Properties

Label 850.2.s.d.743.1
Level $850$
Weight $2$
Character 850.743
Analytic conductor $6.787$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(7,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.s (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(5\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 743.1
Character \(\chi\) \(=\) 850.743
Dual form 850.2.s.d.707.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.923880 + 0.382683i) q^{2} +(-2.85081 - 0.567062i) q^{3} +(0.707107 + 0.707107i) q^{4} +(-2.41680 - 1.61486i) q^{6} +(-2.40863 + 3.60477i) q^{7} +(0.382683 + 0.923880i) q^{8} +(5.03395 + 2.08513i) q^{9} +(-0.113862 + 0.170406i) q^{11} +(-1.61486 - 2.41680i) q^{12} -3.32855i q^{13} +(-3.60477 + 2.40863i) q^{14} +1.00000i q^{16} +(0.761002 - 4.05227i) q^{17} +(3.85282 + 3.85282i) q^{18} +(-1.76021 + 0.729105i) q^{19} +(8.91069 - 8.91069i) q^{21} +(-0.170406 + 0.113862i) q^{22} +(0.153052 + 0.769445i) q^{23} +(-0.567062 - 2.85081i) q^{24} +(1.27378 - 3.07518i) q^{26} +(-5.91804 - 3.95431i) q^{27} +(-4.25212 + 0.845799i) q^{28} +(-8.95670 - 1.78160i) q^{29} +(-4.85565 - 7.26699i) q^{31} +(-0.382683 + 0.923880i) q^{32} +(0.421230 - 0.421230i) q^{33} +(2.25381 - 3.45258i) q^{34} +(2.08513 + 5.03395i) q^{36} +(0.374777 - 1.88413i) q^{37} -1.90524 q^{38} +(-1.88750 + 9.48908i) q^{39} +(-3.42967 + 0.682203i) q^{41} +(11.6424 - 4.82243i) q^{42} +(6.29559 - 2.60772i) q^{43} +(-0.201008 + 0.0399830i) q^{44} +(-0.153052 + 0.769445i) q^{46} -11.8186 q^{47} +(0.567062 - 2.85081i) q^{48} +(-4.51409 - 10.8980i) q^{49} +(-4.46736 + 11.1207i) q^{51} +(2.35364 - 2.35364i) q^{52} +(1.97998 - 4.78009i) q^{53} +(-3.95431 - 5.91804i) q^{54} +(-4.25212 - 0.845799i) q^{56} +(5.43149 - 1.08039i) q^{57} +(-7.59313 - 5.07356i) q^{58} +(1.58062 - 3.81596i) q^{59} +(0.209544 + 1.05345i) q^{61} +(-1.70508 - 8.57200i) q^{62} +(-19.6413 + 13.1239i) q^{63} +(-0.707107 + 0.707107i) q^{64} +(0.550364 - 0.227968i) q^{66} +(-5.49540 - 5.49540i) q^{67} +(3.40350 - 2.32728i) q^{68} -2.28034i q^{69} +(-1.33556 + 0.892391i) q^{71} +5.44870i q^{72} +(0.452947 + 0.677883i) q^{73} +(1.06727 - 1.59729i) q^{74} +(-1.76021 - 0.729105i) q^{76} +(-0.340025 - 0.820892i) q^{77} +(-5.37513 + 8.04446i) q^{78} +(10.3045 + 6.88525i) q^{79} +(3.07044 + 3.07044i) q^{81} +(-3.42967 - 0.682203i) q^{82} +(0.650559 + 0.269470i) q^{83} +12.6016 q^{84} +6.81430 q^{86} +(24.5236 + 10.1580i) q^{87} +(-0.201008 - 0.0399830i) q^{88} +(3.70552 + 3.70552i) q^{89} +(11.9987 + 8.01725i) q^{91} +(-0.435856 + 0.652304i) q^{92} +(9.72172 + 23.4703i) q^{93} +(-10.9189 - 4.52277i) q^{94} +(1.61486 - 2.41680i) q^{96} +(0.0834089 + 0.124830i) q^{97} -11.7959i q^{98} +(-0.928493 + 0.620400i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 16 q^{18} - 8 q^{26} - 24 q^{27} - 8 q^{28} - 8 q^{29} - 16 q^{31} - 32 q^{33} - 8 q^{34} - 16 q^{37} + 32 q^{39} - 56 q^{41} + 8 q^{42} + 48 q^{43} - 16 q^{44} + 96 q^{47} - 16 q^{49} - 32 q^{51}+ \cdots - 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.923880 + 0.382683i 0.653281 + 0.270598i
\(3\) −2.85081 0.567062i −1.64592 0.327394i −0.716829 0.697249i \(-0.754407\pi\)
−0.929089 + 0.369855i \(0.879407\pi\)
\(4\) 0.707107 + 0.707107i 0.353553 + 0.353553i
\(5\) 0 0
\(6\) −2.41680 1.61486i −0.986656 0.659263i
\(7\) −2.40863 + 3.60477i −0.910377 + 1.36248i 0.0215260 + 0.999768i \(0.493148\pi\)
−0.931903 + 0.362707i \(0.881852\pi\)
\(8\) 0.382683 + 0.923880i 0.135299 + 0.326641i
\(9\) 5.03395 + 2.08513i 1.67798 + 0.695043i
\(10\) 0 0
\(11\) −0.113862 + 0.170406i −0.0343306 + 0.0513794i −0.848238 0.529615i \(-0.822336\pi\)
0.813907 + 0.580995i \(0.197336\pi\)
\(12\) −1.61486 2.41680i −0.466169 0.697671i
\(13\) 3.32855i 0.923174i −0.887095 0.461587i \(-0.847280\pi\)
0.887095 0.461587i \(-0.152720\pi\)
\(14\) −3.60477 + 2.40863i −0.963416 + 0.643734i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) 0.761002 4.05227i 0.184570 0.982819i
\(18\) 3.85282 + 3.85282i 0.908117 + 0.908117i
\(19\) −1.76021 + 0.729105i −0.403821 + 0.167268i −0.575343 0.817912i \(-0.695131\pi\)
0.171522 + 0.985180i \(0.445131\pi\)
\(20\) 0 0
\(21\) 8.91069 8.91069i 1.94447 1.94447i
\(22\) −0.170406 + 0.113862i −0.0363307 + 0.0242754i
\(23\) 0.153052 + 0.769445i 0.0319136 + 0.160440i 0.993456 0.114216i \(-0.0364357\pi\)
−0.961542 + 0.274657i \(0.911436\pi\)
\(24\) −0.567062 2.85081i −0.115751 0.581920i
\(25\) 0 0
\(26\) 1.27378 3.07518i 0.249809 0.603093i
\(27\) −5.91804 3.95431i −1.13893 0.761007i
\(28\) −4.25212 + 0.845799i −0.803575 + 0.159841i
\(29\) −8.95670 1.78160i −1.66322 0.330835i −0.728181 0.685385i \(-0.759634\pi\)
−0.935037 + 0.354550i \(0.884634\pi\)
\(30\) 0 0
\(31\) −4.85565 7.26699i −0.872100 1.30519i −0.951279 0.308330i \(-0.900230\pi\)
0.0791791 0.996860i \(-0.474770\pi\)
\(32\) −0.382683 + 0.923880i −0.0676495 + 0.163320i
\(33\) 0.421230 0.421230i 0.0733267 0.0733267i
\(34\) 2.25381 3.45258i 0.386525 0.592113i
\(35\) 0 0
\(36\) 2.08513 + 5.03395i 0.347521 + 0.838991i
\(37\) 0.374777 1.88413i 0.0616129 0.309749i −0.937674 0.347517i \(-0.887025\pi\)
0.999287 + 0.0377681i \(0.0120248\pi\)
\(38\) −1.90524 −0.309071
\(39\) −1.88750 + 9.48908i −0.302241 + 1.51947i
\(40\) 0 0
\(41\) −3.42967 + 0.682203i −0.535624 + 0.106542i −0.455488 0.890242i \(-0.650535\pi\)
−0.0801355 + 0.996784i \(0.525535\pi\)
\(42\) 11.6424 4.82243i 1.79646 0.744117i
\(43\) 6.29559 2.60772i 0.960069 0.397674i 0.153063 0.988216i \(-0.451086\pi\)
0.807006 + 0.590543i \(0.201086\pi\)
\(44\) −0.201008 + 0.0399830i −0.0303031 + 0.00602766i
\(45\) 0 0
\(46\) −0.153052 + 0.769445i −0.0225663 + 0.113449i
\(47\) −11.8186 −1.72392 −0.861958 0.506979i \(-0.830762\pi\)
−0.861958 + 0.506979i \(0.830762\pi\)
\(48\) 0.567062 2.85081i 0.0818484 0.411480i
\(49\) −4.51409 10.8980i −0.644870 1.55685i
\(50\) 0 0
\(51\) −4.46736 + 11.1207i −0.625556 + 1.55721i
\(52\) 2.35364 2.35364i 0.326391 0.326391i
\(53\) 1.97998 4.78009i 0.271971 0.656596i −0.727597 0.686005i \(-0.759363\pi\)
0.999567 + 0.0294096i \(0.00936271\pi\)
\(54\) −3.95431 5.91804i −0.538113 0.805343i
\(55\) 0 0
\(56\) −4.25212 0.845799i −0.568213 0.113025i
\(57\) 5.43149 1.08039i 0.719419 0.143101i
\(58\) −7.59313 5.07356i −0.997026 0.666192i
\(59\) 1.58062 3.81596i 0.205779 0.496795i −0.786971 0.616990i \(-0.788352\pi\)
0.992750 + 0.120195i \(0.0383519\pi\)
\(60\) 0 0
\(61\) 0.209544 + 1.05345i 0.0268294 + 0.134881i 0.991879 0.127188i \(-0.0405952\pi\)
−0.965049 + 0.262069i \(0.915595\pi\)
\(62\) −1.70508 8.57200i −0.216545 1.08865i
\(63\) −19.6413 + 13.1239i −2.47458 + 1.65346i
\(64\) −0.707107 + 0.707107i −0.0883883 + 0.0883883i
\(65\) 0 0
\(66\) 0.550364 0.227968i 0.0677451 0.0280609i
\(67\) −5.49540 5.49540i −0.671369 0.671369i 0.286662 0.958032i \(-0.407454\pi\)
−0.958032 + 0.286662i \(0.907454\pi\)
\(68\) 3.40350 2.32728i 0.412734 0.282224i
\(69\) 2.28034i 0.274520i
\(70\) 0 0
\(71\) −1.33556 + 0.892391i −0.158502 + 0.105907i −0.632292 0.774730i \(-0.717886\pi\)
0.473790 + 0.880638i \(0.342886\pi\)
\(72\) 5.44870i 0.642136i
\(73\) 0.452947 + 0.677883i 0.0530135 + 0.0793403i 0.857029 0.515267i \(-0.172307\pi\)
−0.804016 + 0.594608i \(0.797307\pi\)
\(74\) 1.06727 1.59729i 0.124068 0.185681i
\(75\) 0 0
\(76\) −1.76021 0.729105i −0.201910 0.0836340i
\(77\) −0.340025 0.820892i −0.0387494 0.0935493i
\(78\) −5.37513 + 8.04446i −0.608614 + 0.910855i
\(79\) 10.3045 + 6.88525i 1.15935 + 0.774651i 0.977966 0.208762i \(-0.0669435\pi\)
0.181380 + 0.983413i \(0.441944\pi\)
\(80\) 0 0
\(81\) 3.07044 + 3.07044i 0.341160 + 0.341160i
\(82\) −3.42967 0.682203i −0.378743 0.0753367i
\(83\) 0.650559 + 0.269470i 0.0714081 + 0.0295782i 0.418102 0.908400i \(-0.362696\pi\)
−0.346693 + 0.937978i \(0.612696\pi\)
\(84\) 12.6016 1.37495
\(85\) 0 0
\(86\) 6.81430 0.734805
\(87\) 24.5236 + 10.1580i 2.62921 + 1.08905i
\(88\) −0.201008 0.0399830i −0.0214275 0.00426220i
\(89\) 3.70552 + 3.70552i 0.392784 + 0.392784i 0.875679 0.482894i \(-0.160415\pi\)
−0.482894 + 0.875679i \(0.660415\pi\)
\(90\) 0 0
\(91\) 11.9987 + 8.01725i 1.25780 + 0.840437i
\(92\) −0.435856 + 0.652304i −0.0454411 + 0.0680074i
\(93\) 9.72172 + 23.4703i 1.00810 + 2.43376i
\(94\) −10.9189 4.52277i −1.12620 0.466489i
\(95\) 0 0
\(96\) 1.61486 2.41680i 0.164816 0.246664i
\(97\) 0.0834089 + 0.124830i 0.00846889 + 0.0126746i 0.835680 0.549217i \(-0.185074\pi\)
−0.827211 + 0.561891i \(0.810074\pi\)
\(98\) 11.7959i 1.19156i
\(99\) −0.928493 + 0.620400i −0.0933171 + 0.0623525i
\(100\) 0 0
\(101\) 15.1577i 1.50824i −0.656735 0.754122i \(-0.728063\pi\)
0.656735 0.754122i \(-0.271937\pi\)
\(102\) −8.38302 + 8.56463i −0.830043 + 0.848025i
\(103\) 2.06188 + 2.06188i 0.203163 + 0.203163i 0.801354 0.598191i \(-0.204113\pi\)
−0.598191 + 0.801354i \(0.704113\pi\)
\(104\) 3.07518 1.27378i 0.301546 0.124905i
\(105\) 0 0
\(106\) 3.65852 3.65852i 0.355347 0.355347i
\(107\) 0.488999 0.326739i 0.0472733 0.0315870i −0.531709 0.846927i \(-0.678450\pi\)
0.578982 + 0.815340i \(0.303450\pi\)
\(108\) −1.38857 6.98080i −0.133615 0.671728i
\(109\) −0.693887 3.48840i −0.0664623 0.334129i 0.933221 0.359304i \(-0.116986\pi\)
−0.999683 + 0.0251750i \(0.991986\pi\)
\(110\) 0 0
\(111\) −2.13684 + 5.15878i −0.202820 + 0.489650i
\(112\) −3.60477 2.40863i −0.340619 0.227594i
\(113\) −3.23682 + 0.643843i −0.304494 + 0.0605677i −0.344973 0.938613i \(-0.612112\pi\)
0.0404784 + 0.999180i \(0.487112\pi\)
\(114\) 5.43149 + 1.08039i 0.508706 + 0.101188i
\(115\) 0 0
\(116\) −5.07356 7.59313i −0.471069 0.705004i
\(117\) 6.94046 16.7557i 0.641646 1.54907i
\(118\) 2.92061 2.92061i 0.268864 0.268864i
\(119\) 12.7745 + 12.5037i 1.17104 + 1.14621i
\(120\) 0 0
\(121\) 4.19344 + 10.1239i 0.381222 + 0.920352i
\(122\) −0.209544 + 1.05345i −0.0189713 + 0.0953749i
\(123\) 10.1642 0.916474
\(124\) 1.70508 8.57200i 0.153120 0.769789i
\(125\) 0 0
\(126\) −23.1685 + 4.60851i −2.06402 + 0.410558i
\(127\) −4.76825 + 1.97507i −0.423114 + 0.175260i −0.584072 0.811702i \(-0.698542\pi\)
0.160958 + 0.986961i \(0.448542\pi\)
\(128\) −0.923880 + 0.382683i −0.0816602 + 0.0338248i
\(129\) −19.4263 + 3.86413i −1.71039 + 0.340218i
\(130\) 0 0
\(131\) 2.13002 10.7084i 0.186101 0.935593i −0.768985 0.639266i \(-0.779238\pi\)
0.955087 0.296327i \(-0.0957618\pi\)
\(132\) 0.595709 0.0518498
\(133\) 1.61145 8.10132i 0.139731 0.702473i
\(134\) −2.97409 7.18008i −0.256922 0.620264i
\(135\) 0 0
\(136\) 4.03503 0.847662i 0.346001 0.0726864i
\(137\) −12.3373 + 12.3373i −1.05405 + 1.05405i −0.0555950 + 0.998453i \(0.517706\pi\)
−0.998453 + 0.0555950i \(0.982294\pi\)
\(138\) 0.872647 2.10676i 0.0742847 0.179339i
\(139\) 1.10884 + 1.65949i 0.0940503 + 0.140756i 0.875511 0.483198i \(-0.160525\pi\)
−0.781461 + 0.623955i \(0.785525\pi\)
\(140\) 0 0
\(141\) 33.6926 + 6.70187i 2.83743 + 0.564399i
\(142\) −1.57540 + 0.313366i −0.132204 + 0.0262971i
\(143\) 0.567206 + 0.378995i 0.0474322 + 0.0316932i
\(144\) −2.08513 + 5.03395i −0.173761 + 0.419496i
\(145\) 0 0
\(146\) 0.159054 + 0.799618i 0.0131634 + 0.0661769i
\(147\) 6.68900 + 33.6279i 0.551699 + 2.77358i
\(148\) 1.59729 1.06727i 0.131296 0.0877294i
\(149\) −6.12503 + 6.12503i −0.501782 + 0.501782i −0.911991 0.410209i \(-0.865456\pi\)
0.410209 + 0.911991i \(0.365456\pi\)
\(150\) 0 0
\(151\) −20.9830 + 8.69145i −1.70757 + 0.707300i −0.707573 + 0.706640i \(0.750210\pi\)
−1.00000 0.000659759i \(0.999790\pi\)
\(152\) −1.34721 1.34721i −0.109273 0.109273i
\(153\) 12.2803 18.8121i 0.992807 1.52087i
\(154\) 0.888527i 0.0715995i
\(155\) 0 0
\(156\) −8.04446 + 5.37513i −0.644072 + 0.430355i
\(157\) 4.30033i 0.343204i 0.985166 + 0.171602i \(0.0548943\pi\)
−0.985166 + 0.171602i \(0.945106\pi\)
\(158\) 6.88525 + 10.3045i 0.547761 + 0.819782i
\(159\) −8.35516 + 12.5044i −0.662607 + 0.991661i
\(160\) 0 0
\(161\) −3.14232 1.30159i −0.247650 0.102580i
\(162\) 1.66171 + 4.01173i 0.130556 + 0.315191i
\(163\) −2.21819 + 3.31976i −0.173742 + 0.260024i −0.908113 0.418724i \(-0.862477\pi\)
0.734371 + 0.678748i \(0.237477\pi\)
\(164\) −2.90753 1.94275i −0.227040 0.151703i
\(165\) 0 0
\(166\) 0.497916 + 0.497916i 0.0386458 + 0.0386458i
\(167\) −12.1658 2.41993i −0.941419 0.187260i −0.299556 0.954079i \(-0.596838\pi\)
−0.641864 + 0.766819i \(0.721838\pi\)
\(168\) 11.6424 + 4.82243i 0.898229 + 0.372059i
\(169\) 1.92074 0.147750
\(170\) 0 0
\(171\) −10.3811 −0.793863
\(172\) 6.29559 + 2.60772i 0.480035 + 0.198837i
\(173\) −13.5261 2.69051i −1.02837 0.204556i −0.348054 0.937474i \(-0.613157\pi\)
−0.680316 + 0.732919i \(0.738157\pi\)
\(174\) 18.7696 + 18.7696i 1.42292 + 1.42292i
\(175\) 0 0
\(176\) −0.170406 0.113862i −0.0128449 0.00858266i
\(177\) −6.66994 + 9.98227i −0.501344 + 0.750314i
\(178\) 2.00541 + 4.84149i 0.150312 + 0.362885i
\(179\) 17.1204 + 7.09151i 1.27964 + 0.530044i 0.915881 0.401449i \(-0.131493\pi\)
0.363758 + 0.931493i \(0.381493\pi\)
\(180\) 0 0
\(181\) 11.0377 16.5190i 0.820422 1.22785i −0.150537 0.988604i \(-0.548100\pi\)
0.970959 0.239244i \(-0.0768997\pi\)
\(182\) 8.01725 + 11.9987i 0.594278 + 0.889400i
\(183\) 3.12202i 0.230786i
\(184\) −0.652304 + 0.435856i −0.0480885 + 0.0321317i
\(185\) 0 0
\(186\) 25.4041i 1.86272i
\(187\) 0.603883 + 0.591078i 0.0441603 + 0.0432239i
\(188\) −8.35700 8.35700i −0.609497 0.609497i
\(189\) 28.5087 11.8087i 2.07371 0.858957i
\(190\) 0 0
\(191\) −4.91463 + 4.91463i −0.355610 + 0.355610i −0.862192 0.506582i \(-0.830909\pi\)
0.506582 + 0.862192i \(0.330909\pi\)
\(192\) 2.41680 1.61486i 0.174418 0.116542i
\(193\) 3.60610 + 18.1291i 0.259573 + 1.30496i 0.862049 + 0.506825i \(0.169181\pi\)
−0.602476 + 0.798137i \(0.705819\pi\)
\(194\) 0.0292893 + 0.147247i 0.00210285 + 0.0105717i
\(195\) 0 0
\(196\) 4.51409 10.8980i 0.322435 0.778427i
\(197\) 9.03509 + 6.03705i 0.643723 + 0.430122i 0.834118 0.551585i \(-0.185977\pi\)
−0.190395 + 0.981708i \(0.560977\pi\)
\(198\) −1.09523 + 0.217855i −0.0778348 + 0.0154823i
\(199\) −15.2386 3.03114i −1.08024 0.214872i −0.377275 0.926101i \(-0.623139\pi\)
−0.702960 + 0.711229i \(0.748139\pi\)
\(200\) 0 0
\(201\) 12.5501 + 18.7826i 0.885217 + 1.32482i
\(202\) 5.80059 14.0039i 0.408128 0.985308i
\(203\) 27.9957 27.9957i 1.96491 1.96491i
\(204\) −11.0224 + 4.70464i −0.771726 + 0.329391i
\(205\) 0 0
\(206\) 1.11588 + 2.69398i 0.0777471 + 0.187698i
\(207\) −0.833936 + 4.19248i −0.0579626 + 0.291398i
\(208\) 3.32855 0.230794
\(209\) 0.0761772 0.382969i 0.00526929 0.0264905i
\(210\) 0 0
\(211\) −17.6704 + 3.51487i −1.21648 + 0.241973i −0.761285 0.648417i \(-0.775431\pi\)
−0.455197 + 0.890391i \(0.650431\pi\)
\(212\) 4.78009 1.97998i 0.328298 0.135985i
\(213\) 4.31347 1.78670i 0.295554 0.122422i
\(214\) 0.576814 0.114735i 0.0394302 0.00784315i
\(215\) 0 0
\(216\) 1.38857 6.98080i 0.0944801 0.474983i
\(217\) 37.8913 2.57223
\(218\) 0.693887 3.48840i 0.0469959 0.236265i
\(219\) −0.906866 2.18937i −0.0612804 0.147944i
\(220\) 0 0
\(221\) −13.4882 2.53303i −0.907313 0.170390i
\(222\) −3.94836 + 3.94836i −0.264997 + 0.264997i
\(223\) −3.71524 + 8.96939i −0.248791 + 0.600635i −0.998102 0.0615836i \(-0.980385\pi\)
0.749311 + 0.662218i \(0.230385\pi\)
\(224\) −2.40863 3.60477i −0.160933 0.240854i
\(225\) 0 0
\(226\) −3.23682 0.643843i −0.215310 0.0428278i
\(227\) 0.519043 0.103244i 0.0344501 0.00685255i −0.177835 0.984060i \(-0.556909\pi\)
0.212285 + 0.977208i \(0.431909\pi\)
\(228\) 4.60460 + 3.07669i 0.304947 + 0.203759i
\(229\) −11.2020 + 27.0440i −0.740249 + 1.78712i −0.135382 + 0.990793i \(0.543226\pi\)
−0.604867 + 0.796326i \(0.706774\pi\)
\(230\) 0 0
\(231\) 0.503850 + 2.53303i 0.0331509 + 0.166661i
\(232\) −1.78160 8.95670i −0.116968 0.588036i
\(233\) −6.72855 + 4.49587i −0.440802 + 0.294535i −0.756097 0.654459i \(-0.772896\pi\)
0.315295 + 0.948994i \(0.397896\pi\)
\(234\) 12.8243 12.8243i 0.838350 0.838350i
\(235\) 0 0
\(236\) 3.81596 1.58062i 0.248398 0.102890i
\(237\) −25.4719 25.4719i −1.65457 1.65457i
\(238\) 7.01718 + 16.4405i 0.454856 + 1.06568i
\(239\) 20.1335i 1.30233i −0.758937 0.651164i \(-0.774281\pi\)
0.758937 0.651164i \(-0.225719\pi\)
\(240\) 0 0
\(241\) −7.62327 + 5.09371i −0.491058 + 0.328115i −0.776324 0.630334i \(-0.782918\pi\)
0.285266 + 0.958448i \(0.407918\pi\)
\(242\) 10.9580i 0.704407i
\(243\) 4.85079 + 7.25971i 0.311178 + 0.465711i
\(244\) −0.596732 + 0.893072i −0.0382018 + 0.0571731i
\(245\) 0 0
\(246\) 9.39049 + 3.88967i 0.598716 + 0.247996i
\(247\) 2.42686 + 5.85896i 0.154418 + 0.372797i
\(248\) 4.85565 7.26699i 0.308334 0.461454i
\(249\) −1.70182 1.13712i −0.107848 0.0720619i
\(250\) 0 0
\(251\) 6.12489 + 6.12489i 0.386600 + 0.386600i 0.873473 0.486873i \(-0.161863\pi\)
−0.486873 + 0.873473i \(0.661863\pi\)
\(252\) −23.1685 4.60851i −1.45948 0.290309i
\(253\) −0.148545 0.0615294i −0.00933895 0.00386832i
\(254\) −5.16112 −0.323837
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −3.67244 1.52117i −0.229080 0.0948882i 0.265191 0.964196i \(-0.414565\pi\)
−0.494271 + 0.869308i \(0.664565\pi\)
\(258\) −19.4263 3.86413i −1.20943 0.240570i
\(259\) 5.88916 + 5.88916i 0.365935 + 0.365935i
\(260\) 0 0
\(261\) −41.3727 27.6444i −2.56091 1.71114i
\(262\) 6.06580 9.07811i 0.374746 0.560847i
\(263\) −11.7756 28.4288i −0.726113 1.75299i −0.655132 0.755514i \(-0.727387\pi\)
−0.0709807 0.997478i \(-0.522613\pi\)
\(264\) 0.550364 + 0.227968i 0.0338725 + 0.0140305i
\(265\) 0 0
\(266\) 4.58903 6.86796i 0.281371 0.421102i
\(267\) −8.46248 12.6650i −0.517896 0.775086i
\(268\) 7.77166i 0.474730i
\(269\) 13.2000 8.81994i 0.804817 0.537761i −0.0837617 0.996486i \(-0.526693\pi\)
0.888579 + 0.458724i \(0.151693\pi\)
\(270\) 0 0
\(271\) 19.7242i 1.19816i −0.800690 0.599079i \(-0.795534\pi\)
0.800690 0.599079i \(-0.204466\pi\)
\(272\) 4.05227 + 0.761002i 0.245705 + 0.0461425i
\(273\) −29.6597 29.6597i −1.79509 1.79509i
\(274\) −16.1195 + 6.67691i −0.973814 + 0.403367i
\(275\) 0 0
\(276\) 1.61244 1.61244i 0.0970576 0.0970576i
\(277\) −11.2620 + 7.52505i −0.676670 + 0.452136i −0.845830 0.533452i \(-0.820894\pi\)
0.169160 + 0.985589i \(0.445894\pi\)
\(278\) 0.389372 + 1.95750i 0.0233530 + 0.117403i
\(279\) −9.29046 46.7063i −0.556205 2.79623i
\(280\) 0 0
\(281\) 6.96372 16.8119i 0.415421 1.00291i −0.568237 0.822865i \(-0.692374\pi\)
0.983658 0.180049i \(-0.0576258\pi\)
\(282\) 28.5632 + 19.0853i 1.70091 + 1.13651i
\(283\) −17.6486 + 3.51053i −1.04910 + 0.208679i −0.689394 0.724386i \(-0.742123\pi\)
−0.359707 + 0.933065i \(0.617123\pi\)
\(284\) −1.57540 0.313366i −0.0934827 0.0185949i
\(285\) 0 0
\(286\) 0.378995 + 0.567206i 0.0224104 + 0.0335396i
\(287\) 5.80161 14.0063i 0.342458 0.826768i
\(288\) −3.85282 + 3.85282i −0.227029 + 0.227029i
\(289\) −15.8418 6.16757i −0.931868 0.362798i
\(290\) 0 0
\(291\) −0.166997 0.403166i −0.00978952 0.0236340i
\(292\) −0.159054 + 0.799618i −0.00930793 + 0.0467941i
\(293\) 16.4811 0.962835 0.481417 0.876492i \(-0.340122\pi\)
0.481417 + 0.876492i \(0.340122\pi\)
\(294\) −6.68900 + 33.6279i −0.390110 + 1.96122i
\(295\) 0 0
\(296\) 1.88413 0.374777i 0.109513 0.0217835i
\(297\) 1.34768 0.558226i 0.0782002 0.0323916i
\(298\) −8.00274 + 3.31484i −0.463586 + 0.192024i
\(299\) 2.56114 0.509442i 0.148114 0.0294618i
\(300\) 0 0
\(301\) −5.76353 + 28.9752i −0.332204 + 1.67010i
\(302\) −22.7118 −1.30692
\(303\) −8.59534 + 43.2117i −0.493789 + 2.48245i
\(304\) −0.729105 1.76021i −0.0418170 0.100955i
\(305\) 0 0
\(306\) 18.5446 12.6806i 1.06013 0.724904i
\(307\) 3.83948 3.83948i 0.219130 0.219130i −0.589001 0.808132i \(-0.700479\pi\)
0.808132 + 0.589001i \(0.200479\pi\)
\(308\) 0.340025 0.820892i 0.0193747 0.0467747i
\(309\) −4.70882 7.04725i −0.267876 0.400904i
\(310\) 0 0
\(311\) 0.370233 + 0.0736439i 0.0209940 + 0.00417596i 0.205576 0.978641i \(-0.434093\pi\)
−0.184582 + 0.982817i \(0.559093\pi\)
\(312\) −9.48908 + 1.88750i −0.537214 + 0.106858i
\(313\) −12.9059 8.62342i −0.729482 0.487424i 0.134521 0.990911i \(-0.457050\pi\)
−0.864003 + 0.503486i \(0.832050\pi\)
\(314\) −1.64567 + 3.97299i −0.0928704 + 0.224209i
\(315\) 0 0
\(316\) 2.41778 + 12.1550i 0.136011 + 0.683771i
\(317\) −4.54883 22.8685i −0.255488 1.28442i −0.869029 0.494761i \(-0.835255\pi\)
0.613541 0.789663i \(-0.289745\pi\)
\(318\) −12.5044 + 8.35516i −0.701211 + 0.468534i
\(319\) 1.32342 1.32342i 0.0740974 0.0740974i
\(320\) 0 0
\(321\) −1.57933 + 0.654179i −0.0881495 + 0.0365127i
\(322\) −2.40503 2.40503i −0.134027 0.134027i
\(323\) 1.61500 + 7.68771i 0.0898611 + 0.427756i
\(324\) 4.34226i 0.241237i
\(325\) 0 0
\(326\) −3.31976 + 2.21819i −0.183865 + 0.122854i
\(327\) 10.3383i 0.571708i
\(328\) −1.94275 2.90753i −0.107270 0.160542i
\(329\) 28.4666 42.6033i 1.56941 2.34879i
\(330\) 0 0
\(331\) −2.05592 0.851588i −0.113003 0.0468075i 0.325465 0.945554i \(-0.394479\pi\)
−0.438469 + 0.898746i \(0.644479\pi\)
\(332\) 0.269470 + 0.650559i 0.0147891 + 0.0357041i
\(333\) 5.81526 8.70315i 0.318674 0.476930i
\(334\) −10.3137 6.89138i −0.564340 0.377080i
\(335\) 0 0
\(336\) 8.91069 + 8.91069i 0.486118 + 0.486118i
\(337\) 24.0500 + 4.78384i 1.31009 + 0.260592i 0.800243 0.599676i \(-0.204704\pi\)
0.509842 + 0.860268i \(0.329704\pi\)
\(338\) 1.77454 + 0.735037i 0.0965221 + 0.0399808i
\(339\) 9.59267 0.521002
\(340\) 0 0
\(341\) 1.79121 0.0969997
\(342\) −9.59089 3.97268i −0.518616 0.214818i
\(343\) 20.3927 + 4.05635i 1.10110 + 0.219022i
\(344\) 4.81844 + 4.81844i 0.259793 + 0.259793i
\(345\) 0 0
\(346\) −11.4669 7.66192i −0.616463 0.411907i
\(347\) −2.45220 + 3.66998i −0.131641 + 0.197015i −0.891434 0.453150i \(-0.850300\pi\)
0.759793 + 0.650165i \(0.225300\pi\)
\(348\) 10.1580 + 24.5236i 0.544527 + 1.31460i
\(349\) −2.43735 1.00958i −0.130468 0.0540418i 0.316494 0.948594i \(-0.397494\pi\)
−0.446963 + 0.894553i \(0.647494\pi\)
\(350\) 0 0
\(351\) −13.1621 + 19.6985i −0.702542 + 1.05143i
\(352\) −0.113862 0.170406i −0.00606886 0.00908269i
\(353\) 7.64333i 0.406813i 0.979094 + 0.203407i \(0.0652014\pi\)
−0.979094 + 0.203407i \(0.934799\pi\)
\(354\) −9.98227 + 6.66994i −0.530552 + 0.354503i
\(355\) 0 0
\(356\) 5.24039i 0.277740i
\(357\) −29.3275 42.8896i −1.55217 2.26996i
\(358\) 13.1034 + 13.1034i 0.692536 + 0.692536i
\(359\) −15.2351 + 6.31059i −0.804079 + 0.333060i −0.746589 0.665286i \(-0.768310\pi\)
−0.0574900 + 0.998346i \(0.518310\pi\)
\(360\) 0 0
\(361\) −10.8683 + 10.8683i −0.572014 + 0.572014i
\(362\) 16.5190 11.0377i 0.868220 0.580126i
\(363\) −6.21387 31.2392i −0.326143 1.63963i
\(364\) 2.81529 + 14.1534i 0.147561 + 0.741839i
\(365\) 0 0
\(366\) 1.19474 2.88437i 0.0624503 0.150768i
\(367\) −0.763616 0.510232i −0.0398605 0.0266339i 0.535480 0.844548i \(-0.320131\pi\)
−0.575341 + 0.817914i \(0.695131\pi\)
\(368\) −0.769445 + 0.153052i −0.0401101 + 0.00797840i
\(369\) −18.6872 3.71712i −0.972819 0.193506i
\(370\) 0 0
\(371\) 12.4621 + 18.6508i 0.647000 + 0.968303i
\(372\) −9.72172 + 23.4703i −0.504048 + 1.21688i
\(373\) 20.4777 20.4777i 1.06030 1.06030i 0.0622355 0.998061i \(-0.480177\pi\)
0.998061 0.0622355i \(-0.0198230\pi\)
\(374\) 0.331719 + 0.777181i 0.0171528 + 0.0401871i
\(375\) 0 0
\(376\) −4.52277 10.9189i −0.233244 0.563101i
\(377\) −5.93014 + 29.8128i −0.305418 + 1.53544i
\(378\) 30.8576 1.58715
\(379\) 1.18087 5.93665i 0.0606573 0.304945i −0.938532 0.345191i \(-0.887814\pi\)
0.999190 + 0.0402460i \(0.0128141\pi\)
\(380\) 0 0
\(381\) 14.7134 2.92668i 0.753790 0.149938i
\(382\) −6.42127 + 2.65978i −0.328541 + 0.136086i
\(383\) 26.9957 11.1820i 1.37942 0.571374i 0.435092 0.900386i \(-0.356716\pi\)
0.944326 + 0.329012i \(0.106716\pi\)
\(384\) 2.85081 0.567062i 0.145480 0.0289378i
\(385\) 0 0
\(386\) −3.60610 + 18.1291i −0.183546 + 0.922747i
\(387\) 37.1291 1.88738
\(388\) −0.0292893 + 0.147247i −0.00148694 + 0.00747535i
\(389\) 10.1663 + 24.5436i 0.515451 + 1.24441i 0.940672 + 0.339318i \(0.110196\pi\)
−0.425221 + 0.905090i \(0.639804\pi\)
\(390\) 0 0
\(391\) 3.23447 0.0346593i 0.163574 0.00175279i
\(392\) 8.34095 8.34095i 0.421282 0.421282i
\(393\) −12.1446 + 29.3197i −0.612615 + 1.47898i
\(394\) 6.03705 + 9.03509i 0.304142 + 0.455181i
\(395\) 0 0
\(396\) −1.09523 0.217855i −0.0550375 0.0109476i
\(397\) 18.6768 3.71505i 0.937363 0.186453i 0.297307 0.954782i \(-0.403911\pi\)
0.640055 + 0.768329i \(0.278911\pi\)
\(398\) −12.9187 8.63197i −0.647554 0.432681i
\(399\) −9.18790 + 22.1816i −0.459970 + 1.11047i
\(400\) 0 0
\(401\) −1.47933 7.43709i −0.0738742 0.371391i 0.926109 0.377257i \(-0.123133\pi\)
−0.999983 + 0.00586632i \(0.998133\pi\)
\(402\) 4.40702 + 22.1556i 0.219802 + 1.10502i
\(403\) −24.1886 + 16.1623i −1.20492 + 0.805100i
\(404\) 10.7181 10.7181i 0.533245 0.533245i
\(405\) 0 0
\(406\) 36.5781 15.1511i 1.81534 0.751938i
\(407\) 0.278395 + 0.278395i 0.0137995 + 0.0137995i
\(408\) −11.9838 + 0.128413i −0.593287 + 0.00635741i
\(409\) 10.2044i 0.504575i 0.967652 + 0.252287i \(0.0811828\pi\)
−0.967652 + 0.252287i \(0.918817\pi\)
\(410\) 0 0
\(411\) 42.1674 28.1754i 2.07997 1.38979i
\(412\) 2.91594i 0.143658i
\(413\) 9.94852 + 14.8890i 0.489535 + 0.732640i
\(414\) −2.37485 + 3.55421i −0.116717 + 0.174680i
\(415\) 0 0
\(416\) 3.07518 + 1.27378i 0.150773 + 0.0624523i
\(417\) −2.22005 5.35968i −0.108716 0.262465i
\(418\) 0.216934 0.324665i 0.0106106 0.0158799i
\(419\) 6.68327 + 4.46562i 0.326499 + 0.218160i 0.708006 0.706206i \(-0.249595\pi\)
−0.381507 + 0.924366i \(0.624595\pi\)
\(420\) 0 0
\(421\) 8.14770 + 8.14770i 0.397094 + 0.397094i 0.877207 0.480113i \(-0.159404\pi\)
−0.480113 + 0.877207i \(0.659404\pi\)
\(422\) −17.6704 3.51487i −0.860183 0.171101i
\(423\) −59.4941 24.6433i −2.89270 1.19820i
\(424\) 5.17393 0.251268
\(425\) 0 0
\(426\) 4.66887 0.226207
\(427\) −4.30216 1.78201i −0.208196 0.0862377i
\(428\) 0.576814 + 0.114735i 0.0278814 + 0.00554595i
\(429\) −1.40209 1.40209i −0.0676933 0.0676933i
\(430\) 0 0
\(431\) 8.95105 + 5.98090i 0.431157 + 0.288090i 0.752150 0.658992i \(-0.229017\pi\)
−0.320993 + 0.947081i \(0.604017\pi\)
\(432\) 3.95431 5.91804i 0.190252 0.284732i
\(433\) 10.7395 + 25.9274i 0.516107 + 1.24599i 0.940277 + 0.340410i \(0.110566\pi\)
−0.424170 + 0.905582i \(0.639434\pi\)
\(434\) 35.0070 + 14.5004i 1.68039 + 0.696040i
\(435\) 0 0
\(436\) 1.97602 2.95733i 0.0946343 0.141630i
\(437\) −0.830411 1.24280i −0.0397239 0.0594511i
\(438\) 2.36976i 0.113231i
\(439\) −4.11795 + 2.75152i −0.196539 + 0.131323i −0.649946 0.759981i \(-0.725208\pi\)
0.453407 + 0.891304i \(0.350208\pi\)
\(440\) 0 0
\(441\) 64.2723i 3.06058i
\(442\) −11.4921 7.50192i −0.546624 0.356830i
\(443\) −14.5879 14.5879i −0.693094 0.693094i 0.269818 0.962911i \(-0.413037\pi\)
−0.962911 + 0.269818i \(0.913037\pi\)
\(444\) −5.15878 + 2.13684i −0.244825 + 0.101410i
\(445\) 0 0
\(446\) −6.86488 + 6.86488i −0.325061 + 0.325061i
\(447\) 20.9346 13.9881i 0.990173 0.661612i
\(448\) −0.845799 4.25212i −0.0399602 0.200894i
\(449\) −5.09616 25.6201i −0.240503 1.20909i −0.892564 0.450922i \(-0.851095\pi\)
0.652061 0.758166i \(-0.273905\pi\)
\(450\) 0 0
\(451\) 0.274256 0.662114i 0.0129142 0.0311777i
\(452\) −2.74404 1.83351i −0.129069 0.0862411i
\(453\) 64.7473 12.8790i 3.04209 0.605110i
\(454\) 0.519043 + 0.103244i 0.0243599 + 0.00484548i
\(455\) 0 0
\(456\) 3.07669 + 4.60460i 0.144079 + 0.215630i
\(457\) −13.5785 + 32.7813i −0.635173 + 1.53344i 0.197865 + 0.980229i \(0.436599\pi\)
−0.833038 + 0.553215i \(0.813401\pi\)
\(458\) −20.6986 + 20.6986i −0.967182 + 0.967182i
\(459\) −20.5275 + 20.9722i −0.958144 + 0.978900i
\(460\) 0 0
\(461\) −6.81224 16.4462i −0.317277 0.765976i −0.999397 0.0347345i \(-0.988941\pi\)
0.682119 0.731241i \(-0.261059\pi\)
\(462\) −0.503850 + 2.53303i −0.0234412 + 0.117847i
\(463\) −33.8924 −1.57511 −0.787557 0.616242i \(-0.788654\pi\)
−0.787557 + 0.616242i \(0.788654\pi\)
\(464\) 1.78160 8.95670i 0.0827087 0.415804i
\(465\) 0 0
\(466\) −7.93687 + 1.57874i −0.367668 + 0.0731338i
\(467\) −12.0397 + 4.98700i −0.557130 + 0.230771i −0.643439 0.765498i \(-0.722493\pi\)
0.0863086 + 0.996268i \(0.472493\pi\)
\(468\) 16.7557 6.94046i 0.774535 0.320823i
\(469\) 33.0460 6.57326i 1.52592 0.303525i
\(470\) 0 0
\(471\) 2.43856 12.2595i 0.112363 0.564886i
\(472\) 4.13036 0.190115
\(473\) −0.272456 + 1.36973i −0.0125275 + 0.0629802i
\(474\) −13.7853 33.2806i −0.633178 1.52863i
\(475\) 0 0
\(476\) 0.191534 + 17.8744i 0.00877897 + 0.819271i
\(477\) 19.9342 19.9342i 0.912724 0.912724i
\(478\) 7.70476 18.6009i 0.352407 0.850787i
\(479\) 0.00324632 + 0.00485846i 0.000148328 + 0.000221989i 0.831544 0.555459i \(-0.187458\pi\)
−0.831395 + 0.555681i \(0.812458\pi\)
\(480\) 0 0
\(481\) −6.27142 1.24746i −0.285952 0.0568795i
\(482\) −8.99226 + 1.78867i −0.409586 + 0.0814718i
\(483\) 8.22009 + 5.49249i 0.374027 + 0.249917i
\(484\) −4.19344 + 10.1239i −0.190611 + 0.460176i
\(485\) 0 0
\(486\) 1.70337 + 8.56342i 0.0772664 + 0.388444i
\(487\) −5.65336 28.4214i −0.256178 1.28790i −0.867867 0.496797i \(-0.834509\pi\)
0.611689 0.791099i \(-0.290491\pi\)
\(488\) −0.893072 + 0.596732i −0.0404275 + 0.0270128i
\(489\) 8.20617 8.20617i 0.371096 0.371096i
\(490\) 0 0
\(491\) −28.8893 + 11.9663i −1.30376 + 0.540034i −0.923056 0.384665i \(-0.874317\pi\)
−0.380700 + 0.924698i \(0.624317\pi\)
\(492\) 7.18717 + 7.18717i 0.324023 + 0.324023i
\(493\) −14.0356 + 34.9392i −0.632131 + 1.57358i
\(494\) 6.34170i 0.285326i
\(495\) 0 0
\(496\) 7.26699 4.85565i 0.326298 0.218025i
\(497\) 6.96382i 0.312370i
\(498\) −1.13712 1.70182i −0.0509555 0.0762602i
\(499\) −3.60412 + 5.39395i −0.161343 + 0.241466i −0.903329 0.428949i \(-0.858884\pi\)
0.741986 + 0.670415i \(0.233884\pi\)
\(500\) 0 0
\(501\) 33.3102 + 13.7976i 1.48819 + 0.616429i
\(502\) 3.31477 + 8.00255i 0.147945 + 0.357171i
\(503\) 14.5628 21.7947i 0.649322 0.971779i −0.350063 0.936726i \(-0.613840\pi\)
0.999385 0.0350533i \(-0.0111601\pi\)
\(504\) −19.6413 13.1239i −0.874895 0.584586i
\(505\) 0 0
\(506\) −0.113692 0.113692i −0.00505421 0.00505421i
\(507\) −5.47569 1.08918i −0.243184 0.0483723i
\(508\) −4.76825 1.97507i −0.211557 0.0876298i
\(509\) −37.2931 −1.65299 −0.826495 0.562944i \(-0.809669\pi\)
−0.826495 + 0.562944i \(0.809669\pi\)
\(510\) 0 0
\(511\) −3.53460 −0.156361
\(512\) −0.923880 0.382683i −0.0408301 0.0169124i
\(513\) 13.3001 + 2.64556i 0.587215 + 0.116804i
\(514\) −2.81076 2.81076i −0.123977 0.123977i
\(515\) 0 0
\(516\) −16.4688 11.0041i −0.725000 0.484429i
\(517\) 1.34569 2.01396i 0.0591832 0.0885739i
\(518\) 3.18719 + 7.69456i 0.140037 + 0.338079i
\(519\) 37.0347 + 15.3403i 1.62564 + 0.673364i
\(520\) 0 0
\(521\) −3.95806 + 5.92366i −0.173406 + 0.259520i −0.907985 0.419003i \(-0.862380\pi\)
0.734579 + 0.678523i \(0.237380\pi\)
\(522\) −27.6444 41.3727i −1.20996 1.81083i
\(523\) 25.1852i 1.10127i 0.834745 + 0.550637i \(0.185615\pi\)
−0.834745 + 0.550637i \(0.814385\pi\)
\(524\) 9.07811 6.06580i 0.396579 0.264986i
\(525\) 0 0
\(526\) 30.7711i 1.34168i
\(527\) −33.1430 + 14.1462i −1.44373 + 0.616218i
\(528\) 0.421230 + 0.421230i 0.0183317 + 0.0183317i
\(529\) 20.6806 8.56619i 0.899157 0.372443i
\(530\) 0 0
\(531\) 15.9135 15.9135i 0.690588 0.690588i
\(532\) 6.86796 4.58903i 0.297764 0.198960i
\(533\) 2.27075 + 11.4158i 0.0983570 + 0.494474i
\(534\) −2.97163 14.9394i −0.128595 0.646491i
\(535\) 0 0
\(536\) 2.97409 7.18008i 0.128461 0.310132i
\(537\) −44.7858 29.9249i −1.93265 1.29136i
\(538\) 15.5704 3.09715i 0.671289 0.133528i
\(539\) 2.37107 + 0.471634i 0.102129 + 0.0203147i
\(540\) 0 0
\(541\) 3.83883 + 5.74521i 0.165044 + 0.247006i 0.904768 0.425904i \(-0.140044\pi\)
−0.739724 + 0.672910i \(0.765044\pi\)
\(542\) 7.54811 18.2228i 0.324219 0.782734i
\(543\) −40.8336 + 40.8336i −1.75234 + 1.75234i
\(544\) 3.45258 + 2.25381i 0.148028 + 0.0966313i
\(545\) 0 0
\(546\) −16.0517 38.7523i −0.686950 1.65844i
\(547\) 5.89185 29.6203i 0.251917 1.26647i −0.623008 0.782215i \(-0.714090\pi\)
0.874925 0.484258i \(-0.160910\pi\)
\(548\) −17.4476 −0.745325
\(549\) −1.14175 + 5.73994i −0.0487285 + 0.244975i
\(550\) 0 0
\(551\) 17.0647 3.39438i 0.726980 0.144605i
\(552\) 2.10676 0.872647i 0.0896695 0.0371423i
\(553\) −49.6395 + 20.5613i −2.11089 + 0.874357i
\(554\) −13.2845 + 2.64245i −0.564403 + 0.112267i
\(555\) 0 0
\(556\) −0.389372 + 1.95750i −0.0165130 + 0.0830166i
\(557\) 8.16499 0.345962 0.172981 0.984925i \(-0.444660\pi\)
0.172981 + 0.984925i \(0.444660\pi\)
\(558\) 9.29046 46.7063i 0.393297 1.97724i
\(559\) −8.67993 20.9552i −0.367122 0.886311i
\(560\) 0 0
\(561\) −1.38638 2.02749i −0.0585330 0.0856009i
\(562\) 12.8673 12.8673i 0.542773 0.542773i
\(563\) −0.275709 + 0.665621i −0.0116198 + 0.0280526i −0.929583 0.368613i \(-0.879833\pi\)
0.917963 + 0.396666i \(0.129833\pi\)
\(564\) 19.0853 + 28.5632i 0.803637 + 1.20273i
\(565\) 0 0
\(566\) −17.6486 3.51053i −0.741827 0.147559i
\(567\) −18.4638 + 3.67268i −0.775407 + 0.154238i
\(568\) −1.33556 0.892391i −0.0560388 0.0374439i
\(569\) −11.0704 + 26.7264i −0.464097 + 1.12043i 0.502604 + 0.864517i \(0.332376\pi\)
−0.966700 + 0.255911i \(0.917624\pi\)
\(570\) 0 0
\(571\) 5.99542 + 30.1410i 0.250901 + 1.26136i 0.876570 + 0.481274i \(0.159826\pi\)
−0.625670 + 0.780088i \(0.715174\pi\)
\(572\) 0.133085 + 0.669065i 0.00556458 + 0.0279750i
\(573\) 16.7976 11.2238i 0.701729 0.468881i
\(574\) 10.7200 10.7200i 0.447444 0.447444i
\(575\) 0 0
\(576\) −5.03395 + 2.08513i −0.209748 + 0.0868804i
\(577\) 14.2185 + 14.2185i 0.591924 + 0.591924i 0.938151 0.346227i \(-0.112537\pi\)
−0.346227 + 0.938151i \(0.612537\pi\)
\(578\) −12.2756 11.7605i −0.510600 0.489171i
\(579\) 53.7276i 2.23284i
\(580\) 0 0
\(581\) −2.53834 + 1.69606i −0.105308 + 0.0703645i
\(582\) 0.436383i 0.0180887i
\(583\) 0.589113 + 0.881670i 0.0243986 + 0.0365151i
\(584\) −0.452947 + 0.677883i −0.0187431 + 0.0280510i
\(585\) 0 0
\(586\) 15.2265 + 6.30703i 0.629002 + 0.260541i
\(587\) 4.65734 + 11.2438i 0.192229 + 0.464082i 0.990380 0.138376i \(-0.0441881\pi\)
−0.798151 + 0.602458i \(0.794188\pi\)
\(588\) −19.0487 + 28.5083i −0.785554 + 1.17566i
\(589\) 13.8454 + 9.25119i 0.570489 + 0.381189i
\(590\) 0 0
\(591\) −22.3340 22.3340i −0.918697 0.918697i
\(592\) 1.88413 + 0.374777i 0.0774373 + 0.0154032i
\(593\) −8.00069 3.31399i −0.328549 0.136089i 0.212311 0.977202i \(-0.431901\pi\)
−0.540860 + 0.841113i \(0.681901\pi\)
\(594\) 1.45872 0.0598518
\(595\) 0 0
\(596\) −8.66210 −0.354814
\(597\) 41.7235 + 17.2825i 1.70763 + 0.707324i
\(598\) 2.56114 + 0.509442i 0.104733 + 0.0208326i
\(599\) −10.9709 10.9709i −0.448260 0.448260i 0.446516 0.894776i \(-0.352665\pi\)
−0.894776 + 0.446516i \(0.852665\pi\)
\(600\) 0 0
\(601\) 11.5196 + 7.69712i 0.469893 + 0.313972i 0.767876 0.640599i \(-0.221314\pi\)
−0.297983 + 0.954571i \(0.596314\pi\)
\(602\) −16.4131 + 24.5640i −0.668950 + 1.00115i
\(603\) −16.2049 39.1221i −0.659915 1.59318i
\(604\) −20.9830 8.69145i −0.853786 0.353650i
\(605\) 0 0
\(606\) −24.4774 + 36.6331i −0.994328 + 1.48812i
\(607\) 15.5961 + 23.3412i 0.633025 + 0.947388i 0.999854 + 0.0170998i \(0.00544332\pi\)
−0.366829 + 0.930288i \(0.619557\pi\)
\(608\) 1.90524i 0.0772678i
\(609\) −95.6857 + 63.9351i −3.87738 + 2.59078i
\(610\) 0 0
\(611\) 39.3387i 1.59148i
\(612\) 21.9857 4.61866i 0.888719 0.186698i
\(613\) −13.6504 13.6504i −0.551333 0.551333i 0.375492 0.926826i \(-0.377474\pi\)
−0.926826 + 0.375492i \(0.877474\pi\)
\(614\) 5.01652 2.07791i 0.202450 0.0838576i
\(615\) 0 0
\(616\) 0.628283 0.628283i 0.0253143 0.0253143i
\(617\) −4.29364 + 2.86892i −0.172856 + 0.115498i −0.638988 0.769216i \(-0.720647\pi\)
0.466133 + 0.884715i \(0.345647\pi\)
\(618\) −1.65352 8.31280i −0.0665143 0.334390i
\(619\) 2.42896 + 12.2112i 0.0976280 + 0.490809i 0.998401 + 0.0565198i \(0.0180004\pi\)
−0.900774 + 0.434289i \(0.857000\pi\)
\(620\) 0 0
\(621\) 2.13685 5.15882i 0.0857490 0.207016i
\(622\) 0.313868 + 0.209720i 0.0125850 + 0.00840900i
\(623\) −22.2828 + 4.43232i −0.892740 + 0.177577i
\(624\) −9.48908 1.88750i −0.379867 0.0755603i
\(625\) 0 0
\(626\) −8.62342 12.9059i −0.344661 0.515822i
\(627\) −0.434334 + 1.04858i −0.0173456 + 0.0418761i
\(628\) −3.04080 + 3.04080i −0.121341 + 0.121341i
\(629\) −7.34979 2.95252i −0.293055 0.117725i
\(630\) 0 0
\(631\) 6.61850 + 15.9785i 0.263478 + 0.636093i 0.999149 0.0412464i \(-0.0131329\pi\)
−0.735671 + 0.677339i \(0.763133\pi\)
\(632\) −2.41778 + 12.1550i −0.0961740 + 0.483499i
\(633\) 52.3683 2.08145
\(634\) 4.54883 22.8685i 0.180657 0.908225i
\(635\) 0 0
\(636\) −14.7499 + 2.93394i −0.584872 + 0.116338i
\(637\) −36.2745 + 15.0254i −1.43725 + 0.595327i
\(638\) 1.72913 0.716231i 0.0684571 0.0283559i
\(639\) −8.58388 + 1.70744i −0.339573 + 0.0675452i
\(640\) 0 0
\(641\) −3.24162 + 16.2967i −0.128036 + 0.643683i 0.862458 + 0.506129i \(0.168924\pi\)
−0.990494 + 0.137554i \(0.956076\pi\)
\(642\) −1.70945 −0.0674667
\(643\) 5.69028 28.6070i 0.224403 1.12815i −0.690145 0.723671i \(-0.742453\pi\)
0.914548 0.404478i \(-0.132547\pi\)
\(644\) −1.30159 3.14232i −0.0512899 0.123825i
\(645\) 0 0
\(646\) −1.44989 + 7.72055i −0.0570453 + 0.303761i
\(647\) 24.7423 24.7423i 0.972719 0.972719i −0.0269187 0.999638i \(-0.508570\pi\)
0.999638 + 0.0269187i \(0.00856952\pi\)
\(648\) −1.66171 + 4.01173i −0.0652782 + 0.157596i
\(649\) 0.470291 + 0.703840i 0.0184605 + 0.0276281i
\(650\) 0 0
\(651\) −108.021 21.4867i −4.23368 0.842132i
\(652\) −3.91593 + 0.778926i −0.153360 + 0.0305051i
\(653\) 2.05543 + 1.37339i 0.0804352 + 0.0537451i 0.595138 0.803624i \(-0.297098\pi\)
−0.514702 + 0.857369i \(0.672098\pi\)
\(654\) −3.95629 + 9.55132i −0.154703 + 0.373486i
\(655\) 0 0
\(656\) −0.682203 3.42967i −0.0266355 0.133906i
\(657\) 0.866638 + 4.35688i 0.0338108 + 0.169978i
\(658\) 42.6033 28.4666i 1.66085 1.10974i
\(659\) 6.38040 6.38040i 0.248545 0.248545i −0.571828 0.820373i \(-0.693766\pi\)
0.820373 + 0.571828i \(0.193766\pi\)
\(660\) 0 0
\(661\) −36.7694 + 15.2304i −1.43016 + 0.592394i −0.957392 0.288791i \(-0.906747\pi\)
−0.472772 + 0.881185i \(0.656747\pi\)
\(662\) −1.57353 1.57353i −0.0611570 0.0611570i
\(663\) 37.0159 + 14.8698i 1.43758 + 0.577497i
\(664\) 0.704160i 0.0273267i
\(665\) 0 0
\(666\) 8.70315 5.81526i 0.337240 0.225337i
\(667\) 7.16437i 0.277406i
\(668\) −6.89138 10.3137i −0.266636 0.399048i
\(669\) 15.6777 23.4633i 0.606134 0.907144i
\(670\) 0 0
\(671\) −0.203374 0.0842402i −0.00785116 0.00325206i
\(672\) 4.82243 + 11.6424i 0.186029 + 0.449115i
\(673\) 16.3970 24.5399i 0.632059 0.945944i −0.367812 0.929900i \(-0.619893\pi\)
0.999871 0.0160435i \(-0.00510703\pi\)
\(674\) 20.3886 + 13.6232i 0.785339 + 0.524747i
\(675\) 0 0
\(676\) 1.35817 + 1.35817i 0.0522374 + 0.0522374i
\(677\) −19.6946 3.91750i −0.756925 0.150562i −0.198482 0.980105i \(-0.563601\pi\)
−0.558443 + 0.829543i \(0.688601\pi\)
\(678\) 8.86247 + 3.67095i 0.340361 + 0.140982i
\(679\) −0.650886 −0.0249787
\(680\) 0 0
\(681\) −1.53824 −0.0589455
\(682\) 1.65487 + 0.685468i 0.0633681 + 0.0262479i
\(683\) −16.7376 3.32933i −0.640448 0.127393i −0.135825 0.990733i \(-0.543369\pi\)
−0.504623 + 0.863340i \(0.668369\pi\)
\(684\) −7.34055 7.34055i −0.280673 0.280673i
\(685\) 0 0
\(686\) 17.2881 + 11.5515i 0.660061 + 0.441039i
\(687\) 47.2705 70.7453i 1.80348 2.69910i
\(688\) 2.60772 + 6.29559i 0.0994184 + 0.240017i
\(689\) −15.9108 6.59046i −0.606152 0.251076i
\(690\) 0 0
\(691\) 6.72848 10.0699i 0.255963 0.383076i −0.681126 0.732166i \(-0.738509\pi\)
0.937089 + 0.349090i \(0.113509\pi\)
\(692\) −7.66192 11.4669i −0.291262 0.435905i
\(693\) 4.84132i 0.183907i
\(694\) −3.66998 + 2.45220i −0.139311 + 0.0930843i
\(695\) 0 0
\(696\) 26.5442i 1.00615i
\(697\) 0.154488 + 14.4171i 0.00585163 + 0.546086i
\(698\) −1.86547 1.86547i −0.0706090 0.0706090i
\(699\) 21.7313 9.00140i 0.821953 0.340464i
\(700\) 0 0
\(701\) 14.2960 14.2960i 0.539954 0.539954i −0.383561 0.923515i \(-0.625303\pi\)
0.923515 + 0.383561i \(0.125303\pi\)
\(702\) −19.6985 + 13.1621i −0.743472 + 0.496772i
\(703\) 0.714041 + 3.58972i 0.0269305 + 0.135389i
\(704\) −0.0399830 0.201008i −0.00150691 0.00757577i
\(705\) 0 0
\(706\) −2.92498 + 7.06152i −0.110083 + 0.265764i
\(707\) 54.6399 + 36.5092i 2.05494 + 1.37307i
\(708\) −11.7749 + 2.34217i −0.442528 + 0.0880242i
\(709\) 23.2275 + 4.62024i 0.872327 + 0.173517i 0.610901 0.791707i \(-0.290807\pi\)
0.261426 + 0.965224i \(0.415807\pi\)
\(710\) 0 0
\(711\) 37.5157 + 56.1462i 1.40695 + 2.10565i
\(712\) −2.00541 + 4.84149i −0.0751560 + 0.181443i
\(713\) 4.84839 4.84839i 0.181574 0.181574i
\(714\) −10.6819 50.8479i −0.399761 1.90294i
\(715\) 0 0
\(716\) 7.09151 + 17.1204i 0.265022 + 0.639820i
\(717\) −11.4169 + 57.3969i −0.426374 + 2.14353i
\(718\) −16.4904 −0.615415
\(719\) 4.20295 21.1297i 0.156744 0.788003i −0.819794 0.572658i \(-0.805912\pi\)
0.976538 0.215345i \(-0.0690877\pi\)
\(720\) 0 0
\(721\) −12.3989 + 2.46630i −0.461760 + 0.0918497i
\(722\) −14.2001 + 5.88186i −0.528472 + 0.218900i
\(723\) 24.6210 10.1983i 0.915664 0.379281i
\(724\) 19.4855 3.87591i 0.724173 0.144047i
\(725\) 0 0
\(726\) 6.21387 31.2392i 0.230618 1.15940i
\(727\) −16.4509 −0.610131 −0.305065 0.952331i \(-0.598678\pi\)
−0.305065 + 0.952331i \(0.598678\pi\)
\(728\) −2.81529 + 14.1534i −0.104341 + 0.524560i
\(729\) −14.6971 35.4820i −0.544338 1.31415i
\(730\) 0 0
\(731\) −5.77622 27.4959i −0.213641 1.01697i
\(732\) 2.20760 2.20760i 0.0815952 0.0815952i
\(733\) 14.9219 36.0246i 0.551152 1.33060i −0.365462 0.930826i \(-0.619089\pi\)
0.916614 0.399773i \(-0.130911\pi\)
\(734\) −0.510232 0.763616i −0.0188330 0.0281856i
\(735\) 0 0
\(736\) −0.769445 0.153052i −0.0283621 0.00564158i
\(737\) 1.56217 0.310734i 0.0575431 0.0114460i
\(738\) −15.8423 10.5855i −0.583162 0.389656i
\(739\) 12.2812 29.6494i 0.451771 1.09067i −0.519877 0.854241i \(-0.674022\pi\)
0.971648 0.236431i \(-0.0759778\pi\)
\(740\) 0 0
\(741\) −3.59614 18.0790i −0.132107 0.664149i
\(742\) 4.37610 + 22.0002i 0.160652 + 0.807651i
\(743\) 42.5782 28.4498i 1.56204 1.04372i 0.590445 0.807078i \(-0.298952\pi\)
0.971596 0.236645i \(-0.0760478\pi\)
\(744\) −17.9634 + 17.9634i −0.658570 + 0.658570i
\(745\) 0 0
\(746\) 26.7555 11.0825i 0.979587 0.405758i
\(747\) 2.71300 + 2.71300i 0.0992634 + 0.0992634i
\(748\) 0.00905430 + 0.844965i 0.000331058 + 0.0308950i
\(749\) 2.54972i 0.0931649i
\(750\) 0 0
\(751\) 22.9913 15.3623i 0.838965 0.560578i −0.0602011 0.998186i \(-0.519174\pi\)
0.899166 + 0.437608i \(0.144174\pi\)
\(752\) 11.8186i 0.430979i
\(753\) −13.9877 20.9341i −0.509741 0.762882i
\(754\) −16.8876 + 25.2741i −0.615011 + 0.920429i
\(755\) 0 0
\(756\) 28.5087 + 11.8087i 1.03685 + 0.429479i
\(757\) 11.9275 + 28.7956i 0.433513 + 1.04659i 0.978146 + 0.207919i \(0.0666691\pi\)
−0.544633 + 0.838675i \(0.683331\pi\)
\(758\) 3.36284 5.03285i 0.122144 0.182801i
\(759\) 0.388584 + 0.259643i 0.0141047 + 0.00942446i
\(760\) 0 0
\(761\) −27.3997 27.3997i −0.993237 0.993237i 0.00674063 0.999977i \(-0.497854\pi\)
−0.999977 + 0.00674063i \(0.997854\pi\)
\(762\) 14.7134 + 2.92668i 0.533010 + 0.106022i
\(763\) 14.2462 + 5.90098i 0.515748 + 0.213630i
\(764\) −6.95033 −0.251454
\(765\) 0 0
\(766\) 29.2200 1.05576
\(767\) −12.7016 5.26118i −0.458629 0.189970i
\(768\) 2.85081 + 0.567062i 0.102870 + 0.0204621i
\(769\) 16.7358 + 16.7358i 0.603507 + 0.603507i 0.941241 0.337735i \(-0.109661\pi\)
−0.337735 + 0.941241i \(0.609661\pi\)
\(770\) 0 0
\(771\) 9.60684 + 6.41909i 0.345982 + 0.231178i
\(772\) −10.2693 + 15.3691i −0.369601 + 0.553146i
\(773\) −1.38145 3.33513i −0.0496875 0.119956i 0.897087 0.441854i \(-0.145679\pi\)
−0.946774 + 0.321898i \(0.895679\pi\)
\(774\) 34.3028 + 14.2087i 1.23299 + 0.510721i
\(775\) 0 0
\(776\) −0.0834089 + 0.124830i −0.00299420 + 0.00448114i
\(777\) −13.4494 20.1284i −0.482494 0.722103i
\(778\) 26.5658i 0.952429i
\(779\) 5.53955 3.70141i 0.198475 0.132617i
\(780\) 0 0
\(781\) 0.329197i 0.0117796i
\(782\) 3.00153 + 1.20576i 0.107334 + 0.0431178i
\(783\) 45.9611 + 45.9611i 1.64252 + 1.64252i
\(784\) 10.8980 4.51409i 0.389213 0.161217i
\(785\) 0 0
\(786\) −22.4403 + 22.4403i −0.800419 + 0.800419i
\(787\) −37.2222 + 24.8711i −1.32683 + 0.886557i −0.998320 0.0579442i \(-0.981545\pi\)
−0.328507 + 0.944502i \(0.606545\pi\)
\(788\) 2.11993 + 10.6576i 0.0755194 + 0.379662i
\(789\) 17.4491 + 87.7226i 0.621205 + 3.12301i
\(790\) 0 0
\(791\) 5.47539 13.2188i 0.194683 0.470005i
\(792\) −0.928493 0.620400i −0.0329926 0.0220449i
\(793\) 3.50646 0.697479i 0.124518 0.0247682i
\(794\) 18.6768 + 3.71505i 0.662816 + 0.131842i
\(795\) 0 0
\(796\) −8.63197 12.9187i −0.305952 0.457890i
\(797\) 6.32428 15.2682i 0.224017 0.540826i −0.771411 0.636337i \(-0.780449\pi\)
0.995428 + 0.0955114i \(0.0304486\pi\)
\(798\) −16.9770 + 16.9770i −0.600980 + 0.600980i
\(799\) −8.99396 + 47.8920i −0.318183 + 1.69430i
\(800\) 0 0
\(801\) 10.9269 + 26.3799i 0.386083 + 0.932086i
\(802\) 1.47933 7.43709i 0.0522370 0.262613i
\(803\) −0.167089 −0.00589644
\(804\) −4.40702 + 22.1556i −0.155424 + 0.781367i
\(805\) 0 0
\(806\) −28.5324 + 5.67544i −1.00501 + 0.199909i
\(807\) −42.6321 + 17.6588i −1.50072 + 0.621620i
\(808\) 14.0039 5.80059i 0.492654 0.204064i
\(809\) −13.8880 + 2.76250i −0.488276 + 0.0971242i −0.433088 0.901352i \(-0.642576\pi\)
−0.0551885 + 0.998476i \(0.517576\pi\)
\(810\) 0 0
\(811\) 2.59779 13.0600i 0.0912209 0.458598i −0.907994 0.418983i \(-0.862387\pi\)
0.999215 0.0396154i \(-0.0126133\pi\)
\(812\) 39.5918 1.38940
\(813\) −11.1848 + 56.2299i −0.392269 + 1.97207i
\(814\) 0.150666 + 0.363740i 0.00528085 + 0.0127491i
\(815\) 0 0
\(816\) −11.1207 4.46736i −0.389303 0.156389i
\(817\) −9.18029 + 9.18029i −0.321178 + 0.321178i
\(818\) −3.90505 + 9.42763i −0.136537 + 0.329629i
\(819\) 43.6836 + 65.3772i 1.52643 + 2.28446i
\(820\) 0 0
\(821\) 34.1291 + 6.78870i 1.19111 + 0.236927i 0.750562 0.660800i \(-0.229783\pi\)
0.440552 + 0.897727i \(0.354783\pi\)
\(822\) 49.7399 9.89388i 1.73488 0.345089i
\(823\) 17.2766 + 11.5439i 0.602226 + 0.402394i 0.818972 0.573834i \(-0.194544\pi\)
−0.216746 + 0.976228i \(0.569544\pi\)
\(824\) −1.11588 + 2.69398i −0.0388736 + 0.0938491i
\(825\) 0 0
\(826\) 3.49346 + 17.5628i 0.121553 + 0.611087i
\(827\) −3.28843 16.5320i −0.114350 0.574875i −0.994895 0.100914i \(-0.967823\pi\)
0.880545 0.473962i \(-0.157177\pi\)
\(828\) −3.55421 + 2.37485i −0.123517 + 0.0825317i
\(829\) −6.04684 + 6.04684i −0.210015 + 0.210015i −0.804274 0.594259i \(-0.797446\pi\)
0.594259 + 0.804274i \(0.297446\pi\)
\(830\) 0 0
\(831\) 36.3731 15.0662i 1.26177 0.522642i
\(832\) 2.35364 + 2.35364i 0.0815978 + 0.0815978i
\(833\) −47.5967 + 9.99892i −1.64913 + 0.346442i
\(834\) 5.80128i 0.200882i
\(835\) 0 0
\(836\) 0.324665 0.216934i 0.0112288 0.00750283i
\(837\) 62.2071i 2.15019i
\(838\) 4.46562 + 6.68327i 0.154262 + 0.230870i
\(839\) 7.84414 11.7396i 0.270810 0.405295i −0.670992 0.741465i \(-0.734131\pi\)
0.941802 + 0.336169i \(0.109131\pi\)
\(840\) 0 0
\(841\) 50.2559 + 20.8167i 1.73296 + 0.717817i
\(842\) 4.40950 + 10.6455i 0.151961 + 0.366867i
\(843\) −29.3857 + 43.9788i −1.01210 + 1.51471i
\(844\) −14.9803 10.0095i −0.515642 0.344541i
\(845\) 0 0
\(846\) −45.5348 45.5348i −1.56552 1.56552i
\(847\) −46.5947 9.26826i −1.60101 0.318461i
\(848\) 4.78009 + 1.97998i 0.164149 + 0.0679927i
\(849\) 52.3036 1.79506
\(850\) 0 0
\(851\) 1.50710 0.0516626
\(852\) 4.31347 + 1.78670i 0.147777 + 0.0612112i
\(853\) 5.45336 + 1.08474i 0.186720 + 0.0371408i 0.287564 0.957761i \(-0.407155\pi\)
−0.100845 + 0.994902i \(0.532155\pi\)
\(854\) −3.29273 3.29273i −0.112675 0.112675i
\(855\) 0 0
\(856\) 0.488999 + 0.326739i 0.0167136 + 0.0111677i
\(857\) −4.63849 + 6.94199i −0.158448 + 0.237134i −0.902196 0.431326i \(-0.858046\pi\)
0.743748 + 0.668460i \(0.233046\pi\)
\(858\) −0.758803 1.83191i −0.0259051 0.0625405i
\(859\) 25.9674 + 10.7561i 0.885997 + 0.366992i 0.778819 0.627248i \(-0.215819\pi\)
0.107177 + 0.994240i \(0.465819\pi\)
\(860\) 0 0
\(861\) −24.4818 + 36.6396i −0.834337 + 1.24867i
\(862\) 5.98090 + 8.95105i 0.203710 + 0.304874i
\(863\) 6.00314i 0.204349i −0.994766 0.102175i \(-0.967420\pi\)
0.994766 0.102175i \(-0.0325800\pi\)
\(864\) 5.91804 3.95431i 0.201336 0.134528i
\(865\) 0 0
\(866\) 28.0636i 0.953641i
\(867\) 41.6645 + 26.5658i 1.41500 + 0.902224i
\(868\) 26.7932 + 26.7932i 0.909421 + 0.909421i
\(869\) −2.34658 + 0.971985i −0.0796022 + 0.0329723i
\(870\) 0 0
\(871\) −18.2917 + 18.2917i −0.619791 + 0.619791i
\(872\) 2.95733 1.97602i 0.100148 0.0669166i
\(873\) 0.159589 + 0.802307i 0.00540126 + 0.0271540i
\(874\) −0.291602 1.46598i −0.00986357 0.0495875i
\(875\) 0 0
\(876\) 0.906866 2.18937i 0.0306402 0.0739719i
\(877\) −11.5066 7.68846i −0.388550 0.259621i 0.345917 0.938265i \(-0.387568\pi\)
−0.734467 + 0.678644i \(0.762568\pi\)
\(878\) −4.85745 + 0.966207i −0.163931 + 0.0326079i
\(879\) −46.9845 9.34579i −1.58475 0.315226i
\(880\) 0 0
\(881\) 8.61265 + 12.8897i 0.290168 + 0.434267i 0.947701 0.319159i \(-0.103400\pi\)
−0.657534 + 0.753425i \(0.728400\pi\)
\(882\) 24.5959 59.3798i 0.828188 1.99942i
\(883\) −15.7079 + 15.7079i −0.528614 + 0.528614i −0.920159 0.391545i \(-0.871941\pi\)
0.391545 + 0.920159i \(0.371941\pi\)
\(884\) −7.74646 11.3287i −0.260542 0.381026i
\(885\) 0 0
\(886\) −7.89494 19.0601i −0.265236 0.640335i
\(887\) 3.84511 19.3307i 0.129106 0.649061i −0.860984 0.508631i \(-0.830152\pi\)
0.990091 0.140430i \(-0.0448484\pi\)
\(888\) −5.58383 −0.187381
\(889\) 4.36527 21.9457i 0.146406 0.736035i
\(890\) 0 0
\(891\) −0.872829 + 0.173617i −0.0292409 + 0.00581637i
\(892\) −8.96939 + 3.71524i −0.300317 + 0.124396i
\(893\) 20.8032 8.61698i 0.696154 0.288356i
\(894\) 24.6941 4.91195i 0.825893 0.164280i
\(895\) 0 0
\(896\) 0.845799 4.25212i 0.0282562 0.142053i
\(897\) −7.59022 −0.253430
\(898\) 5.09616 25.6201i 0.170061 0.854954i
\(899\) 30.5437 + 73.7391i 1.01869 + 2.45934i
\(900\) 0 0
\(901\) −17.8634 11.6611i −0.595117 0.388486i
\(902\) 0.506760 0.506760i 0.0168733 0.0168733i
\(903\) 32.8615 79.3347i 1.09356 2.64009i
\(904\) −1.83351 2.74404i −0.0609816 0.0912655i
\(905\) 0 0
\(906\) 64.7473 + 12.8790i 2.15108 + 0.427877i
\(907\) 33.2225 6.60837i 1.10314 0.219427i 0.390251 0.920708i \(-0.372388\pi\)
0.712885 + 0.701281i \(0.247388\pi\)
\(908\) 0.440023 + 0.294014i 0.0146027 + 0.00975721i
\(909\) 31.6057 76.3028i 1.04829 2.53081i
\(910\) 0 0
\(911\) −11.2044 56.3285i −0.371220 1.86625i −0.487636 0.873047i \(-0.662141\pi\)
0.116416 0.993200i \(-0.462859\pi\)
\(912\) 1.08039 + 5.43149i 0.0357753 + 0.179855i
\(913\) −0.119993 + 0.0801770i −0.00397120 + 0.00265347i
\(914\) −25.0897 + 25.0897i −0.829894 + 0.829894i
\(915\) 0 0
\(916\) −27.0440 + 11.2020i −0.893560 + 0.370125i
\(917\) 33.4707 + 33.4707i 1.10530 + 1.10530i
\(918\) −26.9907 + 11.5203i −0.890826 + 0.380226i
\(919\) 52.4129i 1.72894i 0.502682 + 0.864472i \(0.332347\pi\)
−0.502682 + 0.864472i \(0.667653\pi\)
\(920\) 0 0
\(921\) −13.1229 + 8.76841i −0.432413 + 0.288929i
\(922\) 17.8012i 0.586252i
\(923\) 2.97037 + 4.44547i 0.0977709 + 0.146325i
\(924\) −1.43484 + 2.14740i −0.0472029 + 0.0706441i
\(925\) 0 0
\(926\) −31.3125 12.9701i −1.02899 0.426223i
\(927\) 6.08011 + 14.6787i 0.199697 + 0.482111i
\(928\) 5.07356 7.59313i 0.166548 0.249257i
\(929\) −2.80819 1.87637i −0.0921337 0.0615617i 0.508650 0.860973i \(-0.330145\pi\)
−0.600784 + 0.799412i \(0.705145\pi\)
\(930\) 0 0
\(931\) 15.8915 + 15.8915i 0.520824 + 0.520824i
\(932\) −7.93687 1.57874i −0.259981 0.0517134i
\(933\) −1.01370 0.419890i −0.0331872 0.0137466i
\(934\) −13.0317 −0.426409
\(935\) 0 0
\(936\) 18.1363 0.592803
\(937\) −7.80256 3.23192i −0.254898 0.105582i 0.251575 0.967838i \(-0.419051\pi\)
−0.506474 + 0.862255i \(0.669051\pi\)
\(938\) 33.0460 + 6.57326i 1.07899 + 0.214625i
\(939\) 31.9022 + 31.9022i 1.04109 + 1.04109i
\(940\) 0 0
\(941\) 7.93491 + 5.30194i 0.258671 + 0.172838i 0.678143 0.734930i \(-0.262785\pi\)
−0.419472 + 0.907768i \(0.637785\pi\)
\(942\) 6.94442 10.3931i 0.226262 0.338624i
\(943\) −1.04984 2.53453i −0.0341874 0.0825356i
\(944\) 3.81596 + 1.58062i 0.124199 + 0.0514448i
\(945\) 0 0
\(946\) −0.775889 + 1.16120i −0.0252263 + 0.0377539i
\(947\) −13.0308 19.5020i −0.423445 0.633730i 0.557003 0.830511i \(-0.311951\pi\)
−0.980448 + 0.196781i \(0.936951\pi\)
\(948\) 36.0226i 1.16996i
\(949\) 2.25637 1.50766i 0.0732449 0.0489407i
\(950\) 0 0
\(951\) 67.7734i 2.19770i
\(952\) −6.66327 + 16.5871i −0.215958 + 0.537590i
\(953\) −14.9101 14.9101i −0.482986 0.482986i 0.423098 0.906084i \(-0.360943\pi\)
−0.906084 + 0.423098i \(0.860943\pi\)
\(954\) 26.0453 10.7883i 0.843247 0.349284i
\(955\) 0 0
\(956\) 14.2365 14.2365i 0.460442 0.460442i
\(957\) −4.52330 + 3.02237i −0.146217 + 0.0976993i
\(958\) 0.00113996 + 0.00573095i 3.68303e−5 + 0.000185158i
\(959\) −14.7572 74.1893i −0.476534 2.39570i
\(960\) 0 0
\(961\) −17.3687 + 41.9317i −0.560279 + 1.35263i
\(962\) −5.31666 3.55248i −0.171416 0.114536i
\(963\) 3.14289 0.625159i 0.101278 0.0201455i
\(964\) −8.99226 1.78867i −0.289621 0.0576093i
\(965\) 0 0
\(966\) 5.49249 + 8.22009i 0.176718 + 0.264477i
\(967\) −8.95502 + 21.6193i −0.287974 + 0.695231i −0.999976 0.00694687i \(-0.997789\pi\)
0.712002 + 0.702178i \(0.247789\pi\)
\(968\) −7.74847 + 7.74847i −0.249045 + 0.249045i
\(969\) −0.244659 22.8320i −0.00785957 0.733471i
\(970\) 0 0
\(971\) −15.8385 38.2375i −0.508281 1.22710i −0.944872 0.327439i \(-0.893814\pi\)
0.436591 0.899660i \(-0.356186\pi\)
\(972\) −1.70337 + 8.56342i −0.0546356 + 0.274672i
\(973\) −8.65286 −0.277398
\(974\) 5.65336 28.4214i 0.181145 0.910680i
\(975\) 0 0
\(976\) −1.05345 + 0.209544i −0.0337201 + 0.00670735i
\(977\) 43.4070 17.9798i 1.38871 0.575223i 0.441916 0.897057i \(-0.354299\pi\)
0.946796 + 0.321833i \(0.104299\pi\)
\(978\) 10.7219 4.44115i 0.342848 0.142012i
\(979\) −1.05336 + 0.209526i −0.0336655 + 0.00669649i
\(980\) 0 0
\(981\) 3.78078 19.0073i 0.120711 0.606856i
\(982\) −31.2696 −0.997852
\(983\) −9.25506 + 46.5284i −0.295191 + 1.48402i 0.493777 + 0.869589i \(0.335616\pi\)
−0.788967 + 0.614435i \(0.789384\pi\)
\(984\) 3.88967 + 9.39049i 0.123998 + 0.299358i
\(985\) 0 0
\(986\) −26.3378 + 26.9084i −0.838767 + 0.856938i
\(987\) −105.312 + 105.312i −3.35211 + 3.35211i
\(988\) −2.42686 + 5.85896i −0.0772088 + 0.186398i
\(989\) 2.97005 + 4.44500i 0.0944422 + 0.141343i
\(990\) 0 0
\(991\) 44.9876 + 8.94859i 1.42908 + 0.284261i 0.848177 0.529712i \(-0.177700\pi\)
0.580902 + 0.813974i \(0.302700\pi\)
\(992\) 8.57200 1.70508i 0.272161 0.0541363i
\(993\) 5.37813 + 3.59355i 0.170670 + 0.114038i
\(994\) 2.66494 6.43373i 0.0845267 0.204066i
\(995\) 0 0
\(996\) −0.399303 2.00743i −0.0126524 0.0636078i
\(997\) 7.84644 + 39.4467i 0.248499 + 1.24929i 0.880397 + 0.474238i \(0.157276\pi\)
−0.631897 + 0.775052i \(0.717724\pi\)
\(998\) −5.39395 + 3.60412i −0.170743 + 0.114087i
\(999\) −9.66837 + 9.66837i −0.305894 + 0.305894i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.s.d.743.1 40
5.2 odd 4 850.2.v.d.607.1 40
5.3 odd 4 170.2.r.b.97.5 yes 40
5.4 even 2 170.2.o.b.63.5 yes 40
17.10 odd 16 850.2.v.d.843.1 40
85.27 even 16 inner 850.2.s.d.707.1 40
85.44 odd 16 170.2.r.b.163.5 yes 40
85.78 even 16 170.2.o.b.27.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.b.27.5 40 85.78 even 16
170.2.o.b.63.5 yes 40 5.4 even 2
170.2.r.b.97.5 yes 40 5.3 odd 4
170.2.r.b.163.5 yes 40 85.44 odd 16
850.2.s.d.707.1 40 85.27 even 16 inner
850.2.s.d.743.1 40 1.1 even 1 trivial
850.2.v.d.607.1 40 5.2 odd 4
850.2.v.d.843.1 40 17.10 odd 16