Properties

Label 850.2.v.d.607.1
Level $850$
Weight $2$
Character 850.607
Analytic conductor $6.787$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(5\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 607.1
Character \(\chi\) \(=\) 850.607
Dual form 850.2.v.d.843.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.382683 + 0.923880i) q^{2} +(-0.567062 + 2.85081i) q^{3} +(-0.707107 - 0.707107i) q^{4} +(-2.41680 - 1.61486i) q^{6} +(-3.60477 - 2.40863i) q^{7} +(0.923880 - 0.382683i) q^{8} +(-5.03395 - 2.08513i) q^{9} +(-0.113862 + 0.170406i) q^{11} +(2.41680 - 1.61486i) q^{12} -3.32855 q^{13} +(3.60477 - 2.40863i) q^{14} +1.00000i q^{16} +(4.05227 + 0.761002i) q^{17} +(3.85282 - 3.85282i) q^{18} +(1.76021 - 0.729105i) q^{19} +(8.91069 - 8.91069i) q^{21} +(-0.113862 - 0.170406i) q^{22} +(0.769445 - 0.153052i) q^{23} +(0.567062 + 2.85081i) q^{24} +(1.27378 - 3.07518i) q^{26} +(3.95431 - 5.91804i) q^{27} +(0.845799 + 4.25212i) q^{28} +(8.95670 + 1.78160i) q^{29} +(-4.85565 - 7.26699i) q^{31} +(-0.923880 - 0.382683i) q^{32} +(-0.421230 - 0.421230i) q^{33} +(-2.25381 + 3.45258i) q^{34} +(2.08513 + 5.03395i) q^{36} +(1.88413 + 0.374777i) q^{37} +1.90524i q^{38} +(1.88750 - 9.48908i) q^{39} +(-3.42967 + 0.682203i) q^{41} +(4.82243 + 11.6424i) q^{42} +(-2.60772 - 6.29559i) q^{43} +(0.201008 - 0.0399830i) q^{44} +(-0.153052 + 0.769445i) q^{46} -11.8186i q^{47} +(-2.85081 - 0.567062i) q^{48} +(4.51409 + 10.8980i) q^{49} +(-4.46736 + 11.1207i) q^{51} +(2.35364 + 2.35364i) q^{52} +(-4.78009 - 1.97998i) q^{53} +(3.95431 + 5.91804i) q^{54} +(-4.25212 - 0.845799i) q^{56} +(1.08039 + 5.43149i) q^{57} +(-5.07356 + 7.59313i) q^{58} +(-1.58062 + 3.81596i) q^{59} +(0.209544 + 1.05345i) q^{61} +(8.57200 - 1.70508i) q^{62} +(13.1239 + 19.6413i) q^{63} +(0.707107 - 0.707107i) q^{64} +(0.550364 - 0.227968i) q^{66} +(5.49540 - 5.49540i) q^{67} +(-2.32728 - 3.40350i) q^{68} +2.28034i q^{69} +(-1.33556 + 0.892391i) q^{71} -5.44870 q^{72} +(0.677883 - 0.452947i) q^{73} +(-1.06727 + 1.59729i) q^{74} +(-1.76021 - 0.729105i) q^{76} +(0.820892 - 0.340025i) q^{77} +(8.04446 + 5.37513i) q^{78} +(-10.3045 - 6.88525i) q^{79} +(3.07044 + 3.07044i) q^{81} +(0.682203 - 3.42967i) q^{82} +(0.269470 - 0.650559i) q^{83} -12.6016 q^{84} +6.81430 q^{86} +(-10.1580 + 24.5236i) q^{87} +(-0.0399830 + 0.201008i) q^{88} +(-3.70552 - 3.70552i) q^{89} +(11.9987 + 8.01725i) q^{91} +(-0.652304 - 0.435856i) q^{92} +(23.4703 - 9.72172i) q^{93} +(10.9189 + 4.52277i) q^{94} +(1.61486 - 2.41680i) q^{96} +(-0.124830 + 0.0834089i) q^{97} -11.7959 q^{98} +(0.928493 - 0.620400i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 16 q^{18} - 8 q^{26} - 24 q^{27} + 8 q^{28} + 8 q^{29} - 16 q^{31} + 32 q^{33} + 8 q^{34} - 32 q^{39} - 56 q^{41} + 24 q^{42} - 16 q^{43} + 16 q^{44} + 16 q^{49} - 32 q^{51} + 16 q^{52} - 16 q^{53}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.382683 + 0.923880i −0.270598 + 0.653281i
\(3\) −0.567062 + 2.85081i −0.327394 + 1.64592i 0.369855 + 0.929089i \(0.379407\pi\)
−0.697249 + 0.716829i \(0.745593\pi\)
\(4\) −0.707107 0.707107i −0.353553 0.353553i
\(5\) 0 0
\(6\) −2.41680 1.61486i −0.986656 0.659263i
\(7\) −3.60477 2.40863i −1.36248 0.910377i −0.362707 0.931903i \(-0.618148\pi\)
−0.999768 + 0.0215260i \(0.993148\pi\)
\(8\) 0.923880 0.382683i 0.326641 0.135299i
\(9\) −5.03395 2.08513i −1.67798 0.695043i
\(10\) 0 0
\(11\) −0.113862 + 0.170406i −0.0343306 + 0.0513794i −0.848238 0.529615i \(-0.822336\pi\)
0.813907 + 0.580995i \(0.197336\pi\)
\(12\) 2.41680 1.61486i 0.697671 0.466169i
\(13\) −3.32855 −0.923174 −0.461587 0.887095i \(-0.652720\pi\)
−0.461587 + 0.887095i \(0.652720\pi\)
\(14\) 3.60477 2.40863i 0.963416 0.643734i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) 4.05227 + 0.761002i 0.982819 + 0.184570i
\(18\) 3.85282 3.85282i 0.908117 0.908117i
\(19\) 1.76021 0.729105i 0.403821 0.167268i −0.171522 0.985180i \(-0.554869\pi\)
0.575343 + 0.817912i \(0.304869\pi\)
\(20\) 0 0
\(21\) 8.91069 8.91069i 1.94447 1.94447i
\(22\) −0.113862 0.170406i −0.0242754 0.0363307i
\(23\) 0.769445 0.153052i 0.160440 0.0319136i −0.114216 0.993456i \(-0.536436\pi\)
0.274657 + 0.961542i \(0.411436\pi\)
\(24\) 0.567062 + 2.85081i 0.115751 + 0.581920i
\(25\) 0 0
\(26\) 1.27378 3.07518i 0.249809 0.603093i
\(27\) 3.95431 5.91804i 0.761007 1.13893i
\(28\) 0.845799 + 4.25212i 0.159841 + 0.803575i
\(29\) 8.95670 + 1.78160i 1.66322 + 0.330835i 0.935037 0.354550i \(-0.115366\pi\)
0.728181 + 0.685385i \(0.240366\pi\)
\(30\) 0 0
\(31\) −4.85565 7.26699i −0.872100 1.30519i −0.951279 0.308330i \(-0.900230\pi\)
0.0791791 0.996860i \(-0.474770\pi\)
\(32\) −0.923880 0.382683i −0.163320 0.0676495i
\(33\) −0.421230 0.421230i −0.0733267 0.0733267i
\(34\) −2.25381 + 3.45258i −0.386525 + 0.592113i
\(35\) 0 0
\(36\) 2.08513 + 5.03395i 0.347521 + 0.838991i
\(37\) 1.88413 + 0.374777i 0.309749 + 0.0616129i 0.347517 0.937674i \(-0.387025\pi\)
−0.0377681 + 0.999287i \(0.512025\pi\)
\(38\) 1.90524i 0.309071i
\(39\) 1.88750 9.48908i 0.302241 1.51947i
\(40\) 0 0
\(41\) −3.42967 + 0.682203i −0.535624 + 0.106542i −0.455488 0.890242i \(-0.650535\pi\)
−0.0801355 + 0.996784i \(0.525535\pi\)
\(42\) 4.82243 + 11.6424i 0.744117 + 1.79646i
\(43\) −2.60772 6.29559i −0.397674 0.960069i −0.988216 0.153063i \(-0.951086\pi\)
0.590543 0.807006i \(-0.298914\pi\)
\(44\) 0.201008 0.0399830i 0.0303031 0.00602766i
\(45\) 0 0
\(46\) −0.153052 + 0.769445i −0.0225663 + 0.113449i
\(47\) 11.8186i 1.72392i −0.506979 0.861958i \(-0.669238\pi\)
0.506979 0.861958i \(-0.330762\pi\)
\(48\) −2.85081 0.567062i −0.411480 0.0818484i
\(49\) 4.51409 + 10.8980i 0.644870 + 1.55685i
\(50\) 0 0
\(51\) −4.46736 + 11.1207i −0.625556 + 1.55721i
\(52\) 2.35364 + 2.35364i 0.326391 + 0.326391i
\(53\) −4.78009 1.97998i −0.656596 0.271971i 0.0294096 0.999567i \(-0.490637\pi\)
−0.686005 + 0.727597i \(0.740637\pi\)
\(54\) 3.95431 + 5.91804i 0.538113 + 0.805343i
\(55\) 0 0
\(56\) −4.25212 0.845799i −0.568213 0.113025i
\(57\) 1.08039 + 5.43149i 0.143101 + 0.719419i
\(58\) −5.07356 + 7.59313i −0.666192 + 0.997026i
\(59\) −1.58062 + 3.81596i −0.205779 + 0.496795i −0.992750 0.120195i \(-0.961648\pi\)
0.786971 + 0.616990i \(0.211648\pi\)
\(60\) 0 0
\(61\) 0.209544 + 1.05345i 0.0268294 + 0.134881i 0.991879 0.127188i \(-0.0405952\pi\)
−0.965049 + 0.262069i \(0.915595\pi\)
\(62\) 8.57200 1.70508i 1.08865 0.216545i
\(63\) 13.1239 + 19.6413i 1.65346 + 2.47458i
\(64\) 0.707107 0.707107i 0.0883883 0.0883883i
\(65\) 0 0
\(66\) 0.550364 0.227968i 0.0677451 0.0280609i
\(67\) 5.49540 5.49540i 0.671369 0.671369i −0.286662 0.958032i \(-0.592546\pi\)
0.958032 + 0.286662i \(0.0925458\pi\)
\(68\) −2.32728 3.40350i −0.282224 0.412734i
\(69\) 2.28034i 0.274520i
\(70\) 0 0
\(71\) −1.33556 + 0.892391i −0.158502 + 0.105907i −0.632292 0.774730i \(-0.717886\pi\)
0.473790 + 0.880638i \(0.342886\pi\)
\(72\) −5.44870 −0.642136
\(73\) 0.677883 0.452947i 0.0793403 0.0530135i −0.515267 0.857029i \(-0.672307\pi\)
0.594608 + 0.804016i \(0.297307\pi\)
\(74\) −1.06727 + 1.59729i −0.124068 + 0.185681i
\(75\) 0 0
\(76\) −1.76021 0.729105i −0.201910 0.0836340i
\(77\) 0.820892 0.340025i 0.0935493 0.0387494i
\(78\) 8.04446 + 5.37513i 0.910855 + 0.608614i
\(79\) −10.3045 6.88525i −1.15935 0.774651i −0.181380 0.983413i \(-0.558056\pi\)
−0.977966 + 0.208762i \(0.933056\pi\)
\(80\) 0 0
\(81\) 3.07044 + 3.07044i 0.341160 + 0.341160i
\(82\) 0.682203 3.42967i 0.0753367 0.378743i
\(83\) 0.269470 0.650559i 0.0295782 0.0714081i −0.908400 0.418102i \(-0.862696\pi\)
0.937978 + 0.346693i \(0.112696\pi\)
\(84\) −12.6016 −1.37495
\(85\) 0 0
\(86\) 6.81430 0.734805
\(87\) −10.1580 + 24.5236i −1.08905 + 2.62921i
\(88\) −0.0399830 + 0.201008i −0.00426220 + 0.0214275i
\(89\) −3.70552 3.70552i −0.392784 0.392784i 0.482894 0.875679i \(-0.339585\pi\)
−0.875679 + 0.482894i \(0.839585\pi\)
\(90\) 0 0
\(91\) 11.9987 + 8.01725i 1.25780 + 0.840437i
\(92\) −0.652304 0.435856i −0.0680074 0.0454411i
\(93\) 23.4703 9.72172i 2.43376 1.00810i
\(94\) 10.9189 + 4.52277i 1.12620 + 0.466489i
\(95\) 0 0
\(96\) 1.61486 2.41680i 0.164816 0.246664i
\(97\) −0.124830 + 0.0834089i −0.0126746 + 0.00846889i −0.561891 0.827211i \(-0.689926\pi\)
0.549217 + 0.835680i \(0.314926\pi\)
\(98\) −11.7959 −1.19156
\(99\) 0.928493 0.620400i 0.0933171 0.0623525i
\(100\) 0 0
\(101\) 15.1577i 1.50824i −0.656735 0.754122i \(-0.728063\pi\)
0.656735 0.754122i \(-0.271937\pi\)
\(102\) −8.56463 8.38302i −0.848025 0.830043i
\(103\) 2.06188 2.06188i 0.203163 0.203163i −0.598191 0.801354i \(-0.704113\pi\)
0.801354 + 0.598191i \(0.204113\pi\)
\(104\) −3.07518 + 1.27378i −0.301546 + 0.124905i
\(105\) 0 0
\(106\) 3.65852 3.65852i 0.355347 0.355347i
\(107\) 0.326739 + 0.488999i 0.0315870 + 0.0472733i 0.846927 0.531709i \(-0.178450\pi\)
−0.815340 + 0.578982i \(0.803450\pi\)
\(108\) −6.98080 + 1.38857i −0.671728 + 0.133615i
\(109\) 0.693887 + 3.48840i 0.0664623 + 0.334129i 0.999683 0.0251750i \(-0.00801429\pi\)
−0.933221 + 0.359304i \(0.883014\pi\)
\(110\) 0 0
\(111\) −2.13684 + 5.15878i −0.202820 + 0.489650i
\(112\) 2.40863 3.60477i 0.227594 0.340619i
\(113\) 0.643843 + 3.23682i 0.0605677 + 0.304494i 0.999180 0.0404784i \(-0.0128882\pi\)
−0.938613 + 0.344973i \(0.887888\pi\)
\(114\) −5.43149 1.08039i −0.508706 0.101188i
\(115\) 0 0
\(116\) −5.07356 7.59313i −0.471069 0.705004i
\(117\) 16.7557 + 6.94046i 1.54907 + 0.641646i
\(118\) −2.92061 2.92061i −0.268864 0.268864i
\(119\) −12.7745 12.5037i −1.17104 1.14621i
\(120\) 0 0
\(121\) 4.19344 + 10.1239i 0.381222 + 0.920352i
\(122\) −1.05345 0.209544i −0.0953749 0.0189713i
\(123\) 10.1642i 0.916474i
\(124\) −1.70508 + 8.57200i −0.153120 + 0.769789i
\(125\) 0 0
\(126\) −23.1685 + 4.60851i −2.06402 + 0.410558i
\(127\) −1.97507 4.76825i −0.175260 0.423114i 0.811702 0.584072i \(-0.198542\pi\)
−0.986961 + 0.160958i \(0.948542\pi\)
\(128\) 0.382683 + 0.923880i 0.0338248 + 0.0816602i
\(129\) 19.4263 3.86413i 1.71039 0.340218i
\(130\) 0 0
\(131\) 2.13002 10.7084i 0.186101 0.935593i −0.768985 0.639266i \(-0.779238\pi\)
0.955087 0.296327i \(-0.0957618\pi\)
\(132\) 0.595709i 0.0518498i
\(133\) −8.10132 1.61145i −0.702473 0.139731i
\(134\) 2.97409 + 7.18008i 0.256922 + 0.620264i
\(135\) 0 0
\(136\) 4.03503 0.847662i 0.346001 0.0726864i
\(137\) −12.3373 12.3373i −1.05405 1.05405i −0.998453 0.0555950i \(-0.982294\pi\)
−0.0555950 0.998453i \(-0.517706\pi\)
\(138\) −2.10676 0.872647i −0.179339 0.0742847i
\(139\) −1.10884 1.65949i −0.0940503 0.140756i 0.781461 0.623955i \(-0.214475\pi\)
−0.875511 + 0.483198i \(0.839475\pi\)
\(140\) 0 0
\(141\) 33.6926 + 6.70187i 2.83743 + 0.564399i
\(142\) −0.313366 1.57540i −0.0262971 0.132204i
\(143\) 0.378995 0.567206i 0.0316932 0.0474322i
\(144\) 2.08513 5.03395i 0.173761 0.419496i
\(145\) 0 0
\(146\) 0.159054 + 0.799618i 0.0131634 + 0.0661769i
\(147\) −33.6279 + 6.68900i −2.77358 + 0.551699i
\(148\) −1.06727 1.59729i −0.0877294 0.131296i
\(149\) 6.12503 6.12503i 0.501782 0.501782i −0.410209 0.911991i \(-0.634544\pi\)
0.911991 + 0.410209i \(0.134544\pi\)
\(150\) 0 0
\(151\) −20.9830 + 8.69145i −1.70757 + 0.707300i −0.707573 + 0.706640i \(0.750210\pi\)
−1.00000 0.000659759i \(0.999790\pi\)
\(152\) 1.34721 1.34721i 0.109273 0.109273i
\(153\) −18.8121 12.2803i −1.52087 0.992807i
\(154\) 0.888527i 0.0715995i
\(155\) 0 0
\(156\) −8.04446 + 5.37513i −0.644072 + 0.430355i
\(157\) −4.30033 −0.343204 −0.171602 0.985166i \(-0.554894\pi\)
−0.171602 + 0.985166i \(0.554894\pi\)
\(158\) 10.3045 6.88525i 0.819782 0.547761i
\(159\) 8.35516 12.5044i 0.662607 0.991661i
\(160\) 0 0
\(161\) −3.14232 1.30159i −0.247650 0.102580i
\(162\) −4.01173 + 1.66171i −0.315191 + 0.130556i
\(163\) 3.31976 + 2.21819i 0.260024 + 0.173742i 0.678748 0.734371i \(-0.262523\pi\)
−0.418724 + 0.908113i \(0.637523\pi\)
\(164\) 2.90753 + 1.94275i 0.227040 + 0.151703i
\(165\) 0 0
\(166\) 0.497916 + 0.497916i 0.0386458 + 0.0386458i
\(167\) 2.41993 12.1658i 0.187260 0.941419i −0.766819 0.641864i \(-0.778162\pi\)
0.954079 0.299556i \(-0.0968384\pi\)
\(168\) 4.82243 11.6424i 0.372059 0.898229i
\(169\) −1.92074 −0.147750
\(170\) 0 0
\(171\) −10.3811 −0.793863
\(172\) −2.60772 + 6.29559i −0.198837 + 0.480035i
\(173\) −2.69051 + 13.5261i −0.204556 + 1.02837i 0.732919 + 0.680316i \(0.238157\pi\)
−0.937474 + 0.348054i \(0.886843\pi\)
\(174\) −18.7696 18.7696i −1.42292 1.42292i
\(175\) 0 0
\(176\) −0.170406 0.113862i −0.0128449 0.00858266i
\(177\) −9.98227 6.66994i −0.750314 0.501344i
\(178\) 4.84149 2.00541i 0.362885 0.150312i
\(179\) −17.1204 7.09151i −1.27964 0.530044i −0.363758 0.931493i \(-0.618507\pi\)
−0.915881 + 0.401449i \(0.868507\pi\)
\(180\) 0 0
\(181\) 11.0377 16.5190i 0.820422 1.22785i −0.150537 0.988604i \(-0.548100\pi\)
0.970959 0.239244i \(-0.0768997\pi\)
\(182\) −11.9987 + 8.01725i −0.889400 + 0.594278i
\(183\) −3.12202 −0.230786
\(184\) 0.652304 0.435856i 0.0480885 0.0321317i
\(185\) 0 0
\(186\) 25.4041i 1.86272i
\(187\) −0.591078 + 0.603883i −0.0432239 + 0.0441603i
\(188\) −8.35700 + 8.35700i −0.609497 + 0.609497i
\(189\) −28.5087 + 11.8087i −2.07371 + 0.858957i
\(190\) 0 0
\(191\) −4.91463 + 4.91463i −0.355610 + 0.355610i −0.862192 0.506582i \(-0.830909\pi\)
0.506582 + 0.862192i \(0.330909\pi\)
\(192\) 1.61486 + 2.41680i 0.116542 + 0.174418i
\(193\) 18.1291 3.60610i 1.30496 0.259573i 0.506825 0.862049i \(-0.330819\pi\)
0.798137 + 0.602476i \(0.205819\pi\)
\(194\) −0.0292893 0.147247i −0.00210285 0.0105717i
\(195\) 0 0
\(196\) 4.51409 10.8980i 0.322435 0.778427i
\(197\) −6.03705 + 9.03509i −0.430122 + 0.643723i −0.981708 0.190395i \(-0.939023\pi\)
0.551585 + 0.834118i \(0.314023\pi\)
\(198\) 0.217855 + 1.09523i 0.0154823 + 0.0778348i
\(199\) 15.2386 + 3.03114i 1.08024 + 0.214872i 0.702960 0.711229i \(-0.251861\pi\)
0.377275 + 0.926101i \(0.376861\pi\)
\(200\) 0 0
\(201\) 12.5501 + 18.7826i 0.885217 + 1.32482i
\(202\) 14.0039 + 5.80059i 0.985308 + 0.408128i
\(203\) −27.9957 27.9957i −1.96491 1.96491i
\(204\) 11.0224 4.70464i 0.771726 0.329391i
\(205\) 0 0
\(206\) 1.11588 + 2.69398i 0.0777471 + 0.187698i
\(207\) −4.19248 0.833936i −0.291398 0.0579626i
\(208\) 3.32855i 0.230794i
\(209\) −0.0761772 + 0.382969i −0.00526929 + 0.0264905i
\(210\) 0 0
\(211\) −17.6704 + 3.51487i −1.21648 + 0.241973i −0.761285 0.648417i \(-0.775431\pi\)
−0.455197 + 0.890391i \(0.650431\pi\)
\(212\) 1.97998 + 4.78009i 0.135985 + 0.328298i
\(213\) −1.78670 4.31347i −0.122422 0.295554i
\(214\) −0.576814 + 0.114735i −0.0394302 + 0.00784315i
\(215\) 0 0
\(216\) 1.38857 6.98080i 0.0944801 0.474983i
\(217\) 37.8913i 2.57223i
\(218\) −3.48840 0.693887i −0.236265 0.0469959i
\(219\) 0.906866 + 2.18937i 0.0612804 + 0.147944i
\(220\) 0 0
\(221\) −13.4882 2.53303i −0.907313 0.170390i
\(222\) −3.94836 3.94836i −0.264997 0.264997i
\(223\) 8.96939 + 3.71524i 0.600635 + 0.248791i 0.662218 0.749311i \(-0.269615\pi\)
−0.0615836 + 0.998102i \(0.519615\pi\)
\(224\) 2.40863 + 3.60477i 0.160933 + 0.240854i
\(225\) 0 0
\(226\) −3.23682 0.643843i −0.215310 0.0428278i
\(227\) 0.103244 + 0.519043i 0.00685255 + 0.0344501i 0.984060 0.177835i \(-0.0569094\pi\)
−0.977208 + 0.212285i \(0.931909\pi\)
\(228\) 3.07669 4.60460i 0.203759 0.304947i
\(229\) 11.2020 27.0440i 0.740249 1.78712i 0.135382 0.990793i \(-0.456774\pi\)
0.604867 0.796326i \(-0.293226\pi\)
\(230\) 0 0
\(231\) 0.503850 + 2.53303i 0.0331509 + 0.166661i
\(232\) 8.95670 1.78160i 0.588036 0.116968i
\(233\) 4.49587 + 6.72855i 0.294535 + 0.440802i 0.948994 0.315295i \(-0.102104\pi\)
−0.654459 + 0.756097i \(0.727104\pi\)
\(234\) −12.8243 + 12.8243i −0.838350 + 0.838350i
\(235\) 0 0
\(236\) 3.81596 1.58062i 0.248398 0.102890i
\(237\) 25.4719 25.4719i 1.65457 1.65457i
\(238\) 16.4405 7.01718i 1.06568 0.454856i
\(239\) 20.1335i 1.30233i 0.758937 + 0.651164i \(0.225719\pi\)
−0.758937 + 0.651164i \(0.774281\pi\)
\(240\) 0 0
\(241\) −7.62327 + 5.09371i −0.491058 + 0.328115i −0.776324 0.630334i \(-0.782918\pi\)
0.285266 + 0.958448i \(0.407918\pi\)
\(242\) −10.9580 −0.704407
\(243\) 7.25971 4.85079i 0.465711 0.311178i
\(244\) 0.596732 0.893072i 0.0382018 0.0571731i
\(245\) 0 0
\(246\) 9.39049 + 3.88967i 0.598716 + 0.247996i
\(247\) −5.85896 + 2.42686i −0.372797 + 0.154418i
\(248\) −7.26699 4.85565i −0.461454 0.308334i
\(249\) 1.70182 + 1.13712i 0.107848 + 0.0720619i
\(250\) 0 0
\(251\) 6.12489 + 6.12489i 0.386600 + 0.386600i 0.873473 0.486873i \(-0.161863\pi\)
−0.486873 + 0.873473i \(0.661863\pi\)
\(252\) 4.60851 23.1685i 0.290309 1.45948i
\(253\) −0.0615294 + 0.148545i −0.00386832 + 0.00933895i
\(254\) 5.16112 0.323837
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) 1.52117 3.67244i 0.0948882 0.229080i −0.869308 0.494271i \(-0.835435\pi\)
0.964196 + 0.265191i \(0.0854350\pi\)
\(258\) −3.86413 + 19.4263i −0.240570 + 1.20943i
\(259\) −5.88916 5.88916i −0.365935 0.365935i
\(260\) 0 0
\(261\) −41.3727 27.6444i −2.56091 1.71114i
\(262\) 9.07811 + 6.06580i 0.560847 + 0.374746i
\(263\) −28.4288 + 11.7756i −1.75299 + 0.726113i −0.755514 + 0.655132i \(0.772613\pi\)
−0.997478 + 0.0709807i \(0.977387\pi\)
\(264\) −0.550364 0.227968i −0.0338725 0.0140305i
\(265\) 0 0
\(266\) 4.58903 6.86796i 0.281371 0.421102i
\(267\) 12.6650 8.46248i 0.775086 0.517896i
\(268\) −7.77166 −0.474730
\(269\) −13.2000 + 8.81994i −0.804817 + 0.537761i −0.888579 0.458724i \(-0.848307\pi\)
0.0837617 + 0.996486i \(0.473307\pi\)
\(270\) 0 0
\(271\) 19.7242i 1.19816i −0.800690 0.599079i \(-0.795534\pi\)
0.800690 0.599079i \(-0.204466\pi\)
\(272\) −0.761002 + 4.05227i −0.0461425 + 0.245705i
\(273\) −29.6597 + 29.6597i −1.79509 + 1.79509i
\(274\) 16.1195 6.67691i 0.973814 0.403367i
\(275\) 0 0
\(276\) 1.61244 1.61244i 0.0970576 0.0970576i
\(277\) −7.52505 11.2620i −0.452136 0.676670i 0.533452 0.845830i \(-0.320894\pi\)
−0.985589 + 0.169160i \(0.945894\pi\)
\(278\) 1.95750 0.389372i 0.117403 0.0233530i
\(279\) 9.29046 + 46.7063i 0.556205 + 2.79623i
\(280\) 0 0
\(281\) 6.96372 16.8119i 0.415421 1.00291i −0.568237 0.822865i \(-0.692374\pi\)
0.983658 0.180049i \(-0.0576258\pi\)
\(282\) −19.0853 + 28.5632i −1.13651 + 1.70091i
\(283\) 3.51053 + 17.6486i 0.208679 + 1.04910i 0.933065 + 0.359707i \(0.117123\pi\)
−0.724386 + 0.689394i \(0.757877\pi\)
\(284\) 1.57540 + 0.313366i 0.0934827 + 0.0185949i
\(285\) 0 0
\(286\) 0.378995 + 0.567206i 0.0224104 + 0.0335396i
\(287\) 14.0063 + 5.80161i 0.826768 + 0.342458i
\(288\) 3.85282 + 3.85282i 0.227029 + 0.227029i
\(289\) 15.8418 + 6.16757i 0.931868 + 0.362798i
\(290\) 0 0
\(291\) −0.166997 0.403166i −0.00978952 0.0236340i
\(292\) −0.799618 0.159054i −0.0467941 0.00930793i
\(293\) 16.4811i 0.962835i −0.876492 0.481417i \(-0.840122\pi\)
0.876492 0.481417i \(-0.159878\pi\)
\(294\) 6.68900 33.6279i 0.390110 1.96122i
\(295\) 0 0
\(296\) 1.88413 0.374777i 0.109513 0.0217835i
\(297\) 0.558226 + 1.34768i 0.0323916 + 0.0782002i
\(298\) 3.31484 + 8.00274i 0.192024 + 0.463586i
\(299\) −2.56114 + 0.509442i −0.148114 + 0.0294618i
\(300\) 0 0
\(301\) −5.76353 + 28.9752i −0.332204 + 1.67010i
\(302\) 22.7118i 1.30692i
\(303\) 43.2117 + 8.59534i 2.48245 + 0.493789i
\(304\) 0.729105 + 1.76021i 0.0418170 + 0.100955i
\(305\) 0 0
\(306\) 18.5446 12.6806i 1.06013 0.724904i
\(307\) 3.83948 + 3.83948i 0.219130 + 0.219130i 0.808132 0.589001i \(-0.200479\pi\)
−0.589001 + 0.808132i \(0.700479\pi\)
\(308\) −0.820892 0.340025i −0.0467747 0.0193747i
\(309\) 4.70882 + 7.04725i 0.267876 + 0.400904i
\(310\) 0 0
\(311\) 0.370233 + 0.0736439i 0.0209940 + 0.00417596i 0.205576 0.978641i \(-0.434093\pi\)
−0.184582 + 0.982817i \(0.559093\pi\)
\(312\) −1.88750 9.48908i −0.106858 0.537214i
\(313\) −8.62342 + 12.9059i −0.487424 + 0.729482i −0.990911 0.134521i \(-0.957050\pi\)
0.503486 + 0.864003i \(0.332050\pi\)
\(314\) 1.64567 3.97299i 0.0928704 0.224209i
\(315\) 0 0
\(316\) 2.41778 + 12.1550i 0.136011 + 0.683771i
\(317\) 22.8685 4.54883i 1.28442 0.255488i 0.494761 0.869029i \(-0.335255\pi\)
0.789663 + 0.613541i \(0.210255\pi\)
\(318\) 8.35516 + 12.5044i 0.468534 + 0.701211i
\(319\) −1.32342 + 1.32342i −0.0740974 + 0.0740974i
\(320\) 0 0
\(321\) −1.57933 + 0.654179i −0.0881495 + 0.0365127i
\(322\) 2.40503 2.40503i 0.134027 0.134027i
\(323\) 7.68771 1.61500i 0.427756 0.0898611i
\(324\) 4.34226i 0.241237i
\(325\) 0 0
\(326\) −3.31976 + 2.21819i −0.183865 + 0.122854i
\(327\) −10.3383 −0.571708
\(328\) −2.90753 + 1.94275i −0.160542 + 0.107270i
\(329\) −28.4666 + 42.6033i −1.56941 + 2.34879i
\(330\) 0 0
\(331\) −2.05592 0.851588i −0.113003 0.0468075i 0.325465 0.945554i \(-0.394479\pi\)
−0.438469 + 0.898746i \(0.644479\pi\)
\(332\) −0.650559 + 0.269470i −0.0357041 + 0.0147891i
\(333\) −8.70315 5.81526i −0.476930 0.318674i
\(334\) 10.3137 + 6.89138i 0.564340 + 0.377080i
\(335\) 0 0
\(336\) 8.91069 + 8.91069i 0.486118 + 0.486118i
\(337\) −4.78384 + 24.0500i −0.260592 + 1.31009i 0.599676 + 0.800243i \(0.295296\pi\)
−0.860268 + 0.509842i \(0.829704\pi\)
\(338\) 0.735037 1.77454i 0.0399808 0.0965221i
\(339\) −9.59267 −0.521002
\(340\) 0 0
\(341\) 1.79121 0.0969997
\(342\) 3.97268 9.59089i 0.214818 0.518616i
\(343\) 4.05635 20.3927i 0.219022 1.10110i
\(344\) −4.81844 4.81844i −0.259793 0.259793i
\(345\) 0 0
\(346\) −11.4669 7.66192i −0.616463 0.411907i
\(347\) −3.66998 2.45220i −0.197015 0.131641i 0.453150 0.891434i \(-0.350300\pi\)
−0.650165 + 0.759793i \(0.725300\pi\)
\(348\) 24.5236 10.1580i 1.31460 0.544527i
\(349\) 2.43735 + 1.00958i 0.130468 + 0.0540418i 0.446963 0.894553i \(-0.352506\pi\)
−0.316494 + 0.948594i \(0.602506\pi\)
\(350\) 0 0
\(351\) −13.1621 + 19.6985i −0.702542 + 1.05143i
\(352\) 0.170406 0.113862i 0.00908269 0.00606886i
\(353\) 7.64333 0.406813 0.203407 0.979094i \(-0.434799\pi\)
0.203407 + 0.979094i \(0.434799\pi\)
\(354\) 9.98227 6.66994i 0.530552 0.354503i
\(355\) 0 0
\(356\) 5.24039i 0.277740i
\(357\) 42.8896 29.3275i 2.26996 1.55217i
\(358\) 13.1034 13.1034i 0.692536 0.692536i
\(359\) 15.2351 6.31059i 0.804079 0.333060i 0.0574900 0.998346i \(-0.481690\pi\)
0.746589 + 0.665286i \(0.231690\pi\)
\(360\) 0 0
\(361\) −10.8683 + 10.8683i −0.572014 + 0.572014i
\(362\) 11.0377 + 16.5190i 0.580126 + 0.868220i
\(363\) −31.2392 + 6.21387i −1.63963 + 0.326143i
\(364\) −2.81529 14.1534i −0.147561 0.741839i
\(365\) 0 0
\(366\) 1.19474 2.88437i 0.0624503 0.150768i
\(367\) 0.510232 0.763616i 0.0266339 0.0398605i −0.817914 0.575341i \(-0.804869\pi\)
0.844548 + 0.535480i \(0.179869\pi\)
\(368\) 0.153052 + 0.769445i 0.00797840 + 0.0401101i
\(369\) 18.6872 + 3.71712i 0.972819 + 0.193506i
\(370\) 0 0
\(371\) 12.4621 + 18.6508i 0.647000 + 0.968303i
\(372\) −23.4703 9.72172i −1.21688 0.504048i
\(373\) −20.4777 20.4777i −1.06030 1.06030i −0.998061 0.0622355i \(-0.980177\pi\)
−0.0622355 0.998061i \(-0.519823\pi\)
\(374\) −0.331719 0.777181i −0.0171528 0.0401871i
\(375\) 0 0
\(376\) −4.52277 10.9189i −0.233244 0.563101i
\(377\) −29.8128 5.93014i −1.53544 0.305418i
\(378\) 30.8576i 1.58715i
\(379\) −1.18087 + 5.93665i −0.0606573 + 0.304945i −0.999190 0.0402460i \(-0.987186\pi\)
0.938532 + 0.345191i \(0.112186\pi\)
\(380\) 0 0
\(381\) 14.7134 2.92668i 0.753790 0.149938i
\(382\) −2.65978 6.42127i −0.136086 0.328541i
\(383\) −11.1820 26.9957i −0.571374 1.37942i −0.900386 0.435092i \(-0.856716\pi\)
0.329012 0.944326i \(-0.393284\pi\)
\(384\) −2.85081 + 0.567062i −0.145480 + 0.0289378i
\(385\) 0 0
\(386\) −3.60610 + 18.1291i −0.183546 + 0.922747i
\(387\) 37.1291i 1.88738i
\(388\) 0.147247 + 0.0292893i 0.00747535 + 0.00148694i
\(389\) −10.1663 24.5436i −0.515451 1.24441i −0.940672 0.339318i \(-0.889804\pi\)
0.425221 0.905090i \(-0.360196\pi\)
\(390\) 0 0
\(391\) 3.23447 0.0346593i 0.163574 0.00175279i
\(392\) 8.34095 + 8.34095i 0.421282 + 0.421282i
\(393\) 29.3197 + 12.1446i 1.47898 + 0.612615i
\(394\) −6.03705 9.03509i −0.304142 0.455181i
\(395\) 0 0
\(396\) −1.09523 0.217855i −0.0550375 0.0109476i
\(397\) 3.71505 + 18.6768i 0.186453 + 0.937363i 0.954782 + 0.297307i \(0.0960886\pi\)
−0.768329 + 0.640055i \(0.778911\pi\)
\(398\) −8.63197 + 12.9187i −0.432681 + 0.647554i
\(399\) 9.18790 22.1816i 0.459970 1.11047i
\(400\) 0 0
\(401\) −1.47933 7.43709i −0.0738742 0.371391i 0.926109 0.377257i \(-0.123133\pi\)
−0.999983 + 0.00586632i \(0.998133\pi\)
\(402\) −22.1556 + 4.40702i −1.10502 + 0.219802i
\(403\) 16.1623 + 24.1886i 0.805100 + 1.20492i
\(404\) −10.7181 + 10.7181i −0.533245 + 0.533245i
\(405\) 0 0
\(406\) 36.5781 15.1511i 1.81534 0.751938i
\(407\) −0.278395 + 0.278395i −0.0137995 + 0.0137995i
\(408\) 0.128413 + 11.9838i 0.00635741 + 0.593287i
\(409\) 10.2044i 0.504575i −0.967652 0.252287i \(-0.918817\pi\)
0.967652 0.252287i \(-0.0811828\pi\)
\(410\) 0 0
\(411\) 42.1674 28.1754i 2.07997 1.38979i
\(412\) −2.91594 −0.143658
\(413\) 14.8890 9.94852i 0.732640 0.489535i
\(414\) 2.37485 3.55421i 0.116717 0.174680i
\(415\) 0 0
\(416\) 3.07518 + 1.27378i 0.150773 + 0.0624523i
\(417\) 5.35968 2.22005i 0.262465 0.108716i
\(418\) −0.324665 0.216934i −0.0158799 0.0106106i
\(419\) −6.68327 4.46562i −0.326499 0.218160i 0.381507 0.924366i \(-0.375405\pi\)
−0.708006 + 0.706206i \(0.750405\pi\)
\(420\) 0 0
\(421\) 8.14770 + 8.14770i 0.397094 + 0.397094i 0.877207 0.480113i \(-0.159404\pi\)
−0.480113 + 0.877207i \(0.659404\pi\)
\(422\) 3.51487 17.6704i 0.171101 0.860183i
\(423\) −24.6433 + 59.4941i −1.19820 + 2.89270i
\(424\) −5.17393 −0.251268
\(425\) 0 0
\(426\) 4.66887 0.226207
\(427\) 1.78201 4.30216i 0.0862377 0.208196i
\(428\) 0.114735 0.576814i 0.00554595 0.0278814i
\(429\) 1.40209 + 1.40209i 0.0676933 + 0.0676933i
\(430\) 0 0
\(431\) 8.95105 + 5.98090i 0.431157 + 0.288090i 0.752150 0.658992i \(-0.229017\pi\)
−0.320993 + 0.947081i \(0.604017\pi\)
\(432\) 5.91804 + 3.95431i 0.284732 + 0.190252i
\(433\) 25.9274 10.7395i 1.24599 0.516107i 0.340410 0.940277i \(-0.389434\pi\)
0.905582 + 0.424170i \(0.139434\pi\)
\(434\) −35.0070 14.5004i −1.68039 0.696040i
\(435\) 0 0
\(436\) 1.97602 2.95733i 0.0946343 0.141630i
\(437\) 1.24280 0.830411i 0.0594511 0.0397239i
\(438\) −2.36976 −0.113231
\(439\) 4.11795 2.75152i 0.196539 0.131323i −0.453407 0.891304i \(-0.649792\pi\)
0.649946 + 0.759981i \(0.274792\pi\)
\(440\) 0 0
\(441\) 64.2723i 3.06058i
\(442\) 7.50192 11.4921i 0.356830 0.546624i
\(443\) −14.5879 + 14.5879i −0.693094 + 0.693094i −0.962911 0.269818i \(-0.913037\pi\)
0.269818 + 0.962911i \(0.413037\pi\)
\(444\) 5.15878 2.13684i 0.244825 0.101410i
\(445\) 0 0
\(446\) −6.86488 + 6.86488i −0.325061 + 0.325061i
\(447\) 13.9881 + 20.9346i 0.661612 + 0.990173i
\(448\) −4.25212 + 0.845799i −0.200894 + 0.0399602i
\(449\) 5.09616 + 25.6201i 0.240503 + 1.20909i 0.892564 + 0.450922i \(0.148905\pi\)
−0.652061 + 0.758166i \(0.726095\pi\)
\(450\) 0 0
\(451\) 0.274256 0.662114i 0.0129142 0.0311777i
\(452\) 1.83351 2.74404i 0.0862411 0.129069i
\(453\) −12.8790 64.7473i −0.605110 3.04209i
\(454\) −0.519043 0.103244i −0.0243599 0.00484548i
\(455\) 0 0
\(456\) 3.07669 + 4.60460i 0.144079 + 0.215630i
\(457\) −32.7813 13.5785i −1.53344 0.635173i −0.553215 0.833038i \(-0.686599\pi\)
−0.980229 + 0.197865i \(0.936599\pi\)
\(458\) 20.6986 + 20.6986i 0.967182 + 0.967182i
\(459\) 20.5275 20.9722i 0.958144 0.978900i
\(460\) 0 0
\(461\) −6.81224 16.4462i −0.317277 0.765976i −0.999397 0.0347345i \(-0.988941\pi\)
0.682119 0.731241i \(-0.261059\pi\)
\(462\) −2.53303 0.503850i −0.117847 0.0234412i
\(463\) 33.8924i 1.57511i 0.616242 + 0.787557i \(0.288654\pi\)
−0.616242 + 0.787557i \(0.711346\pi\)
\(464\) −1.78160 + 8.95670i −0.0827087 + 0.415804i
\(465\) 0 0
\(466\) −7.93687 + 1.57874i −0.367668 + 0.0731338i
\(467\) −4.98700 12.0397i −0.230771 0.557130i 0.765498 0.643439i \(-0.222493\pi\)
−0.996268 + 0.0863086i \(0.972493\pi\)
\(468\) −6.94046 16.7557i −0.320823 0.774535i
\(469\) −33.0460 + 6.57326i −1.52592 + 0.303525i
\(470\) 0 0
\(471\) 2.43856 12.2595i 0.112363 0.564886i
\(472\) 4.13036i 0.190115i
\(473\) 1.36973 + 0.272456i 0.0629802 + 0.0125275i
\(474\) 13.7853 + 33.2806i 0.633178 + 1.52863i
\(475\) 0 0
\(476\) 0.191534 + 17.8744i 0.00877897 + 0.819271i
\(477\) 19.9342 + 19.9342i 0.912724 + 0.912724i
\(478\) −18.6009 7.70476i −0.850787 0.352407i
\(479\) −0.00324632 0.00485846i −0.000148328 0.000221989i 0.831395 0.555681i \(-0.187542\pi\)
−0.831544 + 0.555459i \(0.812542\pi\)
\(480\) 0 0
\(481\) −6.27142 1.24746i −0.285952 0.0568795i
\(482\) −1.78867 8.99226i −0.0814718 0.409586i
\(483\) 5.49249 8.22009i 0.249917 0.374027i
\(484\) 4.19344 10.1239i 0.190611 0.460176i
\(485\) 0 0
\(486\) 1.70337 + 8.56342i 0.0772664 + 0.388444i
\(487\) 28.4214 5.65336i 1.28790 0.256178i 0.496797 0.867867i \(-0.334509\pi\)
0.791099 + 0.611689i \(0.209509\pi\)
\(488\) 0.596732 + 0.893072i 0.0270128 + 0.0404275i
\(489\) −8.20617 + 8.20617i −0.371096 + 0.371096i
\(490\) 0 0
\(491\) −28.8893 + 11.9663i −1.30376 + 0.540034i −0.923056 0.384665i \(-0.874317\pi\)
−0.380700 + 0.924698i \(0.624317\pi\)
\(492\) −7.18717 + 7.18717i −0.324023 + 0.324023i
\(493\) 34.9392 + 14.0356i 1.57358 + 0.632131i
\(494\) 6.34170i 0.285326i
\(495\) 0 0
\(496\) 7.26699 4.85565i 0.326298 0.218025i
\(497\) 6.96382 0.312370
\(498\) −1.70182 + 1.13712i −0.0762602 + 0.0509555i
\(499\) 3.60412 5.39395i 0.161343 0.241466i −0.741986 0.670415i \(-0.766116\pi\)
0.903329 + 0.428949i \(0.141116\pi\)
\(500\) 0 0
\(501\) 33.3102 + 13.7976i 1.48819 + 0.616429i
\(502\) −8.00255 + 3.31477i −0.357171 + 0.147945i
\(503\) −21.7947 14.5628i −0.971779 0.649322i −0.0350533 0.999385i \(-0.511160\pi\)
−0.936726 + 0.350063i \(0.886160\pi\)
\(504\) 19.6413 + 13.1239i 0.874895 + 0.584586i
\(505\) 0 0
\(506\) −0.113692 0.113692i −0.00505421 0.00505421i
\(507\) 1.08918 5.47569i 0.0483723 0.243184i
\(508\) −1.97507 + 4.76825i −0.0876298 + 0.211557i
\(509\) 37.2931 1.65299 0.826495 0.562944i \(-0.190331\pi\)
0.826495 + 0.562944i \(0.190331\pi\)
\(510\) 0 0
\(511\) −3.53460 −0.156361
\(512\) 0.382683 0.923880i 0.0169124 0.0408301i
\(513\) 2.64556 13.3001i 0.116804 0.587215i
\(514\) 2.81076 + 2.81076i 0.123977 + 0.123977i
\(515\) 0 0
\(516\) −16.4688 11.0041i −0.725000 0.484429i
\(517\) 2.01396 + 1.34569i 0.0885739 + 0.0591832i
\(518\) 7.69456 3.18719i 0.338079 0.140037i
\(519\) −37.0347 15.3403i −1.62564 0.673364i
\(520\) 0 0
\(521\) −3.95806 + 5.92366i −0.173406 + 0.259520i −0.907985 0.419003i \(-0.862380\pi\)
0.734579 + 0.678523i \(0.237380\pi\)
\(522\) 41.3727 27.6444i 1.81083 1.20996i
\(523\) 25.1852 1.10127 0.550637 0.834745i \(-0.314385\pi\)
0.550637 + 0.834745i \(0.314385\pi\)
\(524\) −9.07811 + 6.06580i −0.396579 + 0.264986i
\(525\) 0 0
\(526\) 30.7711i 1.34168i
\(527\) −14.1462 33.1430i −0.616218 1.44373i
\(528\) 0.421230 0.421230i 0.0183317 0.0183317i
\(529\) −20.6806 + 8.56619i −0.899157 + 0.372443i
\(530\) 0 0
\(531\) 15.9135 15.9135i 0.690588 0.690588i
\(532\) 4.58903 + 6.86796i 0.198960 + 0.297764i
\(533\) 11.4158 2.27075i 0.494474 0.0983570i
\(534\) 2.97163 + 14.9394i 0.128595 + 0.646491i
\(535\) 0 0
\(536\) 2.97409 7.18008i 0.128461 0.310132i
\(537\) 29.9249 44.7858i 1.29136 1.93265i
\(538\) −3.09715 15.5704i −0.133528 0.671289i
\(539\) −2.37107 0.471634i −0.102129 0.0203147i
\(540\) 0 0
\(541\) 3.83883 + 5.74521i 0.165044 + 0.247006i 0.904768 0.425904i \(-0.140044\pi\)
−0.739724 + 0.672910i \(0.765044\pi\)
\(542\) 18.2228 + 7.54811i 0.782734 + 0.324219i
\(543\) 40.8336 + 40.8336i 1.75234 + 1.75234i
\(544\) −3.45258 2.25381i −0.148028 0.0966313i
\(545\) 0 0
\(546\) −16.0517 38.7523i −0.686950 1.65844i
\(547\) 29.6203 + 5.89185i 1.26647 + 0.251917i 0.782215 0.623008i \(-0.214090\pi\)
0.484258 + 0.874925i \(0.339090\pi\)
\(548\) 17.4476i 0.745325i
\(549\) 1.14175 5.73994i 0.0487285 0.244975i
\(550\) 0 0
\(551\) 17.0647 3.39438i 0.726980 0.144605i
\(552\) 0.872647 + 2.10676i 0.0371423 + 0.0896695i
\(553\) 20.5613 + 49.6395i 0.874357 + 2.11089i
\(554\) 13.2845 2.64245i 0.564403 0.112267i
\(555\) 0 0
\(556\) −0.389372 + 1.95750i −0.0165130 + 0.0830166i
\(557\) 8.16499i 0.345962i 0.984925 + 0.172981i \(0.0553399\pi\)
−0.984925 + 0.172981i \(0.944660\pi\)
\(558\) −46.7063 9.29046i −1.97724 0.393297i
\(559\) 8.67993 + 20.9552i 0.367122 + 0.886311i
\(560\) 0 0
\(561\) −1.38638 2.02749i −0.0585330 0.0856009i
\(562\) 12.8673 + 12.8673i 0.542773 + 0.542773i
\(563\) 0.665621 + 0.275709i 0.0280526 + 0.0116198i 0.396666 0.917963i \(-0.370167\pi\)
−0.368613 + 0.929583i \(0.620167\pi\)
\(564\) −19.0853 28.5632i −0.803637 1.20273i
\(565\) 0 0
\(566\) −17.6486 3.51053i −0.741827 0.147559i
\(567\) −3.67268 18.4638i −0.154238 0.775407i
\(568\) −0.892391 + 1.33556i −0.0374439 + 0.0560388i
\(569\) 11.0704 26.7264i 0.464097 1.12043i −0.502604 0.864517i \(-0.667624\pi\)
0.966700 0.255911i \(-0.0823756\pi\)
\(570\) 0 0
\(571\) 5.99542 + 30.1410i 0.250901 + 1.26136i 0.876570 + 0.481274i \(0.159826\pi\)
−0.625670 + 0.780088i \(0.715174\pi\)
\(572\) −0.669065 + 0.133085i −0.0279750 + 0.00556458i
\(573\) −11.2238 16.7976i −0.468881 0.701729i
\(574\) −10.7200 + 10.7200i −0.447444 + 0.447444i
\(575\) 0 0
\(576\) −5.03395 + 2.08513i −0.209748 + 0.0868804i
\(577\) −14.2185 + 14.2185i −0.591924 + 0.591924i −0.938151 0.346227i \(-0.887463\pi\)
0.346227 + 0.938151i \(0.387463\pi\)
\(578\) −11.7605 + 12.2756i −0.489171 + 0.510600i
\(579\) 53.7276i 2.23284i
\(580\) 0 0
\(581\) −2.53834 + 1.69606i −0.105308 + 0.0703645i
\(582\) 0.436383 0.0180887
\(583\) 0.881670 0.589113i 0.0365151 0.0243986i
\(584\) 0.452947 0.677883i 0.0187431 0.0280510i
\(585\) 0 0
\(586\) 15.2265 + 6.30703i 0.629002 + 0.260541i
\(587\) −11.2438 + 4.65734i −0.464082 + 0.192229i −0.602458 0.798151i \(-0.705812\pi\)
0.138376 + 0.990380i \(0.455812\pi\)
\(588\) 28.5083 + 19.0487i 1.17566 + 0.785554i
\(589\) −13.8454 9.25119i −0.570489 0.381189i
\(590\) 0 0
\(591\) −22.3340 22.3340i −0.918697 0.918697i
\(592\) −0.374777 + 1.88413i −0.0154032 + 0.0774373i
\(593\) −3.31399 + 8.00069i −0.136089 + 0.328549i −0.977202 0.212311i \(-0.931901\pi\)
0.841113 + 0.540860i \(0.181901\pi\)
\(594\) −1.45872 −0.0598518
\(595\) 0 0
\(596\) −8.66210 −0.354814
\(597\) −17.2825 + 41.7235i −0.707324 + 1.70763i
\(598\) 0.509442 2.56114i 0.0208326 0.104733i
\(599\) 10.9709 + 10.9709i 0.448260 + 0.448260i 0.894776 0.446516i \(-0.147335\pi\)
−0.446516 + 0.894776i \(0.647335\pi\)
\(600\) 0 0
\(601\) 11.5196 + 7.69712i 0.469893 + 0.313972i 0.767876 0.640599i \(-0.221314\pi\)
−0.297983 + 0.954571i \(0.596314\pi\)
\(602\) −24.5640 16.4131i −1.00115 0.668950i
\(603\) −39.1221 + 16.2049i −1.59318 + 0.659915i
\(604\) 20.9830 + 8.69145i 0.853786 + 0.353650i
\(605\) 0 0
\(606\) −24.4774 + 36.6331i −0.994328 + 1.48812i
\(607\) −23.3412 + 15.5961i −0.947388 + 0.633025i −0.930288 0.366829i \(-0.880443\pi\)
−0.0170998 + 0.999854i \(0.505443\pi\)
\(608\) −1.90524 −0.0772678
\(609\) 95.6857 63.9351i 3.87738 2.59078i
\(610\) 0 0
\(611\) 39.3387i 1.59148i
\(612\) 4.61866 + 21.9857i 0.186698 + 0.888719i
\(613\) −13.6504 + 13.6504i −0.551333 + 0.551333i −0.926826 0.375492i \(-0.877474\pi\)
0.375492 + 0.926826i \(0.377474\pi\)
\(614\) −5.01652 + 2.07791i −0.202450 + 0.0838576i
\(615\) 0 0
\(616\) 0.628283 0.628283i 0.0253143 0.0253143i
\(617\) −2.86892 4.29364i −0.115498 0.172856i 0.769216 0.638988i \(-0.220647\pi\)
−0.884715 + 0.466133i \(0.845647\pi\)
\(618\) −8.31280 + 1.65352i −0.334390 + 0.0665143i
\(619\) −2.42896 12.2112i −0.0976280 0.490809i −0.998401 0.0565198i \(-0.982000\pi\)
0.900774 0.434289i \(-0.143000\pi\)
\(620\) 0 0
\(621\) 2.13685 5.15882i 0.0857490 0.207016i
\(622\) −0.209720 + 0.313868i −0.00840900 + 0.0125850i
\(623\) 4.43232 + 22.2828i 0.177577 + 0.892740i
\(624\) 9.48908 + 1.88750i 0.379867 + 0.0755603i
\(625\) 0 0
\(626\) −8.62342 12.9059i −0.344661 0.515822i
\(627\) −1.04858 0.434334i −0.0418761 0.0173456i
\(628\) 3.04080 + 3.04080i 0.121341 + 0.121341i
\(629\) 7.34979 + 2.95252i 0.293055 + 0.117725i
\(630\) 0 0
\(631\) 6.61850 + 15.9785i 0.263478 + 0.636093i 0.999149 0.0412464i \(-0.0131329\pi\)
−0.735671 + 0.677339i \(0.763133\pi\)
\(632\) −12.1550 2.41778i −0.483499 0.0961740i
\(633\) 52.3683i 2.08145i
\(634\) −4.54883 + 22.8685i −0.180657 + 0.908225i
\(635\) 0 0
\(636\) −14.7499 + 2.93394i −0.584872 + 0.116338i
\(637\) −15.0254 36.2745i −0.595327 1.43725i
\(638\) −0.716231 1.72913i −0.0283559 0.0684571i
\(639\) 8.58388 1.70744i 0.339573 0.0675452i
\(640\) 0 0
\(641\) −3.24162 + 16.2967i −0.128036 + 0.643683i 0.862458 + 0.506129i \(0.168924\pi\)
−0.990494 + 0.137554i \(0.956076\pi\)
\(642\) 1.70945i 0.0674667i
\(643\) −28.6070 5.69028i −1.12815 0.224403i −0.404478 0.914548i \(-0.632547\pi\)
−0.723671 + 0.690145i \(0.757547\pi\)
\(644\) 1.30159 + 3.14232i 0.0512899 + 0.123825i
\(645\) 0 0
\(646\) −1.44989 + 7.72055i −0.0570453 + 0.303761i
\(647\) 24.7423 + 24.7423i 0.972719 + 0.972719i 0.999638 0.0269187i \(-0.00856952\pi\)
−0.0269187 + 0.999638i \(0.508570\pi\)
\(648\) 4.01173 + 1.66171i 0.157596 + 0.0652782i
\(649\) −0.470291 0.703840i −0.0184605 0.0276281i
\(650\) 0 0
\(651\) −108.021 21.4867i −4.23368 0.842132i
\(652\) −0.778926 3.91593i −0.0305051 0.153360i
\(653\) 1.37339 2.05543i 0.0537451 0.0804352i −0.803624 0.595138i \(-0.797098\pi\)
0.857369 + 0.514702i \(0.172098\pi\)
\(654\) 3.95629 9.55132i 0.154703 0.373486i
\(655\) 0 0
\(656\) −0.682203 3.42967i −0.0266355 0.133906i
\(657\) −4.35688 + 0.866638i −0.169978 + 0.0338108i
\(658\) −28.4666 42.6033i −1.10974 1.66085i
\(659\) −6.38040 + 6.38040i −0.248545 + 0.248545i −0.820373 0.571828i \(-0.806234\pi\)
0.571828 + 0.820373i \(0.306234\pi\)
\(660\) 0 0
\(661\) −36.7694 + 15.2304i −1.43016 + 0.592394i −0.957392 0.288791i \(-0.906747\pi\)
−0.472772 + 0.881185i \(0.656747\pi\)
\(662\) 1.57353 1.57353i 0.0611570 0.0611570i
\(663\) 14.8698 37.0159i 0.577497 1.43758i
\(664\) 0.704160i 0.0273267i
\(665\) 0 0
\(666\) 8.70315 5.81526i 0.337240 0.225337i
\(667\) 7.16437 0.277406
\(668\) −10.3137 + 6.89138i −0.399048 + 0.266636i
\(669\) −15.6777 + 23.4633i −0.606134 + 0.907144i
\(670\) 0 0
\(671\) −0.203374 0.0842402i −0.00785116 0.00325206i
\(672\) −11.6424 + 4.82243i −0.449115 + 0.186029i
\(673\) −24.5399 16.3970i −0.945944 0.632059i −0.0160435 0.999871i \(-0.505107\pi\)
−0.929900 + 0.367812i \(0.880107\pi\)
\(674\) −20.3886 13.6232i −0.785339 0.524747i
\(675\) 0 0
\(676\) 1.35817 + 1.35817i 0.0522374 + 0.0522374i
\(677\) 3.91750 19.6946i 0.150562 0.756925i −0.829543 0.558443i \(-0.811399\pi\)
0.980105 0.198482i \(-0.0636010\pi\)
\(678\) 3.67095 8.86247i 0.140982 0.340361i
\(679\) 0.650886 0.0249787
\(680\) 0 0
\(681\) −1.53824 −0.0589455
\(682\) −0.685468 + 1.65487i −0.0262479 + 0.0633681i
\(683\) −3.32933 + 16.7376i −0.127393 + 0.640448i 0.863340 + 0.504623i \(0.168369\pi\)
−0.990733 + 0.135825i \(0.956631\pi\)
\(684\) 7.34055 + 7.34055i 0.280673 + 0.280673i
\(685\) 0 0
\(686\) 17.2881 + 11.5515i 0.660061 + 0.441039i
\(687\) 70.7453 + 47.2705i 2.69910 + 1.80348i
\(688\) 6.29559 2.60772i 0.240017 0.0994184i
\(689\) 15.9108 + 6.59046i 0.606152 + 0.251076i
\(690\) 0 0
\(691\) 6.72848 10.0699i 0.255963 0.383076i −0.681126 0.732166i \(-0.738509\pi\)
0.937089 + 0.349090i \(0.113509\pi\)
\(692\) 11.4669 7.66192i 0.435905 0.291262i
\(693\) −4.84132 −0.183907
\(694\) 3.66998 2.45220i 0.139311 0.0930843i
\(695\) 0 0
\(696\) 26.5442i 1.00615i
\(697\) −14.4171 + 0.154488i −0.546086 + 0.00585163i
\(698\) −1.86547 + 1.86547i −0.0706090 + 0.0706090i
\(699\) −21.7313 + 9.00140i −0.821953 + 0.340464i
\(700\) 0 0
\(701\) 14.2960 14.2960i 0.539954 0.539954i −0.383561 0.923515i \(-0.625303\pi\)
0.923515 + 0.383561i \(0.125303\pi\)
\(702\) −13.1621 19.6985i −0.496772 0.743472i
\(703\) 3.58972 0.714041i 0.135389 0.0269305i
\(704\) 0.0399830 + 0.201008i 0.00150691 + 0.00757577i
\(705\) 0 0
\(706\) −2.92498 + 7.06152i −0.110083 + 0.265764i
\(707\) −36.5092 + 54.6399i −1.37307 + 2.05494i
\(708\) 2.34217 + 11.7749i 0.0880242 + 0.442528i
\(709\) −23.2275 4.62024i −0.872327 0.173517i −0.261426 0.965224i \(-0.584193\pi\)
−0.610901 + 0.791707i \(0.709193\pi\)
\(710\) 0 0
\(711\) 37.5157 + 56.1462i 1.40695 + 2.10565i
\(712\) −4.84149 2.00541i −0.181443 0.0751560i
\(713\) −4.84839 4.84839i −0.181574 0.181574i
\(714\) 10.6819 + 50.8479i 0.399761 + 1.90294i
\(715\) 0 0
\(716\) 7.09151 + 17.1204i 0.265022 + 0.639820i
\(717\) −57.3969 11.4169i −2.14353 0.426374i
\(718\) 16.4904i 0.615415i
\(719\) −4.20295 + 21.1297i −0.156744 + 0.788003i 0.819794 + 0.572658i \(0.194088\pi\)
−0.976538 + 0.215345i \(0.930912\pi\)
\(720\) 0 0
\(721\) −12.3989 + 2.46630i −0.461760 + 0.0918497i
\(722\) −5.88186 14.2001i −0.218900 0.528472i
\(723\) −10.1983 24.6210i −0.379281 0.915664i
\(724\) −19.4855 + 3.87591i −0.724173 + 0.144047i
\(725\) 0 0
\(726\) 6.21387 31.2392i 0.230618 1.15940i
\(727\) 16.4509i 0.610131i −0.952331 0.305065i \(-0.901322\pi\)
0.952331 0.305065i \(-0.0986783\pi\)
\(728\) 14.1534 + 2.81529i 0.524560 + 0.104341i
\(729\) 14.6971 + 35.4820i 0.544338 + 1.31415i
\(730\) 0 0
\(731\) −5.77622 27.4959i −0.213641 1.01697i
\(732\) 2.20760 + 2.20760i 0.0815952 + 0.0815952i
\(733\) −36.0246 14.9219i −1.33060 0.551152i −0.399773 0.916614i \(-0.630911\pi\)
−0.930826 + 0.365462i \(0.880911\pi\)
\(734\) 0.510232 + 0.763616i 0.0188330 + 0.0281856i
\(735\) 0 0
\(736\) −0.769445 0.153052i −0.0283621 0.00564158i
\(737\) 0.310734 + 1.56217i 0.0114460 + 0.0575431i
\(738\) −10.5855 + 15.8423i −0.389656 + 0.583162i
\(739\) −12.2812 + 29.6494i −0.451771 + 1.09067i 0.519877 + 0.854241i \(0.325978\pi\)
−0.971648 + 0.236431i \(0.924022\pi\)
\(740\) 0 0
\(741\) −3.59614 18.0790i −0.132107 0.664149i
\(742\) −22.0002 + 4.37610i −0.807651 + 0.160652i
\(743\) −28.4498 42.5782i −1.04372 1.56204i −0.807078 0.590445i \(-0.798952\pi\)
−0.236645 0.971596i \(-0.576048\pi\)
\(744\) 17.9634 17.9634i 0.658570 0.658570i
\(745\) 0 0
\(746\) 26.7555 11.0825i 0.979587 0.405758i
\(747\) −2.71300 + 2.71300i −0.0992634 + 0.0992634i
\(748\) 0.844965 0.00905430i 0.0308950 0.000331058i
\(749\) 2.54972i 0.0931649i
\(750\) 0 0
\(751\) 22.9913 15.3623i 0.838965 0.560578i −0.0602011 0.998186i \(-0.519174\pi\)
0.899166 + 0.437608i \(0.144174\pi\)
\(752\) 11.8186 0.430979
\(753\) −20.9341 + 13.9877i −0.762882 + 0.509741i
\(754\) 16.8876 25.2741i 0.615011 0.920429i
\(755\) 0 0
\(756\) 28.5087 + 11.8087i 1.03685 + 0.429479i
\(757\) −28.7956 + 11.9275i −1.04659 + 0.433513i −0.838675 0.544633i \(-0.816669\pi\)
−0.207919 + 0.978146i \(0.566669\pi\)
\(758\) −5.03285 3.36284i −0.182801 0.122144i
\(759\) −0.388584 0.259643i −0.0141047 0.00942446i
\(760\) 0 0
\(761\) −27.3997 27.3997i −0.993237 0.993237i 0.00674063 0.999977i \(-0.497854\pi\)
−0.999977 + 0.00674063i \(0.997854\pi\)
\(762\) −2.92668 + 14.7134i −0.106022 + 0.533010i
\(763\) 5.90098 14.2462i 0.213630 0.515748i
\(764\) 6.95033 0.251454
\(765\) 0 0
\(766\) 29.2200 1.05576
\(767\) 5.26118 12.7016i 0.189970 0.458629i
\(768\) 0.567062 2.85081i 0.0204621 0.102870i
\(769\) −16.7358 16.7358i −0.603507 0.603507i 0.337735 0.941241i \(-0.390339\pi\)
−0.941241 + 0.337735i \(0.890339\pi\)
\(770\) 0 0
\(771\) 9.60684 + 6.41909i 0.345982 + 0.231178i
\(772\) −15.3691 10.2693i −0.553146 0.369601i
\(773\) −3.33513 + 1.38145i −0.119956 + 0.0496875i −0.441854 0.897087i \(-0.645679\pi\)
0.321898 + 0.946774i \(0.395679\pi\)
\(774\) −34.3028 14.2087i −1.23299 0.510721i
\(775\) 0 0
\(776\) −0.0834089 + 0.124830i −0.00299420 + 0.00448114i
\(777\) 20.1284 13.4494i 0.722103 0.482494i
\(778\) 26.5658 0.952429
\(779\) −5.53955 + 3.70141i −0.198475 + 0.132617i
\(780\) 0 0
\(781\) 0.329197i 0.0117796i
\(782\) −1.20576 + 3.00153i −0.0431178 + 0.107334i
\(783\) 45.9611 45.9611i 1.64252 1.64252i
\(784\) −10.8980 + 4.51409i −0.389213 + 0.161217i
\(785\) 0 0
\(786\) −22.4403 + 22.4403i −0.800419 + 0.800419i
\(787\) −24.8711 37.2222i −0.886557 1.32683i −0.944502 0.328507i \(-0.893455\pi\)
0.0579442 0.998320i \(-0.481545\pi\)
\(788\) 10.6576 2.11993i 0.379662 0.0755194i
\(789\) −17.4491 87.7226i −0.621205 3.12301i
\(790\) 0 0
\(791\) 5.47539 13.2188i 0.194683 0.470005i
\(792\) 0.620400 0.928493i 0.0220449 0.0329926i
\(793\) −0.697479 3.50646i −0.0247682 0.124518i
\(794\) −18.6768 3.71505i −0.662816 0.131842i
\(795\) 0 0
\(796\) −8.63197 12.9187i −0.305952 0.457890i
\(797\) 15.2682 + 6.32428i 0.540826 + 0.224017i 0.636337 0.771411i \(-0.280449\pi\)
−0.0955114 + 0.995428i \(0.530449\pi\)
\(798\) 16.9770 + 16.9770i 0.600980 + 0.600980i
\(799\) 8.99396 47.8920i 0.318183 1.69430i
\(800\) 0 0
\(801\) 10.9269 + 26.3799i 0.386083 + 0.932086i
\(802\) 7.43709 + 1.47933i 0.262613 + 0.0522370i
\(803\) 0.167089i 0.00589644i
\(804\) 4.40702 22.1556i 0.155424 0.781367i
\(805\) 0 0
\(806\) −28.5324 + 5.67544i −1.00501 + 0.199909i
\(807\) −17.6588 42.6321i −0.621620 1.50072i
\(808\) −5.80059 14.0039i −0.204064 0.492654i
\(809\) 13.8880 2.76250i 0.488276 0.0971242i 0.0551885 0.998476i \(-0.482424\pi\)
0.433088 + 0.901352i \(0.357424\pi\)
\(810\) 0 0
\(811\) 2.59779 13.0600i 0.0912209 0.458598i −0.907994 0.418983i \(-0.862387\pi\)
0.999215 0.0396154i \(-0.0126133\pi\)
\(812\) 39.5918i 1.38940i
\(813\) 56.2299 + 11.1848i 1.97207 + 0.392269i
\(814\) −0.150666 0.363740i −0.00528085 0.0127491i
\(815\) 0 0
\(816\) −11.1207 4.46736i −0.389303 0.156389i
\(817\) −9.18029 9.18029i −0.321178 0.321178i
\(818\) 9.42763 + 3.90505i 0.329629 + 0.136537i
\(819\) −43.6836 65.3772i −1.52643 2.28446i
\(820\) 0 0
\(821\) 34.1291 + 6.78870i 1.19111 + 0.236927i 0.750562 0.660800i \(-0.229783\pi\)
0.440552 + 0.897727i \(0.354783\pi\)
\(822\) 9.89388 + 49.7399i 0.345089 + 1.73488i
\(823\) 11.5439 17.2766i 0.402394 0.602226i −0.573834 0.818972i \(-0.694544\pi\)
0.976228 + 0.216746i \(0.0695444\pi\)
\(824\) 1.11588 2.69398i 0.0388736 0.0938491i
\(825\) 0 0
\(826\) 3.49346 + 17.5628i 0.121553 + 0.611087i
\(827\) 16.5320 3.28843i 0.574875 0.114350i 0.100914 0.994895i \(-0.467823\pi\)
0.473962 + 0.880545i \(0.342823\pi\)
\(828\) 2.37485 + 3.55421i 0.0825317 + 0.123517i
\(829\) 6.04684 6.04684i 0.210015 0.210015i −0.594259 0.804274i \(-0.702554\pi\)
0.804274 + 0.594259i \(0.202554\pi\)
\(830\) 0 0
\(831\) 36.3731 15.0662i 1.26177 0.522642i
\(832\) −2.35364 + 2.35364i −0.0815978 + 0.0815978i
\(833\) 9.99892 + 47.5967i 0.346442 + 1.64913i
\(834\) 5.80128i 0.200882i
\(835\) 0 0
\(836\) 0.324665 0.216934i 0.0112288 0.00750283i
\(837\) −62.2071 −2.15019
\(838\) 6.68327 4.46562i 0.230870 0.154262i
\(839\) −7.84414 + 11.7396i −0.270810 + 0.405295i −0.941802 0.336169i \(-0.890869\pi\)
0.670992 + 0.741465i \(0.265869\pi\)
\(840\) 0 0
\(841\) 50.2559 + 20.8167i 1.73296 + 0.717817i
\(842\) −10.6455 + 4.40950i −0.366867 + 0.151961i
\(843\) 43.9788 + 29.3857i 1.51471 + 1.01210i
\(844\) 14.9803 + 10.0095i 0.515642 + 0.344541i
\(845\) 0 0
\(846\) −45.5348 45.5348i −1.56552 1.56552i
\(847\) 9.26826 46.5947i 0.318461 1.60101i
\(848\) 1.97998 4.78009i 0.0679927 0.164149i
\(849\) −52.3036 −1.79506
\(850\) 0 0
\(851\) 1.50710 0.0516626
\(852\) −1.78670 + 4.31347i −0.0612112 + 0.147777i
\(853\) 1.08474 5.45336i 0.0371408 0.186720i −0.957761 0.287564i \(-0.907155\pi\)
0.994902 + 0.100845i \(0.0321545\pi\)
\(854\) 3.29273 + 3.29273i 0.112675 + 0.112675i
\(855\) 0 0
\(856\) 0.488999 + 0.326739i 0.0167136 + 0.0111677i
\(857\) −6.94199 4.63849i −0.237134 0.158448i 0.431326 0.902196i \(-0.358046\pi\)
−0.668460 + 0.743748i \(0.733046\pi\)
\(858\) −1.83191 + 0.758803i −0.0625405 + 0.0259051i
\(859\) −25.9674 10.7561i −0.885997 0.366992i −0.107177 0.994240i \(-0.534181\pi\)
−0.778819 + 0.627248i \(0.784181\pi\)
\(860\) 0 0
\(861\) −24.4818 + 36.6396i −0.834337 + 1.24867i
\(862\) −8.95105 + 5.98090i −0.304874 + 0.203710i
\(863\) −6.00314 −0.204349 −0.102175 0.994766i \(-0.532580\pi\)
−0.102175 + 0.994766i \(0.532580\pi\)
\(864\) −5.91804 + 3.95431i −0.201336 + 0.134528i
\(865\) 0 0
\(866\) 28.0636i 0.953641i
\(867\) −26.5658 + 41.6645i −0.902224 + 1.41500i
\(868\) 26.7932 26.7932i 0.909421 0.909421i
\(869\) 2.34658 0.971985i 0.0796022 0.0329723i
\(870\) 0 0
\(871\) −18.2917 + 18.2917i −0.619791 + 0.619791i
\(872\) 1.97602 + 2.95733i 0.0669166 + 0.100148i
\(873\) 0.802307 0.159589i 0.0271540 0.00540126i
\(874\) 0.291602 + 1.46598i 0.00986357 + 0.0495875i
\(875\) 0 0
\(876\) 0.906866 2.18937i 0.0306402 0.0739719i
\(877\) 7.68846 11.5066i 0.259621 0.388550i −0.678644 0.734467i \(-0.737432\pi\)
0.938265 + 0.345917i \(0.112432\pi\)
\(878\) 0.966207 + 4.85745i 0.0326079 + 0.163931i
\(879\) 46.9845 + 9.34579i 1.58475 + 0.315226i
\(880\) 0 0
\(881\) 8.61265 + 12.8897i 0.290168 + 0.434267i 0.947701 0.319159i \(-0.103400\pi\)
−0.657534 + 0.753425i \(0.728400\pi\)
\(882\) 59.3798 + 24.5959i 1.99942 + 0.828188i
\(883\) 15.7079 + 15.7079i 0.528614 + 0.528614i 0.920159 0.391545i \(-0.128059\pi\)
−0.391545 + 0.920159i \(0.628059\pi\)
\(884\) 7.74646 + 11.3287i 0.260542 + 0.381026i
\(885\) 0 0
\(886\) −7.89494 19.0601i −0.265236 0.640335i
\(887\) 19.3307 + 3.84511i 0.649061 + 0.129106i 0.508631 0.860984i \(-0.330152\pi\)
0.140430 + 0.990091i \(0.455152\pi\)
\(888\) 5.58383i 0.187381i
\(889\) −4.36527 + 21.9457i −0.146406 + 0.736035i
\(890\) 0 0
\(891\) −0.872829 + 0.173617i −0.0292409 + 0.00581637i
\(892\) −3.71524 8.96939i −0.124396 0.300317i
\(893\) −8.61698 20.8032i −0.288356 0.696154i
\(894\) −24.6941 + 4.91195i −0.825893 + 0.164280i
\(895\) 0 0
\(896\) 0.845799 4.25212i 0.0282562 0.142053i
\(897\) 7.59022i 0.253430i
\(898\) −25.6201 5.09616i −0.854954 0.170061i
\(899\) −30.5437 73.7391i −1.01869 2.45934i
\(900\) 0 0
\(901\) −17.8634 11.6611i −0.595117 0.388486i
\(902\) 0.506760 + 0.506760i 0.0168733 + 0.0168733i
\(903\) −79.3347 32.8615i −2.64009 1.09356i
\(904\) 1.83351 + 2.74404i 0.0609816 + 0.0912655i
\(905\) 0 0
\(906\) 64.7473 + 12.8790i 2.15108 + 0.427877i
\(907\) 6.60837 + 33.2225i 0.219427 + 1.10314i 0.920708 + 0.390251i \(0.127612\pi\)
−0.701281 + 0.712885i \(0.747388\pi\)
\(908\) 0.294014 0.440023i 0.00975721 0.0146027i
\(909\) −31.6057 + 76.3028i −1.04829 + 2.53081i
\(910\) 0 0
\(911\) −11.2044 56.3285i −0.371220 1.86625i −0.487636 0.873047i \(-0.662141\pi\)
0.116416 0.993200i \(-0.462859\pi\)
\(912\) −5.43149 + 1.08039i −0.179855 + 0.0357753i
\(913\) 0.0801770 + 0.119993i 0.00265347 + 0.00397120i
\(914\) 25.0897 25.0897i 0.829894 0.829894i
\(915\) 0 0
\(916\) −27.0440 + 11.2020i −0.893560 + 0.370125i
\(917\) −33.4707 + 33.4707i −1.10530 + 1.10530i
\(918\) 11.5203 + 26.9907i 0.380226 + 0.890826i
\(919\) 52.4129i 1.72894i −0.502682 0.864472i \(-0.667653\pi\)
0.502682 0.864472i \(-0.332347\pi\)
\(920\) 0 0
\(921\) −13.1229 + 8.76841i −0.432413 + 0.288929i
\(922\) 17.8012 0.586252
\(923\) 4.44547 2.97037i 0.146325 0.0977709i
\(924\) 1.43484 2.14740i 0.0472029 0.0706441i
\(925\) 0 0
\(926\) −31.3125 12.9701i −1.02899 0.426223i
\(927\) −14.6787 + 6.08011i −0.482111 + 0.199697i
\(928\) −7.59313 5.07356i −0.249257 0.166548i
\(929\) 2.80819 + 1.87637i 0.0921337 + 0.0615617i 0.600784 0.799412i \(-0.294855\pi\)
−0.508650 + 0.860973i \(0.669855\pi\)
\(930\) 0 0
\(931\) 15.8915 + 15.8915i 0.520824 + 0.520824i
\(932\) 1.57874 7.93687i 0.0517134 0.259981i
\(933\) −0.419890 + 1.01370i −0.0137466 + 0.0331872i
\(934\) 13.0317 0.426409
\(935\) 0 0
\(936\) 18.1363 0.592803
\(937\) 3.23192 7.80256i 0.105582 0.254898i −0.862255 0.506474i \(-0.830949\pi\)
0.967838 + 0.251575i \(0.0809487\pi\)
\(938\) 6.57326 33.0460i 0.214625 1.07899i
\(939\) −31.9022 31.9022i −1.04109 1.04109i
\(940\) 0 0
\(941\) 7.93491 + 5.30194i 0.258671 + 0.172838i 0.678143 0.734930i \(-0.262785\pi\)
−0.419472 + 0.907768i \(0.637785\pi\)
\(942\) 10.3931 + 6.94442i 0.338624 + 0.226262i
\(943\) −2.53453 + 1.04984i −0.0825356 + 0.0341874i
\(944\) −3.81596 1.58062i −0.124199 0.0514448i
\(945\) 0 0
\(946\) −0.775889 + 1.16120i −0.0252263 + 0.0377539i
\(947\) 19.5020 13.0308i 0.633730 0.423445i −0.196781 0.980448i \(-0.563049\pi\)
0.830511 + 0.557003i \(0.188049\pi\)
\(948\) −36.0226 −1.16996
\(949\) −2.25637 + 1.50766i −0.0732449 + 0.0489407i
\(950\) 0 0
\(951\) 67.7734i 2.19770i
\(952\) −16.5871 6.66327i −0.537590 0.215958i
\(953\) −14.9101 + 14.9101i −0.482986 + 0.482986i −0.906084 0.423098i \(-0.860943\pi\)
0.423098 + 0.906084i \(0.360943\pi\)
\(954\) −26.0453 + 10.7883i −0.843247 + 0.349284i
\(955\) 0 0
\(956\) 14.2365 14.2365i 0.460442 0.460442i
\(957\) −3.02237 4.52330i −0.0976993 0.146217i
\(958\) 0.00573095 0.00113996i 0.000185158 3.68303e-5i
\(959\) 14.7572 + 74.1893i 0.476534 + 2.39570i
\(960\) 0 0
\(961\) −17.3687 + 41.9317i −0.560279 + 1.35263i
\(962\) 3.55248 5.31666i 0.114536 0.171416i
\(963\) −0.625159 3.14289i −0.0201455 0.101278i
\(964\) 8.99226 + 1.78867i 0.289621 + 0.0576093i
\(965\) 0 0
\(966\) 5.49249 + 8.22009i 0.176718 + 0.264477i
\(967\) −21.6193 8.95502i −0.695231 0.287974i 0.00694687 0.999976i \(-0.497789\pi\)
−0.702178 + 0.712002i \(0.747789\pi\)
\(968\) 7.74847 + 7.74847i 0.249045 + 0.249045i
\(969\) 0.244659 + 22.8320i 0.00785957 + 0.733471i
\(970\) 0 0
\(971\) −15.8385 38.2375i −0.508281 1.22710i −0.944872 0.327439i \(-0.893814\pi\)
0.436591 0.899660i \(-0.356186\pi\)
\(972\) −8.56342 1.70337i −0.274672 0.0546356i
\(973\) 8.65286i 0.277398i
\(974\) −5.65336 + 28.4214i −0.181145 + 0.910680i
\(975\) 0 0
\(976\) −1.05345 + 0.209544i −0.0337201 + 0.00670735i
\(977\) 17.9798 + 43.4070i 0.575223 + 1.38871i 0.897057 + 0.441916i \(0.145701\pi\)
−0.321833 + 0.946796i \(0.604299\pi\)
\(978\) −4.44115 10.7219i −0.142012 0.342848i
\(979\) 1.05336 0.209526i 0.0336655 0.00669649i
\(980\) 0 0
\(981\) 3.78078 19.0073i 0.120711 0.606856i
\(982\) 31.2696i 0.997852i
\(983\) 46.5284 + 9.25506i 1.48402 + 0.295191i 0.869589 0.493777i \(-0.164384\pi\)
0.614435 + 0.788967i \(0.289384\pi\)
\(984\) −3.88967 9.39049i −0.123998 0.299358i
\(985\) 0 0
\(986\) −26.3378 + 26.9084i −0.838767 + 0.856938i
\(987\) −105.312 105.312i −3.35211 3.35211i
\(988\) 5.85896 + 2.42686i 0.186398 + 0.0772088i
\(989\) −2.97005 4.44500i −0.0944422 0.141343i
\(990\) 0 0
\(991\) 44.9876 + 8.94859i 1.42908 + 0.284261i 0.848177 0.529712i \(-0.177700\pi\)
0.580902 + 0.813974i \(0.302700\pi\)
\(992\) 1.70508 + 8.57200i 0.0541363 + 0.272161i
\(993\) 3.59355 5.37813i 0.114038 0.170670i
\(994\) −2.66494 + 6.43373i −0.0845267 + 0.204066i
\(995\) 0 0
\(996\) −0.399303 2.00743i −0.0126524 0.0636078i
\(997\) −39.4467 + 7.84644i −1.24929 + 0.248499i −0.775052 0.631897i \(-0.782276\pi\)
−0.474238 + 0.880397i \(0.657276\pi\)
\(998\) 3.60412 + 5.39395i 0.114087 + 0.170743i
\(999\) 9.66837 9.66837i 0.305894 0.305894i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.d.607.1 40
5.2 odd 4 170.2.o.b.63.5 yes 40
5.3 odd 4 850.2.s.d.743.1 40
5.4 even 2 170.2.r.b.97.5 yes 40
17.10 odd 16 850.2.s.d.707.1 40
85.27 even 16 170.2.r.b.163.5 yes 40
85.44 odd 16 170.2.o.b.27.5 40
85.78 even 16 inner 850.2.v.d.843.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.b.27.5 40 85.44 odd 16
170.2.o.b.63.5 yes 40 5.2 odd 4
170.2.r.b.97.5 yes 40 5.4 even 2
170.2.r.b.163.5 yes 40 85.27 even 16
850.2.s.d.707.1 40 17.10 odd 16
850.2.s.d.743.1 40 5.3 odd 4
850.2.v.d.607.1 40 1.1 even 1 trivial
850.2.v.d.843.1 40 85.78 even 16 inner