Properties

Label 850.2.v.d.207.1
Level $850$
Weight $2$
Character 850.207
Analytic conductor $6.787$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(5\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 207.1
Character \(\chi\) \(=\) 850.207
Dual form 850.2.v.d.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 - 0.382683i) q^{2} +(-2.12983 + 1.42311i) q^{3} +(0.707107 + 0.707107i) q^{4} +(2.51231 - 0.499730i) q^{6} +(-0.0411526 + 0.00818577i) q^{7} +(-0.382683 - 0.923880i) q^{8} +(1.36290 - 3.29034i) q^{9} +(0.476069 + 2.39336i) q^{11} +(-2.51231 - 0.499730i) q^{12} +2.17043 q^{13} +(0.0411526 + 0.00818577i) q^{14} +1.00000i q^{16} +(2.37892 + 3.36760i) q^{17} +(-2.51831 + 2.51831i) q^{18} +(-1.43074 - 3.45410i) q^{19} +(0.0759990 - 0.0759990i) q^{21} +(0.476069 - 2.39336i) q^{22} +(3.96256 - 5.93039i) q^{23} +(2.12983 + 1.42311i) q^{24} +(-2.00521 - 0.830586i) q^{26} +(0.280566 + 1.41050i) q^{27} +(-0.0348875 - 0.0233111i) q^{28} +(4.73332 + 7.08392i) q^{29} +(0.226000 - 1.13618i) q^{31} +(0.382683 - 0.923880i) q^{32} +(-4.41996 - 4.41996i) q^{33} +(-0.909115 - 4.02163i) q^{34} +(3.29034 - 1.36290i) q^{36} +(4.07998 + 6.10612i) q^{37} +3.73869i q^{38} +(-4.62265 + 3.08876i) q^{39} +(0.400666 - 0.599639i) q^{41} +(-0.0992975 + 0.0411304i) q^{42} +(-8.37226 + 3.46790i) q^{43} +(-1.35573 + 2.02899i) q^{44} +(-5.93039 + 3.96256i) q^{46} +4.13811i q^{47} +(-1.42311 - 2.12983i) q^{48} +(-6.46553 + 2.67811i) q^{49} +(-9.85918 - 3.78696i) q^{51} +(1.53472 + 1.53472i) q^{52} +(-2.01791 + 4.87166i) q^{53} +(0.280566 - 1.41050i) q^{54} +(0.0233111 + 0.0348875i) q^{56} +(7.96279 + 5.32057i) q^{57} +(-1.66212 - 8.35605i) q^{58} +(-8.77968 - 3.63666i) q^{59} +(5.87005 + 3.92224i) q^{61} +(-0.643594 + 0.963206i) q^{62} +(-0.0291531 + 0.146562i) q^{63} +(-0.707107 + 0.707107i) q^{64} +(2.39207 + 5.77496i) q^{66} +(-11.0282 + 11.0282i) q^{67} +(-0.699099 + 4.06341i) q^{68} +18.2699i q^{69} +(5.22907 + 1.04013i) q^{71} -3.56143 q^{72} +(-11.1908 - 2.22600i) q^{73} +(-1.43270 - 7.20266i) q^{74} +(1.43074 - 3.45410i) q^{76} +(-0.0391830 - 0.0945961i) q^{77} +(5.45279 - 1.08463i) q^{78} +(-7.04108 + 1.40056i) q^{79} +(4.95009 + 4.95009i) q^{81} +(-0.599639 + 0.400666i) q^{82} +(15.6168 + 6.46869i) q^{83} +0.107479 q^{84} +9.06206 q^{86} +(-20.1624 - 8.35153i) q^{87} +(2.02899 - 1.35573i) q^{88} +(11.5475 + 11.5475i) q^{89} +(-0.0893188 + 0.0177666i) q^{91} +(6.99537 - 1.39147i) q^{92} +(1.13557 + 2.74150i) q^{93} +(1.58359 - 3.82312i) q^{94} +(0.499730 + 2.51231i) q^{96} +(4.02485 + 0.800592i) q^{97} +6.99824 q^{98} +(8.52380 + 1.69549i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 16 q^{18} - 8 q^{26} - 24 q^{27} + 8 q^{28} + 8 q^{29} - 16 q^{31} + 32 q^{33} + 8 q^{34} - 32 q^{39} - 56 q^{41} + 24 q^{42} - 16 q^{43} + 16 q^{44} + 16 q^{49} - 32 q^{51} + 16 q^{52} - 16 q^{53}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923880 0.382683i −0.653281 0.270598i
\(3\) −2.12983 + 1.42311i −1.22966 + 0.821633i −0.988846 0.148939i \(-0.952414\pi\)
−0.240814 + 0.970571i \(0.577414\pi\)
\(4\) 0.707107 + 0.707107i 0.353553 + 0.353553i
\(5\) 0 0
\(6\) 2.51231 0.499730i 1.02565 0.204014i
\(7\) −0.0411526 + 0.00818577i −0.0155542 + 0.00309393i −0.202861 0.979207i \(-0.565024\pi\)
0.187307 + 0.982301i \(0.440024\pi\)
\(8\) −0.382683 0.923880i −0.135299 0.326641i
\(9\) 1.36290 3.29034i 0.454301 1.09678i
\(10\) 0 0
\(11\) 0.476069 + 2.39336i 0.143540 + 0.721625i 0.983776 + 0.179404i \(0.0574168\pi\)
−0.840235 + 0.542222i \(0.817583\pi\)
\(12\) −2.51231 0.499730i −0.725242 0.144260i
\(13\) 2.17043 0.601968 0.300984 0.953629i \(-0.402685\pi\)
0.300984 + 0.953629i \(0.402685\pi\)
\(14\) 0.0411526 + 0.00818577i 0.0109985 + 0.00218774i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) 2.37892 + 3.36760i 0.576974 + 0.816763i
\(18\) −2.51831 + 2.51831i −0.593572 + 0.593572i
\(19\) −1.43074 3.45410i −0.328233 0.792425i −0.998724 0.0505070i \(-0.983916\pi\)
0.670490 0.741918i \(-0.266084\pi\)
\(20\) 0 0
\(21\) 0.0759990 0.0759990i 0.0165844 0.0165844i
\(22\) 0.476069 2.39336i 0.101498 0.510266i
\(23\) 3.96256 5.93039i 0.826250 1.23657i −0.142811 0.989750i \(-0.545614\pi\)
0.969061 0.246821i \(-0.0793860\pi\)
\(24\) 2.12983 + 1.42311i 0.434751 + 0.290491i
\(25\) 0 0
\(26\) −2.00521 0.830586i −0.393255 0.162891i
\(27\) 0.280566 + 1.41050i 0.0539949 + 0.271450i
\(28\) −0.0348875 0.0233111i −0.00659312 0.00440538i
\(29\) 4.73332 + 7.08392i 0.878956 + 1.31545i 0.948142 + 0.317846i \(0.102960\pi\)
−0.0691866 + 0.997604i \(0.522040\pi\)
\(30\) 0 0
\(31\) 0.226000 1.13618i 0.0405908 0.204064i −0.955168 0.296064i \(-0.904326\pi\)
0.995759 + 0.0919999i \(0.0293259\pi\)
\(32\) 0.382683 0.923880i 0.0676495 0.163320i
\(33\) −4.41996 4.41996i −0.769417 0.769417i
\(34\) −0.909115 4.02163i −0.155912 0.689704i
\(35\) 0 0
\(36\) 3.29034 1.36290i 0.548389 0.227150i
\(37\) 4.07998 + 6.10612i 0.670744 + 1.00384i 0.998258 + 0.0589933i \(0.0187891\pi\)
−0.327514 + 0.944846i \(0.606211\pi\)
\(38\) 3.73869i 0.606496i
\(39\) −4.62265 + 3.08876i −0.740216 + 0.494597i
\(40\) 0 0
\(41\) 0.400666 0.599639i 0.0625735 0.0936479i −0.798863 0.601513i \(-0.794565\pi\)
0.861437 + 0.507865i \(0.169565\pi\)
\(42\) −0.0992975 + 0.0411304i −0.0153219 + 0.00634656i
\(43\) −8.37226 + 3.46790i −1.27676 + 0.528850i −0.915012 0.403427i \(-0.867819\pi\)
−0.361745 + 0.932277i \(0.617819\pi\)
\(44\) −1.35573 + 2.02899i −0.204384 + 0.305882i
\(45\) 0 0
\(46\) −5.93039 + 3.96256i −0.874388 + 0.584247i
\(47\) 4.13811i 0.603605i 0.953370 + 0.301803i \(0.0975884\pi\)
−0.953370 + 0.301803i \(0.902412\pi\)
\(48\) −1.42311 2.12983i −0.205408 0.307415i
\(49\) −6.46553 + 2.67811i −0.923647 + 0.382587i
\(50\) 0 0
\(51\) −9.85918 3.78696i −1.38056 0.530280i
\(52\) 1.53472 + 1.53472i 0.212828 + 0.212828i
\(53\) −2.01791 + 4.87166i −0.277181 + 0.669174i −0.999755 0.0221193i \(-0.992959\pi\)
0.722575 + 0.691293i \(0.242959\pi\)
\(54\) 0.280566 1.41050i 0.0381801 0.191944i
\(55\) 0 0
\(56\) 0.0233111 + 0.0348875i 0.00311508 + 0.00466204i
\(57\) 7.96279 + 5.32057i 1.05470 + 0.704727i
\(58\) −1.66212 8.35605i −0.218247 1.09720i
\(59\) −8.77968 3.63666i −1.14302 0.473453i −0.270831 0.962627i \(-0.587298\pi\)
−0.872186 + 0.489174i \(0.837298\pi\)
\(60\) 0 0
\(61\) 5.87005 + 3.92224i 0.751583 + 0.502192i 0.871381 0.490607i \(-0.163225\pi\)
−0.119798 + 0.992798i \(0.538225\pi\)
\(62\) −0.643594 + 0.963206i −0.0817365 + 0.122327i
\(63\) −0.0291531 + 0.146562i −0.00367294 + 0.0184651i
\(64\) −0.707107 + 0.707107i −0.0883883 + 0.0883883i
\(65\) 0 0
\(66\) 2.39207 + 5.77496i 0.294443 + 0.710848i
\(67\) −11.0282 + 11.0282i −1.34731 + 1.34731i −0.458729 + 0.888576i \(0.651695\pi\)
−0.888576 + 0.458729i \(0.848305\pi\)
\(68\) −0.699099 + 4.06341i −0.0847782 + 0.492760i
\(69\) 18.2699i 2.19944i
\(70\) 0 0
\(71\) 5.22907 + 1.04013i 0.620576 + 0.123440i 0.495358 0.868689i \(-0.335037\pi\)
0.125218 + 0.992129i \(0.460037\pi\)
\(72\) −3.56143 −0.419719
\(73\) −11.1908 2.22600i −1.30979 0.260533i −0.509667 0.860372i \(-0.670231\pi\)
−0.800121 + 0.599839i \(0.795231\pi\)
\(74\) −1.43270 7.20266i −0.166548 0.837292i
\(75\) 0 0
\(76\) 1.43074 3.45410i 0.164117 0.396213i
\(77\) −0.0391830 0.0945961i −0.00446532 0.0107802i
\(78\) 5.45279 1.08463i 0.617406 0.122810i
\(79\) −7.04108 + 1.40056i −0.792183 + 0.157575i −0.574565 0.818459i \(-0.694829\pi\)
−0.217618 + 0.976034i \(0.569829\pi\)
\(80\) 0 0
\(81\) 4.95009 + 4.95009i 0.550010 + 0.550010i
\(82\) −0.599639 + 0.400666i −0.0662190 + 0.0442461i
\(83\) 15.6168 + 6.46869i 1.71417 + 0.710031i 0.999949 + 0.0101067i \(0.00321713\pi\)
0.714217 + 0.699924i \(0.246783\pi\)
\(84\) 0.107479 0.0117269
\(85\) 0 0
\(86\) 9.06206 0.977188
\(87\) −20.1624 8.35153i −2.16163 0.895378i
\(88\) 2.02899 1.35573i 0.216291 0.144521i
\(89\) 11.5475 + 11.5475i 1.22403 + 1.22403i 0.966187 + 0.257842i \(0.0830116\pi\)
0.257842 + 0.966187i \(0.416988\pi\)
\(90\) 0 0
\(91\) −0.0893188 + 0.0177666i −0.00936315 + 0.00186245i
\(92\) 6.99537 1.39147i 0.729317 0.145070i
\(93\) 1.13557 + 2.74150i 0.117753 + 0.284280i
\(94\) 1.58359 3.82312i 0.163334 0.394324i
\(95\) 0 0
\(96\) 0.499730 + 2.51231i 0.0510034 + 0.256412i
\(97\) 4.02485 + 0.800592i 0.408661 + 0.0812878i 0.395140 0.918621i \(-0.370696\pi\)
0.0135211 + 0.999909i \(0.495696\pi\)
\(98\) 6.99824 0.706929
\(99\) 8.52380 + 1.69549i 0.856674 + 0.170403i
\(100\) 0 0
\(101\) 1.24630i 0.124011i 0.998076 + 0.0620057i \(0.0197497\pi\)
−0.998076 + 0.0620057i \(0.980250\pi\)
\(102\) 7.65948 + 7.27164i 0.758402 + 0.719999i
\(103\) −6.84328 + 6.84328i −0.674288 + 0.674288i −0.958702 0.284414i \(-0.908201\pi\)
0.284414 + 0.958702i \(0.408201\pi\)
\(104\) −0.830586 2.00521i −0.0814457 0.196627i
\(105\) 0 0
\(106\) 3.72861 3.72861i 0.362154 0.362154i
\(107\) 0.149174 0.749949i 0.0144212 0.0725003i −0.972905 0.231207i \(-0.925732\pi\)
0.987326 + 0.158707i \(0.0507325\pi\)
\(108\) −0.798983 + 1.19576i −0.0768822 + 0.115062i
\(109\) −8.79925 5.87947i −0.842815 0.563151i 0.0575218 0.998344i \(-0.481680\pi\)
−0.900337 + 0.435193i \(0.856680\pi\)
\(110\) 0 0
\(111\) −17.3794 7.19876i −1.64957 0.683276i
\(112\) −0.00818577 0.0411526i −0.000773482 0.00388856i
\(113\) −5.06378 3.38351i −0.476360 0.318294i 0.294108 0.955772i \(-0.404978\pi\)
−0.770468 + 0.637478i \(0.779978\pi\)
\(114\) −5.32057 7.96279i −0.498317 0.745784i
\(115\) 0 0
\(116\) −1.66212 + 8.35605i −0.154324 + 0.775840i
\(117\) 2.95808 7.14143i 0.273474 0.660226i
\(118\) 6.71968 + 6.71968i 0.618596 + 0.618596i
\(119\) −0.125465 0.119112i −0.0115014 0.0109190i
\(120\) 0 0
\(121\) 4.66114 1.93071i 0.423740 0.175519i
\(122\) −3.92224 5.87005i −0.355103 0.531449i
\(123\) 1.84732i 0.166567i
\(124\) 0.963206 0.643594i 0.0864985 0.0577964i
\(125\) 0 0
\(126\) 0.0830209 0.124250i 0.00739609 0.0110690i
\(127\) 12.3297 5.10715i 1.09409 0.453186i 0.238657 0.971104i \(-0.423293\pi\)
0.855430 + 0.517918i \(0.173293\pi\)
\(128\) 0.923880 0.382683i 0.0816602 0.0338248i
\(129\) 12.8963 19.3007i 1.13546 1.69933i
\(130\) 0 0
\(131\) −2.94740 + 1.96939i −0.257516 + 0.172066i −0.677626 0.735406i \(-0.736991\pi\)
0.420111 + 0.907473i \(0.361991\pi\)
\(132\) 6.25077i 0.544060i
\(133\) 0.0871530 + 0.130434i 0.00755712 + 0.0113100i
\(134\) 14.4090 5.96840i 1.24475 0.515591i
\(135\) 0 0
\(136\) 2.20088 3.48656i 0.188724 0.298970i
\(137\) −9.91781 9.91781i −0.847336 0.847336i 0.142464 0.989800i \(-0.454497\pi\)
−0.989800 + 0.142464i \(0.954497\pi\)
\(138\) 6.99159 16.8792i 0.595163 1.43685i
\(139\) −0.822930 + 4.13715i −0.0698001 + 0.350909i −0.999864 0.0164890i \(-0.994751\pi\)
0.930064 + 0.367398i \(0.119751\pi\)
\(140\) 0 0
\(141\) −5.88898 8.81349i −0.495942 0.742230i
\(142\) −4.43299 2.96203i −0.372008 0.248568i
\(143\) 1.03327 + 5.19461i 0.0864066 + 0.434395i
\(144\) 3.29034 + 1.36290i 0.274195 + 0.113575i
\(145\) 0 0
\(146\) 9.48713 + 6.33910i 0.785161 + 0.524628i
\(147\) 9.95926 14.9051i 0.821426 1.22935i
\(148\) −1.43270 + 7.20266i −0.117767 + 0.592055i
\(149\) −0.764298 + 0.764298i −0.0626137 + 0.0626137i −0.737720 0.675107i \(-0.764098\pi\)
0.675107 + 0.737720i \(0.264098\pi\)
\(150\) 0 0
\(151\) 4.97432 + 12.0091i 0.404804 + 0.977284i 0.986483 + 0.163865i \(0.0523961\pi\)
−0.581679 + 0.813419i \(0.697604\pi\)
\(152\) −2.64365 + 2.64365i −0.214429 + 0.214429i
\(153\) 14.3228 3.23775i 1.15793 0.261757i
\(154\) 0.102390i 0.00825083i
\(155\) 0 0
\(156\) −5.45279 1.08463i −0.436572 0.0868396i
\(157\) −6.98767 −0.557677 −0.278838 0.960338i \(-0.589949\pi\)
−0.278838 + 0.960338i \(0.589949\pi\)
\(158\) 7.04108 + 1.40056i 0.560158 + 0.111422i
\(159\) −2.63510 13.2475i −0.208977 1.05060i
\(160\) 0 0
\(161\) −0.114525 + 0.276488i −0.00902583 + 0.0217903i
\(162\) −2.67897 6.46761i −0.210480 0.508143i
\(163\) 10.6693 2.12225i 0.835683 0.166228i 0.241341 0.970440i \(-0.422413\pi\)
0.594342 + 0.804213i \(0.297413\pi\)
\(164\) 0.707322 0.140695i 0.0552326 0.0109864i
\(165\) 0 0
\(166\) −11.9526 11.9526i −0.927700 0.927700i
\(167\) 2.75591 1.84144i 0.213258 0.142495i −0.444354 0.895851i \(-0.646567\pi\)
0.657612 + 0.753357i \(0.271567\pi\)
\(168\) −0.0992975 0.0411304i −0.00766097 0.00317328i
\(169\) −8.28925 −0.637634
\(170\) 0 0
\(171\) −13.3151 −1.01823
\(172\) −8.37226 3.46790i −0.638379 0.264425i
\(173\) 19.7194 13.1760i 1.49923 1.00176i 0.509244 0.860622i \(-0.329925\pi\)
0.989990 0.141134i \(-0.0450749\pi\)
\(174\) 15.4316 + 15.4316i 1.16987 + 1.16987i
\(175\) 0 0
\(176\) −2.39336 + 0.476069i −0.180406 + 0.0358851i
\(177\) 23.8746 4.74896i 1.79453 0.356954i
\(178\) −6.24945 15.0875i −0.468416 1.13086i
\(179\) −1.07522 + 2.59580i −0.0803654 + 0.194019i −0.958955 0.283558i \(-0.908485\pi\)
0.878590 + 0.477578i \(0.158485\pi\)
\(180\) 0 0
\(181\) −2.12484 10.6823i −0.157938 0.794008i −0.975812 0.218611i \(-0.929847\pi\)
0.817874 0.575397i \(-0.195153\pi\)
\(182\) 0.0893188 + 0.0177666i 0.00662075 + 0.00131695i
\(183\) −18.0840 −1.33681
\(184\) −6.99537 1.39147i −0.515705 0.102580i
\(185\) 0 0
\(186\) 2.96737i 0.217578i
\(187\) −6.92735 + 7.29683i −0.506578 + 0.533597i
\(188\) −2.92609 + 2.92609i −0.213407 + 0.213407i
\(189\) −0.0230920 0.0557491i −0.00167970 0.00405515i
\(190\) 0 0
\(191\) −13.5289 + 13.5289i −0.978916 + 0.978916i −0.999782 0.0208667i \(-0.993357\pi\)
0.0208667 + 0.999782i \(0.493357\pi\)
\(192\) 0.499730 2.51231i 0.0360649 0.181310i
\(193\) 0.490150 0.733561i 0.0352817 0.0528029i −0.813409 0.581692i \(-0.802391\pi\)
0.848691 + 0.528889i \(0.177391\pi\)
\(194\) −3.41210 2.27989i −0.244975 0.163687i
\(195\) 0 0
\(196\) −6.46553 2.67811i −0.461824 0.191294i
\(197\) 1.96862 + 9.89694i 0.140259 + 0.705128i 0.985355 + 0.170514i \(0.0545428\pi\)
−0.845097 + 0.534614i \(0.820457\pi\)
\(198\) −7.22613 4.82834i −0.513538 0.343135i
\(199\) −0.122729 0.183676i −0.00870000 0.0130205i 0.827094 0.562063i \(-0.189992\pi\)
−0.835794 + 0.549043i \(0.814992\pi\)
\(200\) 0 0
\(201\) 7.79388 39.1825i 0.549738 2.76372i
\(202\) 0.476938 1.15143i 0.0335573 0.0810144i
\(203\) −0.252776 0.252776i −0.0177414 0.0177414i
\(204\) −4.29371 9.64927i −0.300620 0.675584i
\(205\) 0 0
\(206\) 8.94117 3.70355i 0.622961 0.258039i
\(207\) −14.1124 21.1207i −0.980879 1.46799i
\(208\) 2.17043i 0.150492i
\(209\) 7.58578 5.06866i 0.524719 0.350606i
\(210\) 0 0
\(211\) −7.37496 + 11.0374i −0.507713 + 0.759846i −0.993451 0.114258i \(-0.963551\pi\)
0.485738 + 0.874104i \(0.338551\pi\)
\(212\) −4.87166 + 2.01791i −0.334587 + 0.138590i
\(213\) −12.6173 + 5.22624i −0.864520 + 0.358096i
\(214\) −0.424812 + 0.635776i −0.0290395 + 0.0434608i
\(215\) 0 0
\(216\) 1.19576 0.798983i 0.0813613 0.0543639i
\(217\) 0.0486068i 0.00329964i
\(218\) 5.87947 + 8.79925i 0.398208 + 0.595960i
\(219\) 27.0025 11.1848i 1.82466 0.755798i
\(220\) 0 0
\(221\) 5.16328 + 7.30913i 0.347320 + 0.491665i
\(222\) 13.3016 + 13.3016i 0.892744 + 0.892744i
\(223\) 5.54308 13.3822i 0.371192 0.896138i −0.622357 0.782734i \(-0.713825\pi\)
0.993549 0.113404i \(-0.0361754\pi\)
\(224\) −0.00818577 + 0.0411526i −0.000546935 + 0.00274963i
\(225\) 0 0
\(226\) 3.38351 + 5.06378i 0.225068 + 0.336838i
\(227\) 24.2962 + 16.2342i 1.61260 + 1.07750i 0.941965 + 0.335711i \(0.108977\pi\)
0.670631 + 0.741791i \(0.266023\pi\)
\(228\) 1.86834 + 9.39276i 0.123734 + 0.622050i
\(229\) 8.84241 + 3.66265i 0.584323 + 0.242035i 0.655206 0.755450i \(-0.272582\pi\)
−0.0708832 + 0.997485i \(0.522582\pi\)
\(230\) 0 0
\(231\) 0.218074 + 0.145712i 0.0143482 + 0.00958717i
\(232\) 4.73332 7.08392i 0.310758 0.465082i
\(233\) −0.644021 + 3.23771i −0.0421912 + 0.212110i −0.996130 0.0878915i \(-0.971987\pi\)
0.953939 + 0.300001i \(0.0969871\pi\)
\(234\) −5.46582 + 5.46582i −0.357312 + 0.357312i
\(235\) 0 0
\(236\) −3.63666 8.77968i −0.236727 0.571509i
\(237\) 13.0032 13.0032i 0.844648 0.844648i
\(238\) 0.0703326 + 0.158059i 0.00455899 + 0.0102454i
\(239\) 3.25093i 0.210285i −0.994457 0.105142i \(-0.966470\pi\)
0.994457 0.105142i \(-0.0335299\pi\)
\(240\) 0 0
\(241\) 6.53894 + 1.30068i 0.421210 + 0.0837839i 0.401145 0.916015i \(-0.368612\pi\)
0.0200657 + 0.999799i \(0.493612\pi\)
\(242\) −5.04518 −0.324317
\(243\) −21.8189 4.34005i −1.39968 0.278414i
\(244\) 1.37731 + 6.92420i 0.0881731 + 0.443276i
\(245\) 0 0
\(246\) 0.706940 1.70670i 0.0450728 0.108815i
\(247\) −3.10531 7.49687i −0.197586 0.477015i
\(248\) −1.13618 + 0.226000i −0.0721475 + 0.0143510i
\(249\) −42.4668 + 8.44718i −2.69123 + 0.535318i
\(250\) 0 0
\(251\) −3.57690 3.57690i −0.225772 0.225772i 0.585152 0.810924i \(-0.301035\pi\)
−0.810924 + 0.585152i \(0.801035\pi\)
\(252\) −0.124250 + 0.0830209i −0.00782699 + 0.00522983i
\(253\) 16.0800 + 6.66056i 1.01094 + 0.418746i
\(254\) −13.3456 −0.837378
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −12.9376 5.35892i −0.807025 0.334281i −0.0592584 0.998243i \(-0.518874\pi\)
−0.747766 + 0.663962i \(0.768874\pi\)
\(258\) −19.3007 + 12.8963i −1.20161 + 0.802889i
\(259\) −0.217885 0.217885i −0.0135387 0.0135387i
\(260\) 0 0
\(261\) 29.7595 5.91954i 1.84207 0.366410i
\(262\) 3.47670 0.691558i 0.214791 0.0427246i
\(263\) 0.832416 + 2.00963i 0.0513289 + 0.123919i 0.947464 0.319862i \(-0.103637\pi\)
−0.896135 + 0.443781i \(0.853637\pi\)
\(264\) −2.39207 + 5.77496i −0.147222 + 0.355424i
\(265\) 0 0
\(266\) −0.0306041 0.153857i −0.00187646 0.00943358i
\(267\) −41.0275 8.16088i −2.51084 0.499438i
\(268\) −15.5962 −0.952689
\(269\) 26.3314 + 5.23765i 1.60546 + 0.319345i 0.914822 0.403858i \(-0.132331\pi\)
0.690635 + 0.723203i \(0.257331\pi\)
\(270\) 0 0
\(271\) 23.7642i 1.44358i −0.692115 0.721788i \(-0.743321\pi\)
0.692115 0.721788i \(-0.256679\pi\)
\(272\) −3.36760 + 2.37892i −0.204191 + 0.144243i
\(273\) 0.164950 0.164950i 0.00998325 0.00998325i
\(274\) 5.36748 + 12.9582i 0.324261 + 0.782836i
\(275\) 0 0
\(276\) −12.9188 + 12.9188i −0.777618 + 0.777618i
\(277\) −1.98592 + 9.98392i −0.119323 + 0.599876i 0.874136 + 0.485682i \(0.161429\pi\)
−0.993458 + 0.114194i \(0.963571\pi\)
\(278\) 2.34351 3.50731i 0.140554 0.210354i
\(279\) −3.43040 2.29212i −0.205372 0.137225i
\(280\) 0 0
\(281\) −7.97842 3.30477i −0.475953 0.197146i 0.131794 0.991277i \(-0.457926\pi\)
−0.607747 + 0.794131i \(0.707926\pi\)
\(282\) 2.06794 + 10.3962i 0.123144 + 0.619086i
\(283\) 5.81872 + 3.88795i 0.345887 + 0.231114i 0.716363 0.697728i \(-0.245805\pi\)
−0.370476 + 0.928842i \(0.620805\pi\)
\(284\) 2.96203 + 4.43299i 0.175764 + 0.263050i
\(285\) 0 0
\(286\) 1.03327 5.19461i 0.0610987 0.307164i
\(287\) −0.0115800 + 0.0279565i −0.000683543 + 0.00165022i
\(288\) −2.51831 2.51831i −0.148393 0.148393i
\(289\) −5.68144 + 16.0225i −0.334202 + 0.942501i
\(290\) 0 0
\(291\) −9.71159 + 4.02267i −0.569303 + 0.235813i
\(292\) −6.33910 9.48713i −0.370968 0.555192i
\(293\) 33.0521i 1.93092i 0.260542 + 0.965462i \(0.416099\pi\)
−0.260542 + 0.965462i \(0.583901\pi\)
\(294\) −14.9051 + 9.95926i −0.869282 + 0.580836i
\(295\) 0 0
\(296\) 4.07998 6.10612i 0.237144 0.354911i
\(297\) −3.24226 + 1.34299i −0.188135 + 0.0779281i
\(298\) 0.998603 0.413635i 0.0578475 0.0239612i
\(299\) 8.60044 12.8715i 0.497376 0.744376i
\(300\) 0 0
\(301\) 0.316153 0.211247i 0.0182228 0.0121761i
\(302\) 12.9985i 0.747980i
\(303\) −1.77362 2.65441i −0.101892 0.152492i
\(304\) 3.45410 1.43074i 0.198106 0.0820583i
\(305\) 0 0
\(306\) −14.4716 2.48979i −0.827284 0.142332i
\(307\) 2.40170 + 2.40170i 0.137072 + 0.137072i 0.772314 0.635241i \(-0.219099\pi\)
−0.635241 + 0.772314i \(0.719099\pi\)
\(308\) 0.0391830 0.0945961i 0.00223266 0.00539011i
\(309\) 4.83631 24.3138i 0.275128 1.38316i
\(310\) 0 0
\(311\) 11.7323 + 17.5586i 0.665276 + 0.995655i 0.998603 + 0.0528442i \(0.0168287\pi\)
−0.333327 + 0.942811i \(0.608171\pi\)
\(312\) 4.62265 + 3.08876i 0.261706 + 0.174866i
\(313\) −6.40363 32.1932i −0.361954 1.81967i −0.547231 0.836981i \(-0.684318\pi\)
0.185277 0.982686i \(-0.440682\pi\)
\(314\) 6.45576 + 2.67407i 0.364320 + 0.150906i
\(315\) 0 0
\(316\) −5.96914 3.98845i −0.335790 0.224368i
\(317\) −17.3586 + 25.9790i −0.974957 + 1.45913i −0.0886306 + 0.996065i \(0.528249\pi\)
−0.886326 + 0.463061i \(0.846751\pi\)
\(318\) −2.63510 + 13.2475i −0.147769 + 0.742884i
\(319\) −14.7010 + 14.7010i −0.823097 + 0.823097i
\(320\) 0 0
\(321\) 0.749543 + 1.80956i 0.0418354 + 0.101000i
\(322\) 0.211614 0.211614i 0.0117928 0.0117928i
\(323\) 8.22842 13.0352i 0.457841 0.725297i
\(324\) 7.00049i 0.388916i
\(325\) 0 0
\(326\) −10.6693 2.12225i −0.590917 0.117541i
\(327\) 27.1081 1.49908
\(328\) −0.707322 0.140695i −0.0390553 0.00776859i
\(329\) −0.0338736 0.170294i −0.00186751 0.00938862i
\(330\) 0 0
\(331\) −3.75693 + 9.07002i −0.206499 + 0.498533i −0.992867 0.119225i \(-0.961959\pi\)
0.786368 + 0.617758i \(0.211959\pi\)
\(332\) 6.46869 + 15.6168i 0.355015 + 0.857083i
\(333\) 25.6518 5.10246i 1.40571 0.279613i
\(334\) −3.25081 + 0.646627i −0.177877 + 0.0353818i
\(335\) 0 0
\(336\) 0.0759990 + 0.0759990i 0.00414609 + 0.00414609i
\(337\) 12.5920 8.41370i 0.685929 0.458323i −0.163141 0.986603i \(-0.552163\pi\)
0.849071 + 0.528279i \(0.177163\pi\)
\(338\) 7.65827 + 3.17216i 0.416555 + 0.172543i
\(339\) 15.6001 0.847282
\(340\) 0 0
\(341\) 2.82688 0.153084
\(342\) 12.3016 + 5.09547i 0.665192 + 0.275531i
\(343\) 0.488364 0.326314i 0.0263692 0.0176193i
\(344\) 6.40785 + 6.40785i 0.345488 + 0.345488i
\(345\) 0 0
\(346\) −23.2606 + 4.62681i −1.25050 + 0.248739i
\(347\) 3.17804 0.632152i 0.170606 0.0339357i −0.109048 0.994036i \(-0.534780\pi\)
0.279654 + 0.960101i \(0.409780\pi\)
\(348\) −8.35153 20.1624i −0.447689 1.08082i
\(349\) 1.97926 4.77837i 0.105948 0.255780i −0.862011 0.506889i \(-0.830795\pi\)
0.967959 + 0.251109i \(0.0807953\pi\)
\(350\) 0 0
\(351\) 0.608947 + 3.06138i 0.0325032 + 0.163405i
\(352\) 2.39336 + 0.476069i 0.127567 + 0.0253746i
\(353\) 22.4791 1.19644 0.598220 0.801332i \(-0.295875\pi\)
0.598220 + 0.801332i \(0.295875\pi\)
\(354\) −23.8746 4.74896i −1.26892 0.252404i
\(355\) 0 0
\(356\) 16.3306i 0.865520i
\(357\) 0.436730 + 0.0751383i 0.0231142 + 0.00397674i
\(358\) 1.98674 1.98674i 0.105002 0.105002i
\(359\) −12.8019 30.9065i −0.675658 1.63118i −0.771839 0.635818i \(-0.780663\pi\)
0.0961812 0.995364i \(-0.469337\pi\)
\(360\) 0 0
\(361\) 3.55122 3.55122i 0.186906 0.186906i
\(362\) −2.12484 + 10.6823i −0.111679 + 0.561449i
\(363\) −7.17985 + 10.7454i −0.376844 + 0.563987i
\(364\) −0.0757208 0.0505950i −0.00396885 0.00265190i
\(365\) 0 0
\(366\) 16.7075 + 6.92045i 0.873312 + 0.361738i
\(367\) −1.86891 9.39563i −0.0975562 0.490448i −0.998412 0.0563300i \(-0.982060\pi\)
0.900856 0.434118i \(-0.142940\pi\)
\(368\) 5.93039 + 3.96256i 0.309143 + 0.206563i
\(369\) −1.42695 2.13557i −0.0742838 0.111174i
\(370\) 0 0
\(371\) 0.0431639 0.217000i 0.00224096 0.0112661i
\(372\) −1.13557 + 2.74150i −0.0588763 + 0.142140i
\(373\) −4.49749 4.49749i −0.232871 0.232871i 0.581019 0.813890i \(-0.302654\pi\)
−0.813890 + 0.581019i \(0.802654\pi\)
\(374\) 9.19241 4.09041i 0.475328 0.211510i
\(375\) 0 0
\(376\) 3.82312 1.58359i 0.197162 0.0816672i
\(377\) 10.2733 + 15.3751i 0.529103 + 0.791859i
\(378\) 0.0603424i 0.00310368i
\(379\) −8.45523 + 5.64960i −0.434316 + 0.290201i −0.753445 0.657511i \(-0.771610\pi\)
0.319129 + 0.947711i \(0.396610\pi\)
\(380\) 0 0
\(381\) −18.9923 + 28.4239i −0.973004 + 1.45620i
\(382\) 17.6763 7.32178i 0.904400 0.374615i
\(383\) −1.74137 + 0.721299i −0.0889799 + 0.0368567i −0.426729 0.904379i \(-0.640334\pi\)
0.337750 + 0.941236i \(0.390334\pi\)
\(384\) −1.42311 + 2.12983i −0.0726228 + 0.108688i
\(385\) 0 0
\(386\) −0.733561 + 0.490150i −0.0373373 + 0.0249480i
\(387\) 32.2740i 1.64058i
\(388\) 2.27989 + 3.41210i 0.115744 + 0.173223i
\(389\) 7.74116 3.20649i 0.392492 0.162576i −0.177704 0.984084i \(-0.556867\pi\)
0.570197 + 0.821508i \(0.306867\pi\)
\(390\) 0 0
\(391\) 29.3978 0.763634i 1.48671 0.0386186i
\(392\) 4.94850 + 4.94850i 0.249937 + 0.249937i
\(393\) 3.47482 8.38895i 0.175281 0.423167i
\(394\) 1.96862 9.89694i 0.0991778 0.498600i
\(395\) 0 0
\(396\) 4.82834 + 7.22613i 0.242633 + 0.363127i
\(397\) −13.9557 9.32491i −0.700417 0.468004i 0.153678 0.988121i \(-0.450888\pi\)
−0.854095 + 0.520117i \(0.825888\pi\)
\(398\) 0.0430965 + 0.216661i 0.00216023 + 0.0108602i
\(399\) −0.371243 0.153774i −0.0185854 0.00769832i
\(400\) 0 0
\(401\) 27.0871 + 18.0990i 1.35267 + 0.903822i 0.999496 0.0317369i \(-0.0101039\pi\)
0.353170 + 0.935559i \(0.385104\pi\)
\(402\) −22.1951 + 33.2173i −1.10699 + 1.65673i
\(403\) 0.490517 2.46599i 0.0244344 0.122840i
\(404\) −0.881267 + 0.881267i −0.0438447 + 0.0438447i
\(405\) 0 0
\(406\) 0.136801 + 0.330268i 0.00678934 + 0.0163909i
\(407\) −12.6718 + 12.6718i −0.628117 + 0.628117i
\(408\) 0.274251 + 10.5579i 0.0135774 + 0.522694i
\(409\) 25.7330i 1.27241i 0.771519 + 0.636207i \(0.219497\pi\)
−0.771519 + 0.636207i \(0.780503\pi\)
\(410\) 0 0
\(411\) 35.2374 + 7.00916i 1.73813 + 0.345736i
\(412\) −9.67785 −0.476794
\(413\) 0.391076 + 0.0777898i 0.0192436 + 0.00382779i
\(414\) 4.95561 + 24.9135i 0.243555 + 1.22443i
\(415\) 0 0
\(416\) 0.830586 2.00521i 0.0407228 0.0983136i
\(417\) −4.13491 9.98257i −0.202488 0.488848i
\(418\) −8.94804 + 1.77988i −0.437663 + 0.0870566i
\(419\) 23.5187 4.67816i 1.14896 0.228543i 0.416361 0.909199i \(-0.363305\pi\)
0.732603 + 0.680656i \(0.238305\pi\)
\(420\) 0 0
\(421\) 7.63147 + 7.63147i 0.371935 + 0.371935i 0.868182 0.496246i \(-0.165289\pi\)
−0.496246 + 0.868182i \(0.665289\pi\)
\(422\) 11.0374 7.37496i 0.537292 0.359007i
\(423\) 13.6158 + 5.63984i 0.662022 + 0.274218i
\(424\) 5.27304 0.256082
\(425\) 0 0
\(426\) 13.6568 0.661675
\(427\) −0.273675 0.113360i −0.0132440 0.00548586i
\(428\) 0.635776 0.424812i 0.0307314 0.0205341i
\(429\) −9.59320 9.59320i −0.463164 0.463164i
\(430\) 0 0
\(431\) −9.64284 + 1.91808i −0.464479 + 0.0923906i −0.421782 0.906697i \(-0.638595\pi\)
−0.0426974 + 0.999088i \(0.513595\pi\)
\(432\) −1.41050 + 0.280566i −0.0678626 + 0.0134987i
\(433\) −0.404025 0.975402i −0.0194162 0.0468748i 0.913874 0.405998i \(-0.133076\pi\)
−0.933290 + 0.359123i \(0.883076\pi\)
\(434\) 0.0186010 0.0449068i 0.000892877 0.00215559i
\(435\) 0 0
\(436\) −2.06460 10.3794i −0.0988762 0.497084i
\(437\) −26.1535 5.20226i −1.25109 0.248858i
\(438\) −29.2273 −1.39653
\(439\) −1.72130 0.342388i −0.0821533 0.0163413i 0.153842 0.988095i \(-0.450835\pi\)
−0.235996 + 0.971754i \(0.575835\pi\)
\(440\) 0 0
\(441\) 24.9238i 1.18685i
\(442\) −1.97317 8.72865i −0.0938540 0.415180i
\(443\) −17.4487 + 17.4487i −0.829013 + 0.829013i −0.987380 0.158367i \(-0.949377\pi\)
0.158367 + 0.987380i \(0.449377\pi\)
\(444\) −7.19876 17.3794i −0.341638 0.824787i
\(445\) 0 0
\(446\) −10.2423 + 10.2423i −0.484986 + 0.484986i
\(447\) 0.540148 2.71551i 0.0255481 0.128439i
\(448\) 0.0233111 0.0348875i 0.00110135 0.00164828i
\(449\) −3.28010 2.19169i −0.154797 0.103432i 0.475759 0.879576i \(-0.342173\pi\)
−0.630557 + 0.776143i \(0.717173\pi\)
\(450\) 0 0
\(451\) 1.62590 + 0.673468i 0.0765605 + 0.0317124i
\(452\) −1.18813 5.97314i −0.0558850 0.280953i
\(453\) −27.6847 18.4983i −1.30074 0.869127i
\(454\) −16.2342 24.2962i −0.761909 1.14028i
\(455\) 0 0
\(456\) 1.86834 9.39276i 0.0874928 0.439856i
\(457\) 7.70665 18.6055i 0.360502 0.870328i −0.634725 0.772738i \(-0.718887\pi\)
0.995227 0.0975901i \(-0.0311134\pi\)
\(458\) −6.76769 6.76769i −0.316233 0.316233i
\(459\) −4.08255 + 4.30030i −0.190557 + 0.200721i
\(460\) 0 0
\(461\) −14.0354 + 5.81365i −0.653693 + 0.270769i −0.684782 0.728748i \(-0.740103\pi\)
0.0310887 + 0.999517i \(0.490103\pi\)
\(462\) −0.145712 0.218074i −0.00677915 0.0101457i
\(463\) 4.79079i 0.222647i 0.993784 + 0.111323i \(0.0355090\pi\)
−0.993784 + 0.111323i \(0.964491\pi\)
\(464\) −7.08392 + 4.73332i −0.328863 + 0.219739i
\(465\) 0 0
\(466\) 1.83402 2.74480i 0.0849592 0.127150i
\(467\) 14.1041 5.84209i 0.652658 0.270340i −0.0316875 0.999498i \(-0.510088\pi\)
0.684345 + 0.729158i \(0.260088\pi\)
\(468\) 7.14143 2.95808i 0.330113 0.136737i
\(469\) 0.363564 0.544112i 0.0167878 0.0251248i
\(470\) 0 0
\(471\) 14.8826 9.94422i 0.685753 0.458205i
\(472\) 9.50306i 0.437414i
\(473\) −12.2857 18.3869i −0.564898 0.845429i
\(474\) −16.9895 + 7.03727i −0.780353 + 0.323233i
\(475\) 0 0
\(476\) −0.00449234 0.172942i −0.000205906 0.00792681i
\(477\) 13.2792 + 13.2792i 0.608012 + 0.608012i
\(478\) −1.24408 + 3.00347i −0.0569027 + 0.137375i
\(479\) 4.20902 21.1602i 0.192315 0.966834i −0.757217 0.653164i \(-0.773441\pi\)
0.949532 0.313670i \(-0.101559\pi\)
\(480\) 0 0
\(481\) 8.85529 + 13.2529i 0.403767 + 0.604279i
\(482\) −5.54345 3.70401i −0.252497 0.168713i
\(483\) −0.149553 0.751854i −0.00680490 0.0342106i
\(484\) 4.66114 + 1.93071i 0.211870 + 0.0877595i
\(485\) 0 0
\(486\) 18.4972 + 12.3594i 0.839048 + 0.560634i
\(487\) −10.9420 + 16.3758i −0.495829 + 0.742060i −0.992010 0.126159i \(-0.959735\pi\)
0.496181 + 0.868219i \(0.334735\pi\)
\(488\) 1.37731 6.92420i 0.0623478 0.313444i
\(489\) −19.7036 + 19.7036i −0.891028 + 0.891028i
\(490\) 0 0
\(491\) −4.17779 10.0861i −0.188541 0.455179i 0.801138 0.598480i \(-0.204228\pi\)
−0.989679 + 0.143301i \(0.954228\pi\)
\(492\) −1.30625 + 1.30625i −0.0588905 + 0.0588905i
\(493\) −12.5956 + 32.7920i −0.567276 + 1.47688i
\(494\) 8.11456i 0.365091i
\(495\) 0 0
\(496\) 1.13618 + 0.226000i 0.0510160 + 0.0101477i
\(497\) −0.223704 −0.0100345
\(498\) 42.4668 + 8.44718i 1.90298 + 0.378527i
\(499\) −2.05219 10.3170i −0.0918685 0.461854i −0.999146 0.0413215i \(-0.986843\pi\)
0.907277 0.420533i \(-0.138157\pi\)
\(500\) 0 0
\(501\) −3.24905 + 7.84391i −0.145157 + 0.350440i
\(502\) 1.93580 + 4.67345i 0.0863992 + 0.208586i
\(503\) −23.5465 + 4.68369i −1.04989 + 0.208836i −0.689738 0.724059i \(-0.742274\pi\)
−0.360149 + 0.932895i \(0.617274\pi\)
\(504\) 0.146562 0.0291531i 0.00652841 0.00129858i
\(505\) 0 0
\(506\) −12.3071 12.3071i −0.547117 0.547117i
\(507\) 17.6547 11.7965i 0.784074 0.523901i
\(508\) 12.3297 + 5.10715i 0.547044 + 0.226593i
\(509\) 25.3539 1.12379 0.561895 0.827209i \(-0.310072\pi\)
0.561895 + 0.827209i \(0.310072\pi\)
\(510\) 0 0
\(511\) 0.478754 0.0211788
\(512\) 0.923880 + 0.382683i 0.0408301 + 0.0169124i
\(513\) 4.47059 2.98715i 0.197381 0.131886i
\(514\) 9.90200 + 9.90200i 0.436759 + 0.436759i
\(515\) 0 0
\(516\) 22.7667 4.52858i 1.00225 0.199360i
\(517\) −9.90399 + 1.97003i −0.435577 + 0.0866416i
\(518\) 0.117919 + 0.284681i 0.00518104 + 0.0125081i
\(519\) −23.2480 + 56.1256i −1.02047 + 2.46364i
\(520\) 0 0
\(521\) −7.91442 39.7885i −0.346737 1.74316i −0.623128 0.782120i \(-0.714139\pi\)
0.276391 0.961045i \(-0.410861\pi\)
\(522\) −29.7595 5.91954i −1.30254 0.259091i
\(523\) −6.98382 −0.305381 −0.152690 0.988274i \(-0.548794\pi\)
−0.152690 + 0.988274i \(0.548794\pi\)
\(524\) −3.47670 0.691558i −0.151880 0.0302109i
\(525\) 0 0
\(526\) 2.17521i 0.0948435i
\(527\) 4.36383 1.94181i 0.190092 0.0845864i
\(528\) 4.41996 4.41996i 0.192354 0.192354i
\(529\) −10.6659 25.7498i −0.463735 1.11955i
\(530\) 0 0
\(531\) −23.9317 + 23.9317i −1.03855 + 1.03855i
\(532\) −0.0306041 + 0.153857i −0.00132685 + 0.00667055i
\(533\) 0.869616 1.30147i 0.0376672 0.0563730i
\(534\) 34.7814 + 23.2402i 1.50514 + 1.00570i
\(535\) 0 0
\(536\) 14.4090 + 5.96840i 0.622374 + 0.257796i
\(537\) −1.40408 7.05878i −0.0605904 0.304609i
\(538\) −22.3227 14.9156i −0.962401 0.643056i
\(539\) −9.48772 14.1994i −0.408665 0.611611i
\(540\) 0 0
\(541\) −2.94451 + 14.8030i −0.126594 + 0.636432i 0.864430 + 0.502753i \(0.167679\pi\)
−0.991025 + 0.133680i \(0.957321\pi\)
\(542\) −9.09418 + 21.9553i −0.390629 + 0.943061i
\(543\) 19.7276 + 19.7276i 0.846593 + 0.846593i
\(544\) 4.02163 0.909115i 0.172426 0.0389780i
\(545\) 0 0
\(546\) −0.215518 + 0.0892705i −0.00922332 + 0.00382042i
\(547\) 2.34789 + 3.51387i 0.100389 + 0.150242i 0.878263 0.478177i \(-0.158702\pi\)
−0.777875 + 0.628419i \(0.783702\pi\)
\(548\) 14.0259i 0.599157i
\(549\) 20.9058 13.9688i 0.892238 0.596174i
\(550\) 0 0
\(551\) 17.6964 26.4846i 0.753893 1.12828i
\(552\) 16.8792 6.99159i 0.718426 0.297582i
\(553\) 0.278294 0.115273i 0.0118343 0.00490192i
\(554\) 5.65544 8.46396i 0.240276 0.359599i
\(555\) 0 0
\(556\) −3.50731 + 2.34351i −0.148743 + 0.0993869i
\(557\) 11.6947i 0.495521i 0.968821 + 0.247761i \(0.0796947\pi\)
−0.968821 + 0.247761i \(0.920305\pi\)
\(558\) 2.29212 + 3.43040i 0.0970331 + 0.145220i
\(559\) −18.1714 + 7.52683i −0.768567 + 0.318351i
\(560\) 0 0
\(561\) 4.36991 25.3994i 0.184498 1.07236i
\(562\) 6.10642 + 6.10642i 0.257584 + 0.257584i
\(563\) −14.0670 + 33.9608i −0.592854 + 1.43128i 0.287880 + 0.957666i \(0.407050\pi\)
−0.880734 + 0.473611i \(0.842950\pi\)
\(564\) 2.06794 10.3962i 0.0870758 0.437760i
\(565\) 0 0
\(566\) −3.88795 5.81872i −0.163423 0.244579i
\(567\) −0.244230 0.163189i −0.0102567 0.00685330i
\(568\) −1.04013 5.22907i −0.0436427 0.219407i
\(569\) −12.1903 5.04937i −0.511043 0.211681i 0.112235 0.993682i \(-0.464199\pi\)
−0.623277 + 0.782001i \(0.714199\pi\)
\(570\) 0 0
\(571\) −19.7618 13.2044i −0.827008 0.552589i 0.0684917 0.997652i \(-0.478181\pi\)
−0.895499 + 0.445063i \(0.853181\pi\)
\(572\) −2.94251 + 4.40378i −0.123033 + 0.184131i
\(573\) 9.56119 48.0674i 0.399425 2.00804i
\(574\) 0.0213970 0.0213970i 0.000893092 0.000893092i
\(575\) 0 0
\(576\) 1.36290 + 3.29034i 0.0567876 + 0.137097i
\(577\) 6.38096 6.38096i 0.265643 0.265643i −0.561699 0.827342i \(-0.689852\pi\)
0.827342 + 0.561699i \(0.189852\pi\)
\(578\) 11.3805 12.6287i 0.473367 0.525284i
\(579\) 2.25990i 0.0939182i
\(580\) 0 0
\(581\) −0.695624 0.138368i −0.0288593 0.00574048i
\(582\) 10.5117 0.435726
\(583\) −12.6203 2.51033i −0.522679 0.103967i
\(584\) 2.22600 + 11.1908i 0.0921124 + 0.463080i
\(585\) 0 0
\(586\) 12.6485 30.5362i 0.522505 1.26144i
\(587\) −8.31106 20.0647i −0.343034 0.828158i −0.997406 0.0719847i \(-0.977067\pi\)
0.654371 0.756173i \(-0.272933\pi\)
\(588\) 17.5818 3.49723i 0.725059 0.144223i
\(589\) −4.24782 + 0.844945i −0.175029 + 0.0348153i
\(590\) 0 0
\(591\) −18.2773 18.2773i −0.751826 0.751826i
\(592\) −6.10612 + 4.07998i −0.250960 + 0.167686i
\(593\) −25.9568 10.7516i −1.06592 0.441517i −0.220368 0.975417i \(-0.570726\pi\)
−0.845548 + 0.533900i \(0.820726\pi\)
\(594\) 3.50940 0.143992
\(595\) 0 0
\(596\) −1.08088 −0.0442746
\(597\) 0.522783 + 0.216544i 0.0213961 + 0.00886255i
\(598\) −12.8715 + 8.60044i −0.526353 + 0.351698i
\(599\) −3.04934 3.04934i −0.124593 0.124593i 0.642061 0.766654i \(-0.278080\pi\)
−0.766654 + 0.642061i \(0.778080\pi\)
\(600\) 0 0
\(601\) −12.0448 + 2.39585i −0.491317 + 0.0977289i −0.434530 0.900657i \(-0.643085\pi\)
−0.0567866 + 0.998386i \(0.518085\pi\)
\(602\) −0.372928 + 0.0741800i −0.0151994 + 0.00302335i
\(603\) 21.2561 + 51.3167i 0.865614 + 2.08978i
\(604\) −4.97432 + 12.0091i −0.202402 + 0.488642i
\(605\) 0 0
\(606\) 0.622813 + 3.13109i 0.0253000 + 0.127192i
\(607\) 14.1007 + 2.80480i 0.572328 + 0.113843i 0.472766 0.881188i \(-0.343256\pi\)
0.0995626 + 0.995031i \(0.468256\pi\)
\(608\) −3.73869 −0.151624
\(609\) 0.898099 + 0.178643i 0.0363928 + 0.00723898i
\(610\) 0 0
\(611\) 8.98146i 0.363351i
\(612\) 12.4172 + 7.83829i 0.501934 + 0.316844i
\(613\) −2.17490 + 2.17490i −0.0878433 + 0.0878433i −0.749663 0.661820i \(-0.769784\pi\)
0.661820 + 0.749663i \(0.269784\pi\)
\(614\) −1.29979 3.13798i −0.0524554 0.126638i
\(615\) 0 0
\(616\) −0.0724007 + 0.0724007i −0.00291711 + 0.00291711i
\(617\) 2.42495 12.1910i 0.0976247 0.490793i −0.900777 0.434281i \(-0.857002\pi\)
0.998402 0.0565112i \(-0.0179977\pi\)
\(618\) −13.7726 + 20.6122i −0.554017 + 0.829145i
\(619\) 38.7236 + 25.8743i 1.55643 + 1.03998i 0.973846 + 0.227208i \(0.0729597\pi\)
0.582588 + 0.812768i \(0.302040\pi\)
\(620\) 0 0
\(621\) 9.47656 + 3.92532i 0.380281 + 0.157518i
\(622\) −4.11982 20.7118i −0.165190 0.830466i
\(623\) −0.569734 0.380684i −0.0228259 0.0152518i
\(624\) −3.08876 4.62265i −0.123649 0.185054i
\(625\) 0 0
\(626\) −6.40363 + 32.1932i −0.255940 + 1.28670i
\(627\) −8.94320 + 21.5908i −0.357157 + 0.862253i
\(628\) −4.94103 4.94103i −0.197168 0.197168i
\(629\) −10.8570 + 28.2657i −0.432897 + 1.12703i
\(630\) 0 0
\(631\) −25.1686 + 10.4252i −1.00195 + 0.415020i −0.822511 0.568749i \(-0.807427\pi\)
−0.179436 + 0.983770i \(0.557427\pi\)
\(632\) 3.98845 + 5.96914i 0.158652 + 0.237440i
\(633\) 34.0032i 1.35151i
\(634\) 25.9790 17.3586i 1.03176 0.689399i
\(635\) 0 0
\(636\) 7.50412 11.2307i 0.297558 0.445327i
\(637\) −14.0330 + 5.81264i −0.556006 + 0.230305i
\(638\) 19.2078 7.95611i 0.760442 0.314985i
\(639\) 10.5491 15.7878i 0.417315 0.624556i
\(640\) 0 0
\(641\) 4.62681 3.09154i 0.182748 0.122108i −0.460831 0.887488i \(-0.652449\pi\)
0.643579 + 0.765379i \(0.277449\pi\)
\(642\) 1.95865i 0.0773018i
\(643\) 1.30468 + 1.95259i 0.0514515 + 0.0770025i 0.856303 0.516473i \(-0.172755\pi\)
−0.804852 + 0.593476i \(0.797755\pi\)
\(644\) −0.276488 + 0.114525i −0.0108951 + 0.00451291i
\(645\) 0 0
\(646\) −12.5904 + 8.89406i −0.495363 + 0.349932i
\(647\) −2.50204 2.50204i −0.0983654 0.0983654i 0.656212 0.754577i \(-0.272158\pi\)
−0.754577 + 0.656212i \(0.772158\pi\)
\(648\) 2.67897 6.46761i 0.105240 0.254072i
\(649\) 4.52411 22.7442i 0.177587 0.892790i
\(650\) 0 0
\(651\) −0.0691728 0.103524i −0.00271109 0.00405744i
\(652\) 9.04498 + 6.04366i 0.354229 + 0.236688i
\(653\) 6.07974 + 30.5649i 0.237919 + 1.19610i 0.896312 + 0.443424i \(0.146236\pi\)
−0.658393 + 0.752674i \(0.728764\pi\)
\(654\) −25.0446 10.3738i −0.979321 0.405648i
\(655\) 0 0
\(656\) 0.599639 + 0.400666i 0.0234120 + 0.0156434i
\(657\) −22.5763 + 33.7878i −0.880785 + 1.31819i
\(658\) −0.0338736 + 0.170294i −0.00132053 + 0.00663876i
\(659\) −21.8155 + 21.8155i −0.849813 + 0.849813i −0.990110 0.140296i \(-0.955194\pi\)
0.140296 + 0.990110i \(0.455194\pi\)
\(660\) 0 0
\(661\) −6.74921 16.2940i −0.262514 0.633765i 0.736579 0.676352i \(-0.236440\pi\)
−0.999093 + 0.0425871i \(0.986440\pi\)
\(662\) 6.94189 6.94189i 0.269804 0.269804i
\(663\) −21.3986 8.21931i −0.831053 0.319212i
\(664\) 16.9035i 0.655983i
\(665\) 0 0
\(666\) −25.6518 5.10246i −0.993987 0.197716i
\(667\) 60.7664 2.35288
\(668\) 3.25081 + 0.646627i 0.125778 + 0.0250187i
\(669\) 7.23847 + 36.3903i 0.279856 + 1.40693i
\(670\) 0 0
\(671\) −6.59279 + 15.9164i −0.254512 + 0.614446i
\(672\) −0.0411304 0.0992975i −0.00158664 0.00383049i
\(673\) −26.3089 + 5.23317i −1.01413 + 0.201724i −0.674061 0.738675i \(-0.735452\pi\)
−0.340072 + 0.940399i \(0.610452\pi\)
\(674\) −14.8533 + 2.95450i −0.572126 + 0.113803i
\(675\) 0 0
\(676\) −5.86138 5.86138i −0.225438 0.225438i
\(677\) −4.36912 + 2.91935i −0.167919 + 0.112200i −0.636690 0.771120i \(-0.719697\pi\)
0.468771 + 0.883320i \(0.344697\pi\)
\(678\) −14.4126 5.96991i −0.553514 0.229273i
\(679\) −0.172187 −0.00660791
\(680\) 0 0
\(681\) −74.8500 −2.86826
\(682\) −2.61170 1.08180i −0.100007 0.0414242i
\(683\) 32.9122 21.9912i 1.25935 0.841470i 0.266851 0.963738i \(-0.414017\pi\)
0.992497 + 0.122268i \(0.0390167\pi\)
\(684\) −9.41520 9.41520i −0.359999 0.359999i
\(685\) 0 0
\(686\) −0.576064 + 0.114586i −0.0219942 + 0.00437493i
\(687\) −24.0452 + 4.78289i −0.917382 + 0.182479i
\(688\) −3.46790 8.37226i −0.132213 0.319189i
\(689\) −4.37972 + 10.5736i −0.166854 + 0.402821i
\(690\) 0 0
\(691\) −5.45405 27.4193i −0.207482 1.04308i −0.934364 0.356319i \(-0.884032\pi\)
0.726883 0.686762i \(-0.240968\pi\)
\(692\) 23.2606 + 4.62681i 0.884234 + 0.175885i
\(693\) −0.364656 −0.0138521
\(694\) −3.17804 0.632152i −0.120637 0.0239962i
\(695\) 0 0
\(696\) 21.8236i 0.827221i
\(697\) 2.97250 0.0772133i 0.112591 0.00292466i
\(698\) −3.65720 + 3.65720i −0.138427 + 0.138427i
\(699\) −3.23596 7.81231i −0.122395 0.295489i
\(700\) 0 0
\(701\) 31.7560 31.7560i 1.19941 1.19941i 0.225063 0.974344i \(-0.427741\pi\)
0.974344 0.225063i \(-0.0722588\pi\)
\(702\) 0.608947 3.06138i 0.0229832 0.115544i
\(703\) 15.2538 22.8289i 0.575307 0.861008i
\(704\) −2.02899 1.35573i −0.0764706 0.0510960i
\(705\) 0 0
\(706\) −20.7680 8.60237i −0.781612 0.323754i
\(707\) −0.0102019 0.0512885i −0.000383683 0.00192890i
\(708\) 20.2399 + 13.5239i 0.760663 + 0.508259i
\(709\) 3.74297 + 5.60175i 0.140570 + 0.210378i 0.895074 0.445917i \(-0.147122\pi\)
−0.754504 + 0.656295i \(0.772122\pi\)
\(710\) 0 0
\(711\) −4.98799 + 25.0763i −0.187064 + 0.940436i
\(712\) 6.24945 15.0875i 0.234208 0.565428i
\(713\) −5.84244 5.84244i −0.218801 0.218801i
\(714\) −0.374732 0.236548i −0.0140240 0.00885259i
\(715\) 0 0
\(716\) −2.59580 + 1.07522i −0.0970096 + 0.0401827i
\(717\) 4.62643 + 6.92394i 0.172777 + 0.258579i
\(718\) 33.4529i 1.24845i
\(719\) 9.66147 6.45559i 0.360312 0.240753i −0.362216 0.932094i \(-0.617980\pi\)
0.722528 + 0.691341i \(0.242980\pi\)
\(720\) 0 0
\(721\) 0.225601 0.337636i 0.00840184 0.0125742i
\(722\) −4.63989 + 1.92191i −0.172679 + 0.0715259i
\(723\) −15.7779 + 6.53541i −0.586785 + 0.243054i
\(724\) 6.05103 9.05601i 0.224885 0.336564i
\(725\) 0 0
\(726\) 10.7454 7.17985i 0.398799 0.266469i
\(727\) 4.11908i 0.152768i 0.997078 + 0.0763841i \(0.0243375\pi\)
−0.997078 + 0.0763841i \(0.975662\pi\)
\(728\) 0.0505950 + 0.0757208i 0.00187518 + 0.00280640i
\(729\) 33.2442 13.7702i 1.23127 0.510007i
\(730\) 0 0
\(731\) −31.5955 19.9445i −1.16860 0.737675i
\(732\) −12.7873 12.7873i −0.472633 0.472633i
\(733\) 14.9048 35.9833i 0.550520 1.32907i −0.366568 0.930391i \(-0.619467\pi\)
0.917089 0.398683i \(-0.130533\pi\)
\(734\) −1.86891 + 9.39563i −0.0689826 + 0.346799i
\(735\) 0 0
\(736\) −3.96256 5.93039i −0.146062 0.218597i
\(737\) −31.6446 21.1442i −1.16564 0.778857i
\(738\) 0.501077 + 2.51908i 0.0184449 + 0.0927287i
\(739\) 45.9741 + 19.0431i 1.69119 + 0.700512i 0.999759 0.0219357i \(-0.00698290\pi\)
0.691426 + 0.722448i \(0.256983\pi\)
\(740\) 0 0
\(741\) 17.2827 + 11.5479i 0.634894 + 0.424223i
\(742\) −0.122920 + 0.183963i −0.00451255 + 0.00675351i
\(743\) 6.96374 35.0091i 0.255475 1.28436i −0.613576 0.789636i \(-0.710270\pi\)
0.869051 0.494723i \(-0.164730\pi\)
\(744\) 2.09825 2.09825i 0.0769256 0.0769256i
\(745\) 0 0
\(746\) 2.43402 + 5.87625i 0.0891159 + 0.215145i
\(747\) 42.5683 42.5683i 1.55749 1.55749i
\(748\) −10.0580 + 0.261266i −0.367757 + 0.00955283i
\(749\) 0.0320835i 0.00117230i
\(750\) 0 0
\(751\) 33.2936 + 6.62250i 1.21490 + 0.241659i 0.760618 0.649199i \(-0.224896\pi\)
0.454282 + 0.890858i \(0.349896\pi\)
\(752\) −4.13811 −0.150901
\(753\) 12.7085 + 2.52788i 0.463124 + 0.0921212i
\(754\) −3.60751 18.1362i −0.131378 0.660481i
\(755\) 0 0
\(756\) 0.0230920 0.0557491i 0.000839849 0.00202757i
\(757\) −8.59092 20.7403i −0.312242 0.753820i −0.999621 0.0275207i \(-0.991239\pi\)
0.687379 0.726299i \(-0.258761\pi\)
\(758\) 9.97362 1.98388i 0.362258 0.0720577i
\(759\) −43.7264 + 8.69773i −1.58717 + 0.315708i
\(760\) 0 0
\(761\) −13.1115 13.1115i −0.475292 0.475292i 0.428330 0.903622i \(-0.359102\pi\)
−0.903622 + 0.428330i \(0.859102\pi\)
\(762\) 28.4239 18.9923i 1.02969 0.688017i
\(763\) 0.410240 + 0.169927i 0.0148517 + 0.00615177i
\(764\) −19.1327 −0.692198
\(765\) 0 0
\(766\) 1.88485 0.0681022
\(767\) −19.0557 7.89311i −0.688060 0.285004i
\(768\) 2.12983 1.42311i 0.0768538 0.0513520i
\(769\) −0.316255 0.316255i −0.0114044 0.0114044i 0.701382 0.712786i \(-0.252567\pi\)
−0.712786 + 0.701382i \(0.752567\pi\)
\(770\) 0 0
\(771\) 35.1813 6.99799i 1.26702 0.252026i
\(772\) 0.865294 0.172118i 0.0311426 0.00619465i
\(773\) 11.9989 + 28.9680i 0.431572 + 1.04191i 0.978781 + 0.204911i \(0.0656905\pi\)
−0.547209 + 0.836996i \(0.684310\pi\)
\(774\) 12.3507 29.8172i 0.443937 1.07176i
\(775\) 0 0
\(776\) −0.800592 4.02485i −0.0287396 0.144484i
\(777\) 0.774133 + 0.153985i 0.0277719 + 0.00552417i
\(778\) −8.37897 −0.300401
\(779\) −2.64446 0.526016i −0.0947476 0.0188465i
\(780\) 0 0
\(781\) 13.0102i 0.465542i
\(782\) −27.4522 10.5445i −0.981690 0.377072i
\(783\) −8.66384 + 8.66384i −0.309620 + 0.309620i
\(784\) −2.67811 6.46553i −0.0956468 0.230912i
\(785\) 0 0
\(786\) −6.42063 + 6.42063i −0.229016 + 0.229016i
\(787\) −0.528742 + 2.65816i −0.0188476 + 0.0947533i −0.989064 0.147486i \(-0.952882\pi\)
0.970217 + 0.242239i \(0.0778819\pi\)
\(788\) −5.60616 + 8.39022i −0.199711 + 0.298889i
\(789\) −4.63283 3.09556i −0.164933 0.110205i
\(790\) 0 0
\(791\) 0.236085 + 0.0977894i 0.00839420 + 0.00347699i
\(792\) −1.69549 8.52380i −0.0602466 0.302880i
\(793\) 12.7405 + 8.51294i 0.452429 + 0.302303i
\(794\) 9.32491 + 13.9557i 0.330929 + 0.495270i
\(795\) 0 0
\(796\) 0.0430965 0.216661i 0.00152752 0.00767934i
\(797\) 11.5058 27.7775i 0.407556 0.983928i −0.578222 0.815879i \(-0.696253\pi\)
0.985779 0.168049i \(-0.0537466\pi\)
\(798\) 0.284137 + 0.284137i 0.0100583 + 0.0100583i
\(799\) −13.9355 + 9.84425i −0.493002 + 0.348264i
\(800\) 0 0
\(801\) 53.7331 22.2570i 1.89857 0.786412i
\(802\) −18.0990 27.0871i −0.639099 0.956479i
\(803\) 27.8434i 0.982573i
\(804\) 33.2173 22.1951i 1.17148 0.782760i
\(805\) 0 0
\(806\) −1.39687 + 2.09057i −0.0492028 + 0.0736371i
\(807\) −63.5354 + 26.3172i −2.23655 + 0.926410i
\(808\) 1.15143 0.476938i 0.0405072 0.0167786i
\(809\) 8.27844 12.3896i 0.291054 0.435594i −0.656911 0.753969i \(-0.728137\pi\)
0.947965 + 0.318375i \(0.103137\pi\)
\(810\) 0 0
\(811\) 27.9751 18.6924i 0.982339 0.656378i 0.0428949 0.999080i \(-0.486342\pi\)
0.939444 + 0.342701i \(0.111342\pi\)
\(812\) 0.357479i 0.0125451i
\(813\) 33.8191 + 50.6139i 1.18609 + 1.77511i
\(814\) 16.5565 6.85792i 0.580305 0.240370i
\(815\) 0 0
\(816\) 3.78696 9.85918i 0.132570 0.345140i
\(817\) 23.9570 + 23.9570i 0.838148 + 0.838148i
\(818\) 9.84758 23.7742i 0.344313 0.831244i
\(819\) −0.0632746 + 0.318103i −0.00221099 + 0.0111154i
\(820\) 0 0
\(821\) −10.2814 15.3873i −0.358825 0.537019i 0.607508 0.794313i \(-0.292169\pi\)
−0.966333 + 0.257294i \(0.917169\pi\)
\(822\) −29.8728 19.9604i −1.04194 0.696199i
\(823\) 10.5422 + 52.9993i 0.367479 + 1.84744i 0.513409 + 0.858144i \(0.328383\pi\)
−0.145930 + 0.989295i \(0.546617\pi\)
\(824\) 8.94117 + 3.70355i 0.311480 + 0.129019i
\(825\) 0 0
\(826\) −0.331538 0.221527i −0.0115357 0.00770790i
\(827\) 20.4299 30.5755i 0.710417 1.06321i −0.284116 0.958790i \(-0.591700\pi\)
0.994533 0.104424i \(-0.0333000\pi\)
\(828\) 4.95561 24.9135i 0.172219 0.865805i
\(829\) 28.6987 28.6987i 0.996748 0.996748i −0.00324645 0.999995i \(-0.501033\pi\)
0.999995 + 0.00324645i \(0.00103338\pi\)
\(830\) 0 0
\(831\) −9.97852 24.0903i −0.346151 0.835683i
\(832\) −1.53472 + 1.53472i −0.0532070 + 0.0532070i
\(833\) −24.3998 15.4023i −0.845403 0.533658i
\(834\) 10.8051i 0.374148i
\(835\) 0 0
\(836\) 8.94804 + 1.77988i 0.309474 + 0.0615583i
\(837\) 1.66599 0.0575849
\(838\) −23.5187 4.67816i −0.812441 0.161604i
\(839\) 0.974657 + 4.89993i 0.0336489 + 0.169164i 0.993956 0.109781i \(-0.0350150\pi\)
−0.960307 + 0.278946i \(0.910015\pi\)
\(840\) 0 0
\(841\) −16.6797 + 40.2684i −0.575162 + 1.38857i
\(842\) −4.13012 9.97100i −0.142333 0.343623i
\(843\) 21.6958 4.31556i 0.747242 0.148636i
\(844\) −13.0195 + 2.58974i −0.448150 + 0.0891425i
\(845\) 0 0
\(846\) −10.4211 10.4211i −0.358284 0.358284i
\(847\) −0.176014 + 0.117609i −0.00604791 + 0.00404108i
\(848\) −4.87166 2.01791i −0.167293 0.0692952i
\(849\) −17.9259 −0.615215
\(850\) 0 0
\(851\) 52.3788 1.79552
\(852\) −12.6173 5.22624i −0.432260 0.179048i
\(853\) 34.6305 23.1394i 1.18573 0.792276i 0.203334 0.979109i \(-0.434822\pi\)
0.982392 + 0.186833i \(0.0598223\pi\)
\(854\) 0.209461 + 0.209461i 0.00716762 + 0.00716762i
\(855\) 0 0
\(856\) −0.749949 + 0.149174i −0.0256327 + 0.00509867i
\(857\) 44.5654 8.86461i 1.52233 0.302809i 0.638131 0.769928i \(-0.279708\pi\)
0.884195 + 0.467119i \(0.154708\pi\)
\(858\) 5.19181 + 12.5341i 0.177245 + 0.427908i
\(859\) 14.4334 34.8453i 0.492461 1.18891i −0.461003 0.887399i \(-0.652510\pi\)
0.953464 0.301507i \(-0.0974897\pi\)
\(860\) 0 0
\(861\) −0.0151218 0.0760222i −0.000515348 0.00259083i
\(862\) 9.64284 + 1.91808i 0.328436 + 0.0653300i
\(863\) 38.0573 1.29548 0.647742 0.761860i \(-0.275713\pi\)
0.647742 + 0.761860i \(0.275713\pi\)
\(864\) 1.41050 + 0.280566i 0.0479861 + 0.00954503i
\(865\) 0 0
\(866\) 1.05577i 0.0358764i
\(867\) −10.7013 42.2106i −0.363434 1.43355i
\(868\) −0.0343702 + 0.0343702i −0.00116660 + 0.00116660i
\(869\) −6.70408 16.1851i −0.227420 0.549041i
\(870\) 0 0
\(871\) −23.9358 + 23.9358i −0.811035 + 0.811035i
\(872\) −2.06460 + 10.3794i −0.0699160 + 0.351492i
\(873\) 8.11969 12.1520i 0.274810 0.411282i
\(874\) 22.1719 + 14.8148i 0.749975 + 0.501117i
\(875\) 0 0
\(876\) 27.0025 + 11.1848i 0.912329 + 0.377899i
\(877\) −8.72656 43.8714i −0.294675 1.48143i −0.790206 0.612841i \(-0.790026\pi\)
0.495531 0.868590i \(-0.334974\pi\)
\(878\) 1.45925 + 0.975040i 0.0492473 + 0.0329060i
\(879\) −47.0368 70.3955i −1.58651 2.37438i
\(880\) 0 0
\(881\) −4.31320 + 21.6839i −0.145315 + 0.730549i 0.837570 + 0.546330i \(0.183976\pi\)
−0.982885 + 0.184219i \(0.941024\pi\)
\(882\) 9.53791 23.0266i 0.321158 0.775345i
\(883\) −0.609859 0.609859i −0.0205234 0.0205234i 0.696771 0.717294i \(-0.254620\pi\)
−0.717294 + 0.696771i \(0.754620\pi\)
\(884\) −1.51734 + 8.81932i −0.0510337 + 0.296626i
\(885\) 0 0
\(886\) 22.7978 9.44317i 0.765908 0.317250i
\(887\) 1.78400 + 2.66994i 0.0599008 + 0.0896479i 0.860211 0.509938i \(-0.170332\pi\)
−0.800310 + 0.599586i \(0.795332\pi\)
\(888\) 18.8113i 0.631265i
\(889\) −0.465595 + 0.311101i −0.0156156 + 0.0104340i
\(890\) 0 0
\(891\) −9.49077 + 14.2039i −0.317953 + 0.475850i
\(892\) 13.3822 5.54308i 0.448069 0.185596i
\(893\) 14.2934 5.92054i 0.478312 0.198123i
\(894\) −1.53821 + 2.30210i −0.0514455 + 0.0769936i
\(895\) 0 0
\(896\) −0.0348875 + 0.0233111i −0.00116551 + 0.000778769i
\(897\) 39.6535i 1.32399i
\(898\) 2.19169 + 3.28010i 0.0731376 + 0.109458i
\(899\) 9.11833 3.77694i 0.304113 0.125968i
\(900\) 0 0
\(901\) −21.2062 + 4.79380i −0.706482 + 0.159705i
\(902\) −1.24441 1.24441i −0.0414342 0.0414342i
\(903\) −0.372726 + 0.899841i −0.0124036 + 0.0299448i
\(904\) −1.18813 + 5.97314i −0.0395166 + 0.198664i
\(905\) 0 0
\(906\) 18.4983 + 27.6847i 0.614565 + 0.919762i
\(907\) −7.64783 5.11012i −0.253942 0.169679i 0.422083 0.906557i \(-0.361299\pi\)
−0.676025 + 0.736878i \(0.736299\pi\)
\(908\) 5.70070 + 28.6593i 0.189184 + 0.951093i
\(909\) 4.10075 + 1.69858i 0.136013 + 0.0563385i
\(910\) 0 0
\(911\) −4.16596 2.78361i −0.138025 0.0922250i 0.484641 0.874713i \(-0.338950\pi\)
−0.622666 + 0.782488i \(0.713950\pi\)
\(912\) −5.32057 + 7.96279i −0.176182 + 0.263674i
\(913\) −8.04723 + 40.4562i −0.266325 + 1.33890i
\(914\) −14.2400 + 14.2400i −0.471018 + 0.471018i
\(915\) 0 0
\(916\) 3.66265 + 8.84241i 0.121017 + 0.292162i
\(917\) 0.105172 0.105172i 0.00347310 0.00347310i
\(918\) 5.41744 2.41064i 0.178802 0.0795628i
\(919\) 51.6686i 1.70439i −0.523223 0.852196i \(-0.675271\pi\)
0.523223 0.852196i \(-0.324729\pi\)
\(920\) 0 0
\(921\) −8.53312 1.69734i −0.281176 0.0559293i
\(922\) 15.1918 0.500315
\(923\) 11.3493 + 2.25752i 0.373567 + 0.0743071i
\(924\) 0.0511674 + 0.257236i 0.00168328 + 0.00846243i
\(925\) 0 0
\(926\) 1.83336 4.42611i 0.0602478 0.145451i
\(927\) 13.1900 + 31.8434i 0.433215 + 1.04587i
\(928\) 8.35605 1.66212i 0.274301 0.0545618i
\(929\) 13.5019 2.68570i 0.442984 0.0881151i 0.0314417 0.999506i \(-0.489990\pi\)
0.411543 + 0.911391i \(0.364990\pi\)
\(930\) 0 0
\(931\) 18.5009 + 18.5009i 0.606343 + 0.606343i
\(932\) −2.74480 + 1.83402i −0.0899090 + 0.0600753i
\(933\) −49.9756 20.7006i −1.63613 0.677706i
\(934\) −15.2661 −0.499523
\(935\) 0 0
\(936\) −7.72983 −0.252657
\(937\) 10.0223 + 4.15139i 0.327415 + 0.135620i 0.540335 0.841450i \(-0.318297\pi\)
−0.212920 + 0.977070i \(0.568297\pi\)
\(938\) −0.544112 + 0.363564i −0.0177659 + 0.0118708i
\(939\) 59.4531 + 59.4531i 1.94018 + 1.94018i
\(940\) 0 0
\(941\) −40.0808 + 7.97257i −1.30660 + 0.259898i −0.798809 0.601584i \(-0.794536\pi\)
−0.507787 + 0.861482i \(0.669536\pi\)
\(942\) −17.5552 + 3.49195i −0.571979 + 0.113774i
\(943\) −1.96843 4.75221i −0.0641009 0.154753i
\(944\) 3.63666 8.77968i 0.118363 0.285754i
\(945\) 0 0
\(946\) 4.31417 + 21.6888i 0.140266 + 0.705163i
\(947\) 18.0851 + 3.59735i 0.587686 + 0.116898i 0.479972 0.877284i \(-0.340647\pi\)
0.107714 + 0.994182i \(0.465647\pi\)
\(948\) 18.3893 0.597256
\(949\) −24.2889 4.83136i −0.788451 0.156833i
\(950\) 0 0
\(951\) 80.0342i 2.59529i
\(952\) −0.0620318 + 0.161497i −0.00201046 + 0.00523415i
\(953\) −19.5626 + 19.5626i −0.633696 + 0.633696i −0.948993 0.315297i \(-0.897896\pi\)
0.315297 + 0.948993i \(0.397896\pi\)
\(954\) −7.18664 17.3501i −0.232676 0.561730i
\(955\) 0 0
\(956\) 2.29875 2.29875i 0.0743470 0.0743470i
\(957\) 10.3895 52.2317i 0.335846 1.68841i
\(958\) −11.9863 + 17.9387i −0.387259 + 0.579575i
\(959\) 0.489329 + 0.326959i 0.0158013 + 0.0105581i
\(960\) 0 0
\(961\) 27.4004 + 11.3496i 0.883885 + 0.366117i
\(962\) −3.10957 15.6328i −0.100256 0.504023i
\(963\) −2.26427 1.51294i −0.0729652 0.0487538i
\(964\) 3.70401 + 5.54345i 0.119298 + 0.178542i
\(965\) 0 0
\(966\) −0.149553 + 0.751854i −0.00481179 + 0.0241905i
\(967\) −16.6678 + 40.2397i −0.536001 + 1.29402i 0.391492 + 0.920181i \(0.371959\pi\)
−0.927493 + 0.373840i \(0.878041\pi\)
\(968\) −3.56748 3.56748i −0.114663 0.114663i
\(969\) 1.02534 + 39.4727i 0.0329387 + 1.26805i
\(970\) 0 0
\(971\) −29.2585 + 12.1193i −0.938949 + 0.388925i −0.799066 0.601243i \(-0.794672\pi\)
−0.139882 + 0.990168i \(0.544672\pi\)
\(972\) −12.3594 18.4972i −0.396428 0.593297i
\(973\) 0.176991i 0.00567407i
\(974\) 16.3758 10.9420i 0.524716 0.350604i
\(975\) 0 0
\(976\) −3.92224 + 5.87005i −0.125548 + 0.187896i
\(977\) −13.9175 + 5.76484i −0.445262 + 0.184433i −0.594037 0.804438i \(-0.702467\pi\)
0.148775 + 0.988871i \(0.452467\pi\)
\(978\) 25.7440 10.6635i 0.823202 0.340982i
\(979\) −22.1399 + 33.1347i −0.707593 + 1.05899i
\(980\) 0 0
\(981\) −31.3380 + 20.9394i −1.00054 + 0.668542i
\(982\) 10.9171i 0.348379i
\(983\) −2.65830 3.97842i −0.0847865 0.126892i 0.786652 0.617396i \(-0.211813\pi\)
−0.871439 + 0.490504i \(0.836813\pi\)
\(984\) 1.70670 0.706940i 0.0544077 0.0225364i
\(985\) 0 0
\(986\) 24.1858 25.4758i 0.770231 0.811313i
\(987\) 0.314492 + 0.314492i 0.0100104 + 0.0100104i
\(988\) 3.10531 7.49687i 0.0987930 0.238507i
\(989\) −12.6095 + 63.3925i −0.400960 + 2.01576i
\(990\) 0 0
\(991\) −28.3664 42.4533i −0.901089 1.34857i −0.937040 0.349221i \(-0.886446\pi\)
0.0359517 0.999354i \(-0.488554\pi\)
\(992\) −0.963206 0.643594i −0.0305818 0.0204341i
\(993\) −4.90601 24.6642i −0.155687 0.782693i
\(994\) 0.206676 + 0.0856079i 0.00655535 + 0.00271532i
\(995\) 0 0
\(996\) −36.0016 24.0555i −1.14076 0.762229i
\(997\) −19.9191 + 29.8110i −0.630843 + 0.944124i 0.369048 + 0.929410i \(0.379684\pi\)
−0.999892 + 0.0147136i \(0.995316\pi\)
\(998\) −2.05219 + 10.3170i −0.0649608 + 0.326580i
\(999\) −7.46797 + 7.46797i −0.236276 + 0.236276i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.d.207.1 40
5.2 odd 4 170.2.o.b.3.5 40
5.3 odd 4 850.2.s.d.343.1 40
5.4 even 2 170.2.r.b.37.5 yes 40
17.6 odd 16 850.2.s.d.57.1 40
85.23 even 16 inner 850.2.v.d.193.1 40
85.57 even 16 170.2.r.b.23.5 yes 40
85.74 odd 16 170.2.o.b.57.5 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.b.3.5 40 5.2 odd 4
170.2.o.b.57.5 yes 40 85.74 odd 16
170.2.r.b.23.5 yes 40 85.57 even 16
170.2.r.b.37.5 yes 40 5.4 even 2
850.2.s.d.57.1 40 17.6 odd 16
850.2.s.d.343.1 40 5.3 odd 4
850.2.v.d.193.1 40 85.23 even 16 inner
850.2.v.d.207.1 40 1.1 even 1 trivial