Properties

Label 850.2.v.d.143.5
Level $850$
Weight $2$
Character 850.143
Analytic conductor $6.787$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(5\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 143.5
Character \(\chi\) \(=\) 850.143
Dual form 850.2.v.d.107.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.382683 + 0.923880i) q^{2} +(2.87914 - 0.572697i) q^{3} +(-0.707107 + 0.707107i) q^{4} +(1.63090 + 2.44082i) q^{6} +(0.222469 + 0.332949i) q^{7} +(-0.923880 - 0.382683i) q^{8} +(5.18983 - 2.14970i) q^{9} +(3.38193 - 2.25974i) q^{11} +(-1.63090 + 2.44082i) q^{12} -1.42762 q^{13} +(-0.222469 + 0.332949i) q^{14} -1.00000i q^{16} +(-2.04427 + 3.58064i) q^{17} +(3.97212 + 3.97212i) q^{18} +(3.96552 + 1.64257i) q^{19} +(0.831199 + 0.831199i) q^{21} +(3.38193 + 2.25974i) q^{22} +(1.20785 - 6.07227i) q^{23} +(-2.87914 - 0.572697i) q^{24} +(-0.546327 - 1.31895i) q^{26} +(6.38867 - 4.26877i) q^{27} +(-0.392740 - 0.0781209i) q^{28} +(0.790417 + 3.97370i) q^{29} +(-5.97330 - 3.99123i) q^{31} +(0.923880 - 0.382683i) q^{32} +(8.44292 - 8.44292i) q^{33} +(-4.09039 - 0.518404i) q^{34} +(-2.14970 + 5.18983i) q^{36} +(0.940802 + 4.72973i) q^{37} +4.29225i q^{38} +(-4.11032 + 0.817593i) q^{39} +(-1.63154 + 8.20230i) q^{41} +(-0.449842 + 1.08601i) q^{42} +(-4.46330 + 10.7754i) q^{43} +(-0.793514 + 3.98926i) q^{44} +(6.07227 - 1.20785i) q^{46} -7.15983i q^{47} +(-0.572697 - 2.87914i) q^{48} +(2.61742 - 6.31901i) q^{49} +(-3.83511 + 11.4799i) q^{51} +(1.00948 - 1.00948i) q^{52} +(-4.41860 + 1.83025i) q^{53} +(6.38867 + 4.26877i) q^{54} +(-0.0781209 - 0.392740i) q^{56} +(12.3580 + 2.45816i) q^{57} +(-3.36874 + 2.25092i) q^{58} +(-1.95801 - 4.72705i) q^{59} +(-10.8073 - 2.14971i) q^{61} +(1.40153 - 7.04599i) q^{62} +(1.87032 + 1.24971i) q^{63} +(0.707107 + 0.707107i) q^{64} +(11.0312 + 4.56928i) q^{66} +(0.229043 + 0.229043i) q^{67} +(-1.08638 - 3.97741i) q^{68} -18.1747i q^{69} +(2.55467 - 3.82333i) q^{71} -5.61743 q^{72} +(7.33833 - 10.9826i) q^{73} +(-4.00967 + 2.67918i) q^{74} +(-3.96552 + 1.64257i) q^{76} +(1.50475 + 0.623289i) q^{77} +(-2.32831 - 3.48456i) q^{78} +(-0.586248 - 0.877382i) q^{79} +(4.03280 - 4.03280i) q^{81} +(-8.20230 + 1.63154i) q^{82} +(-0.476166 - 1.14957i) q^{83} -1.17549 q^{84} -11.6632 q^{86} +(4.55144 + 10.9882i) q^{87} +(-3.98926 + 0.793514i) q^{88} +(-9.95430 + 9.95430i) q^{89} +(-0.317602 - 0.475325i) q^{91} +(3.43967 + 5.14783i) q^{92} +(-19.4837 - 8.07043i) q^{93} +(6.61482 - 2.73995i) q^{94} +(2.44082 - 1.63090i) q^{96} +(-1.65138 + 2.47147i) q^{97} +6.83965 q^{98} +(12.6939 - 18.9978i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 16 q^{18} - 8 q^{26} - 24 q^{27} + 8 q^{28} + 8 q^{29} - 16 q^{31} + 32 q^{33} + 8 q^{34} - 32 q^{39} - 56 q^{41} + 24 q^{42} - 16 q^{43} + 16 q^{44} + 16 q^{49} - 32 q^{51} + 16 q^{52} - 16 q^{53}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.382683 + 0.923880i 0.270598 + 0.653281i
\(3\) 2.87914 0.572697i 1.66227 0.330647i 0.727558 0.686046i \(-0.240655\pi\)
0.934714 + 0.355400i \(0.115655\pi\)
\(4\) −0.707107 + 0.707107i −0.353553 + 0.353553i
\(5\) 0 0
\(6\) 1.63090 + 2.44082i 0.665813 + 0.996460i
\(7\) 0.222469 + 0.332949i 0.0840855 + 0.125843i 0.871128 0.491056i \(-0.163389\pi\)
−0.787043 + 0.616899i \(0.788389\pi\)
\(8\) −0.923880 0.382683i −0.326641 0.135299i
\(9\) 5.18983 2.14970i 1.72994 0.716566i
\(10\) 0 0
\(11\) 3.38193 2.25974i 1.01969 0.681336i 0.0709797 0.997478i \(-0.477387\pi\)
0.948712 + 0.316142i \(0.102387\pi\)
\(12\) −1.63090 + 2.44082i −0.470801 + 0.704603i
\(13\) −1.42762 −0.395951 −0.197975 0.980207i \(-0.563437\pi\)
−0.197975 + 0.980207i \(0.563437\pi\)
\(14\) −0.222469 + 0.332949i −0.0594574 + 0.0889843i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) −2.04427 + 3.58064i −0.495807 + 0.868433i
\(18\) 3.97212 + 3.97212i 0.936239 + 0.936239i
\(19\) 3.96552 + 1.64257i 0.909753 + 0.376832i 0.787962 0.615724i \(-0.211136\pi\)
0.121791 + 0.992556i \(0.461136\pi\)
\(20\) 0 0
\(21\) 0.831199 + 0.831199i 0.181383 + 0.181383i
\(22\) 3.38193 + 2.25974i 0.721031 + 0.481777i
\(23\) 1.20785 6.07227i 0.251854 1.26616i −0.623173 0.782084i \(-0.714157\pi\)
0.875028 0.484073i \(-0.160843\pi\)
\(24\) −2.87914 0.572697i −0.587702 0.116901i
\(25\) 0 0
\(26\) −0.546327 1.31895i −0.107143 0.258667i
\(27\) 6.38867 4.26877i 1.22950 0.821526i
\(28\) −0.392740 0.0781209i −0.0742209 0.0147635i
\(29\) 0.790417 + 3.97370i 0.146777 + 0.737897i 0.982133 + 0.188188i \(0.0602614\pi\)
−0.835356 + 0.549709i \(0.814739\pi\)
\(30\) 0 0
\(31\) −5.97330 3.99123i −1.07284 0.716847i −0.111929 0.993716i \(-0.535703\pi\)
−0.960908 + 0.276869i \(0.910703\pi\)
\(32\) 0.923880 0.382683i 0.163320 0.0676495i
\(33\) 8.44292 8.44292i 1.46972 1.46972i
\(34\) −4.09039 0.518404i −0.701495 0.0889055i
\(35\) 0 0
\(36\) −2.14970 + 5.18983i −0.358283 + 0.864972i
\(37\) 0.940802 + 4.72973i 0.154667 + 0.777563i 0.977771 + 0.209673i \(0.0672401\pi\)
−0.823105 + 0.567890i \(0.807760\pi\)
\(38\) 4.29225i 0.696295i
\(39\) −4.11032 + 0.817593i −0.658178 + 0.130920i
\(40\) 0 0
\(41\) −1.63154 + 8.20230i −0.254804 + 1.28098i 0.615370 + 0.788238i \(0.289007\pi\)
−0.870173 + 0.492746i \(0.835993\pi\)
\(42\) −0.449842 + 1.08601i −0.0694121 + 0.167576i
\(43\) −4.46330 + 10.7754i −0.680647 + 1.64323i 0.0821731 + 0.996618i \(0.473814\pi\)
−0.762821 + 0.646610i \(0.776186\pi\)
\(44\) −0.793514 + 3.98926i −0.119627 + 0.601404i
\(45\) 0 0
\(46\) 6.07227 1.20785i 0.895308 0.178088i
\(47\) 7.15983i 1.04437i −0.852833 0.522184i \(-0.825117\pi\)
0.852833 0.522184i \(-0.174883\pi\)
\(48\) −0.572697 2.87914i −0.0826616 0.415568i
\(49\) 2.61742 6.31901i 0.373917 0.902716i
\(50\) 0 0
\(51\) −3.83511 + 11.4799i −0.537022 + 1.60751i
\(52\) 1.00948 1.00948i 0.139990 0.139990i
\(53\) −4.41860 + 1.83025i −0.606942 + 0.251404i −0.664920 0.746914i \(-0.731535\pi\)
0.0579785 + 0.998318i \(0.481535\pi\)
\(54\) 6.38867 + 4.26877i 0.869388 + 0.580907i
\(55\) 0 0
\(56\) −0.0781209 0.392740i −0.0104393 0.0524821i
\(57\) 12.3580 + 2.45816i 1.63686 + 0.325591i
\(58\) −3.36874 + 2.25092i −0.442337 + 0.295560i
\(59\) −1.95801 4.72705i −0.254911 0.615410i 0.743677 0.668540i \(-0.233080\pi\)
−0.998588 + 0.0531298i \(0.983080\pi\)
\(60\) 0 0
\(61\) −10.8073 2.14971i −1.38373 0.275242i −0.553589 0.832790i \(-0.686742\pi\)
−0.830144 + 0.557549i \(0.811742\pi\)
\(62\) 1.40153 7.04599i 0.177995 0.894842i
\(63\) 1.87032 + 1.24971i 0.235638 + 0.157448i
\(64\) 0.707107 + 0.707107i 0.0883883 + 0.0883883i
\(65\) 0 0
\(66\) 11.0312 + 4.56928i 1.35785 + 0.562439i
\(67\) 0.229043 + 0.229043i 0.0279820 + 0.0279820i 0.720959 0.692977i \(-0.243701\pi\)
−0.692977 + 0.720959i \(0.743701\pi\)
\(68\) −1.08638 3.97741i −0.131743 0.482332i
\(69\) 18.1747i 2.18797i
\(70\) 0 0
\(71\) 2.55467 3.82333i 0.303183 0.453746i −0.648327 0.761362i \(-0.724531\pi\)
0.951511 + 0.307616i \(0.0995312\pi\)
\(72\) −5.61743 −0.662021
\(73\) 7.33833 10.9826i 0.858886 1.28541i −0.0980694 0.995180i \(-0.531267\pi\)
0.956956 0.290234i \(-0.0937333\pi\)
\(74\) −4.00967 + 2.67918i −0.466115 + 0.311448i
\(75\) 0 0
\(76\) −3.96552 + 1.64257i −0.454876 + 0.188416i
\(77\) 1.50475 + 0.623289i 0.171483 + 0.0710304i
\(78\) −2.32831 3.48456i −0.263629 0.394549i
\(79\) −0.586248 0.877382i −0.0659581 0.0987132i 0.797024 0.603947i \(-0.206406\pi\)
−0.862982 + 0.505234i \(0.831406\pi\)
\(80\) 0 0
\(81\) 4.03280 4.03280i 0.448089 0.448089i
\(82\) −8.20230 + 1.63154i −0.905792 + 0.180173i
\(83\) −0.476166 1.14957i −0.0522660 0.126181i 0.895590 0.444881i \(-0.146754\pi\)
−0.947856 + 0.318699i \(0.896754\pi\)
\(84\) −1.17549 −0.128257
\(85\) 0 0
\(86\) −11.6632 −1.25767
\(87\) 4.55144 + 10.9882i 0.487966 + 1.17805i
\(88\) −3.98926 + 0.793514i −0.425257 + 0.0845889i
\(89\) −9.95430 + 9.95430i −1.05515 + 1.05515i −0.0567663 + 0.998387i \(0.518079\pi\)
−0.998387 + 0.0567663i \(0.981921\pi\)
\(90\) 0 0
\(91\) −0.317602 0.475325i −0.0332937 0.0498276i
\(92\) 3.43967 + 5.14783i 0.358610 + 0.536698i
\(93\) −19.4837 8.07043i −2.02037 0.836865i
\(94\) 6.61482 2.73995i 0.682267 0.282604i
\(95\) 0 0
\(96\) 2.44082 1.63090i 0.249115 0.166453i
\(97\) −1.65138 + 2.47147i −0.167672 + 0.250939i −0.905785 0.423739i \(-0.860718\pi\)
0.738112 + 0.674678i \(0.235718\pi\)
\(98\) 6.83965 0.690909
\(99\) 12.6939 18.9978i 1.27579 1.90935i
\(100\) 0 0
\(101\) 1.16189i 0.115612i −0.998328 0.0578061i \(-0.981589\pi\)
0.998328 0.0578061i \(-0.0184105\pi\)
\(102\) −12.0737 + 0.849993i −1.19547 + 0.0841619i
\(103\) −8.86578 8.86578i −0.873571 0.873571i 0.119289 0.992860i \(-0.461939\pi\)
−0.992860 + 0.119289i \(0.961939\pi\)
\(104\) 1.31895 + 0.546327i 0.129334 + 0.0535717i
\(105\) 0 0
\(106\) −3.38185 3.38185i −0.328475 0.328475i
\(107\) −10.7012 7.15030i −1.03452 0.691246i −0.0822866 0.996609i \(-0.526222\pi\)
−0.952236 + 0.305363i \(0.901222\pi\)
\(108\) −1.49899 + 7.53595i −0.144241 + 0.725147i
\(109\) −2.53399 0.504041i −0.242712 0.0482784i 0.0722352 0.997388i \(-0.476987\pi\)
−0.314947 + 0.949109i \(0.601987\pi\)
\(110\) 0 0
\(111\) 5.41740 + 13.0788i 0.514197 + 1.24138i
\(112\) 0.332949 0.222469i 0.0314607 0.0210214i
\(113\) 17.7638 + 3.53343i 1.67107 + 0.332397i 0.937705 0.347433i \(-0.112947\pi\)
0.733370 + 0.679830i \(0.237947\pi\)
\(114\) 2.45816 + 12.3580i 0.230227 + 1.15743i
\(115\) 0 0
\(116\) −3.36874 2.25092i −0.312779 0.208992i
\(117\) −7.40911 + 3.06895i −0.684972 + 0.283725i
\(118\) 3.61793 3.61793i 0.333057 0.333057i
\(119\) −1.64696 + 0.115947i −0.150976 + 0.0106288i
\(120\) 0 0
\(121\) 2.12156 5.12189i 0.192869 0.465626i
\(122\) −2.14971 10.8073i −0.194625 0.978447i
\(123\) 24.5499i 2.21359i
\(124\) 7.04599 1.40153i 0.632749 0.125862i
\(125\) 0 0
\(126\) −0.438839 + 2.20619i −0.0390948 + 0.196543i
\(127\) 1.02712 2.47968i 0.0911419 0.220036i −0.871735 0.489978i \(-0.837005\pi\)
0.962876 + 0.269942i \(0.0870047\pi\)
\(128\) −0.382683 + 0.923880i −0.0338248 + 0.0816602i
\(129\) −6.67946 + 33.5799i −0.588094 + 2.95655i
\(130\) 0 0
\(131\) −0.529027 + 0.105230i −0.0462213 + 0.00919399i −0.218147 0.975916i \(-0.570001\pi\)
0.171925 + 0.985110i \(0.445001\pi\)
\(132\) 11.9401i 1.03925i
\(133\) 0.335314 + 1.68574i 0.0290754 + 0.146172i
\(134\) −0.123957 + 0.299259i −0.0107083 + 0.0258520i
\(135\) 0 0
\(136\) 3.25891 2.52577i 0.279449 0.216583i
\(137\) −10.3299 + 10.3299i −0.882540 + 0.882540i −0.993792 0.111252i \(-0.964514\pi\)
0.111252 + 0.993792i \(0.464514\pi\)
\(138\) 16.7912 6.95514i 1.42936 0.592061i
\(139\) 9.81373 + 6.55733i 0.832390 + 0.556185i 0.897155 0.441715i \(-0.145630\pi\)
−0.0647652 + 0.997901i \(0.520630\pi\)
\(140\) 0 0
\(141\) −4.10041 20.6142i −0.345317 1.73603i
\(142\) 4.50992 + 0.897080i 0.378464 + 0.0752812i
\(143\) −4.82812 + 3.22605i −0.403748 + 0.269776i
\(144\) −2.14970 5.18983i −0.179142 0.432486i
\(145\) 0 0
\(146\) 12.9548 + 2.57688i 1.07215 + 0.213264i
\(147\) 3.91705 19.6923i 0.323073 1.62420i
\(148\) −4.00967 2.67918i −0.329593 0.220227i
\(149\) 5.72365 + 5.72365i 0.468900 + 0.468900i 0.901558 0.432658i \(-0.142424\pi\)
−0.432658 + 0.901558i \(0.642424\pi\)
\(150\) 0 0
\(151\) −20.2121 8.37213i −1.64484 0.681315i −0.648066 0.761584i \(-0.724422\pi\)
−0.996773 + 0.0802696i \(0.974422\pi\)
\(152\) −3.03508 3.03508i −0.246177 0.246177i
\(153\) −2.91210 + 22.9775i −0.235429 + 1.85762i
\(154\) 1.62873i 0.131247i
\(155\) 0 0
\(156\) 2.32831 3.48456i 0.186414 0.278988i
\(157\) 7.75079 0.618580 0.309290 0.950968i \(-0.399909\pi\)
0.309290 + 0.950968i \(0.399909\pi\)
\(158\) 0.586248 0.877382i 0.0466394 0.0698008i
\(159\) −11.6736 + 7.80005i −0.925777 + 0.618584i
\(160\) 0 0
\(161\) 2.29047 0.948742i 0.180514 0.0747714i
\(162\) 5.26911 + 2.18254i 0.413980 + 0.171476i
\(163\) −4.44289 6.64926i −0.347994 0.520810i 0.615643 0.788026i \(-0.288897\pi\)
−0.963637 + 0.267215i \(0.913897\pi\)
\(164\) −4.64623 6.95357i −0.362810 0.542983i
\(165\) 0 0
\(166\) 0.879841 0.879841i 0.0682889 0.0682889i
\(167\) 15.6593 3.11484i 1.21176 0.241033i 0.452463 0.891783i \(-0.350545\pi\)
0.759292 + 0.650750i \(0.225545\pi\)
\(168\) −0.449842 1.08601i −0.0347061 0.0837878i
\(169\) −10.9619 −0.843223
\(170\) 0 0
\(171\) 24.1114 1.84385
\(172\) −4.46330 10.7754i −0.340324 0.821614i
\(173\) 10.6405 2.11653i 0.808982 0.160917i 0.226765 0.973950i \(-0.427185\pi\)
0.582218 + 0.813033i \(0.302185\pi\)
\(174\) −8.40997 + 8.40997i −0.637558 + 0.637558i
\(175\) 0 0
\(176\) −2.25974 3.38193i −0.170334 0.254923i
\(177\) −8.34455 12.4885i −0.627215 0.938693i
\(178\) −13.0059 5.38723i −0.974835 0.403790i
\(179\) −5.35501 + 2.21812i −0.400253 + 0.165790i −0.573724 0.819049i \(-0.694502\pi\)
0.173471 + 0.984839i \(0.444502\pi\)
\(180\) 0 0
\(181\) −10.1235 + 6.76432i −0.752475 + 0.502788i −0.871676 0.490082i \(-0.836967\pi\)
0.119201 + 0.992870i \(0.461967\pi\)
\(182\) 0.317602 0.475325i 0.0235422 0.0352334i
\(183\) −32.3469 −2.39115
\(184\) −3.43967 + 5.14783i −0.253576 + 0.379503i
\(185\) 0 0
\(186\) 21.0891i 1.54632i
\(187\) 1.17773 + 16.7290i 0.0861241 + 1.22335i
\(188\) 5.06277 + 5.06277i 0.369240 + 0.369240i
\(189\) 2.84257 + 1.17743i 0.206766 + 0.0856454i
\(190\) 0 0
\(191\) 4.69675 + 4.69675i 0.339845 + 0.339845i 0.856309 0.516464i \(-0.172752\pi\)
−0.516464 + 0.856309i \(0.672752\pi\)
\(192\) 2.44082 + 1.63090i 0.176151 + 0.117700i
\(193\) −1.47105 + 7.39545i −0.105888 + 0.532336i 0.891034 + 0.453937i \(0.149981\pi\)
−0.996922 + 0.0783992i \(0.975019\pi\)
\(194\) −2.91529 0.579888i −0.209306 0.0416335i
\(195\) 0 0
\(196\) 2.61742 + 6.31901i 0.186959 + 0.451358i
\(197\) −11.0633 + 7.39225i −0.788226 + 0.526676i −0.883308 0.468793i \(-0.844689\pi\)
0.0950814 + 0.995470i \(0.469689\pi\)
\(198\) 22.4094 + 4.45751i 1.59257 + 0.316781i
\(199\) −1.64904 8.29026i −0.116897 0.587681i −0.994182 0.107711i \(-0.965648\pi\)
0.877285 0.479969i \(-0.159352\pi\)
\(200\) 0 0
\(201\) 0.790618 + 0.528274i 0.0557659 + 0.0372616i
\(202\) 1.07345 0.444636i 0.0755274 0.0312845i
\(203\) −1.14719 + 1.14719i −0.0805172 + 0.0805172i
\(204\) −5.40569 10.8294i −0.378474 0.758206i
\(205\) 0 0
\(206\) 4.79812 11.5837i 0.334301 0.807074i
\(207\) −6.78502 34.1106i −0.471591 2.37085i
\(208\) 1.42762i 0.0989877i
\(209\) 17.1229 3.40596i 1.18442 0.235595i
\(210\) 0 0
\(211\) 1.27654 6.41761i 0.0878808 0.441807i −0.911644 0.410981i \(-0.865186\pi\)
0.999525 0.0308257i \(-0.00981368\pi\)
\(212\) 1.83025 4.41860i 0.125702 0.303471i
\(213\) 5.16564 12.4709i 0.353944 0.854495i
\(214\) 2.51085 12.6229i 0.171638 0.862884i
\(215\) 0 0
\(216\) −7.53595 + 1.49899i −0.512757 + 0.101994i
\(217\) 2.87673i 0.195285i
\(218\) −0.504041 2.53399i −0.0341380 0.171623i
\(219\) 14.8384 35.8230i 1.00269 2.42070i
\(220\) 0 0
\(221\) 2.91843 5.11179i 0.196315 0.343856i
\(222\) −10.0101 + 10.0101i −0.671831 + 0.671831i
\(223\) 11.5196 4.77157i 0.771408 0.319528i 0.0379655 0.999279i \(-0.487912\pi\)
0.733443 + 0.679751i \(0.237912\pi\)
\(224\) 0.332949 + 0.222469i 0.0222461 + 0.0148644i
\(225\) 0 0
\(226\) 3.53343 + 17.7638i 0.235040 + 1.18163i
\(227\) 12.0457 + 2.39605i 0.799504 + 0.159031i 0.577902 0.816106i \(-0.303871\pi\)
0.221602 + 0.975137i \(0.428871\pi\)
\(228\) −10.4766 + 7.00024i −0.693830 + 0.463602i
\(229\) −4.51607 10.9028i −0.298430 0.720474i −0.999969 0.00784330i \(-0.997503\pi\)
0.701539 0.712631i \(-0.252497\pi\)
\(230\) 0 0
\(231\) 4.68935 + 0.932770i 0.308537 + 0.0613718i
\(232\) 0.790417 3.97370i 0.0518934 0.260886i
\(233\) 6.56815 + 4.38870i 0.430294 + 0.287513i 0.751796 0.659396i \(-0.229188\pi\)
−0.321502 + 0.946909i \(0.604188\pi\)
\(234\) −5.67068 5.67068i −0.370704 0.370704i
\(235\) 0 0
\(236\) 4.72705 + 1.95801i 0.307705 + 0.127456i
\(237\) −2.19036 2.19036i −0.142279 0.142279i
\(238\) −0.737384 1.47722i −0.0477975 0.0957539i
\(239\) 25.7864i 1.66798i 0.551778 + 0.833991i \(0.313950\pi\)
−0.551778 + 0.833991i \(0.686050\pi\)
\(240\) 0 0
\(241\) 6.67849 9.99506i 0.430199 0.643839i −0.551523 0.834160i \(-0.685953\pi\)
0.981722 + 0.190321i \(0.0609530\pi\)
\(242\) 5.54389 0.356375
\(243\) −3.50489 + 5.24544i −0.224839 + 0.336495i
\(244\) 9.16199 6.12184i 0.586536 0.391911i
\(245\) 0 0
\(246\) −22.6812 + 9.39486i −1.44610 + 0.598994i
\(247\) −5.66126 2.34497i −0.360217 0.149207i
\(248\) 3.99123 + 5.97330i 0.253444 + 0.379305i
\(249\) −2.02930 3.03707i −0.128602 0.192466i
\(250\) 0 0
\(251\) 7.42678 7.42678i 0.468774 0.468774i −0.432743 0.901517i \(-0.642454\pi\)
0.901517 + 0.432743i \(0.142454\pi\)
\(252\) −2.20619 + 0.438839i −0.138977 + 0.0276442i
\(253\) −9.63687 23.2655i −0.605865 1.46269i
\(254\) 2.68399 0.168408
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −7.31385 17.6572i −0.456226 1.10143i −0.969914 0.243449i \(-0.921721\pi\)
0.513688 0.857977i \(-0.328279\pi\)
\(258\) −33.5799 + 6.67946i −2.09059 + 0.415845i
\(259\) −1.36546 + 1.36546i −0.0848455 + 0.0848455i
\(260\) 0 0
\(261\) 12.6444 + 18.9236i 0.782667 + 1.17134i
\(262\) −0.299670 0.448488i −0.0185137 0.0277077i
\(263\) 18.2366 + 7.55384i 1.12452 + 0.465790i 0.865913 0.500194i \(-0.166738\pi\)
0.258603 + 0.965984i \(0.416738\pi\)
\(264\) −11.0312 + 4.56928i −0.678924 + 0.281220i
\(265\) 0 0
\(266\) −1.42910 + 0.954894i −0.0876237 + 0.0585483i
\(267\) −22.9590 + 34.3606i −1.40507 + 2.10284i
\(268\) −0.323915 −0.0197863
\(269\) −0.192478 + 0.288064i −0.0117356 + 0.0175636i −0.837291 0.546757i \(-0.815862\pi\)
0.825555 + 0.564321i \(0.190862\pi\)
\(270\) 0 0
\(271\) 7.29707i 0.443266i −0.975130 0.221633i \(-0.928861\pi\)
0.975130 0.221633i \(-0.0711386\pi\)
\(272\) 3.58064 + 2.04427i 0.217108 + 0.123952i
\(273\) −1.18664 1.18664i −0.0718185 0.0718185i
\(274\) −13.4966 5.59048i −0.815361 0.337734i
\(275\) 0 0
\(276\) 12.8514 + 12.8514i 0.773565 + 0.773565i
\(277\) −13.3490 8.91951i −0.802063 0.535921i 0.0856464 0.996326i \(-0.472704\pi\)
−0.887709 + 0.460404i \(0.847704\pi\)
\(278\) −2.30263 + 11.5761i −0.138102 + 0.694288i
\(279\) −39.5804 7.87303i −2.36962 0.471346i
\(280\) 0 0
\(281\) −2.31954 5.59987i −0.138372 0.334060i 0.839469 0.543408i \(-0.182866\pi\)
−0.977841 + 0.209347i \(0.932866\pi\)
\(282\) 17.4758 11.6770i 1.04067 0.695354i
\(283\) 16.1947 + 3.22133i 0.962676 + 0.191488i 0.651318 0.758805i \(-0.274216\pi\)
0.311358 + 0.950293i \(0.399216\pi\)
\(284\) 0.897080 + 4.50992i 0.0532319 + 0.267615i
\(285\) 0 0
\(286\) −4.82812 3.22605i −0.285493 0.190760i
\(287\) −3.09391 + 1.28154i −0.182628 + 0.0756470i
\(288\) 3.97212 3.97212i 0.234060 0.234060i
\(289\) −8.64196 14.6396i −0.508350 0.861150i
\(290\) 0 0
\(291\) −3.33916 + 8.06144i −0.195745 + 0.472570i
\(292\) 2.57688 + 12.9548i 0.150800 + 0.758125i
\(293\) 6.51197i 0.380433i −0.981742 0.190217i \(-0.939081\pi\)
0.981742 0.190217i \(-0.0609190\pi\)
\(294\) 19.6923 3.91705i 1.14848 0.228447i
\(295\) 0 0
\(296\) 0.940802 4.72973i 0.0546830 0.274910i
\(297\) 11.9598 28.8734i 0.693976 1.67541i
\(298\) −3.09762 + 7.47831i −0.179440 + 0.433207i
\(299\) −1.72435 + 8.66890i −0.0997218 + 0.501336i
\(300\) 0 0
\(301\) −4.58060 + 0.911137i −0.264021 + 0.0525171i
\(302\) 21.8774i 1.25891i
\(303\) −0.665410 3.34524i −0.0382268 0.192179i
\(304\) 1.64257 3.96552i 0.0942080 0.227438i
\(305\) 0 0
\(306\) −22.3428 + 6.10267i −1.27725 + 0.348866i
\(307\) 0.765848 0.765848i 0.0437092 0.0437092i −0.684914 0.728624i \(-0.740160\pi\)
0.728624 + 0.684914i \(0.240160\pi\)
\(308\) −1.50475 + 0.623289i −0.0857413 + 0.0355152i
\(309\) −30.6032 20.4484i −1.74096 1.16327i
\(310\) 0 0
\(311\) 3.49706 + 17.5809i 0.198300 + 0.996921i 0.943826 + 0.330444i \(0.107199\pi\)
−0.745526 + 0.666477i \(0.767801\pi\)
\(312\) 4.11032 + 0.817593i 0.232701 + 0.0462871i
\(313\) 2.63946 1.76363i 0.149191 0.0996864i −0.478734 0.877960i \(-0.658904\pi\)
0.627925 + 0.778273i \(0.283904\pi\)
\(314\) 2.96610 + 7.16079i 0.167387 + 0.404107i
\(315\) 0 0
\(316\) 1.03494 + 0.205863i 0.0582201 + 0.0115807i
\(317\) −3.02578 + 15.2116i −0.169945 + 0.854370i 0.797894 + 0.602798i \(0.205948\pi\)
−0.967839 + 0.251572i \(0.919052\pi\)
\(318\) −11.6736 7.80005i −0.654623 0.437405i
\(319\) 11.6526 + 11.6526i 0.652423 + 0.652423i
\(320\) 0 0
\(321\) −34.9052 14.4582i −1.94822 0.806978i
\(322\) 1.75305 + 1.75305i 0.0976935 + 0.0976935i
\(323\) −13.9880 + 10.8412i −0.778315 + 0.603223i
\(324\) 5.70324i 0.316847i
\(325\) 0 0
\(326\) 4.44289 6.64926i 0.246069 0.368268i
\(327\) −7.58437 −0.419417
\(328\) 4.64623 6.95357i 0.256545 0.383947i
\(329\) 2.38386 1.59284i 0.131426 0.0878163i
\(330\) 0 0
\(331\) 26.8797 11.1340i 1.47744 0.611977i 0.508901 0.860825i \(-0.330052\pi\)
0.968543 + 0.248847i \(0.0800518\pi\)
\(332\) 1.14957 + 0.476166i 0.0630907 + 0.0261330i
\(333\) 15.0501 + 22.5241i 0.824740 + 1.23431i
\(334\) 8.87030 + 13.2753i 0.485361 + 0.726394i
\(335\) 0 0
\(336\) 0.831199 0.831199i 0.0453456 0.0453456i
\(337\) 9.11334 1.81276i 0.496435 0.0987471i 0.0594785 0.998230i \(-0.481056\pi\)
0.436957 + 0.899482i \(0.356056\pi\)
\(338\) −4.19494 10.1275i −0.228175 0.550862i
\(339\) 53.1680 2.88769
\(340\) 0 0
\(341\) −29.2205 −1.58238
\(342\) 9.22704 + 22.2760i 0.498941 + 1.20455i
\(343\) 5.43539 1.08117i 0.293483 0.0583774i
\(344\) 8.24711 8.24711i 0.444654 0.444654i
\(345\) 0 0
\(346\) 6.02736 + 9.02058i 0.324033 + 0.484950i
\(347\) 3.92971 + 5.88122i 0.210958 + 0.315721i 0.921826 0.387605i \(-0.126698\pi\)
−0.710868 + 0.703326i \(0.751698\pi\)
\(348\) −10.9882 4.55144i −0.589027 0.243983i
\(349\) −3.78588 + 1.56816i −0.202653 + 0.0839418i −0.481702 0.876335i \(-0.659981\pi\)
0.279048 + 0.960277i \(0.409981\pi\)
\(350\) 0 0
\(351\) −9.12060 + 6.09419i −0.486822 + 0.325284i
\(352\) 2.25974 3.38193i 0.120444 0.180258i
\(353\) −8.78110 −0.467371 −0.233685 0.972312i \(-0.575079\pi\)
−0.233685 + 0.972312i \(0.575079\pi\)
\(354\) 8.34455 12.4885i 0.443508 0.663756i
\(355\) 0 0
\(356\) 14.0775i 0.746106i
\(357\) −4.67542 + 1.27703i −0.247449 + 0.0675877i
\(358\) −4.09855 4.09855i −0.216615 0.216615i
\(359\) 12.2545 + 5.07599i 0.646769 + 0.267901i 0.681859 0.731484i \(-0.261172\pi\)
−0.0350899 + 0.999384i \(0.511172\pi\)
\(360\) 0 0
\(361\) −0.407718 0.407718i −0.0214588 0.0214588i
\(362\) −10.1235 6.76432i −0.532080 0.355525i
\(363\) 3.17497 15.9616i 0.166643 0.837769i
\(364\) 0.560684 + 0.111527i 0.0293878 + 0.00584560i
\(365\) 0 0
\(366\) −12.3786 29.8846i −0.647040 1.56209i
\(367\) −10.7937 + 7.21215i −0.563429 + 0.376471i −0.804424 0.594055i \(-0.797526\pi\)
0.240996 + 0.970526i \(0.422526\pi\)
\(368\) −6.07227 1.20785i −0.316539 0.0629636i
\(369\) 9.16506 + 46.0759i 0.477114 + 2.39861i
\(370\) 0 0
\(371\) −1.59238 1.06400i −0.0826724 0.0552399i
\(372\) 19.4837 8.07043i 1.01019 0.418432i
\(373\) 26.5715 26.5715i 1.37582 1.37582i 0.524263 0.851557i \(-0.324341\pi\)
0.851557 0.524263i \(-0.175659\pi\)
\(374\) −15.0049 + 7.48999i −0.775884 + 0.387298i
\(375\) 0 0
\(376\) −2.73995 + 6.61482i −0.141302 + 0.341133i
\(377\) −1.12842 5.67293i −0.0581164 0.292171i
\(378\) 3.07677i 0.158252i
\(379\) −19.3776 + 3.85445i −0.995363 + 0.197990i −0.665789 0.746140i \(-0.731905\pi\)
−0.329574 + 0.944130i \(0.606905\pi\)
\(380\) 0 0
\(381\) 1.53711 7.72757i 0.0787485 0.395896i
\(382\) −2.54186 + 6.13660i −0.130053 + 0.313976i
\(383\) 3.37058 8.13729i 0.172228 0.415796i −0.814070 0.580767i \(-0.802753\pi\)
0.986298 + 0.164971i \(0.0527529\pi\)
\(384\) −0.572697 + 2.87914i −0.0292253 + 0.146926i
\(385\) 0 0
\(386\) −7.39545 + 1.47105i −0.376418 + 0.0748743i
\(387\) 65.5171i 3.33042i
\(388\) −0.579888 2.91529i −0.0294393 0.148002i
\(389\) 0.346119 0.835604i 0.0175489 0.0423668i −0.914862 0.403766i \(-0.867701\pi\)
0.932411 + 0.361399i \(0.117701\pi\)
\(390\) 0 0
\(391\) 19.2735 + 16.7382i 0.974701 + 0.846488i
\(392\) −4.83636 + 4.83636i −0.244273 + 0.244273i
\(393\) −1.46288 + 0.605944i −0.0737925 + 0.0305658i
\(394\) −11.0633 7.39225i −0.557360 0.372416i
\(395\) 0 0
\(396\) 4.45751 + 22.4094i 0.223998 + 1.12612i
\(397\) 9.40611 + 1.87099i 0.472079 + 0.0939023i 0.425396 0.905007i \(-0.360135\pi\)
0.0466831 + 0.998910i \(0.485135\pi\)
\(398\) 7.02814 4.69606i 0.352289 0.235392i
\(399\) 1.93083 + 4.66144i 0.0966626 + 0.233364i
\(400\) 0 0
\(401\) 26.8075 + 5.33235i 1.33870 + 0.266285i 0.811947 0.583731i \(-0.198408\pi\)
0.526757 + 0.850016i \(0.323408\pi\)
\(402\) −0.185505 + 0.932598i −0.00925216 + 0.0465138i
\(403\) 8.52761 + 5.69797i 0.424790 + 0.283836i
\(404\) 0.821580 + 0.821580i 0.0408751 + 0.0408751i
\(405\) 0 0
\(406\) −1.49888 0.620857i −0.0743882 0.0308126i
\(407\) 13.8697 + 13.8697i 0.687495 + 0.687495i
\(408\) 7.93635 9.13842i 0.392908 0.452419i
\(409\) 14.7541i 0.729542i 0.931097 + 0.364771i \(0.118853\pi\)
−0.931097 + 0.364771i \(0.881147\pi\)
\(410\) 0 0
\(411\) −23.8253 + 35.6570i −1.17521 + 1.75883i
\(412\) 12.5381 0.617708
\(413\) 1.13827 1.70354i 0.0560106 0.0838258i
\(414\) 28.9176 19.3221i 1.42122 0.949629i
\(415\) 0 0
\(416\) −1.31895 + 0.546327i −0.0646668 + 0.0267859i
\(417\) 32.0105 + 13.2592i 1.56756 + 0.649305i
\(418\) 9.69935 + 14.5161i 0.474411 + 0.710006i
\(419\) 19.8198 + 29.6624i 0.968259 + 1.44910i 0.892011 + 0.452014i \(0.149294\pi\)
0.0762483 + 0.997089i \(0.475706\pi\)
\(420\) 0 0
\(421\) −19.9963 + 19.9963i −0.974561 + 0.974561i −0.999684 0.0251238i \(-0.992002\pi\)
0.0251238 + 0.999684i \(0.492002\pi\)
\(422\) 6.41761 1.27654i 0.312404 0.0621411i
\(423\) −15.3915 37.1583i −0.748359 1.80670i
\(424\) 4.78266 0.232267
\(425\) 0 0
\(426\) 13.4985 0.654002
\(427\) −1.68855 4.07652i −0.0817147 0.197277i
\(428\) 12.6229 2.51085i 0.610151 0.121367i
\(429\) −12.0533 + 12.0533i −0.581938 + 0.581938i
\(430\) 0 0
\(431\) 19.4844 + 29.1604i 0.938529 + 1.40461i 0.914361 + 0.404900i \(0.132694\pi\)
0.0241685 + 0.999708i \(0.492306\pi\)
\(432\) −4.26877 6.38867i −0.205382 0.307375i
\(433\) −8.33104 3.45083i −0.400364 0.165836i 0.173410 0.984850i \(-0.444521\pi\)
−0.573774 + 0.819013i \(0.694521\pi\)
\(434\) 2.65775 1.10088i 0.127576 0.0528438i
\(435\) 0 0
\(436\) 2.14821 1.43539i 0.102881 0.0687426i
\(437\) 14.7639 22.0957i 0.706253 1.05698i
\(438\) 38.7746 1.85272
\(439\) 0.450506 0.674229i 0.0215015 0.0321792i −0.820563 0.571556i \(-0.806340\pi\)
0.842065 + 0.539377i \(0.181340\pi\)
\(440\) 0 0
\(441\) 38.4213i 1.82958i
\(442\) 5.83952 + 0.740084i 0.277758 + 0.0352022i
\(443\) 21.1731 + 21.1731i 1.00597 + 1.00597i 0.999982 + 0.00598344i \(0.00190460\pi\)
0.00598344 + 0.999982i \(0.498095\pi\)
\(444\) −13.0788 5.41740i −0.620691 0.257099i
\(445\) 0 0
\(446\) 8.81671 + 8.81671i 0.417483 + 0.417483i
\(447\) 19.7571 + 13.2013i 0.934480 + 0.624399i
\(448\) −0.0781209 + 0.392740i −0.00369086 + 0.0185552i
\(449\) 31.7252 + 6.31053i 1.49720 + 0.297812i 0.874646 0.484762i \(-0.161094\pi\)
0.622558 + 0.782574i \(0.286094\pi\)
\(450\) 0 0
\(451\) 13.0173 + 31.4265i 0.612960 + 1.47982i
\(452\) −15.0594 + 10.0624i −0.708334 + 0.473294i
\(453\) −62.9882 12.5291i −2.95945 0.588670i
\(454\) 2.39605 + 12.0457i 0.112452 + 0.565335i
\(455\) 0 0
\(456\) −10.4766 7.00024i −0.490612 0.327816i
\(457\) −2.69908 + 1.11799i −0.126258 + 0.0522976i −0.444918 0.895571i \(-0.646767\pi\)
0.318660 + 0.947869i \(0.396767\pi\)
\(458\) 8.34461 8.34461i 0.389918 0.389918i
\(459\) 2.22480 + 31.6020i 0.103845 + 1.47506i
\(460\) 0 0
\(461\) 0.778333 1.87906i 0.0362506 0.0875167i −0.904717 0.426012i \(-0.859918\pi\)
0.940968 + 0.338496i \(0.109918\pi\)
\(462\) 0.932770 + 4.68935i 0.0433964 + 0.218168i
\(463\) 27.6489i 1.28495i 0.766306 + 0.642476i \(0.222093\pi\)
−0.766306 + 0.642476i \(0.777907\pi\)
\(464\) 3.97370 0.790417i 0.184474 0.0366942i
\(465\) 0 0
\(466\) −1.54111 + 7.74767i −0.0713904 + 0.358904i
\(467\) 0.528111 1.27497i 0.0244380 0.0589987i −0.911189 0.411988i \(-0.864835\pi\)
0.935627 + 0.352989i \(0.114835\pi\)
\(468\) 3.06895 7.40911i 0.141862 0.342486i
\(469\) −0.0253045 + 0.127215i −0.00116846 + 0.00587422i
\(470\) 0 0
\(471\) 22.3156 4.43885i 1.02825 0.204531i
\(472\) 5.11652i 0.235507i
\(473\) 9.25489 + 46.5275i 0.425540 + 2.13934i
\(474\) 1.18542 2.86185i 0.0544480 0.131449i
\(475\) 0 0
\(476\) 1.08259 1.24656i 0.0496203 0.0571360i
\(477\) −18.9973 + 18.9973i −0.869828 + 0.869828i
\(478\) −23.8235 + 9.86802i −1.08966 + 0.451353i
\(479\) −20.9063 13.9692i −0.955234 0.638267i −0.0228511 0.999739i \(-0.507274\pi\)
−0.932383 + 0.361472i \(0.882274\pi\)
\(480\) 0 0
\(481\) −1.34311 6.75226i −0.0612405 0.307877i
\(482\) 11.7900 + 2.34517i 0.537019 + 0.106820i
\(483\) 6.05123 4.04331i 0.275341 0.183977i
\(484\) 2.12156 + 5.12189i 0.0964344 + 0.232813i
\(485\) 0 0
\(486\) −6.18742 1.23075i −0.280667 0.0558282i
\(487\) −4.82518 + 24.2578i −0.218650 + 1.09923i 0.702995 + 0.711194i \(0.251845\pi\)
−0.921645 + 0.388033i \(0.873155\pi\)
\(488\) 9.16199 + 6.12184i 0.414744 + 0.277123i
\(489\) −16.5997 16.5997i −0.750665 0.750665i
\(490\) 0 0
\(491\) −14.0845 5.83401i −0.635627 0.263285i 0.0415151 0.999138i \(-0.486782\pi\)
−0.677142 + 0.735853i \(0.736782\pi\)
\(492\) −17.3594 17.3594i −0.782624 0.782624i
\(493\) −15.8442 5.29309i −0.713587 0.238389i
\(494\) 6.12770i 0.275698i
\(495\) 0 0
\(496\) −3.99123 + 5.97330i −0.179212 + 0.268209i
\(497\) 1.84131 0.0825940
\(498\) 2.02930 3.03707i 0.0909352 0.136094i
\(499\) 4.13838 2.76518i 0.185260 0.123786i −0.459482 0.888187i \(-0.651965\pi\)
0.644742 + 0.764401i \(0.276965\pi\)
\(500\) 0 0
\(501\) 43.3016 17.9361i 1.93457 0.801326i
\(502\) 9.70355 + 4.01934i 0.433091 + 0.179392i
\(503\) 11.8866 + 17.7895i 0.529997 + 0.793196i 0.995787 0.0916992i \(-0.0292298\pi\)
−0.465790 + 0.884895i \(0.654230\pi\)
\(504\) −1.24971 1.87032i −0.0556663 0.0833106i
\(505\) 0 0
\(506\) 17.8066 17.8066i 0.791600 0.791600i
\(507\) −31.5609 + 6.27784i −1.40167 + 0.278809i
\(508\) 1.02712 + 2.47968i 0.0455709 + 0.110018i
\(509\) 42.8646 1.89994 0.949969 0.312343i \(-0.101114\pi\)
0.949969 + 0.312343i \(0.101114\pi\)
\(510\) 0 0
\(511\) 5.28919 0.233980
\(512\) −0.382683 0.923880i −0.0169124 0.0408301i
\(513\) 32.3462 6.43406i 1.42812 0.284071i
\(514\) 13.5142 13.5142i 0.596088 0.596088i
\(515\) 0 0
\(516\) −19.0215 28.4677i −0.837375 1.25322i
\(517\) −16.1793 24.2141i −0.711566 1.06493i
\(518\) −1.78406 0.738981i −0.0783871 0.0324690i
\(519\) 29.4234 12.1876i 1.29154 0.534975i
\(520\) 0 0
\(521\) −0.196842 + 0.131526i −0.00862380 + 0.00576224i −0.559875 0.828577i \(-0.689151\pi\)
0.551251 + 0.834340i \(0.314151\pi\)
\(522\) −12.6444 + 18.9236i −0.553429 + 0.828266i
\(523\) −1.81889 −0.0795345 −0.0397673 0.999209i \(-0.512662\pi\)
−0.0397673 + 0.999209i \(0.512662\pi\)
\(524\) 0.299670 0.448488i 0.0130911 0.0195923i
\(525\) 0 0
\(526\) 19.7391i 0.860667i
\(527\) 26.5022 13.2291i 1.15445 0.576269i
\(528\) −8.44292 8.44292i −0.367431 0.367431i
\(529\) −14.1644 5.86708i −0.615843 0.255090i
\(530\) 0 0
\(531\) −20.3235 20.3235i −0.881964 0.881964i
\(532\) −1.42910 0.954894i −0.0619593 0.0413999i
\(533\) 2.32922 11.7098i 0.100890 0.507206i
\(534\) −40.5311 8.06214i −1.75395 0.348883i
\(535\) 0 0
\(536\) −0.123957 0.299259i −0.00535413 0.0129260i
\(537\) −14.1475 + 9.45308i −0.610511 + 0.407930i
\(538\) −0.339795 0.0675894i −0.0146496 0.00291399i
\(539\) −5.42736 27.2852i −0.233773 1.17526i
\(540\) 0 0
\(541\) −0.619318 0.413815i −0.0266266 0.0177913i 0.542186 0.840259i \(-0.317597\pi\)
−0.568812 + 0.822467i \(0.692597\pi\)
\(542\) 6.74162 2.79247i 0.289577 0.119947i
\(543\) −25.2731 + 25.2731i −1.08457 + 1.08457i
\(544\) −0.518404 + 4.09039i −0.0222264 + 0.175374i
\(545\) 0 0
\(546\) 0.642203 1.55042i 0.0274838 0.0663517i
\(547\) −6.30620 31.7034i −0.269634 1.35554i −0.843737 0.536757i \(-0.819649\pi\)
0.574103 0.818783i \(-0.305351\pi\)
\(548\) 14.6086i 0.624050i
\(549\) −60.7093 + 12.0758i −2.59101 + 0.515384i
\(550\) 0 0
\(551\) −3.39267 + 17.0561i −0.144532 + 0.726614i
\(552\) −6.95514 + 16.7912i −0.296031 + 0.714681i
\(553\) 0.161701 0.390381i 0.00687624 0.0166007i
\(554\) 3.13211 15.7462i 0.133071 0.668992i
\(555\) 0 0
\(556\) −11.5761 + 2.30263i −0.490936 + 0.0976531i
\(557\) 5.88641i 0.249415i 0.992194 + 0.124708i \(0.0397993\pi\)
−0.992194 + 0.124708i \(0.960201\pi\)
\(558\) −7.87303 39.5804i −0.333292 1.67557i
\(559\) 6.37190 15.3831i 0.269503 0.650637i
\(560\) 0 0
\(561\) 12.9715 + 47.4906i 0.547657 + 2.00506i
\(562\) 4.28596 4.28596i 0.180792 0.180792i
\(563\) 15.6628 6.48773i 0.660107 0.273425i −0.0273765 0.999625i \(-0.508715\pi\)
0.687484 + 0.726200i \(0.258715\pi\)
\(564\) 17.4758 + 11.6770i 0.735866 + 0.491690i
\(565\) 0 0
\(566\) 3.22133 + 16.1947i 0.135403 + 0.680715i
\(567\) 2.23989 + 0.445542i 0.0940666 + 0.0187110i
\(568\) −3.82333 + 2.55467i −0.160423 + 0.107191i
\(569\) −8.50960 20.5440i −0.356741 0.861249i −0.995754 0.0920531i \(-0.970657\pi\)
0.639013 0.769196i \(-0.279343\pi\)
\(570\) 0 0
\(571\) −26.9713 5.36493i −1.12872 0.224515i −0.404801 0.914405i \(-0.632659\pi\)
−0.723915 + 0.689890i \(0.757659\pi\)
\(572\) 1.13284 5.69515i 0.0473663 0.238126i
\(573\) 16.2124 + 10.8328i 0.677283 + 0.452546i
\(574\) −2.36798 2.36798i −0.0988376 0.0988376i
\(575\) 0 0
\(576\) 5.18983 + 2.14970i 0.216243 + 0.0895708i
\(577\) 15.7178 + 15.7178i 0.654339 + 0.654339i 0.954035 0.299696i \(-0.0968853\pi\)
−0.299696 + 0.954035i \(0.596885\pi\)
\(578\) 10.2181 13.5864i 0.425015 0.565121i
\(579\) 22.1350i 0.919899i
\(580\) 0 0
\(581\) 0.276815 0.414283i 0.0114842 0.0171873i
\(582\) −8.72564 −0.361689
\(583\) −10.8076 + 16.1747i −0.447603 + 0.669886i
\(584\) −10.9826 + 7.33833i −0.454462 + 0.303662i
\(585\) 0 0
\(586\) 6.01627 2.49202i 0.248530 0.102944i
\(587\) 20.3915 + 8.44643i 0.841646 + 0.348621i 0.761503 0.648162i \(-0.224462\pi\)
0.0801439 + 0.996783i \(0.474462\pi\)
\(588\) 11.1548 + 16.6943i 0.460016 + 0.688463i
\(589\) −17.1314 25.6389i −0.705886 1.05643i
\(590\) 0 0
\(591\) −27.6192 + 27.6192i −1.13610 + 1.13610i
\(592\) 4.72973 0.940802i 0.194391 0.0386667i
\(593\) −5.63746 13.6100i −0.231503 0.558897i 0.764852 0.644206i \(-0.222812\pi\)
−0.996355 + 0.0853090i \(0.972812\pi\)
\(594\) 31.2524 1.28230
\(595\) 0 0
\(596\) −8.09447 −0.331562
\(597\) −9.49561 22.9244i −0.388629 0.938234i
\(598\) −8.66890 + 1.72435i −0.354498 + 0.0705140i
\(599\) −9.31709 + 9.31709i −0.380686 + 0.380686i −0.871349 0.490663i \(-0.836754\pi\)
0.490663 + 0.871349i \(0.336754\pi\)
\(600\) 0 0
\(601\) −20.2161 30.2555i −0.824632 1.23415i −0.969596 0.244712i \(-0.921307\pi\)
0.144964 0.989437i \(-0.453693\pi\)
\(602\) −2.59470 3.88324i −0.105752 0.158269i
\(603\) 1.68107 + 0.696320i 0.0684583 + 0.0283564i
\(604\) 20.2121 8.37213i 0.822420 0.340657i
\(605\) 0 0
\(606\) 2.83596 1.89493i 0.115203 0.0769762i
\(607\) −20.8064 + 31.1390i −0.844506 + 1.26389i 0.118104 + 0.993001i \(0.462318\pi\)
−0.962610 + 0.270891i \(0.912682\pi\)
\(608\) 4.29225 0.174074
\(609\) −2.64594 + 3.95993i −0.107219 + 0.160464i
\(610\) 0 0
\(611\) 10.2215i 0.413519i
\(612\) −14.1884 18.3067i −0.573530 0.740004i
\(613\) −9.23647 9.23647i −0.373058 0.373058i 0.495532 0.868590i \(-0.334973\pi\)
−0.868590 + 0.495532i \(0.834973\pi\)
\(614\) 1.00063 + 0.414474i 0.0403821 + 0.0167268i
\(615\) 0 0
\(616\) −1.15169 1.15169i −0.0464029 0.0464029i
\(617\) −18.8949 12.6251i −0.760679 0.508269i 0.113699 0.993515i \(-0.463730\pi\)
−0.874378 + 0.485246i \(0.838730\pi\)
\(618\) 7.18053 36.0990i 0.288843 1.45211i
\(619\) −2.56570 0.510350i −0.103124 0.0205127i 0.143258 0.989685i \(-0.454242\pi\)
−0.246383 + 0.969173i \(0.579242\pi\)
\(620\) 0 0
\(621\) −18.2046 43.9498i −0.730526 1.76365i
\(622\) −14.9044 + 9.95878i −0.597611 + 0.399311i
\(623\) −5.52880 1.09975i −0.221507 0.0440604i
\(624\) 0.817593 + 4.11032i 0.0327299 + 0.164544i
\(625\) 0 0
\(626\) 2.63946 + 1.76363i 0.105494 + 0.0704889i
\(627\) 47.3487 19.6125i 1.89092 0.783247i
\(628\) −5.48064 + 5.48064i −0.218701 + 0.218701i
\(629\) −18.8587 6.30016i −0.751946 0.251204i
\(630\) 0 0
\(631\) 0.670871 1.61962i 0.0267069 0.0644762i −0.909963 0.414689i \(-0.863891\pi\)
0.936670 + 0.350212i \(0.113891\pi\)
\(632\) 0.205863 + 1.03494i 0.00818879 + 0.0411678i
\(633\) 19.2083i 0.763460i
\(634\) −15.2116 + 3.02578i −0.604131 + 0.120169i
\(635\) 0 0
\(636\) 2.73901 13.7700i 0.108609 0.546014i
\(637\) −3.73668 + 9.02115i −0.148053 + 0.357431i
\(638\) −6.30637 + 15.2249i −0.249671 + 0.602760i
\(639\) 5.03928 25.3342i 0.199351 1.00220i
\(640\) 0 0
\(641\) 40.7308 8.10186i 1.60877 0.320004i 0.692763 0.721165i \(-0.256393\pi\)
0.916008 + 0.401161i \(0.131393\pi\)
\(642\) 37.7811i 1.49110i
\(643\) −2.48698 12.5029i −0.0980769 0.493066i −0.998334 0.0577063i \(-0.981621\pi\)
0.900257 0.435359i \(-0.143379\pi\)
\(644\) −0.948742 + 2.29047i −0.0373857 + 0.0902570i
\(645\) 0 0
\(646\) −15.3690 8.77450i −0.604685 0.345228i
\(647\) 33.2038 33.2038i 1.30538 1.30538i 0.380661 0.924715i \(-0.375697\pi\)
0.924715 0.380661i \(-0.124303\pi\)
\(648\) −5.26911 + 2.18254i −0.206990 + 0.0857381i
\(649\) −17.3038 11.5620i −0.679232 0.453848i
\(650\) 0 0
\(651\) −1.64749 8.28252i −0.0645704 0.324617i
\(652\) 7.84334 + 1.56014i 0.307169 + 0.0610997i
\(653\) −18.1599 + 12.1341i −0.710652 + 0.474843i −0.857610 0.514300i \(-0.828052\pi\)
0.146958 + 0.989143i \(0.453052\pi\)
\(654\) −2.90241 7.00704i −0.113493 0.273997i
\(655\) 0 0
\(656\) 8.20230 + 1.63154i 0.320246 + 0.0637009i
\(657\) 14.4754 72.7729i 0.564740 2.83914i
\(658\) 2.38386 + 1.59284i 0.0929325 + 0.0620955i
\(659\) −5.08209 5.08209i −0.197970 0.197970i 0.601159 0.799129i \(-0.294706\pi\)
−0.799129 + 0.601159i \(0.794706\pi\)
\(660\) 0 0
\(661\) 45.0992 + 18.6807i 1.75416 + 0.726596i 0.997334 + 0.0729758i \(0.0232496\pi\)
0.756823 + 0.653620i \(0.226750\pi\)
\(662\) 20.5729 + 20.5729i 0.799587 + 0.799587i
\(663\) 5.47508 16.3889i 0.212634 0.636494i
\(664\) 1.24428i 0.0482875i
\(665\) 0 0
\(666\) −15.0501 + 22.5241i −0.583180 + 0.872790i
\(667\) 25.0841 0.971259
\(668\) −8.87030 + 13.2753i −0.343202 + 0.513638i
\(669\) 30.4338 20.3352i 1.17664 0.786206i
\(670\) 0 0
\(671\) −41.4074 + 17.1515i −1.59851 + 0.662126i
\(672\) 1.08601 + 0.449842i 0.0418939 + 0.0173530i
\(673\) −5.46823 8.18378i −0.210785 0.315461i 0.710979 0.703213i \(-0.248252\pi\)
−0.921764 + 0.387751i \(0.873252\pi\)
\(674\) 5.16229 + 7.72592i 0.198844 + 0.297591i
\(675\) 0 0
\(676\) 7.75123 7.75123i 0.298124 0.298124i
\(677\) −12.9461 + 2.57514i −0.497560 + 0.0989707i −0.437490 0.899223i \(-0.644132\pi\)
−0.0600699 + 0.998194i \(0.519132\pi\)
\(678\) 20.3465 + 49.1208i 0.781403 + 1.88647i
\(679\) −1.19025 −0.0456777
\(680\) 0 0
\(681\) 36.0536 1.38158
\(682\) −11.1822 26.9962i −0.428188 1.03374i
\(683\) 0.146970 0.0292342i 0.00562366 0.00111862i −0.192278 0.981341i \(-0.561587\pi\)
0.197901 + 0.980222i \(0.436587\pi\)
\(684\) −17.0493 + 17.0493i −0.651898 + 0.651898i
\(685\) 0 0
\(686\) 3.07890 + 4.60790i 0.117553 + 0.175930i
\(687\) −19.2464 28.8042i −0.734295 1.09895i
\(688\) 10.7754 + 4.46330i 0.410807 + 0.170162i
\(689\) 6.30809 2.61290i 0.240319 0.0995434i
\(690\) 0 0
\(691\) −5.65974 + 3.78171i −0.215306 + 0.143863i −0.658547 0.752539i \(-0.728829\pi\)
0.443241 + 0.896403i \(0.353829\pi\)
\(692\) −6.02736 + 9.02058i −0.229126 + 0.342911i
\(693\) 9.14930 0.347553
\(694\) −3.92971 + 5.88122i −0.149170 + 0.223248i
\(695\) 0 0
\(696\) 11.8935i 0.450822i
\(697\) −26.0342 22.6096i −0.986115 0.856401i
\(698\) −2.89759 2.89759i −0.109675 0.109675i
\(699\) 21.4240 + 8.87412i 0.810331 + 0.335650i
\(700\) 0 0
\(701\) 7.74147 + 7.74147i 0.292391 + 0.292391i 0.838024 0.545633i \(-0.183711\pi\)
−0.545633 + 0.838024i \(0.683711\pi\)
\(702\) −9.12060 6.09419i −0.344235 0.230010i
\(703\) −4.03816 + 20.3012i −0.152302 + 0.765674i
\(704\) 3.98926 + 0.793514i 0.150351 + 0.0299067i
\(705\) 0 0
\(706\) −3.36038 8.11268i −0.126470 0.305325i
\(707\) 0.386850 0.258485i 0.0145490 0.00972132i
\(708\) 14.7312 + 2.93022i 0.553632 + 0.110124i
\(709\) 4.93399 + 24.8048i 0.185300 + 0.931565i 0.955776 + 0.294096i \(0.0950185\pi\)
−0.770476 + 0.637469i \(0.779982\pi\)
\(710\) 0 0
\(711\) −4.92864 3.29321i −0.184838 0.123505i
\(712\) 13.0059 5.38723i 0.487418 0.201895i
\(713\) −31.4507 + 31.4507i −1.17784 + 1.17784i
\(714\) −2.96903 3.83082i −0.111113 0.143365i
\(715\) 0 0
\(716\) 2.21812 5.35501i 0.0828950 0.200126i
\(717\) 14.7678 + 74.2426i 0.551513 + 2.77264i
\(718\) 13.2642i 0.495016i
\(719\) −22.3307 + 4.44185i −0.832795 + 0.165653i −0.593033 0.805179i \(-0.702069\pi\)
−0.239762 + 0.970832i \(0.577069\pi\)
\(720\) 0 0
\(721\) 0.979487 4.92421i 0.0364780 0.183387i
\(722\) 0.220655 0.532709i 0.00821194 0.0198254i
\(723\) 13.5042 32.6019i 0.502225 1.21248i
\(724\) 2.37531 11.9415i 0.0882778 0.443802i
\(725\) 0 0
\(726\) 15.9616 3.17497i 0.592392 0.117834i
\(727\) 15.5794i 0.577807i −0.957358 0.288903i \(-0.906709\pi\)
0.957358 0.288903i \(-0.0932906\pi\)
\(728\) 0.111527 + 0.560684i 0.00413346 + 0.0207803i
\(729\) −13.6346 + 32.9169i −0.504987 + 1.21915i
\(730\) 0 0
\(731\) −29.4585 38.0092i −1.08956 1.40582i
\(732\) 22.8727 22.8727i 0.845399 0.845399i
\(733\) −31.8427 + 13.1897i −1.17614 + 0.487171i −0.883216 0.468966i \(-0.844627\pi\)
−0.292919 + 0.956137i \(0.594627\pi\)
\(734\) −10.7937 7.21215i −0.398404 0.266205i
\(735\) 0 0
\(736\) −1.20785 6.07227i −0.0445220 0.223827i
\(737\) 1.29218 + 0.257031i 0.0475982 + 0.00946787i
\(738\) −39.0612 + 26.0999i −1.43786 + 0.960750i
\(739\) −2.32988 5.62482i −0.0857058 0.206912i 0.875216 0.483733i \(-0.160719\pi\)
−0.960922 + 0.276820i \(0.910719\pi\)
\(740\) 0 0
\(741\) −17.6425 3.50931i −0.648114 0.128918i
\(742\) 0.373626 1.87834i 0.0137162 0.0689561i
\(743\) 16.3416 + 10.9191i 0.599516 + 0.400584i 0.817968 0.575264i \(-0.195101\pi\)
−0.218452 + 0.975848i \(0.570101\pi\)
\(744\) 14.9122 + 14.9122i 0.546708 + 0.546708i
\(745\) 0 0
\(746\) 34.7173 + 14.3804i 1.27109 + 0.526503i
\(747\) −4.94244 4.94244i −0.180835 0.180835i
\(748\) −12.6620 10.9964i −0.462967 0.402068i
\(749\) 5.15367i 0.188311i
\(750\) 0 0
\(751\) 21.4221 32.0605i 0.781705 1.16990i −0.200056 0.979785i \(-0.564112\pi\)
0.981761 0.190120i \(-0.0608877\pi\)
\(752\) −7.15983 −0.261092
\(753\) 17.1294 25.6360i 0.624232 0.934229i
\(754\) 4.80928 3.21346i 0.175144 0.117027i
\(755\) 0 0
\(756\) −2.84257 + 1.17743i −0.103383 + 0.0428227i
\(757\) 2.48797 + 1.03055i 0.0904267 + 0.0374559i 0.427438 0.904045i \(-0.359416\pi\)
−0.337012 + 0.941501i \(0.609416\pi\)
\(758\) −10.9766 16.4276i −0.398686 0.596676i
\(759\) −41.0700 61.4655i −1.49074 2.23106i
\(760\) 0 0
\(761\) 11.4396 11.4396i 0.414686 0.414686i −0.468681 0.883367i \(-0.655271\pi\)
0.883367 + 0.468681i \(0.155271\pi\)
\(762\) 7.72757 1.53711i 0.279940 0.0556836i
\(763\) −0.395915 0.955822i −0.0143331 0.0346031i
\(764\) −6.64220 −0.240306
\(765\) 0 0
\(766\) 8.80774 0.318237
\(767\) 2.79529 + 6.74844i 0.100932 + 0.243672i
\(768\) −2.87914 + 0.572697i −0.103892 + 0.0206654i
\(769\) 9.04894 9.04894i 0.326313 0.326313i −0.524870 0.851183i \(-0.675886\pi\)
0.851183 + 0.524870i \(0.175886\pi\)
\(770\) 0 0
\(771\) −31.1698 46.6490i −1.12255 1.68002i
\(772\) −4.18919 6.26956i −0.150772 0.225646i
\(773\) 30.6341 + 12.6891i 1.10183 + 0.456394i 0.858118 0.513453i \(-0.171634\pi\)
0.243715 + 0.969847i \(0.421634\pi\)
\(774\) −60.5299 + 25.0723i −2.17570 + 0.901205i
\(775\) 0 0
\(776\) 2.47147 1.65138i 0.0887205 0.0592811i
\(777\) −3.14936 + 4.71334i −0.112983 + 0.169090i
\(778\) 0.904451 0.0324262
\(779\) −19.9428 + 29.8465i −0.714524 + 1.06936i
\(780\) 0 0
\(781\) 18.7031i 0.669250i
\(782\) −8.08846 + 24.2118i −0.289243 + 0.865812i
\(783\) 22.0125 + 22.0125i 0.786664 + 0.786664i
\(784\) −6.31901 2.61742i −0.225679 0.0934793i
\(785\) 0 0
\(786\) −1.11964 1.11964i −0.0399362 0.0399362i
\(787\) 6.71110 + 4.48421i 0.239225 + 0.159845i 0.669404 0.742899i \(-0.266550\pi\)
−0.430179 + 0.902744i \(0.641550\pi\)
\(788\) 2.59581 13.0500i 0.0924720 0.464888i
\(789\) 56.8318 + 11.3045i 2.02326 + 0.402452i
\(790\) 0 0
\(791\) 2.77544 + 6.70051i 0.0986833 + 0.238243i
\(792\) −18.9978 + 12.6939i −0.675057 + 0.451059i
\(793\) 15.4287 + 3.06896i 0.547890 + 0.108982i
\(794\) 1.87099 + 9.40611i 0.0663990 + 0.333810i
\(795\) 0 0
\(796\) 7.02814 + 4.69606i 0.249106 + 0.166447i
\(797\) −12.2303 + 5.06596i −0.433219 + 0.179445i −0.588626 0.808405i \(-0.700331\pi\)
0.155407 + 0.987851i \(0.450331\pi\)
\(798\) −3.56771 + 3.56771i −0.126296 + 0.126296i
\(799\) 25.6368 + 14.6366i 0.906964 + 0.517806i
\(800\) 0 0
\(801\) −30.2624 + 73.0599i −1.06927 + 2.58144i
\(802\) 5.33235 + 26.8075i 0.188292 + 0.946607i
\(803\) 53.7251i 1.89592i
\(804\) −0.932598 + 0.185505i −0.0328902 + 0.00654227i
\(805\) 0 0
\(806\) −2.00086 + 10.0590i −0.0704773 + 0.354313i
\(807\) −0.389199 + 0.939609i −0.0137005 + 0.0330758i
\(808\) −0.444636 + 1.07345i −0.0156422 + 0.0377637i
\(809\) 2.50901 12.6137i 0.0882122 0.443473i −0.911285 0.411775i \(-0.864909\pi\)
0.999498 0.0316971i \(-0.0100912\pi\)
\(810\) 0 0
\(811\) 36.3575 7.23195i 1.27668 0.253948i 0.490227 0.871595i \(-0.336914\pi\)
0.786456 + 0.617647i \(0.211914\pi\)
\(812\) 1.62238i 0.0569343i
\(813\) −4.17901 21.0093i −0.146564 0.736828i
\(814\) −7.50622 + 18.1216i −0.263093 + 0.635162i
\(815\) 0 0
\(816\) 11.4799 + 3.83511i 0.401877 + 0.134256i
\(817\) −35.3986 + 35.3986i −1.23844 + 1.23844i
\(818\) −13.6310 + 5.64614i −0.476596 + 0.197413i
\(819\) −2.67010 1.78411i −0.0933010 0.0623417i
\(820\) 0 0
\(821\) −0.0441357 0.221885i −0.00154035 0.00774385i 0.980007 0.198961i \(-0.0637566\pi\)
−0.981548 + 0.191217i \(0.938757\pi\)
\(822\) −42.0603 8.36632i −1.46702 0.291809i
\(823\) −10.3503 + 6.91586i −0.360789 + 0.241072i −0.722732 0.691129i \(-0.757114\pi\)
0.361942 + 0.932201i \(0.382114\pi\)
\(824\) 4.79812 + 11.5837i 0.167151 + 0.403537i
\(825\) 0 0
\(826\) 2.00946 + 0.399707i 0.0699182 + 0.0139076i
\(827\) −7.57291 + 38.0716i −0.263336 + 1.32388i 0.592056 + 0.805897i \(0.298317\pi\)
−0.855392 + 0.517982i \(0.826683\pi\)
\(828\) 28.9176 + 19.3221i 1.00495 + 0.671489i
\(829\) 3.17422 + 3.17422i 0.110245 + 0.110245i 0.760078 0.649832i \(-0.225161\pi\)
−0.649832 + 0.760078i \(0.725161\pi\)
\(830\) 0 0
\(831\) −43.5418 18.0356i −1.51045 0.625648i
\(832\) −1.00948 1.00948i −0.0349974 0.0349974i
\(833\) 17.2754 + 22.2898i 0.598557 + 0.772295i
\(834\) 34.6479i 1.19976i
\(835\) 0 0
\(836\) −9.69935 + 14.5161i −0.335459 + 0.502050i
\(837\) −55.1992 −1.90796
\(838\) −19.8198 + 29.6624i −0.684663 + 1.02467i
\(839\) 3.56762 2.38381i 0.123168 0.0822982i −0.492460 0.870335i \(-0.663902\pi\)
0.615628 + 0.788037i \(0.288902\pi\)
\(840\) 0 0
\(841\) 11.6270 4.81606i 0.400931 0.166071i
\(842\) −26.1264 10.8219i −0.900377 0.372948i
\(843\) −9.88532 14.7944i −0.340468 0.509547i
\(844\) 3.63528 + 5.44059i 0.125132 + 0.187273i
\(845\) 0 0
\(846\) 28.4397 28.4397i 0.977779 0.977779i
\(847\) 2.17731 0.433094i 0.0748132 0.0148813i
\(848\) 1.83025 + 4.41860i 0.0628509 + 0.151735i
\(849\) 48.4717 1.66354
\(850\) 0 0
\(851\) 29.8566 1.02347
\(852\) 5.16564 + 12.4709i 0.176972 + 0.427248i
\(853\) −42.4704 + 8.44788i −1.45416 + 0.289250i −0.858013 0.513627i \(-0.828301\pi\)
−0.596144 + 0.802877i \(0.703301\pi\)
\(854\) 3.12004 3.12004i 0.106765 0.106765i
\(855\) 0 0
\(856\) 7.15030 + 10.7012i 0.244392 + 0.365759i
\(857\) 4.34733 + 6.50624i 0.148502 + 0.222249i 0.898261 0.439462i \(-0.144831\pi\)
−0.749759 + 0.661711i \(0.769831\pi\)
\(858\) −15.7484 6.52319i −0.537641 0.222698i
\(859\) 23.8872 9.89439i 0.815020 0.337592i 0.0640648 0.997946i \(-0.479594\pi\)
0.750955 + 0.660354i \(0.229594\pi\)
\(860\) 0 0
\(861\) −8.17388 + 5.46161i −0.278565 + 0.186131i
\(862\) −19.4844 + 29.1604i −0.663640 + 0.993208i
\(863\) 13.4218 0.456883 0.228441 0.973558i \(-0.426637\pi\)
0.228441 + 0.973558i \(0.426637\pi\)
\(864\) 4.26877 6.38867i 0.145227 0.217347i
\(865\) 0 0
\(866\) 9.01745i 0.306426i
\(867\) −33.2654 37.2001i −1.12975 1.26338i
\(868\) 2.03416 + 2.03416i 0.0690438 + 0.0690438i
\(869\) −3.96531 1.64248i −0.134514 0.0557174i
\(870\) 0 0
\(871\) −0.326986 0.326986i −0.0110795 0.0110795i
\(872\) 2.14821 + 1.43539i 0.0727476 + 0.0486084i
\(873\) −3.25748 + 16.3765i −0.110249 + 0.554259i
\(874\) 26.0637 + 5.18439i 0.881618 + 0.175365i
\(875\) 0 0
\(876\) 14.8384 + 35.8230i 0.501343 + 1.21035i
\(877\) 26.7175 17.8520i 0.902185 0.602820i −0.0156091 0.999878i \(-0.504969\pi\)
0.917794 + 0.397058i \(0.129969\pi\)
\(878\) 0.795308 + 0.158197i 0.0268403 + 0.00533887i
\(879\) −3.72938 18.7489i −0.125789 0.632384i
\(880\) 0 0
\(881\) −33.7511 22.5517i −1.13710 0.759788i −0.163164 0.986599i \(-0.552170\pi\)
−0.973939 + 0.226811i \(0.927170\pi\)
\(882\) 35.4966 14.7032i 1.19523 0.495082i
\(883\) 2.77493 2.77493i 0.0933838 0.0933838i −0.658872 0.752255i \(-0.728966\pi\)
0.752255 + 0.658872i \(0.228966\pi\)
\(884\) 1.55094 + 5.67823i 0.0521637 + 0.190980i
\(885\) 0 0
\(886\) −11.4588 + 27.6640i −0.384966 + 0.929391i
\(887\) −7.82501 39.3390i −0.262738 1.32087i −0.856464 0.516206i \(-0.827344\pi\)
0.593726 0.804667i \(-0.297656\pi\)
\(888\) 14.1564i 0.475056i
\(889\) 1.05411 0.209675i 0.0353537 0.00703228i
\(890\) 0 0
\(891\) 4.52560 22.7517i 0.151613 0.762212i
\(892\) −4.77157 + 11.5196i −0.159764 + 0.385704i
\(893\) 11.7605 28.3925i 0.393552 0.950118i
\(894\) −4.63568 + 23.3051i −0.155040 + 0.779440i
\(895\) 0 0
\(896\) −0.392740 + 0.0781209i −0.0131205 + 0.00260983i
\(897\) 25.9465i 0.866329i
\(898\) 6.31053 + 31.7252i 0.210585 + 1.05868i
\(899\) 11.1385 26.8908i 0.371491 0.896859i
\(900\) 0 0
\(901\) 2.47935 19.5629i 0.0825991 0.651736i
\(902\) −24.0528 + 24.0528i −0.800870 + 0.800870i
\(903\) −12.6664 + 5.24658i −0.421511 + 0.174595i
\(904\) −15.0594 10.0624i −0.500868 0.334669i
\(905\) 0 0
\(906\) −12.5291 62.9882i −0.416253 2.09264i
\(907\) −32.5891 6.48238i −1.08210 0.215244i −0.378332 0.925670i \(-0.623502\pi\)
−0.703772 + 0.710426i \(0.748502\pi\)
\(908\) −10.2119 + 6.82337i −0.338894 + 0.226441i
\(909\) −2.49771 6.03001i −0.0828438 0.200003i
\(910\) 0 0
\(911\) 25.0330 + 4.97937i 0.829379 + 0.164974i 0.591484 0.806317i \(-0.298542\pi\)
0.237895 + 0.971291i \(0.423542\pi\)
\(912\) 2.45816 12.3580i 0.0813977 0.409214i
\(913\) −4.20808 2.81175i −0.139267 0.0930554i
\(914\) −2.06579 2.06579i −0.0683301 0.0683301i
\(915\) 0 0
\(916\) 10.9028 + 4.51607i 0.360237 + 0.149215i
\(917\) −0.152729 0.152729i −0.00504354 0.00504354i
\(918\) −28.3451 + 14.1490i −0.935527 + 0.466987i
\(919\) 20.7776i 0.685390i 0.939447 + 0.342695i \(0.111340\pi\)
−0.939447 + 0.342695i \(0.888660\pi\)
\(920\) 0 0
\(921\) 1.76638 2.64358i 0.0582044 0.0871090i
\(922\) 2.03388 0.0669824
\(923\) −3.64709 + 5.45826i −0.120046 + 0.179661i
\(924\) −3.97544 + 2.65631i −0.130782 + 0.0873860i
\(925\) 0 0
\(926\) −25.5442 + 10.5808i −0.839435 + 0.347705i
\(927\) −65.0706 26.9531i −2.13720 0.885257i
\(928\) 2.25092 + 3.36874i 0.0738900 + 0.110584i
\(929\) −27.9157 41.7788i −0.915884 1.37072i −0.928713 0.370800i \(-0.879084\pi\)
0.0128290 0.999918i \(-0.495916\pi\)
\(930\) 0 0
\(931\) 20.7589 20.7589i 0.680345 0.680345i
\(932\) −7.74767 + 1.54111i −0.253783 + 0.0504806i
\(933\) 20.1370 + 48.6151i 0.659257 + 1.59159i
\(934\) 1.38002 0.0451556
\(935\) 0 0
\(936\) 8.01956 0.262127
\(937\) −6.94921 16.7769i −0.227021 0.548077i 0.768791 0.639500i \(-0.220858\pi\)
−0.995812 + 0.0914231i \(0.970858\pi\)
\(938\) −0.127215 + 0.0253045i −0.00415370 + 0.000826223i
\(939\) 6.58936 6.58936i 0.215036 0.215036i
\(940\) 0 0
\(941\) −17.8596 26.7288i −0.582206 0.871332i 0.417090 0.908865i \(-0.363050\pi\)
−0.999295 + 0.0375329i \(0.988050\pi\)
\(942\) 12.6408 + 18.9183i 0.411859 + 0.616390i
\(943\) 47.8360 + 19.8143i 1.55775 + 0.645242i
\(944\) −4.72705 + 1.95801i −0.153852 + 0.0637278i
\(945\) 0 0
\(946\) −39.4441 + 26.3557i −1.28244 + 0.856898i
\(947\) 11.3655 17.0097i 0.369329 0.552739i −0.599530 0.800352i \(-0.704646\pi\)
0.968859 + 0.247612i \(0.0796460\pi\)
\(948\) 3.09764 0.100607
\(949\) −10.4763 + 15.6790i −0.340077 + 0.508960i
\(950\) 0 0
\(951\) 45.5293i 1.47639i
\(952\) 1.56596 + 0.523142i 0.0507531 + 0.0169551i
\(953\) −38.6958 38.6958i −1.25348 1.25348i −0.954149 0.299332i \(-0.903236\pi\)
−0.299332 0.954149i \(-0.596764\pi\)
\(954\) −24.8212 10.2813i −0.803616 0.332869i
\(955\) 0 0
\(956\) −18.2337 18.2337i −0.589721 0.589721i
\(957\) 40.2230 + 26.8762i 1.30023 + 0.868783i
\(958\) 4.90532 24.6607i 0.158484 0.796751i
\(959\) −5.73740 1.14124i −0.185270 0.0368525i
\(960\) 0 0
\(961\) 7.88722 + 19.0414i 0.254426 + 0.614240i
\(962\) 5.72429 3.82485i 0.184559 0.123318i
\(963\) −70.9083 14.1045i −2.28499 0.454513i
\(964\) 2.34517 + 11.7900i 0.0755329 + 0.379730i
\(965\) 0 0
\(966\) 6.05123 + 4.04331i 0.194695 + 0.130091i
\(967\) 49.8534 20.6500i 1.60318 0.664058i 0.611317 0.791386i \(-0.290640\pi\)
0.991861 + 0.127328i \(0.0406402\pi\)
\(968\) −3.92012 + 3.92012i −0.125998 + 0.125998i
\(969\) −34.0648 + 39.2244i −1.09432 + 1.26007i
\(970\) 0 0
\(971\) 11.6245 28.0639i 0.373046 0.900614i −0.620184 0.784456i \(-0.712942\pi\)
0.993231 0.116158i \(-0.0370578\pi\)
\(972\) −1.23075 6.18742i −0.0394765 0.198462i
\(973\) 4.72628i 0.151517i
\(974\) −24.2578 + 4.82518i −0.777271 + 0.154609i
\(975\) 0 0
\(976\) −2.14971 + 10.8073i −0.0688104 + 0.345933i
\(977\) 6.15349 14.8558i 0.196868 0.475281i −0.794360 0.607448i \(-0.792193\pi\)
0.991227 + 0.132167i \(0.0421935\pi\)
\(978\) 8.98371 21.6886i 0.287267 0.693524i
\(979\) −11.1707 + 56.1589i −0.357017 + 1.79485i
\(980\) 0 0
\(981\) −14.2345 + 2.83142i −0.454473 + 0.0904002i
\(982\) 15.2450i 0.486487i
\(983\) 2.37200 + 11.9248i 0.0756549 + 0.380343i 0.999999 0.00121635i \(-0.000387175\pi\)
−0.924344 + 0.381559i \(0.875387\pi\)
\(984\) 9.39486 22.6812i 0.299497 0.723050i
\(985\) 0 0
\(986\) −1.17313 16.6637i −0.0373602 0.530680i
\(987\) 5.95125 5.95125i 0.189430 0.189430i
\(988\) 5.66126 2.34497i 0.180109 0.0746034i
\(989\) 60.0400 + 40.1174i 1.90916 + 1.27566i
\(990\) 0 0
\(991\) 0.553654 + 2.78341i 0.0175874 + 0.0884178i 0.988582 0.150683i \(-0.0481473\pi\)
−0.970995 + 0.239101i \(0.923147\pi\)
\(992\) −7.04599 1.40153i −0.223710 0.0444988i
\(993\) 71.0142 47.4502i 2.25357 1.50579i
\(994\) 0.704638 + 1.70115i 0.0223498 + 0.0539571i
\(995\) 0 0
\(996\) 3.58246 + 0.712596i 0.113515 + 0.0225795i
\(997\) −6.38435 + 32.0963i −0.202194 + 1.01650i 0.737725 + 0.675102i \(0.235900\pi\)
−0.939919 + 0.341398i \(0.889100\pi\)
\(998\) 4.13838 + 2.76518i 0.130998 + 0.0875302i
\(999\) 26.2006 + 26.2006i 0.828952 + 0.828952i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.d.143.5 40
5.2 odd 4 850.2.s.d.7.1 40
5.3 odd 4 170.2.o.b.7.5 40
5.4 even 2 170.2.r.b.143.1 yes 40
17.5 odd 16 850.2.s.d.243.1 40
85.22 even 16 inner 850.2.v.d.107.5 40
85.39 odd 16 170.2.o.b.73.5 yes 40
85.73 even 16 170.2.r.b.107.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.b.7.5 40 5.3 odd 4
170.2.o.b.73.5 yes 40 85.39 odd 16
170.2.r.b.107.1 yes 40 85.73 even 16
170.2.r.b.143.1 yes 40 5.4 even 2
850.2.s.d.7.1 40 5.2 odd 4
850.2.s.d.243.1 40 17.5 odd 16
850.2.v.d.107.5 40 85.22 even 16 inner
850.2.v.d.143.5 40 1.1 even 1 trivial