00000q32+0.969724q33+1.00000q342.76491q3611.1396q37+5.76491q38+0.235091q390.249771q41+1.28005q42+1.03028q43+2.00000q441.35998q46+6.01468q47+0.484862q480.0302761q49+0.484862q51+0.484862q527.70436q532.79518q54+2.64002q56+2.79518q57+8.15516q58+8.73463q5911.3747q612.09461q627.29942q63+1.00000q64+0.969724q664.96972q67+1.00000q680.659401q69+8.34438q712.76491q72+0.484862q7311.1396q74+5.76491q76+5.28005q77+0.235091q78+9.85952q79+6.93945q810.249771q8217.5298q83+1.28005q84+1.03028q86+3.95413q87+2.00000q888.73463q89+1.28005q911.35998q921.01560q93+6.01468q94+0.484862q96+6.73463q970.0302761q985.52982q99+O(q100)q+1.00000 q^{2} +0.484862 q^{3} +1.00000 q^{4} +0.484862 q^{6} +2.64002 q^{7} +1.00000 q^{8} -2.76491 q^{9} +2.00000 q^{11} +0.484862 q^{12} +0.484862 q^{13} +2.64002 q^{14} +1.00000 q^{16} +1.00000 q^{17} -2.76491 q^{18} +5.76491 q^{19} +1.28005 q^{21} +2.00000 q^{22} -1.35998 q^{23} +0.484862 q^{24} +0.484862 q^{26} -2.79518 q^{27} +2.64002 q^{28} +8.15516 q^{29} -2.09461 q^{31} +1.00000 q^{32} +0.969724 q^{33} +1.00000 q^{34} -2.76491 q^{36} -11.1396 q^{37} +5.76491 q^{38} +0.235091 q^{39} -0.249771 q^{41} +1.28005 q^{42} +1.03028 q^{43} +2.00000 q^{44} -1.35998 q^{46} +6.01468 q^{47} +0.484862 q^{48} -0.0302761 q^{49} +0.484862 q^{51} +0.484862 q^{52} -7.70436 q^{53} -2.79518 q^{54} +2.64002 q^{56} +2.79518 q^{57} +8.15516 q^{58} +8.73463 q^{59} -11.3747 q^{61} -2.09461 q^{62} -7.29942 q^{63} +1.00000 q^{64} +0.969724 q^{66} -4.96972 q^{67} +1.00000 q^{68} -0.659401 q^{69} +8.34438 q^{71} -2.76491 q^{72} +0.484862 q^{73} -11.1396 q^{74} +5.76491 q^{76} +5.28005 q^{77} +0.235091 q^{78} +9.85952 q^{79} +6.93945 q^{81} -0.249771 q^{82} -17.5298 q^{83} +1.28005 q^{84} +1.03028 q^{86} +3.95413 q^{87} +2.00000 q^{88} -8.73463 q^{89} +1.28005 q^{91} -1.35998 q^{92} -1.01560 q^{93} +6.01468 q^{94} +0.484862 q^{96} +6.73463 q^{97} -0.0302761 q^{98} -5.52982 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q2+q3+3q4+q6+3q8+8q9+6q11+q12+q13+3q16+3q17+8q18+q1912q21+6q2212q23+q24+q26+7q27++16q99+O(q100) 3 q + 3 q^{2} + q^{3} + 3 q^{4} + q^{6} + 3 q^{8} + 8 q^{9} + 6 q^{11} + q^{12} + q^{13} + 3 q^{16} + 3 q^{17} + 8 q^{18} + q^{19} - 12 q^{21} + 6 q^{22} - 12 q^{23} + q^{24} + q^{26} + 7 q^{27}+ \cdots + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 0.484862 0.279935 0.139968 0.990156i 0.455300π-0.455300\pi
0.139968 + 0.990156i 0.455300π0.455300\pi
44 1.00000 0.500000
55 0 0
66 0.484862 0.197944
77 2.64002 0.997835 0.498918 0.866649i 0.333731π-0.333731\pi
0.498918 + 0.866649i 0.333731π0.333731\pi
88 1.00000 0.353553
99 −2.76491 −0.921636
1010 0 0
1111 2.00000 0.603023 0.301511 0.953463i 0.402509π-0.402509\pi
0.301511 + 0.953463i 0.402509π0.402509\pi
1212 0.484862 0.139968
1313 0.484862 0.134477 0.0672383 0.997737i 0.478581π-0.478581\pi
0.0672383 + 0.997737i 0.478581π0.478581\pi
1414 2.64002 0.705576
1515 0 0
1616 1.00000 0.250000
1717 1.00000 0.242536
1818 −2.76491 −0.651695
1919 5.76491 1.32256 0.661280 0.750139i 0.270013π-0.270013\pi
0.661280 + 0.750139i 0.270013π0.270013\pi
2020 0 0
2121 1.28005 0.279329
2222 2.00000 0.426401
2323 −1.35998 −0.283575 −0.141787 0.989897i 0.545285π-0.545285\pi
−0.141787 + 0.989897i 0.545285π0.545285\pi
2424 0.484862 0.0989720
2525 0 0
2626 0.484862 0.0950893
2727 −2.79518 −0.537934
2828 2.64002 0.498918
2929 8.15516 1.51438 0.757188 0.653197i 0.226573π-0.226573\pi
0.757188 + 0.653197i 0.226573π0.226573\pi
3030 0 0
3131 −2.09461 −0.376203 −0.188101 0.982150i 0.560233π-0.560233\pi
−0.188101 + 0.982150i 0.560233π0.560233\pi
3232 1.00000 0.176777
3333 0.969724 0.168807
3434 1.00000 0.171499
3535 0 0
3636 −2.76491 −0.460818
3737 −11.1396 −1.83133 −0.915667 0.401939i 0.868337π-0.868337\pi
−0.915667 + 0.401939i 0.868337π0.868337\pi
3838 5.76491 0.935192
3939 0.235091 0.0376447
4040 0 0
4141 −0.249771 −0.0390077 −0.0195038 0.999810i 0.506209π-0.506209\pi
−0.0195038 + 0.999810i 0.506209π0.506209\pi
4242 1.28005 0.197516
4343 1.03028 0.157116 0.0785578 0.996910i 0.474968π-0.474968\pi
0.0785578 + 0.996910i 0.474968π0.474968\pi
4444 2.00000 0.301511
4545 0 0
4646 −1.35998 −0.200518
4747 6.01468 0.877331 0.438666 0.898650i 0.355451π-0.355451\pi
0.438666 + 0.898650i 0.355451π0.355451\pi
4848 0.484862 0.0699838
4949 −0.0302761 −0.00432516
5050 0 0
5151 0.484862 0.0678943
5252 0.484862 0.0672383
5353 −7.70436 −1.05827 −0.529137 0.848536i 0.677484π-0.677484\pi
−0.529137 + 0.848536i 0.677484π0.677484\pi
5454 −2.79518 −0.380376
5555 0 0
5656 2.64002 0.352788
5757 2.79518 0.370231
5858 8.15516 1.07083
5959 8.73463 1.13715 0.568576 0.822631i 0.307494π-0.307494\pi
0.568576 + 0.822631i 0.307494π0.307494\pi
6060 0 0
6161 −11.3747 −1.45638 −0.728188 0.685378i 0.759637π-0.759637\pi
−0.728188 + 0.685378i 0.759637π0.759637\pi
6262 −2.09461 −0.266016
6363 −7.29942 −0.919641
6464 1.00000 0.125000
6565 0 0
6666 0.969724 0.119365
6767 −4.96972 −0.607148 −0.303574 0.952808i 0.598180π-0.598180\pi
−0.303574 + 0.952808i 0.598180π0.598180\pi
6868 1.00000 0.121268
6969 −0.659401 −0.0793825
7070 0 0
7171 8.34438 0.990296 0.495148 0.868809i 0.335114π-0.335114\pi
0.495148 + 0.868809i 0.335114π0.335114\pi
7272 −2.76491 −0.325848
7373 0.484862 0.0567488 0.0283744 0.999597i 0.490967π-0.490967\pi
0.0283744 + 0.999597i 0.490967π0.490967\pi
7474 −11.1396 −1.29495
7575 0 0
7676 5.76491 0.661280
7777 5.28005 0.601717
7878 0.235091 0.0266188
7979 9.85952 1.10928 0.554641 0.832090i 0.312856π-0.312856\pi
0.554641 + 0.832090i 0.312856π0.312856\pi
8080 0 0
8181 6.93945 0.771050
8282 −0.249771 −0.0275826
8383 −17.5298 −1.92415 −0.962074 0.272790i 0.912054π-0.912054\pi
−0.962074 + 0.272790i 0.912054π0.912054\pi
8484 1.28005 0.139665
8585 0 0
8686 1.03028 0.111098
8787 3.95413 0.423927
8888 2.00000 0.213201
8989 −8.73463 −0.925869 −0.462935 0.886392i 0.653204π-0.653204\pi
−0.462935 + 0.886392i 0.653204π0.653204\pi
9090 0 0
9191 1.28005 0.134185
9292 −1.35998 −0.141787
9393 −1.01560 −0.105312
9494 6.01468 0.620367
9595 0 0
9696 0.484862 0.0494860
9797 6.73463 0.683798 0.341899 0.939737i 0.388930π-0.388930\pi
0.341899 + 0.939737i 0.388930π0.388930\pi
9898 −0.0302761 −0.00305835
9999 −5.52982 −0.555768
100100 0 0
101101 13.5298 1.34627 0.673134 0.739521i 0.264948π-0.264948\pi
0.673134 + 0.739521i 0.264948π0.264948\pi
102102 0.484862 0.0480085
103103 −11.2195 −1.10549 −0.552745 0.833351i 0.686420π-0.686420\pi
−0.552745 + 0.833351i 0.686420π0.686420\pi
104104 0.484862 0.0475446
105105 0 0
106106 −7.70436 −0.748313
107107 −19.4693 −1.88216 −0.941082 0.338177i 0.890190π-0.890190\pi
−0.941082 + 0.338177i 0.890190π0.890190\pi
108108 −2.79518 −0.268967
109109 −12.6547 −1.21210 −0.606050 0.795426i 0.707247π-0.707247\pi
−0.606050 + 0.795426i 0.707247π0.707247\pi
110110 0 0
111111 −5.40115 −0.512655
112112 2.64002 0.249459
113113 7.51514 0.706965 0.353482 0.935441i 0.384997π-0.384997\pi
0.353482 + 0.935441i 0.384997π0.384997\pi
114114 2.79518 0.261793
115115 0 0
116116 8.15516 0.757188
117117 −1.34060 −0.123938
118118 8.73463 0.804088
119119 2.64002 0.242011
120120 0 0
121121 −7.00000 −0.636364
122122 −11.3747 −1.02981
123123 −0.121104 −0.0109196
124124 −2.09461 −0.188101
125125 0 0
126126 −7.29942 −0.650284
127127 −14.7952 −1.31286 −0.656430 0.754387i 0.727934π-0.727934\pi
−0.656430 + 0.754387i 0.727934π0.727934\pi
128128 1.00000 0.0883883
129129 0.499542 0.0439822
130130 0 0
131131 −2.49954 −0.218386 −0.109193 0.994021i 0.534827π-0.534827\pi
−0.109193 + 0.994021i 0.534827π0.534827\pi
132132 0.969724 0.0844036
133133 15.2195 1.31970
134134 −4.96972 −0.429319
135135 0 0
136136 1.00000 0.0857493
137137 2.06055 0.176045 0.0880224 0.996118i 0.471945π-0.471945\pi
0.0880224 + 0.996118i 0.471945π0.471945\pi
138138 −0.659401 −0.0561319
139139 −15.5904 −1.32236 −0.661179 0.750228i 0.729944π-0.729944\pi
−0.661179 + 0.750228i 0.729944π0.729944\pi
140140 0 0
141141 2.91629 0.245596
142142 8.34438 0.700245
143143 0.969724 0.0810924
144144 −2.76491 −0.230409
145145 0 0
146146 0.484862 0.0401275
147147 −0.0146797 −0.00121076
148148 −11.1396 −0.915667
149149 10.0000 0.819232 0.409616 0.912258i 0.365663π-0.365663\pi
0.409616 + 0.912258i 0.365663π0.365663\pi
150150 0 0
151151 −15.8401 −1.28905 −0.644526 0.764582i 0.722945π-0.722945\pi
−0.644526 + 0.764582i 0.722945π0.722945\pi
152152 5.76491 0.467596
153153 −2.76491 −0.223530
154154 5.28005 0.425478
155155 0 0
156156 0.235091 0.0188224
157157 1.34060 0.106991 0.0534957 0.998568i 0.482964π-0.482964\pi
0.0534957 + 0.998568i 0.482964π0.482964\pi
158158 9.85952 0.784381
159159 −3.73555 −0.296248
160160 0 0
161161 −3.59037 −0.282961
162162 6.93945 0.545215
163163 16.2498 1.27278 0.636390 0.771367i 0.280427π-0.280427\pi
0.636390 + 0.771367i 0.280427π0.280427\pi
164164 −0.249771 −0.0195038
165165 0 0
166166 −17.5298 −1.36058
167167 −2.95035 −0.228305 −0.114152 0.993463i 0.536415π-0.536415\pi
−0.114152 + 0.993463i 0.536415π0.536415\pi
168168 1.28005 0.0987578
169169 −12.7649 −0.981916
170170 0 0
171171 −15.9394 −1.21892
172172 1.03028 0.0785578
173173 −6.14048 −0.466852 −0.233426 0.972375i 0.574994π-0.574994\pi
−0.233426 + 0.972375i 0.574994π0.574994\pi
174174 3.95413 0.299762
175175 0 0
176176 2.00000 0.150756
177177 4.23509 0.318329
178178 −8.73463 −0.654688
179179 −15.5904 −1.16528 −0.582639 0.812731i 0.697980π-0.697980\pi
−0.582639 + 0.812731i 0.697980π0.697980\pi
180180 0 0
181181 4.10929 0.305441 0.152721 0.988269i 0.451197π-0.451197\pi
0.152721 + 0.988269i 0.451197π0.451197\pi
182182 1.28005 0.0948834
183183 −5.51514 −0.407691
184184 −1.35998 −0.100259
185185 0 0
186186 −1.01560 −0.0744671
187187 2.00000 0.146254
188188 6.01468 0.438666
189189 −7.37935 −0.536769
190190 0 0
191191 6.06055 0.438526 0.219263 0.975666i 0.429635π-0.429635\pi
0.219263 + 0.975666i 0.429635π0.429635\pi
192192 0.484862 0.0349919
193193 12.5601 0.904095 0.452048 0.891994i 0.350694π-0.350694\pi
0.452048 + 0.891994i 0.350694π0.350694\pi
194194 6.73463 0.483518
195195 0 0
196196 −0.0302761 −0.00216258
197197 26.0487 1.85590 0.927948 0.372710i 0.121571π-0.121571\pi
0.927948 + 0.372710i 0.121571π0.121571\pi
198198 −5.52982 −0.392987
199199 3.37466 0.239223 0.119612 0.992821i 0.461835π-0.461835\pi
0.119612 + 0.992821i 0.461835π0.461835\pi
200200 0 0
201201 −2.40963 −0.169962
202202 13.5298 0.951955
203203 21.5298 1.51110
204204 0.484862 0.0339471
205205 0 0
206206 −11.2195 −0.781699
207207 3.76021 0.261353
208208 0.484862 0.0336191
209209 11.5298 0.797534
210210 0 0
211211 18.0294 1.24119 0.620596 0.784130i 0.286891π-0.286891\pi
0.620596 + 0.784130i 0.286891π0.286891\pi
212212 −7.70436 −0.529137
213213 4.04587 0.277219
214214 −19.4693 −1.33089
215215 0 0
216216 −2.79518 −0.190188
217217 −5.52982 −0.375388
218218 −12.6547 −0.857085
219219 0.235091 0.0158860
220220 0 0
221221 0.484862 0.0326153
222222 −5.40115 −0.362502
223223 −23.2947 −1.55993 −0.779965 0.625823i 0.784763π-0.784763\pi
−0.779965 + 0.625823i 0.784763π0.784763\pi
224224 2.64002 0.176394
225225 0 0
226226 7.51514 0.499900
227227 −17.4839 −1.16045 −0.580225 0.814456i 0.697035π-0.697035\pi
−0.580225 + 0.814456i 0.697035π0.697035\pi
228228 2.79518 0.185116
229229 0.719953 0.0475758 0.0237879 0.999717i 0.492427π-0.492427\pi
0.0237879 + 0.999717i 0.492427π0.492427\pi
230230 0 0
231231 2.56009 0.168442
232232 8.15516 0.535413
233233 −11.0450 −0.723579 −0.361790 0.932260i 0.617834π-0.617834\pi
−0.361790 + 0.932260i 0.617834π0.617834\pi
234234 −1.34060 −0.0876377
235235 0 0
236236 8.73463 0.568576
237237 4.78051 0.310527
238238 2.64002 0.171127
239239 −5.59037 −0.361611 −0.180805 0.983519i 0.557870π-0.557870\pi
−0.180805 + 0.983519i 0.557870π0.557870\pi
240240 0 0
241241 −8.37088 −0.539215 −0.269608 0.962970i 0.586894π-0.586894\pi
−0.269608 + 0.962970i 0.586894π0.586894\pi
242242 −7.00000 −0.449977
243243 11.7502 0.753778
244244 −11.3747 −0.728188
245245 0 0
246246 −0.121104 −0.00772133
247247 2.79518 0.177853
248248 −2.09461 −0.133008
249249 −8.49954 −0.538637
250250 0 0
251251 19.4693 1.22889 0.614445 0.788960i 0.289380π-0.289380\pi
0.614445 + 0.788960i 0.289380π0.289380\pi
252252 −7.29942 −0.459821
253253 −2.71995 −0.171002
254254 −14.7952 −0.928332
255255 0 0
256256 1.00000 0.0625000
257257 13.9394 0.869519 0.434759 0.900547i 0.356833π-0.356833\pi
0.434759 + 0.900547i 0.356833π0.356833\pi
258258 0.499542 0.0311001
259259 −29.4087 −1.82737
260260 0 0
261261 −22.5483 −1.39570
262262 −2.49954 −0.154422
263263 −16.2645 −1.00291 −0.501454 0.865184i 0.667202π-0.667202\pi
−0.501454 + 0.865184i 0.667202π0.667202\pi
264264 0.969724 0.0596824
265265 0 0
266266 15.2195 0.933167
267267 −4.23509 −0.259183
268268 −4.96972 −0.303574
269269 10.4049 0.634400 0.317200 0.948359i 0.397257π-0.397257\pi
0.317200 + 0.948359i 0.397257π0.397257\pi
270270 0 0
271271 −24.0294 −1.45968 −0.729840 0.683618i 0.760405π-0.760405\pi
−0.729840 + 0.683618i 0.760405π0.760405\pi
272272 1.00000 0.0606339
273273 0.620646 0.0375632
274274 2.06055 0.124483
275275 0 0
276276 −0.659401 −0.0396913
277277 18.9503 1.13862 0.569308 0.822124i 0.307211π-0.307211\pi
0.569308 + 0.822124i 0.307211π0.307211\pi
278278 −15.5904 −0.935048
279279 5.79140 0.346722
280280 0 0
281281 19.6438 1.17185 0.585926 0.810365i 0.300731π-0.300731\pi
0.585926 + 0.810365i 0.300731π0.300731\pi
282282 2.91629 0.173663
283283 25.7943 1.53331 0.766655 0.642059i 0.221920π-0.221920\pi
0.766655 + 0.642059i 0.221920π0.221920\pi
284284 8.34438 0.495148
285285 0 0
286286 0.969724 0.0573410
287287 −0.659401 −0.0389232
288288 −2.76491 −0.162924
289289 1.00000 0.0588235
290290 0 0
291291 3.26537 0.191419
292292 0.484862 0.0283744
293293 −22.9239 −1.33923 −0.669613 0.742710i 0.733540π-0.733540\pi
−0.669613 + 0.742710i 0.733540π0.733540\pi
294294 −0.0146797 −0.000856139 0
295295 0 0
296296 −11.1396 −0.647474
297297 −5.59037 −0.324386
298298 10.0000 0.579284
299299 −0.659401 −0.0381341
300300 0 0
301301 2.71995 0.156775
302302 −15.8401 −0.911498
303303 6.56009 0.376868
304304 5.76491 0.330640
305305 0 0
306306 −2.76491 −0.158059
307307 −10.4702 −0.597565 −0.298782 0.954321i 0.596580π-0.596580\pi
−0.298782 + 0.954321i 0.596580π0.596580\pi
308308 5.28005 0.300859
309309 −5.43991 −0.309465
310310 0 0
311311 −9.73841 −0.552215 −0.276107 0.961127i 0.589045π-0.589045\pi
−0.276107 + 0.961127i 0.589045π0.589045\pi
312312 0.235091 0.0133094
313313 9.50046 0.536998 0.268499 0.963280i 0.413472π-0.413472\pi
0.268499 + 0.963280i 0.413472π0.413472\pi
314314 1.34060 0.0756544
315315 0 0
316316 9.85952 0.554641
317317 13.0790 0.734591 0.367295 0.930104i 0.380284π-0.380284\pi
0.367295 + 0.930104i 0.380284π0.380284\pi
318318 −3.73555 −0.209479
319319 16.3103 0.913203
320320 0 0
321321 −9.43991 −0.526884
322322 −3.59037 −0.200083
323323 5.76491 0.320768
324324 6.93945 0.385525
325325 0 0
326326 16.2498 0.899992
327327 −6.13578 −0.339310
328328 −0.249771 −0.0137913
329329 15.8789 0.875432
330330 0 0
331331 24.8851 1.36781 0.683904 0.729572i 0.260281π-0.260281\pi
0.683904 + 0.729572i 0.260281π0.260281\pi
332332 −17.5298 −0.962074
333333 30.7999 1.68782
334334 −2.95035 −0.161436
335335 0 0
336336 1.28005 0.0698323
337337 27.5445 1.50044 0.750222 0.661186i 0.229947π-0.229947\pi
0.750222 + 0.661186i 0.229947π0.229947\pi
338338 −12.7649 −0.694320
339339 3.64380 0.197904
340340 0 0
341341 −4.18922 −0.226859
342342 −15.9394 −0.861907
343343 −18.5601 −1.00215
344344 1.03028 0.0555488
345345 0 0
346346 −6.14048 −0.330114
347347 4.48486 0.240760 0.120380 0.992728i 0.461589π-0.461589\pi
0.120380 + 0.992728i 0.461589π0.461589\pi
348348 3.95413 0.211963
349349 34.2186 1.83168 0.915839 0.401545i 0.131527π-0.131527\pi
0.915839 + 0.401545i 0.131527π0.131527\pi
350350 0 0
351351 −1.35528 −0.0723394
352352 2.00000 0.106600
353353 −4.90917 −0.261289 −0.130644 0.991429i 0.541705π-0.541705\pi
−0.130644 + 0.991429i 0.541705π0.541705\pi
354354 4.23509 0.225093
355355 0 0
356356 −8.73463 −0.462935
357357 1.28005 0.0677473
358358 −15.5904 −0.823977
359359 −13.7796 −0.727259 −0.363629 0.931544i 0.618463π-0.618463\pi
−0.363629 + 0.931544i 0.618463π0.618463\pi
360360 0 0
361361 14.2342 0.749167
362362 4.10929 0.215979
363363 −3.39403 −0.178141
364364 1.28005 0.0670927
365365 0 0
366366 −5.51514 −0.288281
367367 −4.39025 −0.229169 −0.114585 0.993413i 0.536554π-0.536554\pi
−0.114585 + 0.993413i 0.536554π0.536554\pi
368368 −1.35998 −0.0708937
369369 0.690594 0.0359509
370370 0 0
371371 −20.3397 −1.05598
372372 −1.01560 −0.0526562
373373 0.220411 0.0114125 0.00570623 0.999984i 0.498184π-0.498184\pi
0.00570623 + 0.999984i 0.498184π0.498184\pi
374374 2.00000 0.103418
375375 0 0
376376 6.01468 0.310183
377377 3.95413 0.203648
378378 −7.37935 −0.379553
379379 26.3103 1.35147 0.675735 0.737144i 0.263826π-0.263826\pi
0.675735 + 0.737144i 0.263826π0.263826\pi
380380 0 0
381381 −7.17362 −0.367516
382382 6.06055 0.310085
383383 36.1433 1.84684 0.923419 0.383793i 0.125382π-0.125382\pi
0.923419 + 0.383793i 0.125382π0.125382\pi
384384 0.484862 0.0247430
385385 0 0
386386 12.5601 0.639292
387387 −2.84862 −0.144803
388388 6.73463 0.341899
389389 3.77959 0.191633 0.0958164 0.995399i 0.469454π-0.469454\pi
0.0958164 + 0.995399i 0.469454π0.469454\pi
390390 0 0
391391 −1.35998 −0.0687770
392392 −0.0302761 −0.00152917
393393 −1.21193 −0.0611339
394394 26.0487 1.31232
395395 0 0
396396 −5.52982 −0.277884
397397 −12.2304 −0.613826 −0.306913 0.951738i 0.599296π-0.599296\pi
−0.306913 + 0.951738i 0.599296π0.599296\pi
398398 3.37466 0.169156
399399 7.37935 0.369430
400400 0 0
401401 −11.7796 −0.588245 −0.294122 0.955768i 0.595027π-0.595027\pi
−0.294122 + 0.955768i 0.595027π0.595027\pi
402402 −2.40963 −0.120181
403403 −1.01560 −0.0505905
404404 13.5298 0.673134
405405 0 0
406406 21.5298 1.06851
407407 −22.2791 −1.10434
408408 0.484862 0.0240042
409409 −15.7649 −0.779525 −0.389762 0.920916i 0.627443π-0.627443\pi
−0.389762 + 0.920916i 0.627443π0.627443\pi
410410 0 0
411411 0.999083 0.0492811
412412 −11.2195 −0.552745
413413 23.0596 1.13469
414414 3.76021 0.184804
415415 0 0
416416 0.484862 0.0237723
417417 −7.55918 −0.370175
418418 11.5298 0.563942
419419 18.1892 0.888601 0.444301 0.895878i 0.353452π-0.353452\pi
0.444301 + 0.895878i 0.353452π0.353452\pi
420420 0 0
421421 9.03028 0.440109 0.220054 0.975488i 0.429377π-0.429377\pi
0.220054 + 0.975488i 0.429377π0.429377\pi
422422 18.0294 0.877655
423423 −16.6300 −0.808580
424424 −7.70436 −0.374157
425425 0 0
426426 4.04587 0.196023
427427 −30.0294 −1.45322
428428 −19.4693 −0.941082
429429 0.470182 0.0227006
430430 0 0
431431 20.4196 0.983578 0.491789 0.870714i 0.336343π-0.336343\pi
0.491789 + 0.870714i 0.336343π0.336343\pi
432432 −2.79518 −0.134483
433433 −11.5904 −0.556998 −0.278499 0.960437i 0.589837π-0.589837\pi
−0.278499 + 0.960437i 0.589837π0.589837\pi
434434 −5.52982 −0.265440
435435 0 0
436436 −12.6547 −0.606050
437437 −7.84014 −0.375045
438438 0.235091 0.0112331
439439 −2.01938 −0.0963796 −0.0481898 0.998838i 0.515345π-0.515345\pi
−0.0481898 + 0.998838i 0.515345π0.515345\pi
440440 0 0
441441 0.0837106 0.00398622
442442 0.484862 0.0230625
443443 27.4087 1.30223 0.651114 0.758980i 0.274302π-0.274302\pi
0.651114 + 0.758980i 0.274302π0.274302\pi
444444 −5.40115 −0.256327
445445 0 0
446446 −23.2947 −1.10304
447447 4.84862 0.229332
448448 2.64002 0.124729
449449 29.7190 1.40253 0.701264 0.712902i 0.252619π-0.252619\pi
0.701264 + 0.712902i 0.252619π0.252619\pi
450450 0 0
451451 −0.499542 −0.0235225
452452 7.51514 0.353482
453453 −7.68028 −0.360851
454454 −17.4839 −0.820562
455455 0 0
456456 2.79518 0.130897
457457 −39.4693 −1.84629 −0.923147 0.384447i 0.874392π-0.874392\pi
−0.923147 + 0.384447i 0.874392π0.874392\pi
458458 0.719953 0.0336412
459459 −2.79518 −0.130468
460460 0 0
461461 14.6888 0.684124 0.342062 0.939677i 0.388875π-0.388875\pi
0.342062 + 0.939677i 0.388875π0.388875\pi
462462 2.56009 0.119106
463463 −35.1055 −1.63149 −0.815746 0.578411i 0.803673π-0.803673\pi
−0.815746 + 0.578411i 0.803673π0.803673\pi
464464 8.15516 0.378594
465465 0 0
466466 −11.0450 −0.511648
467467 9.96881 0.461301 0.230651 0.973037i 0.425915π-0.425915\pi
0.230651 + 0.973037i 0.425915π0.425915\pi
468468 −1.34060 −0.0619692
469469 −13.1202 −0.605834
470470 0 0
471471 0.650006 0.0299507
472472 8.73463 0.402044
473473 2.06055 0.0947443
474474 4.78051 0.219576
475475 0 0
476476 2.64002 0.121005
477477 21.3018 0.975344
478478 −5.59037 −0.255698
479479 −2.28383 −0.104351 −0.0521754 0.998638i 0.516615π-0.516615\pi
−0.0521754 + 0.998638i 0.516615π0.516615\pi
480480 0 0
481481 −5.40115 −0.246271
482482 −8.37088 −0.381283
483483 −1.74083 −0.0792107
484484 −7.00000 −0.318182
485485 0 0
486486 11.7502 0.533001
487487 10.8292 0.490720 0.245360 0.969432i 0.421094π-0.421094\pi
0.245360 + 0.969432i 0.421094π0.421094\pi
488488 −11.3747 −0.514906
489489 7.87890 0.356296
490490 0 0
491491 24.7952 1.11899 0.559496 0.828833i 0.310995π-0.310995\pi
0.559496 + 0.828833i 0.310995π0.310995\pi
492492 −0.121104 −0.00545981
493493 8.15516 0.367290
494494 2.79518 0.125761
495495 0 0
496496 −2.09461 −0.0940507
497497 22.0294 0.988152
498498 −8.49954 −0.380874
499499 5.15138 0.230607 0.115304 0.993330i 0.463216π-0.463216\pi
0.115304 + 0.993330i 0.463216π0.463216\pi
500500 0 0
501501 −1.43051 −0.0639105
502502 19.4693 0.868956
503503 29.0109 1.29353 0.646766 0.762688i 0.276121π-0.276121\pi
0.646766 + 0.762688i 0.276121π0.276121\pi
504504 −7.29942 −0.325142
505505 0 0
506506 −2.71995 −0.120917
507507 −6.18922 −0.274873
508508 −14.7952 −0.656430
509509 −27.4693 −1.21755 −0.608777 0.793341i 0.708340π-0.708340\pi
−0.608777 + 0.793341i 0.708340π0.708340\pi
510510 0 0
511511 1.28005 0.0566259
512512 1.00000 0.0441942
513513 −16.1140 −0.711450
514514 13.9394 0.614843
515515 0 0
516516 0.499542 0.0219911
517517 12.0294 0.529051
518518 −29.4087 −1.29214
519519 −2.97729 −0.130688
520520 0 0
521521 5.68968 0.249269 0.124635 0.992203i 0.460224π-0.460224\pi
0.124635 + 0.992203i 0.460224π0.460224\pi
522522 −22.5483 −0.986911
523523 −7.52982 −0.329256 −0.164628 0.986356i 0.552642π-0.552642\pi
−0.164628 + 0.986356i 0.552642π0.552642\pi
524524 −2.49954 −0.109193
525525 0 0
526526 −16.2645 −0.709164
527527 −2.09461 −0.0912426
528528 0.969724 0.0422018
529529 −21.1505 −0.919585
530530 0 0
531531 −24.1505 −1.04804
532532 15.2195 0.659849
533533 −0.121104 −0.00524561
534534 −4.23509 −0.183270
535535 0 0
536536 −4.96972 −0.214659
537537 −7.55918 −0.326203
538538 10.4049 0.448588
539539 −0.0605522 −0.00260817
540540 0 0
541541 26.0100 1.11826 0.559128 0.829081i 0.311136π-0.311136\pi
0.559128 + 0.829081i 0.311136π0.311136\pi
542542 −24.0294 −1.03215
543543 1.99244 0.0855037
544544 1.00000 0.0428746
545545 0 0
546546 0.620646 0.0265612
547547 11.5833 0.495264 0.247632 0.968854i 0.420348π-0.420348\pi
0.247632 + 0.968854i 0.420348π0.420348\pi
548548 2.06055 0.0880224
549549 31.4499 1.34225
550550 0 0
551551 47.0138 2.00285
552552 −0.659401 −0.0280660
553553 26.0294 1.10688
554554 18.9503 0.805123
555555 0 0
556556 −15.5904 −0.661179
557557 −5.95413 −0.252284 −0.126142 0.992012i 0.540260π-0.540260\pi
−0.126142 + 0.992012i 0.540260π0.540260\pi
558558 5.79140 0.245170
559559 0.499542 0.0211284
560560 0 0
561561 0.969724 0.0409418
562562 19.6438 0.828624
563563 34.5289 1.45522 0.727610 0.685991i 0.240631π-0.240631\pi
0.727610 + 0.685991i 0.240631π0.240631\pi
564564 2.91629 0.122798
565565 0 0
566566 25.7943 1.08421
567567 18.3203 0.769380
568568 8.34438 0.350122
569569 12.7952 0.536402 0.268201 0.963363i 0.413571π-0.413571\pi
0.268201 + 0.963363i 0.413571π0.413571\pi
570570 0 0
571571 −4.22041 −0.176619 −0.0883094 0.996093i 0.528146π-0.528146\pi
−0.0883094 + 0.996093i 0.528146π0.528146\pi
572572 0.969724 0.0405462
573573 2.93853 0.122759
574574 −0.659401 −0.0275229
575575 0 0
576576 −2.76491 −0.115205
577577 35.5592 1.48035 0.740174 0.672415i 0.234743π-0.234743\pi
0.740174 + 0.672415i 0.234743π0.234743\pi
578578 1.00000 0.0415945
579579 6.08991 0.253088
580580 0 0
581581 −46.2791 −1.91998
582582 3.26537 0.135354
583583 −15.4087 −0.638164
584584 0.484862 0.0200637
585585 0 0
586586 −22.9239 −0.946976
587587 43.6803 1.80288 0.901439 0.432906i 0.142512π-0.142512\pi
0.901439 + 0.432906i 0.142512π0.142512\pi
588588 −0.0146797 −0.000605382 0
589589 −12.0752 −0.497551
590590 0 0
591591 12.6300 0.519530
592592 −11.1396 −0.457833
593593 −20.1505 −0.827480 −0.413740 0.910395i 0.635778π-0.635778\pi
−0.413740 + 0.910395i 0.635778π0.635778\pi
594594 −5.59037 −0.229376
595595 0 0
596596 10.0000 0.409616
597597 1.63624 0.0669669
598598 −0.659401 −0.0269649
599599 33.4986 1.36872 0.684358 0.729146i 0.260082π-0.260082\pi
0.684358 + 0.729146i 0.260082π0.260082\pi
600600 0 0
601601 7.93945 0.323857 0.161928 0.986803i 0.448229π-0.448229\pi
0.161928 + 0.986803i 0.448229π0.448229\pi
602602 2.71995 0.110857
603603 13.7408 0.559570
604604 −15.8401 −0.644526
605605 0 0
606606 6.56009 0.266486
607607 −38.9797 −1.58214 −0.791069 0.611727i 0.790475π-0.790475\pi
−0.791069 + 0.611727i 0.790475π0.790475\pi
608608 5.76491 0.233798
609609 10.4390 0.423009
610610 0 0
611611 2.91629 0.117980
612612 −2.76491 −0.111765
613613 −28.5142 −1.15168 −0.575839 0.817563i 0.695325π-0.695325\pi
−0.575839 + 0.817563i 0.695325π0.695325\pi
614614 −10.4702 −0.422542
615615 0 0
616616 5.28005 0.212739
617617 1.07615 0.0433241 0.0216621 0.999765i 0.493104π-0.493104\pi
0.0216621 + 0.999765i 0.493104π0.493104\pi
618618 −5.43991 −0.218825
619619 −0.719953 −0.0289374 −0.0144687 0.999895i 0.504606π-0.504606\pi
−0.0144687 + 0.999895i 0.504606π0.504606\pi
620620 0 0
621621 3.80139 0.152544
622622 −9.73841 −0.390475
623623 −23.0596 −0.923865
624624 0.235091 0.00941118
625625 0 0
626626 9.50046 0.379715
627627 5.59037 0.223258
628628 1.34060 0.0534957
629629 −11.1396 −0.444164
630630 0 0
631631 3.81078 0.151705 0.0758524 0.997119i 0.475832π-0.475832\pi
0.0758524 + 0.997119i 0.475832π0.475832\pi
632632 9.85952 0.392191
633633 8.74175 0.347453
634634 13.0790 0.519434
635635 0 0
636636 −3.73555 −0.148124
637637 −0.0146797 −0.000581632 0
638638 16.3103 0.645732
639639 −23.0715 −0.912692
640640 0 0
641641 35.7796 1.41321 0.706604 0.707609i 0.250226π-0.250226\pi
0.706604 + 0.707609i 0.250226π0.250226\pi
642642 −9.43991 −0.372563
643643 −11.3094 −0.445999 −0.223000 0.974819i 0.571585π-0.571585\pi
−0.223000 + 0.974819i 0.571585π0.571585\pi
644644 −3.59037 −0.141480
645645 0 0
646646 5.76491 0.226817
647647 −49.4528 −1.94419 −0.972094 0.234591i 0.924625π-0.924625\pi
−0.972094 + 0.234591i 0.924625π0.924625\pi
648648 6.93945 0.272607
649649 17.4693 0.685729
650650 0 0
651651 −2.68120 −0.105084
652652 16.2498 0.636390
653653 46.1311 1.80525 0.902624 0.430429i 0.141638π-0.141638\pi
0.902624 + 0.430429i 0.141638π0.141638\pi
654654 −6.13578 −0.239928
655655 0 0
656656 −0.249771 −0.00975191
657657 −1.34060 −0.0523018
658658 15.8789 0.619024
659659 −23.6732 −0.922176 −0.461088 0.887355i 0.652541π-0.652541\pi
−0.461088 + 0.887355i 0.652541π0.652541\pi
660660 0 0
661661 −32.1287 −1.24966 −0.624830 0.780761i 0.714832π-0.714832\pi
−0.624830 + 0.780761i 0.714832π0.714832\pi
662662 24.8851 0.967187
663663 0.235091 0.00913018
664664 −17.5298 −0.680289
665665 0 0
666666 30.7999 1.19347
667667 −11.0908 −0.429439
668668 −2.95035 −0.114152
669669 −11.2947 −0.436679
670670 0 0
671671 −22.7493 −0.878227
672672 1.28005 0.0493789
673673 47.7631 1.84113 0.920566 0.390588i 0.127728π-0.127728\pi
0.920566 + 0.390588i 0.127728π0.127728\pi
674674 27.5445 1.06097
675675 0 0
676676 −12.7649 −0.490958
677677 −8.82168 −0.339045 −0.169522 0.985526i 0.554222π-0.554222\pi
−0.169522 + 0.985526i 0.554222π0.554222\pi
678678 3.64380 0.139939
679679 17.7796 0.682318
680680 0 0
681681 −8.47730 −0.324851
682682 −4.18922 −0.160413
683683 −28.5142 −1.09107 −0.545533 0.838089i 0.683673π-0.683673\pi
−0.545533 + 0.838089i 0.683673π0.683673\pi
684684 −15.9394 −0.609460
685685 0 0
686686 −18.5601 −0.708628
687687 0.349078 0.0133182
688688 1.03028 0.0392789
689689 −3.73555 −0.142313
690690 0 0
691691 −50.4078 −1.91760 −0.958801 0.284077i 0.908313π-0.908313\pi
−0.958801 + 0.284077i 0.908313π0.908313\pi
692692 −6.14048 −0.233426
693693 −14.5988 −0.554564
694694 4.48486 0.170243
695695 0 0
696696 3.95413 0.149881
697697 −0.249771 −0.00946075
698698 34.2186 1.29519
699699 −5.35528 −0.202555
700700 0 0
701701 10.4702 0.395453 0.197727 0.980257i 0.436644π-0.436644\pi
0.197727 + 0.980257i 0.436644π0.436644\pi
702702 −1.35528 −0.0511517
703703 −64.2186 −2.42205
704704 2.00000 0.0753778
705705 0 0
706706 −4.90917 −0.184759
707707 35.7190 1.34335
708708 4.23509 0.159164
709709 −5.90539 −0.221782 −0.110891 0.993833i 0.535370π-0.535370\pi
−0.110891 + 0.993833i 0.535370π0.535370\pi
710710 0 0
711711 −27.2607 −1.02235
712712 −8.73463 −0.327344
713713 2.84862 0.106682
714714 1.28005 0.0479046
715715 0 0
716716 −15.5904 −0.582639
717717 −2.71056 −0.101228
718718 −13.7796 −0.514250
719719 −43.8354 −1.63479 −0.817393 0.576080i 0.804582π-0.804582\pi
−0.817393 + 0.576080i 0.804582π0.804582\pi
720720 0 0
721721 −29.6197 −1.10310
722722 14.2342 0.529741
723723 −4.05872 −0.150945
724724 4.10929 0.152721
725725 0 0
726726 −3.39403 −0.125964
727727 −6.60597 −0.245002 −0.122501 0.992468i 0.539091π-0.539091\pi
−0.122501 + 0.992468i 0.539091π0.539091\pi
728728 1.28005 0.0474417
729729 −15.1211 −0.560041
730730 0 0
731731 1.03028 0.0381061
732732 −5.51514 −0.203845
733733 44.6188 1.64803 0.824017 0.566565i 0.191728π-0.191728\pi
0.824017 + 0.566565i 0.191728π0.191728\pi
734734 −4.39025 −0.162047
735735 0 0
736736 −1.35998 −0.0501294
737737 −9.93945 −0.366124
738738 0.690594 0.0254211
739739 34.4149 1.26597 0.632987 0.774163i 0.281829π-0.281829\pi
0.632987 + 0.774163i 0.281829π0.281829\pi
740740 0 0
741741 1.35528 0.0497874
742742 −20.3397 −0.746693
743743 −28.0412 −1.02873 −0.514365 0.857571i 0.671973π-0.671973\pi
−0.514365 + 0.857571i 0.671973π0.671973\pi
744744 −1.01560 −0.0372336
745745 0 0
746746 0.220411 0.00806983
747747 48.4683 1.77336
748748 2.00000 0.0731272
749749 −51.3993 −1.87809
750750 0 0
751751 −47.4040 −1.72980 −0.864899 0.501947i 0.832617π-0.832617\pi
−0.864899 + 0.501947i 0.832617π0.832617\pi
752752 6.01468 0.219333
753753 9.43991 0.344009
754754 3.95413 0.144001
755755 0 0
756756 −7.37935 −0.268385
757757 −35.9759 −1.30757 −0.653784 0.756682i 0.726819π-0.726819\pi
−0.653784 + 0.756682i 0.726819π0.726819\pi
758758 26.3103 0.955634
759759 −1.31880 −0.0478695
760760 0 0
761761 13.1807 0.477801 0.238901 0.971044i 0.423213π-0.423213\pi
0.238901 + 0.971044i 0.423213π0.423213\pi
762762 −7.17362 −0.259873
763763 −33.4087 −1.20948
764764 6.06055 0.219263
765765 0 0
766766 36.1433 1.30591
767767 4.23509 0.152920
768768 0.484862 0.0174959
769769 −6.11399 −0.220476 −0.110238 0.993905i 0.535161π-0.535161\pi
−0.110238 + 0.993905i 0.535161π0.535161\pi
770770 0 0
771771 6.75871 0.243409
772772 12.5601 0.452048
773773 −44.5601 −1.60272 −0.801358 0.598186i 0.795889π-0.795889\pi
−0.801358 + 0.598186i 0.795889π0.795889\pi
774774 −2.84862 −0.102392
775775 0 0
776776 6.73463 0.241759
777777 −14.2592 −0.511545
778778 3.77959 0.135505
779779 −1.43991 −0.0515900
780780 0 0
781781 16.6888 0.597171
782782 −1.35998 −0.0486327
783783 −22.7952 −0.814633
784784 −0.0302761 −0.00108129
785785 0 0
786786 −1.21193 −0.0432282
787787 26.3856 0.940543 0.470272 0.882522i 0.344156π-0.344156\pi
0.470272 + 0.882522i 0.344156π0.344156\pi
788788 26.0487 0.927948
789789 −7.88601 −0.280750
790790 0 0
791791 19.8401 0.705434
792792 −5.52982 −0.196494
793793 −5.51514 −0.195848
794794 −12.2304 −0.434040
795795 0 0
796796 3.37466 0.119612
797797 −12.4390 −0.440612 −0.220306 0.975431i 0.570706π-0.570706\pi
−0.220306 + 0.975431i 0.570706π0.570706\pi
798798 7.37935 0.261226
799799 6.01468 0.212784
800800 0 0
801801 24.1505 0.853315
802802 −11.7796 −0.415952
803803 0.969724 0.0342208
804804 −2.40963 −0.0849811
805805 0 0
806806 −1.01560 −0.0357729
807807 5.04496 0.177591
808808 13.5298 0.475977
809809 5.96125 0.209586 0.104793 0.994494i 0.466582π-0.466582\pi
0.104793 + 0.994494i 0.466582π0.466582\pi
810810 0 0
811811 −27.8089 −0.976504 −0.488252 0.872703i 0.662365π-0.662365\pi
−0.488252 + 0.872703i 0.662365π0.662365\pi
812812 21.5298 0.755548
813813 −11.6509 −0.408616
814814 −22.2791 −0.780883
815815 0 0
816816 0.484862 0.0169736
817817 5.93945 0.207795
818818 −15.7649 −0.551207
819819 −3.53921 −0.123670
820820 0 0
821821 −9.05677 −0.316083 −0.158042 0.987432i 0.550518π-0.550518\pi
−0.158042 + 0.987432i 0.550518π0.550518\pi
822822 0.999083 0.0348470
823823 6.54828 0.228259 0.114129 0.993466i 0.463592π-0.463592\pi
0.114129 + 0.993466i 0.463592π0.463592\pi
824824 −11.2195 −0.390850
825825 0 0
826826 23.0596 0.802347
827827 −15.7115 −0.546341 −0.273171 0.961966i 0.588072π-0.588072\pi
−0.273171 + 0.961966i 0.588072π0.588072\pi
828828 3.76021 0.130676
829829 −1.87890 −0.0652567 −0.0326284 0.999468i 0.510388π-0.510388\pi
−0.0326284 + 0.999468i 0.510388π0.510388\pi
830830 0 0
831831 9.18830 0.318739
832832 0.484862 0.0168096
833833 −0.0302761 −0.00104900
834834 −7.55918 −0.261753
835835 0 0
836836 11.5298 0.398767
837837 5.85482 0.202372
838838 18.1892 0.628336
839839 −48.6841 −1.68076 −0.840380 0.541997i 0.817668π-0.817668\pi
−0.840380 + 0.541997i 0.817668π0.817668\pi
840840 0 0
841841 37.5067 1.29333
842842 9.03028 0.311204
843843 9.52453 0.328042
844844 18.0294 0.620596
845845 0 0
846846 −16.6300 −0.571753
847847 −18.4802 −0.634986
848848 −7.70436 −0.264569
849849 12.5067 0.429227
850850 0 0
851851 15.1495 0.519320
852852 4.04587 0.138609
853853 −35.9494 −1.23089 −0.615443 0.788182i 0.711023π-0.711023\pi
−0.615443 + 0.788182i 0.711023π0.711023\pi
854854 −30.0294 −1.02758
855855 0 0
856856 −19.4693 −0.665446
857857 13.4158 0.458276 0.229138 0.973394i 0.426409π-0.426409\pi
0.229138 + 0.973394i 0.426409π0.426409\pi
858858 0.470182 0.0160518
859859 −23.8860 −0.814980 −0.407490 0.913210i 0.633596π-0.633596\pi
−0.407490 + 0.913210i 0.633596π0.633596\pi
860860 0 0
861861 −0.319718 −0.0108960
862862 20.4196 0.695495
863863 15.5979 0.530960 0.265480 0.964116i 0.414470π-0.414470\pi
0.265480 + 0.964116i 0.414470π0.414470\pi
864864 −2.79518 −0.0950941
865865 0 0
866866 −11.5904 −0.393857
867867 0.484862 0.0164668
868868 −5.52982 −0.187694
869869 19.7190 0.668922
870870 0 0
871871 −2.40963 −0.0816472
872872 −12.6547 −0.428542
873873 −18.6206 −0.630213
874874 −7.84014 −0.265197
875875 0 0
876876 0.235091 0.00794299
877877 −33.3893 −1.12748 −0.563739 0.825953i 0.690638π-0.690638\pi
−0.563739 + 0.825953i 0.690638π0.690638\pi
878878 −2.01938 −0.0681507
879879 −11.1149 −0.374896
880880 0 0
881881 −35.1202 −1.18323 −0.591615 0.806221i 0.701509π-0.701509\pi
−0.591615 + 0.806221i 0.701509π0.701509\pi
882882 0.0837106 0.00281868
883883 22.2110 0.747460 0.373730 0.927537i 0.378079π-0.378079\pi
0.373730 + 0.927537i 0.378079π0.378079\pi
884884 0.484862 0.0163077
885885 0 0
886886 27.4087 0.920814
887887 5.17076 0.173617 0.0868085 0.996225i 0.472333π-0.472333\pi
0.0868085 + 0.996225i 0.472333π0.472333\pi
888888 −5.40115 −0.181251
889889 −39.0596 −1.31002
890890 0 0
891891 13.8789 0.464960
892892 −23.2947 −0.779965
893893 34.6741 1.16032
894894 4.84862 0.162162
895895 0 0
896896 2.64002 0.0881970
897897 −0.319718 −0.0106751
898898 29.7190 0.991737
899899 −17.0819 −0.569713
900900 0 0
901901 −7.70436 −0.256669
902902 −0.499542 −0.0166329
903903 1.31880 0.0438870
904904 7.51514 0.249950
905905 0 0
906906 −7.68028 −0.255160
907907 3.85482 0.127997 0.0639986 0.997950i 0.479615π-0.479615\pi
0.0639986 + 0.997950i 0.479615π0.479615\pi
908908 −17.4839 −0.580225
909909 −37.4087 −1.24077
910910 0 0
911911 −22.6400 −0.750097 −0.375049 0.927005i 0.622374π-0.622374\pi
−0.375049 + 0.927005i 0.622374π0.622374\pi
912912 2.79518 0.0925578
913913 −35.0596 −1.16030
914914 −39.4693 −1.30553
915915 0 0
916916 0.719953 0.0237879
917917 −6.59885 −0.217913
918918 −2.79518 −0.0922549
919919 31.5298 1.04007 0.520036 0.854144i 0.325918π-0.325918\pi
0.520036 + 0.854144i 0.325918π0.325918\pi
920920 0 0
921921 −5.07659 −0.167279
922922 14.6888 0.483749
923923 4.04587 0.133172
924924 2.56009 0.0842209
925925 0 0
926926 −35.1055 −1.15364
927927 31.0209 1.01886
928928 8.15516 0.267706
929929 −11.1589 −0.366113 −0.183057 0.983102i 0.558599π-0.558599\pi
−0.183057 + 0.983102i 0.558599π0.558599\pi
930930 0 0
931931 −0.174539 −0.00572028
932932 −11.0450 −0.361790
933933 −4.72179 −0.154584
934934 9.96881 0.326189
935935 0 0
936936 −1.34060 −0.0438189
937937 −24.5307 −0.801384 −0.400692 0.916213i 0.631230π-0.631230\pi
−0.400692 + 0.916213i 0.631230π0.631230\pi
938938 −13.1202 −0.428389
939939 4.60641 0.150325
940940 0 0
941941 35.3747 1.15318 0.576590 0.817033i 0.304383π-0.304383\pi
0.576590 + 0.817033i 0.304383π0.304383\pi
942942 0.650006 0.0211783
943943 0.339682 0.0110616
944944 8.73463 0.284288
945945 0 0
946946 2.06055 0.0669943
947947 2.23509 0.0726307 0.0363154 0.999340i 0.488438π-0.488438\pi
0.0363154 + 0.999340i 0.488438π0.488438\pi
948948 4.78051 0.155264
949949 0.235091 0.00763138
950950 0 0
951951 6.34152 0.205638
952952 2.64002 0.0855637
953953 −5.65092 −0.183051 −0.0915257 0.995803i 0.529174π-0.529174\pi
−0.0915257 + 0.995803i 0.529174π0.529174\pi
954954 21.3018 0.689673
955955 0 0
956956 −5.59037 −0.180805
957957 7.90826 0.255638
958958 −2.28383 −0.0737871
959959 5.43991 0.175664
960960 0 0
961961 −26.6126 −0.858471
962962 −5.40115 −0.174140
963963 53.8307 1.73467
964964 −8.37088 −0.269608
965965 0 0
966966 −1.74083 −0.0560104
967967 −40.9991 −1.31844 −0.659221 0.751949i 0.729114π-0.729114\pi
−0.659221 + 0.751949i 0.729114π0.729114\pi
968968 −7.00000 −0.224989
969969 2.79518 0.0897943
970970 0 0
971971 −45.3846 −1.45646 −0.728231 0.685332i 0.759657π-0.759657\pi
−0.728231 + 0.685332i 0.759657π0.759657\pi
972972 11.7502 0.376889
973973 −41.1589 −1.31950
974974 10.8292 0.346991
975975 0 0
976976 −11.3747 −0.364094
977977 4.72752 0.151247 0.0756233 0.997136i 0.475905π-0.475905\pi
0.0756233 + 0.997136i 0.475905π0.475905\pi
978978 7.87890 0.251939
979979 −17.4693 −0.558320
980980 0 0
981981 34.9891 1.11712
982982 24.7952 0.791246
983983 −14.3297 −0.457046 −0.228523 0.973538i 0.573390π-0.573390\pi
−0.228523 + 0.973538i 0.573390π0.573390\pi
984984 −0.121104 −0.00386067
985985 0 0
986986 8.15516 0.259713
987987 7.69907 0.245064
988988 2.79518 0.0889267
989989 −1.40115 −0.0445540
990990 0 0
991991 16.8827 0.536296 0.268148 0.963378i 0.413588π-0.413588\pi
0.268148 + 0.963378i 0.413588π0.413588\pi
992992 −2.09461 −0.0665039
993993 12.0658 0.382898
994994 22.0294 0.698729
995995 0 0
996996 −8.49954 −0.269318
997997 −18.5189 −0.586500 −0.293250 0.956036i 0.594737π-0.594737\pi
−0.293250 + 0.956036i 0.594737π0.594737\pi
998998 5.15138 0.163064
999999 31.1371 0.985136
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.a.q.1.2 3
3.2 odd 2 7650.2.a.dj.1.3 3
4.3 odd 2 6800.2.a.bk.1.2 3
5.2 odd 4 170.2.c.b.69.5 yes 6
5.3 odd 4 170.2.c.b.69.2 6
5.4 even 2 850.2.a.p.1.2 3
15.2 even 4 1530.2.d.g.919.1 6
15.8 even 4 1530.2.d.g.919.4 6
15.14 odd 2 7650.2.a.do.1.1 3
20.3 even 4 1360.2.e.c.1089.3 6
20.7 even 4 1360.2.e.c.1089.4 6
20.19 odd 2 6800.2.a.bp.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.c.b.69.2 6 5.3 odd 4
170.2.c.b.69.5 yes 6 5.2 odd 4
850.2.a.p.1.2 3 5.4 even 2
850.2.a.q.1.2 3 1.1 even 1 trivial
1360.2.e.c.1089.3 6 20.3 even 4
1360.2.e.c.1089.4 6 20.7 even 4
1530.2.d.g.919.1 6 15.2 even 4
1530.2.d.g.919.4 6 15.8 even 4
6800.2.a.bk.1.2 3 4.3 odd 2
6800.2.a.bp.1.2 3 20.19 odd 2
7650.2.a.dj.1.3 3 3.2 odd 2
7650.2.a.do.1.1 3 15.14 odd 2