Properties

Label 850.2.v.d.207.5
Level $850$
Weight $2$
Character 850.207
Analytic conductor $6.787$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(5\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 207.5
Character \(\chi\) \(=\) 850.207
Dual form 850.2.v.d.193.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 - 0.382683i) q^{2} +(2.47936 - 1.65666i) q^{3} +(0.707107 + 0.707107i) q^{4} +(-2.92460 + 0.581740i) q^{6} +(2.11600 - 0.420899i) q^{7} +(-0.382683 - 0.923880i) q^{8} +(2.25467 - 5.44325i) q^{9} +(0.581141 + 2.92159i) q^{11} +(2.92460 + 0.581740i) q^{12} +5.10274 q^{13} +(-2.11600 - 0.420899i) q^{14} +1.00000i q^{16} +(-2.91101 - 2.91993i) q^{17} +(-4.16608 + 4.16608i) q^{18} +(2.47306 + 5.97048i) q^{19} +(4.54905 - 4.54905i) q^{21} +(0.581141 - 2.92159i) q^{22} +(-0.847753 + 1.26875i) q^{23} +(-2.47936 - 1.65666i) q^{24} +(-4.71431 - 1.95273i) q^{26} +(-1.68223 - 8.45716i) q^{27} +(1.79386 + 1.19862i) q^{28} +(-3.82051 - 5.71779i) q^{29} +(-0.942552 + 4.73853i) q^{31} +(0.382683 - 0.923880i) q^{32} +(6.28093 + 6.28093i) q^{33} +(1.57202 + 3.81166i) q^{34} +(5.44325 - 2.25467i) q^{36} +(-4.04382 - 6.05201i) q^{37} -6.46241i q^{38} +(12.6515 - 8.45347i) q^{39} +(2.01733 - 3.01915i) q^{41} +(-5.94362 + 2.46193i) q^{42} +(1.73529 - 0.718779i) q^{43} +(-1.65495 + 2.47681i) q^{44} +(1.26875 - 0.847753i) q^{46} +4.65062i q^{47} +(1.65666 + 2.47936i) q^{48} +(-2.16684 + 0.897536i) q^{49} +(-12.0548 - 2.41701i) q^{51} +(3.60818 + 3.60818i) q^{52} +(-1.11881 + 2.70105i) q^{53} +(-1.68223 + 8.45716i) q^{54} +(-1.19862 - 1.79386i) q^{56} +(16.0226 + 10.7060i) q^{57} +(1.34158 + 6.74460i) q^{58} +(-3.66553 - 1.51831i) q^{59} +(-3.45296 - 2.30720i) q^{61} +(2.68416 - 4.01713i) q^{62} +(2.47982 - 12.4669i) q^{63} +(-0.707107 + 0.707107i) q^{64} +(-3.39921 - 8.20642i) q^{66} +(2.25590 - 2.25590i) q^{67} +(0.00630415 - 4.12310i) q^{68} +4.55013i q^{69} +(5.63509 + 1.12089i) q^{71} -5.89173 q^{72} +(-9.62889 - 1.91531i) q^{73} +(1.42000 + 7.13883i) q^{74} +(-2.47306 + 5.97048i) q^{76} +(2.45939 + 5.93749i) q^{77} +(-14.9235 + 2.96847i) q^{78} +(-15.1407 + 3.01167i) q^{79} +(-5.68322 - 5.68322i) q^{81} +(-3.01915 + 2.01733i) q^{82} +(-9.03070 - 3.74064i) q^{83} +6.43332 q^{84} -1.87826 q^{86} +(-18.9448 - 7.84720i) q^{87} +(2.47681 - 1.65495i) q^{88} +(-5.41083 - 5.41083i) q^{89} +(10.7974 - 2.14774i) q^{91} +(-1.49660 + 0.297691i) q^{92} +(5.51318 + 13.3100i) q^{93} +(1.77972 - 4.29662i) q^{94} +(-0.581740 - 2.92460i) q^{96} +(2.63292 + 0.523720i) q^{97} +2.34537 q^{98} +(17.2132 + 3.42392i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 16 q^{18} - 8 q^{26} - 24 q^{27} + 8 q^{28} + 8 q^{29} - 16 q^{31} + 32 q^{33} + 8 q^{34} - 32 q^{39} - 56 q^{41} + 24 q^{42} - 16 q^{43} + 16 q^{44} + 16 q^{49} - 32 q^{51} + 16 q^{52} - 16 q^{53}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923880 0.382683i −0.653281 0.270598i
\(3\) 2.47936 1.65666i 1.43146 0.956470i 0.432976 0.901405i \(-0.357463\pi\)
0.998483 0.0550648i \(-0.0175366\pi\)
\(4\) 0.707107 + 0.707107i 0.353553 + 0.353553i
\(5\) 0 0
\(6\) −2.92460 + 0.581740i −1.19396 + 0.237494i
\(7\) 2.11600 0.420899i 0.799774 0.159085i 0.221749 0.975104i \(-0.428824\pi\)
0.578025 + 0.816019i \(0.303824\pi\)
\(8\) −0.382683 0.923880i −0.135299 0.326641i
\(9\) 2.25467 5.44325i 0.751556 1.81442i
\(10\) 0 0
\(11\) 0.581141 + 2.92159i 0.175220 + 0.880893i 0.963936 + 0.266134i \(0.0857465\pi\)
−0.788715 + 0.614758i \(0.789253\pi\)
\(12\) 2.92460 + 0.581740i 0.844260 + 0.167934i
\(13\) 5.10274 1.41524 0.707622 0.706591i \(-0.249768\pi\)
0.707622 + 0.706591i \(0.249768\pi\)
\(14\) −2.11600 0.420899i −0.565526 0.112490i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) −2.91101 2.91993i −0.706025 0.708187i
\(18\) −4.16608 + 4.16608i −0.981955 + 0.981955i
\(19\) 2.47306 + 5.97048i 0.567358 + 1.36972i 0.903774 + 0.428010i \(0.140785\pi\)
−0.336416 + 0.941713i \(0.609215\pi\)
\(20\) 0 0
\(21\) 4.54905 4.54905i 0.992684 0.992684i
\(22\) 0.581141 2.92159i 0.123900 0.622885i
\(23\) −0.847753 + 1.26875i −0.176769 + 0.264553i −0.909265 0.416218i \(-0.863355\pi\)
0.732496 + 0.680771i \(0.238355\pi\)
\(24\) −2.47936 1.65666i −0.506097 0.338163i
\(25\) 0 0
\(26\) −4.71431 1.95273i −0.924553 0.382962i
\(27\) −1.68223 8.45716i −0.323746 1.62758i
\(28\) 1.79386 + 1.19862i 0.339008 + 0.226518i
\(29\) −3.82051 5.71779i −0.709450 1.06177i −0.994650 0.103300i \(-0.967060\pi\)
0.285200 0.958468i \(-0.407940\pi\)
\(30\) 0 0
\(31\) −0.942552 + 4.73853i −0.169287 + 0.851065i 0.799020 + 0.601304i \(0.205352\pi\)
−0.968308 + 0.249761i \(0.919648\pi\)
\(32\) 0.382683 0.923880i 0.0676495 0.163320i
\(33\) 6.28093 + 6.28093i 1.09337 + 1.09337i
\(34\) 1.57202 + 3.81166i 0.269599 + 0.653694i
\(35\) 0 0
\(36\) 5.44325 2.25467i 0.907208 0.375778i
\(37\) −4.04382 6.05201i −0.664801 0.994945i −0.998631 0.0523113i \(-0.983341\pi\)
0.333830 0.942633i \(-0.391659\pi\)
\(38\) 6.46241i 1.04834i
\(39\) 12.6515 8.45347i 2.02586 1.35364i
\(40\) 0 0
\(41\) 2.01733 3.01915i 0.315054 0.471511i −0.639819 0.768525i \(-0.720991\pi\)
0.954873 + 0.297014i \(0.0959908\pi\)
\(42\) −5.94362 + 2.46193i −0.917120 + 0.379884i
\(43\) 1.73529 0.718779i 0.264629 0.109613i −0.246424 0.969162i \(-0.579256\pi\)
0.511053 + 0.859549i \(0.329256\pi\)
\(44\) −1.65495 + 2.47681i −0.249493 + 0.373392i
\(45\) 0 0
\(46\) 1.26875 0.847753i 0.187067 0.124994i
\(47\) 4.65062i 0.678363i 0.940721 + 0.339182i \(0.110150\pi\)
−0.940721 + 0.339182i \(0.889850\pi\)
\(48\) 1.65666 + 2.47936i 0.239118 + 0.357865i
\(49\) −2.16684 + 0.897536i −0.309549 + 0.128219i
\(50\) 0 0
\(51\) −12.0548 2.41701i −1.68801 0.338449i
\(52\) 3.60818 + 3.60818i 0.500364 + 0.500364i
\(53\) −1.11881 + 2.70105i −0.153680 + 0.371017i −0.981904 0.189381i \(-0.939352\pi\)
0.828223 + 0.560398i \(0.189352\pi\)
\(54\) −1.68223 + 8.45716i −0.228923 + 1.15087i
\(55\) 0 0
\(56\) −1.19862 1.79386i −0.160172 0.239715i
\(57\) 16.0226 + 10.7060i 2.12225 + 1.41804i
\(58\) 1.34158 + 6.74460i 0.176159 + 0.885609i
\(59\) −3.66553 1.51831i −0.477211 0.197667i 0.131095 0.991370i \(-0.458151\pi\)
−0.608306 + 0.793703i \(0.708151\pi\)
\(60\) 0 0
\(61\) −3.45296 2.30720i −0.442107 0.295406i 0.314523 0.949250i \(-0.398155\pi\)
−0.756630 + 0.653844i \(0.773155\pi\)
\(62\) 2.68416 4.01713i 0.340889 0.510176i
\(63\) 2.47982 12.4669i 0.312428 1.57068i
\(64\) −0.707107 + 0.707107i −0.0883883 + 0.0883883i
\(65\) 0 0
\(66\) −3.39921 8.20642i −0.418414 1.01014i
\(67\) 2.25590 2.25590i 0.275602 0.275602i −0.555749 0.831350i \(-0.687568\pi\)
0.831350 + 0.555749i \(0.187568\pi\)
\(68\) 0.00630415 4.12310i 0.000764491 0.499999i
\(69\) 4.55013i 0.547771i
\(70\) 0 0
\(71\) 5.63509 + 1.12089i 0.668762 + 0.133025i 0.517783 0.855512i \(-0.326757\pi\)
0.150979 + 0.988537i \(0.451757\pi\)
\(72\) −5.89173 −0.694347
\(73\) −9.62889 1.91531i −1.12698 0.224170i −0.403810 0.914843i \(-0.632314\pi\)
−0.723167 + 0.690674i \(0.757314\pi\)
\(74\) 1.42000 + 7.13883i 0.165072 + 0.829873i
\(75\) 0 0
\(76\) −2.47306 + 5.97048i −0.283679 + 0.684861i
\(77\) 2.45939 + 5.93749i 0.280274 + 0.676640i
\(78\) −14.9235 + 2.96847i −1.68975 + 0.336113i
\(79\) −15.1407 + 3.01167i −1.70346 + 0.338839i −0.948462 0.316890i \(-0.897361\pi\)
−0.754996 + 0.655729i \(0.772361\pi\)
\(80\) 0 0
\(81\) −5.68322 5.68322i −0.631469 0.631469i
\(82\) −3.01915 + 2.01733i −0.333409 + 0.222777i
\(83\) −9.03070 3.74064i −0.991249 0.410589i −0.172668 0.984980i \(-0.555239\pi\)
−0.818581 + 0.574391i \(0.805239\pi\)
\(84\) 6.43332 0.701933
\(85\) 0 0
\(86\) −1.87826 −0.202538
\(87\) −18.9448 7.84720i −2.03110 0.841309i
\(88\) 2.47681 1.65495i 0.264028 0.176418i
\(89\) −5.41083 5.41083i −0.573547 0.573547i 0.359571 0.933118i \(-0.382923\pi\)
−0.933118 + 0.359571i \(0.882923\pi\)
\(90\) 0 0
\(91\) 10.7974 2.14774i 1.13188 0.225144i
\(92\) −1.49660 + 0.297691i −0.156031 + 0.0310365i
\(93\) 5.51318 + 13.3100i 0.571690 + 1.38018i
\(94\) 1.77972 4.29662i 0.183564 0.443162i
\(95\) 0 0
\(96\) −0.581740 2.92460i −0.0593736 0.298491i
\(97\) 2.63292 + 0.523720i 0.267332 + 0.0531757i 0.326936 0.945046i \(-0.393984\pi\)
−0.0596039 + 0.998222i \(0.518984\pi\)
\(98\) 2.34537 0.236919
\(99\) 17.2132 + 3.42392i 1.72999 + 0.344117i
\(100\) 0 0
\(101\) 12.8077i 1.27441i 0.770693 + 0.637207i \(0.219910\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(102\) 10.2122 + 6.84619i 1.01116 + 0.677873i
\(103\) 8.68917 8.68917i 0.856170 0.856170i −0.134715 0.990884i \(-0.543012\pi\)
0.990884 + 0.134715i \(0.0430118\pi\)
\(104\) −1.95273 4.71431i −0.191481 0.462276i
\(105\) 0 0
\(106\) 2.06729 2.06729i 0.200793 0.200793i
\(107\) 0.486150 2.44404i 0.0469978 0.236274i −0.950145 0.311807i \(-0.899066\pi\)
0.997143 + 0.0755328i \(0.0240658\pi\)
\(108\) 4.79060 7.16964i 0.460976 0.689899i
\(109\) 15.1896 + 10.1494i 1.45490 + 0.972132i 0.996518 + 0.0833759i \(0.0265702\pi\)
0.458380 + 0.888756i \(0.348430\pi\)
\(110\) 0 0
\(111\) −20.0522 8.30589i −1.90327 0.788360i
\(112\) 0.420899 + 2.11600i 0.0397712 + 0.199944i
\(113\) −10.4494 6.98206i −0.982997 0.656817i −0.0433845 0.999058i \(-0.513814\pi\)
−0.939612 + 0.342241i \(0.888814\pi\)
\(114\) −10.7060 16.0226i −1.00271 1.50066i
\(115\) 0 0
\(116\) 1.34158 6.74460i 0.124563 0.626220i
\(117\) 11.5050 27.7755i 1.06364 2.56784i
\(118\) 2.80547 + 2.80547i 0.258265 + 0.258265i
\(119\) −7.38871 4.95334i −0.677322 0.454072i
\(120\) 0 0
\(121\) 1.96470 0.813807i 0.178610 0.0739825i
\(122\) 2.30720 + 3.45296i 0.208884 + 0.312617i
\(123\) 10.8276i 0.976289i
\(124\) −4.01713 + 2.68416i −0.360749 + 0.241045i
\(125\) 0 0
\(126\) −7.06194 + 10.5689i −0.629128 + 0.941556i
\(127\) −2.06022 + 0.853371i −0.182815 + 0.0757245i −0.472213 0.881484i \(-0.656545\pi\)
0.289398 + 0.957209i \(0.406545\pi\)
\(128\) 0.923880 0.382683i 0.0816602 0.0338248i
\(129\) 3.11163 4.65688i 0.273964 0.410016i
\(130\) 0 0
\(131\) 10.4931 7.01129i 0.916790 0.612579i −0.00511864 0.999987i \(-0.501629\pi\)
0.921909 + 0.387407i \(0.126629\pi\)
\(132\) 8.88257i 0.773128i
\(133\) 7.74596 + 11.5927i 0.671660 + 1.00521i
\(134\) −2.94747 + 1.22088i −0.254623 + 0.105468i
\(135\) 0 0
\(136\) −1.58367 + 3.80684i −0.135798 + 0.326433i
\(137\) 2.33320 + 2.33320i 0.199339 + 0.199339i 0.799717 0.600378i \(-0.204983\pi\)
−0.600378 + 0.799717i \(0.704983\pi\)
\(138\) 1.74126 4.20377i 0.148226 0.357849i
\(139\) 2.59433 13.0426i 0.220049 1.10626i −0.699906 0.714235i \(-0.746775\pi\)
0.919955 0.392024i \(-0.128225\pi\)
\(140\) 0 0
\(141\) 7.70448 + 11.5306i 0.648834 + 0.971049i
\(142\) −4.77720 3.19202i −0.400894 0.267869i
\(143\) 2.96541 + 14.9081i 0.247980 + 1.24668i
\(144\) 5.44325 + 2.25467i 0.453604 + 0.187889i
\(145\) 0 0
\(146\) 8.16298 + 5.45433i 0.675573 + 0.451403i
\(147\) −3.88548 + 5.81503i −0.320469 + 0.479615i
\(148\) 1.42000 7.13883i 0.116723 0.586809i
\(149\) −5.78244 + 5.78244i −0.473716 + 0.473716i −0.903115 0.429399i \(-0.858725\pi\)
0.429399 + 0.903115i \(0.358725\pi\)
\(150\) 0 0
\(151\) 3.31607 + 8.00571i 0.269858 + 0.651495i 0.999476 0.0323595i \(-0.0103021\pi\)
−0.729618 + 0.683855i \(0.760302\pi\)
\(152\) 4.56961 4.56961i 0.370644 0.370644i
\(153\) −22.4573 + 9.26191i −1.81556 + 0.748781i
\(154\) 6.42670i 0.517878i
\(155\) 0 0
\(156\) 14.9235 + 2.96847i 1.19483 + 0.237667i
\(157\) −6.12399 −0.488747 −0.244374 0.969681i \(-0.578582\pi\)
−0.244374 + 0.969681i \(0.578582\pi\)
\(158\) 15.1407 + 3.01167i 1.20453 + 0.239595i
\(159\) 1.70077 + 8.55035i 0.134880 + 0.678087i
\(160\) 0 0
\(161\) −1.25983 + 3.04150i −0.0992887 + 0.239704i
\(162\) 3.07574 + 7.42549i 0.241653 + 0.583401i
\(163\) 12.9467 2.57526i 1.01407 0.201710i 0.340034 0.940413i \(-0.389561\pi\)
0.674031 + 0.738703i \(0.264561\pi\)
\(164\) 3.56132 0.708391i 0.278093 0.0553161i
\(165\) 0 0
\(166\) 6.91180 + 6.91180i 0.536460 + 0.536460i
\(167\) −14.6882 + 9.81435i −1.13661 + 0.759457i −0.973846 0.227209i \(-0.927040\pi\)
−0.162761 + 0.986665i \(0.552040\pi\)
\(168\) −5.94362 2.46193i −0.458560 0.189942i
\(169\) 13.0379 1.00292
\(170\) 0 0
\(171\) 38.0747 2.91165
\(172\) 1.73529 + 0.718779i 0.132314 + 0.0548064i
\(173\) −8.19533 + 5.47594i −0.623079 + 0.416328i −0.826638 0.562734i \(-0.809749\pi\)
0.203558 + 0.979063i \(0.434749\pi\)
\(174\) 14.4997 + 14.4997i 1.09922 + 1.09922i
\(175\) 0 0
\(176\) −2.92159 + 0.581141i −0.220223 + 0.0438051i
\(177\) −11.6035 + 2.30807i −0.872170 + 0.173485i
\(178\) 2.92832 + 7.06959i 0.219487 + 0.529888i
\(179\) 0.836227 2.01883i 0.0625026 0.150895i −0.889542 0.456853i \(-0.848977\pi\)
0.952045 + 0.305958i \(0.0989767\pi\)
\(180\) 0 0
\(181\) 2.38233 + 11.9768i 0.177077 + 0.890225i 0.962503 + 0.271270i \(0.0874437\pi\)
−0.785426 + 0.618955i \(0.787556\pi\)
\(182\) −10.7974 2.14774i −0.800357 0.159201i
\(183\) −12.3834 −0.915405
\(184\) 1.49660 + 0.297691i 0.110330 + 0.0219461i
\(185\) 0 0
\(186\) 14.4066i 1.05635i
\(187\) 6.83913 10.2017i 0.500127 0.746021i
\(188\) −3.28849 + 3.28849i −0.239838 + 0.239838i
\(189\) −7.11923 17.1873i −0.517848 1.25019i
\(190\) 0 0
\(191\) −3.12333 + 3.12333i −0.225996 + 0.225996i −0.811018 0.585021i \(-0.801086\pi\)
0.585021 + 0.811018i \(0.301086\pi\)
\(192\) −0.581740 + 2.92460i −0.0419835 + 0.211065i
\(193\) −13.1386 + 19.6632i −0.945734 + 1.41539i −0.0363943 + 0.999338i \(0.511587\pi\)
−0.909340 + 0.416054i \(0.863413\pi\)
\(194\) −2.23208 1.49143i −0.160254 0.107078i
\(195\) 0 0
\(196\) −2.16684 0.897536i −0.154775 0.0641097i
\(197\) 0.300658 + 1.51151i 0.0214210 + 0.107691i 0.990017 0.140951i \(-0.0450160\pi\)
−0.968596 + 0.248641i \(0.920016\pi\)
\(198\) −14.5927 9.75051i −1.03706 0.692938i
\(199\) −2.72577 4.07940i −0.193224 0.289181i 0.722189 0.691696i \(-0.243136\pi\)
−0.915413 + 0.402515i \(0.868136\pi\)
\(200\) 0 0
\(201\) 1.85594 9.33042i 0.130908 0.658117i
\(202\) 4.90129 11.8328i 0.344854 0.832551i
\(203\) −10.4908 10.4908i −0.736311 0.736311i
\(204\) −6.81493 10.2331i −0.477140 0.716460i
\(205\) 0 0
\(206\) −11.3530 + 4.70255i −0.790998 + 0.327642i
\(207\) 4.99473 + 7.47515i 0.347158 + 0.519559i
\(208\) 5.10274i 0.353811i
\(209\) −16.0061 + 10.6949i −1.10717 + 0.739785i
\(210\) 0 0
\(211\) −14.8005 + 22.1505i −1.01891 + 1.52490i −0.177777 + 0.984071i \(0.556890\pi\)
−0.841131 + 0.540832i \(0.818110\pi\)
\(212\) −2.70105 + 1.11881i −0.185509 + 0.0768402i
\(213\) 15.8283 6.55631i 1.08454 0.449231i
\(214\) −1.38444 + 2.07196i −0.0946381 + 0.141636i
\(215\) 0 0
\(216\) −7.16964 + 4.79060i −0.487832 + 0.325959i
\(217\) 10.4235i 0.707591i
\(218\) −10.1494 15.1896i −0.687401 1.02877i
\(219\) −27.0465 + 11.2030i −1.82763 + 0.757030i
\(220\) 0 0
\(221\) −14.8541 14.8996i −0.999198 1.00226i
\(222\) 15.3473 + 15.3473i 1.03004 + 1.03004i
\(223\) 3.78056 9.12708i 0.253165 0.611195i −0.745291 0.666739i \(-0.767690\pi\)
0.998456 + 0.0555446i \(0.0176895\pi\)
\(224\) 0.420899 2.11600i 0.0281225 0.141381i
\(225\) 0 0
\(226\) 6.98206 + 10.4494i 0.464440 + 0.695084i
\(227\) 6.88241 + 4.59868i 0.456801 + 0.305225i 0.762599 0.646872i \(-0.223923\pi\)
−0.305797 + 0.952097i \(0.598923\pi\)
\(228\) 3.75944 + 18.9000i 0.248975 + 1.25168i
\(229\) 21.1923 + 8.77812i 1.40042 + 0.580074i 0.949862 0.312671i \(-0.101224\pi\)
0.450562 + 0.892745i \(0.351224\pi\)
\(230\) 0 0
\(231\) 15.9341 + 10.6468i 1.04839 + 0.700509i
\(232\) −3.82051 + 5.71779i −0.250829 + 0.375392i
\(233\) 5.40843 27.1900i 0.354318 1.78128i −0.233576 0.972339i \(-0.575043\pi\)
0.587894 0.808938i \(-0.299957\pi\)
\(234\) −21.2584 + 21.2584i −1.38971 + 1.38971i
\(235\) 0 0
\(236\) −1.51831 3.66553i −0.0988336 0.238605i
\(237\) −32.5499 + 32.5499i −2.11434 + 2.11434i
\(238\) 4.93072 + 7.40383i 0.319611 + 0.479919i
\(239\) 21.8340i 1.41232i 0.708051 + 0.706161i \(0.249575\pi\)
−0.708051 + 0.706161i \(0.750425\pi\)
\(240\) 0 0
\(241\) −10.9377 2.17563i −0.704556 0.140145i −0.170206 0.985408i \(-0.554443\pi\)
−0.534350 + 0.845264i \(0.679443\pi\)
\(242\) −2.12658 −0.136702
\(243\) 1.86561 + 0.371092i 0.119679 + 0.0238056i
\(244\) −0.810180 4.07305i −0.0518664 0.260750i
\(245\) 0 0
\(246\) −4.14353 + 10.0034i −0.264182 + 0.637791i
\(247\) 12.6193 + 30.4658i 0.802950 + 1.93849i
\(248\) 4.73853 0.942552i 0.300897 0.0598521i
\(249\) −28.5873 + 5.68637i −1.81165 + 0.360359i
\(250\) 0 0
\(251\) −5.63823 5.63823i −0.355882 0.355882i 0.506411 0.862292i \(-0.330972\pi\)
−0.862292 + 0.506411i \(0.830972\pi\)
\(252\) 10.5689 7.06194i 0.665781 0.444861i
\(253\) −4.19944 1.73947i −0.264017 0.109359i
\(254\) 2.22997 0.139921
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) 11.0133 + 4.56187i 0.686992 + 0.284561i 0.698746 0.715370i \(-0.253742\pi\)
−0.0117544 + 0.999931i \(0.503742\pi\)
\(258\) −4.65688 + 3.11163i −0.289925 + 0.193722i
\(259\) −11.1040 11.1040i −0.689971 0.689971i
\(260\) 0 0
\(261\) −39.7373 + 7.90425i −2.45968 + 0.489261i
\(262\) −12.3775 + 2.46204i −0.764685 + 0.152105i
\(263\) 5.39184 + 13.0171i 0.332475 + 0.802666i 0.998395 + 0.0566422i \(0.0180394\pi\)
−0.665919 + 0.746024i \(0.731961\pi\)
\(264\) 3.39921 8.20642i 0.209207 0.505070i
\(265\) 0 0
\(266\) −2.72002 13.6745i −0.166775 0.838436i
\(267\) −22.3793 4.45151i −1.36959 0.272428i
\(268\) 3.19032 0.194880
\(269\) −4.26081 0.847528i −0.259786 0.0516747i 0.0634787 0.997983i \(-0.479781\pi\)
−0.323265 + 0.946308i \(0.604781\pi\)
\(270\) 0 0
\(271\) 3.27703i 0.199065i −0.995034 0.0995326i \(-0.968265\pi\)
0.995034 0.0995326i \(-0.0317347\pi\)
\(272\) 2.91993 2.91101i 0.177047 0.176506i
\(273\) 23.2126 23.2126i 1.40489 1.40489i
\(274\) −1.26272 3.04848i −0.0762837 0.184165i
\(275\) 0 0
\(276\) −3.21743 + 3.21743i −0.193666 + 0.193666i
\(277\) −3.34480 + 16.8154i −0.200970 + 1.01034i 0.740195 + 0.672393i \(0.234733\pi\)
−0.941164 + 0.337950i \(0.890267\pi\)
\(278\) −7.38804 + 11.0570i −0.443105 + 0.663154i
\(279\) 23.6678 + 15.8143i 1.41696 + 0.946780i
\(280\) 0 0
\(281\) 26.4043 + 10.9370i 1.57515 + 0.652447i 0.987635 0.156769i \(-0.0501079\pi\)
0.587511 + 0.809216i \(0.300108\pi\)
\(282\) −2.70545 13.6012i −0.161107 0.809942i
\(283\) 2.50708 + 1.67518i 0.149030 + 0.0995789i 0.627850 0.778334i \(-0.283935\pi\)
−0.478820 + 0.877913i \(0.658935\pi\)
\(284\) 3.19202 + 4.77720i 0.189412 + 0.283475i
\(285\) 0 0
\(286\) 2.96541 14.9081i 0.175348 0.881535i
\(287\) 2.99792 7.23761i 0.176961 0.427223i
\(288\) −4.16608 4.16608i −0.245489 0.245489i
\(289\) −0.0519853 + 16.9999i −0.00305796 + 0.999995i
\(290\) 0 0
\(291\) 7.39558 3.06335i 0.433536 0.179577i
\(292\) −5.45433 8.16298i −0.319190 0.477702i
\(293\) 7.90877i 0.462035i 0.972950 + 0.231018i \(0.0742055\pi\)
−0.972950 + 0.231018i \(0.925794\pi\)
\(294\) 5.81503 3.88548i 0.339139 0.226606i
\(295\) 0 0
\(296\) −4.04382 + 6.05201i −0.235043 + 0.351766i
\(297\) 23.7308 9.82960i 1.37700 0.570371i
\(298\) 7.55512 3.12943i 0.437656 0.181283i
\(299\) −4.32586 + 6.47411i −0.250171 + 0.374407i
\(300\) 0 0
\(301\) 3.36934 2.25132i 0.194205 0.129764i
\(302\) 8.66532i 0.498633i
\(303\) 21.2179 + 31.7549i 1.21894 + 1.82427i
\(304\) −5.97048 + 2.47306i −0.342431 + 0.141839i
\(305\) 0 0
\(306\) 24.2922 + 0.0371424i 1.38869 + 0.00212329i
\(307\) 10.8126 + 10.8126i 0.617106 + 0.617106i 0.944788 0.327682i \(-0.106267\pi\)
−0.327682 + 0.944788i \(0.606267\pi\)
\(308\) −2.45939 + 5.93749i −0.140137 + 0.338320i
\(309\) 7.14862 35.9386i 0.406671 2.04447i
\(310\) 0 0
\(311\) 0.359069 + 0.537385i 0.0203609 + 0.0304723i 0.841510 0.540241i \(-0.181667\pi\)
−0.821150 + 0.570713i \(0.806667\pi\)
\(312\) −12.6515 8.45347i −0.716251 0.478584i
\(313\) −0.645545 3.24537i −0.0364883 0.183439i 0.958243 0.285955i \(-0.0923108\pi\)
−0.994731 + 0.102516i \(0.967311\pi\)
\(314\) 5.65783 + 2.34355i 0.319290 + 0.132254i
\(315\) 0 0
\(316\) −12.8356 8.57650i −0.722061 0.482466i
\(317\) 7.87772 11.7898i 0.442457 0.662183i −0.541477 0.840715i \(-0.682135\pi\)
0.983934 + 0.178532i \(0.0571348\pi\)
\(318\) 1.70077 8.55035i 0.0953745 0.479480i
\(319\) 14.4848 14.4848i 0.810993 0.810993i
\(320\) 0 0
\(321\) −2.84359 6.86503i −0.158714 0.383169i
\(322\) 2.32787 2.32787i 0.129727 0.129727i
\(323\) 10.2343 24.6013i 0.569451 1.36885i
\(324\) 8.03729i 0.446516i
\(325\) 0 0
\(326\) −12.9467 2.57526i −0.717053 0.142631i
\(327\) 54.4744 3.01244
\(328\) −3.56132 0.708391i −0.196641 0.0391144i
\(329\) 1.95744 + 9.84074i 0.107917 + 0.542537i
\(330\) 0 0
\(331\) 10.8628 26.2251i 0.597073 1.44146i −0.279477 0.960152i \(-0.590161\pi\)
0.876550 0.481310i \(-0.159839\pi\)
\(332\) −3.74064 9.03070i −0.205294 0.495624i
\(333\) −42.0601 + 8.36627i −2.30488 + 0.458469i
\(334\) 17.3259 3.44634i 0.948032 0.188575i
\(335\) 0 0
\(336\) 4.54905 + 4.54905i 0.248171 + 0.248171i
\(337\) 2.20255 1.47169i 0.119980 0.0801683i −0.494132 0.869387i \(-0.664514\pi\)
0.614112 + 0.789219i \(0.289514\pi\)
\(338\) −12.0455 4.98940i −0.655187 0.271387i
\(339\) −37.4747 −2.03535
\(340\) 0 0
\(341\) −14.3918 −0.779360
\(342\) −35.1765 14.5706i −1.90213 0.787886i
\(343\) −16.7643 + 11.2015i −0.905187 + 0.604827i
\(344\) −1.32813 1.32813i −0.0716080 0.0716080i
\(345\) 0 0
\(346\) 9.66705 1.92290i 0.519704 0.103376i
\(347\) 21.2587 4.22862i 1.14123 0.227004i 0.411940 0.911211i \(-0.364851\pi\)
0.729288 + 0.684207i \(0.239851\pi\)
\(348\) −7.84720 18.9448i −0.420654 1.01555i
\(349\) 2.37113 5.72441i 0.126923 0.306420i −0.847626 0.530595i \(-0.821969\pi\)
0.974549 + 0.224174i \(0.0719686\pi\)
\(350\) 0 0
\(351\) −8.58400 43.1547i −0.458180 2.30343i
\(352\) 2.92159 + 0.581141i 0.155721 + 0.0309749i
\(353\) −18.7851 −0.999831 −0.499915 0.866074i \(-0.666636\pi\)
−0.499915 + 0.866074i \(0.666636\pi\)
\(354\) 11.6035 + 2.30807i 0.616718 + 0.122673i
\(355\) 0 0
\(356\) 7.65207i 0.405559i
\(357\) −26.5252 0.0405567i −1.40386 0.00214649i
\(358\) −1.54515 + 1.54515i −0.0816635 + 0.0816635i
\(359\) −0.798627 1.92806i −0.0421499 0.101759i 0.901402 0.432982i \(-0.142539\pi\)
−0.943552 + 0.331223i \(0.892539\pi\)
\(360\) 0 0
\(361\) −16.0956 + 16.0956i −0.847139 + 0.847139i
\(362\) 2.38233 11.9768i 0.125212 0.629484i
\(363\) 3.52301 5.27256i 0.184910 0.276738i
\(364\) 9.15360 + 6.11624i 0.479779 + 0.320578i
\(365\) 0 0
\(366\) 11.4407 + 4.73891i 0.598017 + 0.247707i
\(367\) 0.264915 + 1.33182i 0.0138285 + 0.0695204i 0.987083 0.160208i \(-0.0512163\pi\)
−0.973255 + 0.229728i \(0.926216\pi\)
\(368\) −1.26875 0.847753i −0.0661383 0.0441922i
\(369\) −11.8856 17.7880i −0.618737 0.926006i
\(370\) 0 0
\(371\) −1.23054 + 6.18633i −0.0638863 + 0.321178i
\(372\) −5.51318 + 13.3100i −0.285845 + 0.690091i
\(373\) 6.12982 + 6.12982i 0.317390 + 0.317390i 0.847764 0.530374i \(-0.177948\pi\)
−0.530374 + 0.847764i \(0.677948\pi\)
\(374\) −10.2226 + 6.80790i −0.528596 + 0.352028i
\(375\) 0 0
\(376\) 4.29662 1.77972i 0.221581 0.0917819i
\(377\) −19.4950 29.1764i −1.00405 1.50266i
\(378\) 18.6034i 0.956857i
\(379\) 9.90108 6.61569i 0.508584 0.339825i −0.274658 0.961542i \(-0.588565\pi\)
0.783242 + 0.621717i \(0.213565\pi\)
\(380\) 0 0
\(381\) −3.69429 + 5.52889i −0.189264 + 0.283254i
\(382\) 4.08083 1.69034i 0.208793 0.0864851i
\(383\) 13.9138 5.76328i 0.710962 0.294490i 0.00225919 0.999997i \(-0.499281\pi\)
0.708702 + 0.705507i \(0.249281\pi\)
\(384\) 1.65666 2.47936i 0.0845408 0.126524i
\(385\) 0 0
\(386\) 19.6632 13.1386i 1.00083 0.668735i
\(387\) 11.0662i 0.562527i
\(388\) 1.49143 + 2.23208i 0.0757158 + 0.113317i
\(389\) 24.1120 9.98753i 1.22253 0.506388i 0.324315 0.945949i \(-0.394866\pi\)
0.898213 + 0.439561i \(0.144866\pi\)
\(390\) 0 0
\(391\) 6.17249 1.21798i 0.312156 0.0615957i
\(392\) 1.65843 + 1.65843i 0.0837634 + 0.0837634i
\(393\) 14.4010 34.7670i 0.726433 1.75376i
\(394\) 0.300658 1.51151i 0.0151469 0.0761487i
\(395\) 0 0
\(396\) 9.75051 + 14.5927i 0.489981 + 0.733309i
\(397\) −21.0338 14.0544i −1.05566 0.705368i −0.0985598 0.995131i \(-0.531424\pi\)
−0.957098 + 0.289763i \(0.906424\pi\)
\(398\) 0.957161 + 4.81198i 0.0479782 + 0.241203i
\(399\) 38.4101 + 15.9100i 1.92291 + 0.796495i
\(400\) 0 0
\(401\) −8.53692 5.70419i −0.426314 0.284854i 0.323847 0.946110i \(-0.395024\pi\)
−0.750160 + 0.661256i \(0.770024\pi\)
\(402\) −5.28526 + 7.90995i −0.263605 + 0.394512i
\(403\) −4.80959 + 24.1795i −0.239583 + 1.20446i
\(404\) −9.05641 + 9.05641i −0.450573 + 0.450573i
\(405\) 0 0
\(406\) 5.67759 + 13.7069i 0.281774 + 0.680263i
\(407\) 15.3315 15.3315i 0.759953 0.759953i
\(408\) 2.38014 + 12.0621i 0.117834 + 0.597163i
\(409\) 18.8720i 0.933158i −0.884480 0.466579i \(-0.845486\pi\)
0.884480 0.466579i \(-0.154514\pi\)
\(410\) 0 0
\(411\) 9.65016 + 1.91954i 0.476007 + 0.0946838i
\(412\) 12.2883 0.605403
\(413\) −8.39532 1.66993i −0.413107 0.0821720i
\(414\) −1.75392 8.81754i −0.0862003 0.433358i
\(415\) 0 0
\(416\) 1.95273 4.71431i 0.0957406 0.231138i
\(417\) −15.1748 36.6352i −0.743113 1.79403i
\(418\) 18.8805 3.75557i 0.923476 0.183691i
\(419\) 2.17804 0.433238i 0.106404 0.0211651i −0.141601 0.989924i \(-0.545225\pi\)
0.248005 + 0.968759i \(0.420225\pi\)
\(420\) 0 0
\(421\) −19.5353 19.5353i −0.952094 0.952094i 0.0468096 0.998904i \(-0.485095\pi\)
−0.998904 + 0.0468096i \(0.985095\pi\)
\(422\) 22.1505 14.8005i 1.07827 0.720476i
\(423\) 25.3145 + 10.4856i 1.23083 + 0.509828i
\(424\) 2.92359 0.141982
\(425\) 0 0
\(426\) −17.1325 −0.830071
\(427\) −8.27758 3.42869i −0.400580 0.165926i
\(428\) 2.07196 1.38444i 0.100152 0.0669193i
\(429\) 32.0499 + 32.0499i 1.54738 + 1.54738i
\(430\) 0 0
\(431\) 26.3843 5.24817i 1.27089 0.252796i 0.486838 0.873492i \(-0.338150\pi\)
0.784051 + 0.620697i \(0.213150\pi\)
\(432\) 8.45716 1.68223i 0.406895 0.0809365i
\(433\) −2.65966 6.42099i −0.127815 0.308573i 0.846998 0.531596i \(-0.178408\pi\)
−0.974813 + 0.223023i \(0.928408\pi\)
\(434\) 3.98889 9.63002i 0.191473 0.462256i
\(435\) 0 0
\(436\) 3.56398 + 17.9173i 0.170684 + 0.858085i
\(437\) −9.67161 1.92380i −0.462656 0.0920279i
\(438\) 29.2749 1.39881
\(439\) 11.9718 + 2.38134i 0.571382 + 0.113655i 0.472321 0.881426i \(-0.343416\pi\)
0.0990609 + 0.995081i \(0.468416\pi\)
\(440\) 0 0
\(441\) 13.8183i 0.658015i
\(442\) 8.02159 + 19.4499i 0.381548 + 0.925137i
\(443\) −18.3210 + 18.3210i −0.870456 + 0.870456i −0.992522 0.122066i \(-0.961048\pi\)
0.122066 + 0.992522i \(0.461048\pi\)
\(444\) −8.30589 20.0522i −0.394180 0.951635i
\(445\) 0 0
\(446\) −6.98556 + 6.98556i −0.330776 + 0.330776i
\(447\) −4.75724 + 23.9163i −0.225010 + 1.13120i
\(448\) −1.19862 + 1.79386i −0.0566294 + 0.0847520i
\(449\) −31.2145 20.8568i −1.47310 0.984295i −0.994328 0.106356i \(-0.966082\pi\)
−0.478773 0.877939i \(-0.658918\pi\)
\(450\) 0 0
\(451\) 9.99306 + 4.13926i 0.470555 + 0.194910i
\(452\) −2.45178 12.3259i −0.115322 0.579762i
\(453\) 21.4844 + 14.3554i 1.00943 + 0.674478i
\(454\) −4.59868 6.88241i −0.215827 0.323007i
\(455\) 0 0
\(456\) 3.75944 18.9000i 0.176052 0.885072i
\(457\) 6.88648 16.6254i 0.322136 0.777705i −0.676994 0.735989i \(-0.736718\pi\)
0.999130 0.0417158i \(-0.0132824\pi\)
\(458\) −16.2199 16.2199i −0.757904 0.757904i
\(459\) −19.7973 + 29.5309i −0.924060 + 1.37839i
\(460\) 0 0
\(461\) 22.1601 9.17900i 1.03210 0.427508i 0.198628 0.980075i \(-0.436351\pi\)
0.833469 + 0.552566i \(0.186351\pi\)
\(462\) −10.6468 15.9341i −0.495335 0.741321i
\(463\) 35.3808i 1.64428i −0.569283 0.822142i \(-0.692779\pi\)
0.569283 0.822142i \(-0.307221\pi\)
\(464\) 5.71779 3.82051i 0.265442 0.177363i
\(465\) 0 0
\(466\) −15.4019 + 23.0506i −0.713479 + 1.06780i
\(467\) −20.7488 + 8.59445i −0.960142 + 0.397704i −0.807033 0.590506i \(-0.798928\pi\)
−0.153108 + 0.988209i \(0.548928\pi\)
\(468\) 27.7755 11.5050i 1.28392 0.531818i
\(469\) 3.82398 5.72299i 0.176575 0.264263i
\(470\) 0 0
\(471\) −15.1836 + 10.1453i −0.699622 + 0.467472i
\(472\) 3.96754i 0.182621i
\(473\) 3.10842 + 4.65208i 0.142925 + 0.213903i
\(474\) 42.5285 17.6159i 1.95340 0.809123i
\(475\) 0 0
\(476\) −1.72207 8.72715i −0.0789310 0.400008i
\(477\) 12.1799 + 12.1799i 0.557681 + 0.557681i
\(478\) 8.35550 20.1720i 0.382172 0.922644i
\(479\) −3.75915 + 18.8985i −0.171760 + 0.863496i 0.794764 + 0.606919i \(0.207595\pi\)
−0.966524 + 0.256577i \(0.917405\pi\)
\(480\) 0 0
\(481\) −20.6346 30.8818i −0.940856 1.40809i
\(482\) 9.27249 + 6.19568i 0.422350 + 0.282206i
\(483\) 1.91515 + 9.62809i 0.0871421 + 0.438093i
\(484\) 1.96470 + 0.813807i 0.0893048 + 0.0369912i
\(485\) 0 0
\(486\) −1.58158 1.05678i −0.0717422 0.0479366i
\(487\) −17.2975 + 25.8876i −0.783826 + 1.17308i 0.197420 + 0.980319i \(0.436744\pi\)
−0.981246 + 0.192760i \(0.938256\pi\)
\(488\) −0.810180 + 4.07305i −0.0366751 + 0.184378i
\(489\) 27.8333 27.8333i 1.25866 1.25866i
\(490\) 0 0
\(491\) −12.1296 29.2835i −0.547403 1.32155i −0.919404 0.393315i \(-0.871328\pi\)
0.372001 0.928232i \(-0.378672\pi\)
\(492\) 7.65624 7.65624i 0.345170 0.345170i
\(493\) −5.57400 + 27.8002i −0.251041 + 1.25206i
\(494\) 32.9759i 1.48366i
\(495\) 0 0
\(496\) −4.73853 0.942552i −0.212766 0.0423218i
\(497\) 12.3957 0.556021
\(498\) 28.5873 + 5.68637i 1.28103 + 0.254812i
\(499\) −5.07928 25.5353i −0.227380 1.14312i −0.910723 0.413018i \(-0.864475\pi\)
0.683343 0.730098i \(-0.260525\pi\)
\(500\) 0 0
\(501\) −20.1584 + 48.6666i −0.900609 + 2.17426i
\(502\) 3.05139 + 7.36670i 0.136190 + 0.328792i
\(503\) −19.6945 + 3.91748i −0.878134 + 0.174672i −0.613517 0.789682i \(-0.710246\pi\)
−0.264617 + 0.964353i \(0.585246\pi\)
\(504\) −12.4669 + 2.47982i −0.555321 + 0.110460i
\(505\) 0 0
\(506\) 3.21411 + 3.21411i 0.142885 + 0.142885i
\(507\) 32.3257 21.5993i 1.43563 0.959260i
\(508\) −2.06022 0.853371i −0.0914075 0.0378622i
\(509\) −2.28523 −0.101291 −0.0506455 0.998717i \(-0.516128\pi\)
−0.0506455 + 0.998717i \(0.516128\pi\)
\(510\) 0 0
\(511\) −21.1809 −0.936988
\(512\) 0.923880 + 0.382683i 0.0408301 + 0.0169124i
\(513\) 46.3331 30.9588i 2.04566 1.36686i
\(514\) −8.42923 8.42923i −0.371797 0.371797i
\(515\) 0 0
\(516\) 5.49317 1.09266i 0.241823 0.0481016i
\(517\) −13.5872 + 2.70267i −0.597565 + 0.118863i
\(518\) 6.00946 + 14.5081i 0.264040 + 0.637450i
\(519\) −11.2474 + 27.1537i −0.493707 + 1.19191i
\(520\) 0 0
\(521\) 4.26245 + 21.4288i 0.186741 + 0.938812i 0.954531 + 0.298110i \(0.0963563\pi\)
−0.767790 + 0.640701i \(0.778644\pi\)
\(522\) 39.7373 + 7.90425i 1.73926 + 0.345960i
\(523\) −38.7971 −1.69648 −0.848239 0.529614i \(-0.822337\pi\)
−0.848239 + 0.529614i \(0.822337\pi\)
\(524\) 12.3775 + 2.46204i 0.540714 + 0.107555i
\(525\) 0 0
\(526\) 14.0896i 0.614334i
\(527\) 16.5800 11.0417i 0.722234 0.480986i
\(528\) −6.28093 + 6.28093i −0.273342 + 0.273342i
\(529\) 7.91067 + 19.0981i 0.343942 + 0.830350i
\(530\) 0 0
\(531\) −16.5291 + 16.5291i −0.717301 + 0.717301i
\(532\) −2.72002 + 13.6745i −0.117928 + 0.592863i
\(533\) 10.2939 15.4059i 0.445878 0.667304i
\(534\) 18.9722 + 12.6768i 0.821008 + 0.548580i
\(535\) 0 0
\(536\) −2.94747 1.22088i −0.127311 0.0527341i
\(537\) −1.27120 6.39075i −0.0548563 0.275781i
\(538\) 3.61214 + 2.41356i 0.155731 + 0.104056i
\(539\) −3.88147 5.80904i −0.167187 0.250213i
\(540\) 0 0
\(541\) 2.10863 10.6008i 0.0906572 0.455765i −0.908616 0.417634i \(-0.862860\pi\)
0.999273 0.0381310i \(-0.0121404\pi\)
\(542\) −1.25406 + 3.02758i −0.0538666 + 0.130046i
\(543\) 25.7480 + 25.7480i 1.10495 + 1.10495i
\(544\) −3.81166 + 1.57202i −0.163424 + 0.0673997i
\(545\) 0 0
\(546\) −30.3287 + 12.5626i −1.29795 + 0.537628i
\(547\) −13.3892 20.0384i −0.572482 0.856780i 0.426376 0.904546i \(-0.359790\pi\)
−0.998859 + 0.0477657i \(0.984790\pi\)
\(548\) 3.29965i 0.140954i
\(549\) −20.3439 + 13.5934i −0.868258 + 0.580151i
\(550\) 0 0
\(551\) 24.6897 36.9507i 1.05182 1.57415i
\(552\) 4.20377 1.74126i 0.178924 0.0741129i
\(553\) −30.7701 + 12.7454i −1.30848 + 0.541989i
\(554\) 9.52519 14.2554i 0.404686 0.605656i
\(555\) 0 0
\(556\) 11.0570 7.38804i 0.468921 0.313323i
\(557\) 33.9956i 1.44044i 0.693746 + 0.720220i \(0.255959\pi\)
−0.693746 + 0.720220i \(0.744041\pi\)
\(558\) −15.8143 23.6678i −0.669475 1.00194i
\(559\) 8.85471 3.66774i 0.374514 0.155129i
\(560\) 0 0
\(561\) 0.0559971 36.6237i 0.00236420 1.54626i
\(562\) −20.2089 20.2089i −0.852463 0.852463i
\(563\) 2.94572 7.11160i 0.124147 0.299718i −0.849571 0.527475i \(-0.823139\pi\)
0.973718 + 0.227756i \(0.0731390\pi\)
\(564\) −2.70545 + 13.6012i −0.113920 + 0.572715i
\(565\) 0 0
\(566\) −1.67518 2.50708i −0.0704129 0.105380i
\(567\) −14.4178 9.63365i −0.605490 0.404575i
\(568\) −1.12089 5.63509i −0.0470315 0.236443i
\(569\) −18.4941 7.66052i −0.775314 0.321146i −0.0402912 0.999188i \(-0.512829\pi\)
−0.735023 + 0.678042i \(0.762829\pi\)
\(570\) 0 0
\(571\) 8.82341 + 5.89561i 0.369248 + 0.246724i 0.726325 0.687351i \(-0.241227\pi\)
−0.357077 + 0.934075i \(0.616227\pi\)
\(572\) −8.44477 + 12.6385i −0.353093 + 0.528442i
\(573\) −2.56958 + 12.9181i −0.107346 + 0.539663i
\(574\) −5.53943 + 5.53943i −0.231211 + 0.231211i
\(575\) 0 0
\(576\) 2.25467 + 5.44325i 0.0939445 + 0.226802i
\(577\) 26.0481 26.0481i 1.08440 1.08440i 0.0883015 0.996094i \(-0.471856\pi\)
0.996094 0.0883015i \(-0.0281439\pi\)
\(578\) 6.55362 15.6860i 0.272594 0.652451i
\(579\) 70.5183i 2.93064i
\(580\) 0 0
\(581\) −20.6834 4.11419i −0.858093 0.170685i
\(582\) −8.00491 −0.331814
\(583\) −8.54154 1.69902i −0.353755 0.0703662i
\(584\) 1.91531 + 9.62889i 0.0792559 + 0.398446i
\(585\) 0 0
\(586\) 3.02656 7.30675i 0.125026 0.301839i
\(587\) −6.90430 16.6684i −0.284971 0.687980i 0.714967 0.699159i \(-0.246442\pi\)
−0.999938 + 0.0111781i \(0.996442\pi\)
\(588\) −6.85929 + 1.36440i −0.282872 + 0.0562668i
\(589\) −30.6223 + 6.09115i −1.26177 + 0.250982i
\(590\) 0 0
\(591\) 3.24949 + 3.24949i 0.133666 + 0.133666i
\(592\) 6.05201 4.04382i 0.248736 0.166200i
\(593\) −19.0530 7.89203i −0.782414 0.324087i −0.0445250 0.999008i \(-0.514177\pi\)
−0.737889 + 0.674922i \(0.764177\pi\)
\(594\) −25.6860 −1.05391
\(595\) 0 0
\(596\) −8.17761 −0.334968
\(597\) −13.5163 5.59864i −0.553185 0.229137i
\(598\) 6.47411 4.32586i 0.264746 0.176898i
\(599\) 8.03343 + 8.03343i 0.328237 + 0.328237i 0.851916 0.523679i \(-0.175441\pi\)
−0.523679 + 0.851916i \(0.675441\pi\)
\(600\) 0 0
\(601\) 16.8364 3.34896i 0.686770 0.136607i 0.160642 0.987013i \(-0.448644\pi\)
0.526127 + 0.850406i \(0.323644\pi\)
\(602\) −3.97440 + 0.790558i −0.161985 + 0.0322207i
\(603\) −7.19311 17.3657i −0.292926 0.707186i
\(604\) −3.31607 + 8.00571i −0.134929 + 0.325748i
\(605\) 0 0
\(606\) −7.45075 37.4574i −0.302666 1.52160i
\(607\) 15.0490 + 2.99343i 0.610821 + 0.121500i 0.490801 0.871272i \(-0.336704\pi\)
0.120020 + 0.992772i \(0.461704\pi\)
\(608\) 6.46241 0.262085
\(609\) −43.3902 8.63085i −1.75826 0.349740i
\(610\) 0 0
\(611\) 23.7309i 0.960050i
\(612\) −22.4288 9.33054i −0.906632 0.377165i
\(613\) 5.02517 5.02517i 0.202965 0.202965i −0.598304 0.801269i \(-0.704159\pi\)
0.801269 + 0.598304i \(0.204159\pi\)
\(614\) −5.85173 14.1273i −0.236156 0.570132i
\(615\) 0 0
\(616\) 4.54436 4.54436i 0.183098 0.183098i
\(617\) 1.51726 7.62776i 0.0610824 0.307082i −0.938151 0.346226i \(-0.887463\pi\)
0.999234 + 0.0391439i \(0.0124631\pi\)
\(618\) −20.3576 + 30.4672i −0.818901 + 1.22557i
\(619\) 23.2443 + 15.5314i 0.934268 + 0.624258i 0.926736 0.375714i \(-0.122602\pi\)
0.00753243 + 0.999972i \(0.497602\pi\)
\(620\) 0 0
\(621\) 12.1562 + 5.03525i 0.487810 + 0.202058i
\(622\) −0.126088 0.633889i −0.00505568 0.0254166i
\(623\) −13.7267 9.17192i −0.549950 0.367465i
\(624\) 8.45347 + 12.6515i 0.338410 + 0.506466i
\(625\) 0 0
\(626\) −0.645545 + 3.24537i −0.0258011 + 0.129711i
\(627\) −21.9671 + 53.0332i −0.877281 + 2.11794i
\(628\) −4.33031 4.33031i −0.172798 0.172798i
\(629\) −5.89982 + 29.4252i −0.235241 + 1.17326i
\(630\) 0 0
\(631\) 16.9058 7.00260i 0.673008 0.278769i −0.0198927 0.999802i \(-0.506332\pi\)
0.692901 + 0.721033i \(0.256332\pi\)
\(632\) 8.57650 + 12.8356i 0.341155 + 0.510574i
\(633\) 79.4383i 3.15739i
\(634\) −11.7898 + 7.87772i −0.468234 + 0.312864i
\(635\) 0 0
\(636\) −4.84339 + 7.24864i −0.192053 + 0.287427i
\(637\) −11.0568 + 4.57989i −0.438088 + 0.181462i
\(638\) −18.9253 + 7.83912i −0.749260 + 0.310354i
\(639\) 18.8065 28.1460i 0.743975 1.11344i
\(640\) 0 0
\(641\) −29.4328 + 19.6664i −1.16253 + 0.776776i −0.978521 0.206149i \(-0.933907\pi\)
−0.184007 + 0.982925i \(0.558907\pi\)
\(642\) 7.43066i 0.293265i
\(643\) −5.81925 8.70912i −0.229489 0.343454i 0.698798 0.715319i \(-0.253719\pi\)
−0.928287 + 0.371865i \(0.878719\pi\)
\(644\) −3.04150 + 1.25983i −0.119852 + 0.0496443i
\(645\) 0 0
\(646\) −18.8698 + 18.8122i −0.742421 + 0.740154i
\(647\) −1.76443 1.76443i −0.0693668 0.0693668i 0.671572 0.740939i \(-0.265619\pi\)
−0.740939 + 0.671572i \(0.765619\pi\)
\(648\) −3.07574 + 7.42549i −0.120826 + 0.291701i
\(649\) 2.30570 11.5915i 0.0905065 0.455007i
\(650\) 0 0
\(651\) 17.2681 + 25.8435i 0.676789 + 1.01289i
\(652\) 10.9757 + 7.33373i 0.429842 + 0.287211i
\(653\) −2.34838 11.8061i −0.0918991 0.462008i −0.999143 0.0414020i \(-0.986818\pi\)
0.907243 0.420606i \(-0.138182\pi\)
\(654\) −50.3278 20.8465i −1.96797 0.815161i
\(655\) 0 0
\(656\) 3.01915 + 2.01733i 0.117878 + 0.0787634i
\(657\) −32.1354 + 48.0941i −1.25372 + 1.87633i
\(658\) 1.95744 9.84074i 0.0763091 0.383632i
\(659\) −21.1376 + 21.1376i −0.823403 + 0.823403i −0.986594 0.163192i \(-0.947821\pi\)
0.163192 + 0.986594i \(0.447821\pi\)
\(660\) 0 0
\(661\) −7.99380 19.2988i −0.310923 0.750634i −0.999671 0.0256340i \(-0.991840\pi\)
0.688748 0.725000i \(-0.258160\pi\)
\(662\) −20.0718 + 20.0718i −0.780114 + 0.780114i
\(663\) −61.5123 12.3334i −2.38894 0.478988i
\(664\) 9.77476i 0.379334i
\(665\) 0 0
\(666\) 42.0601 + 8.36627i 1.62980 + 0.324186i
\(667\) 10.4933 0.406303
\(668\) −17.3259 3.44634i −0.670360 0.133343i
\(669\) −5.74706 28.8924i −0.222194 1.11704i
\(670\) 0 0
\(671\) 4.73403 11.4290i 0.182755 0.441210i
\(672\) −2.46193 5.94362i −0.0949709 0.229280i
\(673\) 35.6232 7.08590i 1.37317 0.273141i 0.547272 0.836955i \(-0.315666\pi\)
0.825902 + 0.563813i \(0.190666\pi\)
\(674\) −2.59808 + 0.516790i −0.100074 + 0.0199060i
\(675\) 0 0
\(676\) 9.21920 + 9.21920i 0.354585 + 0.354585i
\(677\) −5.06304 + 3.38302i −0.194588 + 0.130020i −0.649048 0.760748i \(-0.724832\pi\)
0.454459 + 0.890767i \(0.349832\pi\)
\(678\) 34.6221 + 14.3409i 1.32965 + 0.550761i
\(679\) 5.79170 0.222265
\(680\) 0 0
\(681\) 24.6824 0.945831
\(682\) 13.2963 + 5.50750i 0.509141 + 0.210893i
\(683\) 20.5178 13.7095i 0.785091 0.524581i −0.0972115 0.995264i \(-0.530992\pi\)
0.882303 + 0.470683i \(0.155992\pi\)
\(684\) 26.9229 + 26.9229i 1.02942 + 1.02942i
\(685\) 0 0
\(686\) 19.7748 3.93346i 0.755007 0.150180i
\(687\) 67.0855 13.3441i 2.55947 0.509111i
\(688\) 0.718779 + 1.73529i 0.0274032 + 0.0661572i
\(689\) −5.70900 + 13.7827i −0.217495 + 0.525080i
\(690\) 0 0
\(691\) −5.00947 25.1843i −0.190569 0.958057i −0.951130 0.308790i \(-0.900076\pi\)
0.760561 0.649267i \(-0.224924\pi\)
\(692\) −9.66705 1.92290i −0.367486 0.0730975i
\(693\) 37.8644 1.43835
\(694\) −21.2587 4.22862i −0.806970 0.160516i
\(695\) 0 0
\(696\) 20.5057i 0.777268i
\(697\) −14.6882 + 2.89832i −0.556354 + 0.109782i
\(698\) −4.38127 + 4.38127i −0.165834 + 0.165834i
\(699\) −31.6350 76.3737i −1.19655 2.88872i
\(700\) 0 0
\(701\) −11.3764 + 11.3764i −0.429679 + 0.429679i −0.888519 0.458840i \(-0.848265\pi\)
0.458840 + 0.888519i \(0.348265\pi\)
\(702\) −8.58400 + 43.1547i −0.323982 + 1.62877i
\(703\) 26.1328 39.1106i 0.985619 1.47508i
\(704\) −2.47681 1.65495i −0.0933481 0.0623732i
\(705\) 0 0
\(706\) 17.3552 + 7.18875i 0.653171 + 0.270552i
\(707\) 5.39075 + 27.1011i 0.202740 + 1.01924i
\(708\) −9.83695 6.57284i −0.369695 0.247022i
\(709\) −3.94521 5.90443i −0.148165 0.221745i 0.749962 0.661481i \(-0.230072\pi\)
−0.898127 + 0.439736i \(0.855072\pi\)
\(710\) 0 0
\(711\) −17.7439 + 89.2047i −0.665449 + 3.34544i
\(712\) −2.92832 + 7.06959i −0.109743 + 0.264944i
\(713\) −5.21297 5.21297i −0.195227 0.195227i
\(714\) 24.4906 + 10.1882i 0.916538 + 0.381285i
\(715\) 0 0
\(716\) 2.01883 0.836227i 0.0754473 0.0312513i
\(717\) 36.1714 + 54.1343i 1.35084 + 2.02168i
\(718\) 2.08691i 0.0778829i
\(719\) 29.9430 20.0073i 1.11669 0.746146i 0.146670 0.989186i \(-0.453145\pi\)
0.970016 + 0.243040i \(0.0781446\pi\)
\(720\) 0 0
\(721\) 14.7291 22.0436i 0.548539 0.820946i
\(722\) 21.0300 8.71090i 0.782655 0.324186i
\(723\) −30.7226 + 12.7257i −1.14259 + 0.473275i
\(724\) −6.78429 + 10.1534i −0.252136 + 0.377348i
\(725\) 0 0
\(726\) −5.27256 + 3.52301i −0.195683 + 0.130751i
\(727\) 32.6875i 1.21231i −0.795345 0.606156i \(-0.792711\pi\)
0.795345 0.606156i \(-0.207289\pi\)
\(728\) −6.11624 9.15360i −0.226683 0.339255i
\(729\) 27.5167 11.3978i 1.01914 0.422141i
\(730\) 0 0
\(731\) −7.15023 2.97454i −0.264461 0.110017i
\(732\) −8.75636 8.75636i −0.323645 0.323645i
\(733\) −8.14076 + 19.6535i −0.300686 + 0.725920i 0.699253 + 0.714874i \(0.253516\pi\)
−0.999939 + 0.0110459i \(0.996484\pi\)
\(734\) 0.264915 1.33182i 0.00977821 0.0491584i
\(735\) 0 0
\(736\) 0.847753 + 1.26875i 0.0312486 + 0.0467668i
\(737\) 7.90180 + 5.27981i 0.291066 + 0.194484i
\(738\) 4.17365 + 20.9824i 0.153634 + 0.772371i
\(739\) −29.6823 12.2948i −1.09188 0.452271i −0.237218 0.971456i \(-0.576236\pi\)
−0.854662 + 0.519185i \(0.826236\pi\)
\(740\) 0 0
\(741\) 81.7592 + 54.6298i 3.00350 + 2.00687i
\(742\) 3.50428 5.24452i 0.128646 0.192532i
\(743\) 2.43650 12.2491i 0.0893863 0.449375i −0.910008 0.414590i \(-0.863925\pi\)
0.999395 0.0347858i \(-0.0110749\pi\)
\(744\) 10.1870 10.1870i 0.373475 0.373475i
\(745\) 0 0
\(746\) −3.31743 8.00899i −0.121460 0.293230i
\(747\) −40.7225 + 40.7225i −1.48996 + 1.48996i
\(748\) 12.0497 2.37768i 0.440580 0.0869367i
\(749\) 5.37621i 0.196443i
\(750\) 0 0
\(751\) 1.41399 + 0.281260i 0.0515972 + 0.0102633i 0.220821 0.975314i \(-0.429126\pi\)
−0.169224 + 0.985578i \(0.554126\pi\)
\(752\) −4.65062 −0.169591
\(753\) −23.3198 4.63859i −0.849820 0.169040i
\(754\) 6.84575 + 34.4159i 0.249307 + 1.25335i
\(755\) 0 0
\(756\) 7.11923 17.1873i 0.258924 0.625097i
\(757\) −10.3778 25.0542i −0.377187 0.910610i −0.992491 0.122320i \(-0.960967\pi\)
0.615304 0.788290i \(-0.289033\pi\)
\(758\) −11.6791 + 2.32312i −0.424205 + 0.0843796i
\(759\) −13.2936 + 2.64426i −0.482528 + 0.0959807i
\(760\) 0 0
\(761\) −23.9731 23.9731i −0.869023 0.869023i 0.123342 0.992364i \(-0.460639\pi\)
−0.992364 + 0.123342i \(0.960639\pi\)
\(762\) 5.52889 3.69429i 0.200291 0.133830i
\(763\) 36.4131 + 15.0828i 1.31824 + 0.546034i
\(764\) −4.41706 −0.159804
\(765\) 0 0
\(766\) −15.0602 −0.544146
\(767\) −18.7042 7.74754i −0.675370 0.279747i
\(768\) −2.47936 + 1.65666i −0.0894662 + 0.0597794i
\(769\) 15.9323 + 15.9323i 0.574535 + 0.574535i 0.933392 0.358858i \(-0.116834\pi\)
−0.358858 + 0.933392i \(0.616834\pi\)
\(770\) 0 0
\(771\) 34.8634 6.93476i 1.25558 0.249749i
\(772\) −23.1944 + 4.61365i −0.834784 + 0.166049i
\(773\) 13.5036 + 32.6005i 0.485690 + 1.17256i 0.956868 + 0.290522i \(0.0938288\pi\)
−0.471178 + 0.882038i \(0.656171\pi\)
\(774\) −4.23485 + 10.2238i −0.152219 + 0.367488i
\(775\) 0 0
\(776\) −0.523720 2.63292i −0.0188005 0.0945163i
\(777\) −45.9264 9.13534i −1.64760 0.327728i
\(778\) −26.0987 −0.935683
\(779\) 23.0147 + 4.57791i 0.824588 + 0.164021i
\(780\) 0 0
\(781\) 17.1148i 0.612417i
\(782\) −6.16874 1.23685i −0.220594 0.0442295i
\(783\) −41.9293 + 41.9293i −1.49843 + 1.49843i
\(784\) −0.897536 2.16684i −0.0320549 0.0773873i
\(785\) 0 0
\(786\) −26.6095 + 26.6095i −0.949131 + 0.949131i
\(787\) 7.92509 39.8421i 0.282499 1.42022i −0.535275 0.844678i \(-0.679792\pi\)
0.817774 0.575540i \(-0.195208\pi\)
\(788\) −0.856201 + 1.28139i −0.0305009 + 0.0456478i
\(789\) 34.9331 + 23.3415i 1.24365 + 0.830981i
\(790\) 0 0
\(791\) −25.0497 10.3759i −0.890665 0.368926i
\(792\) −3.42392 17.2132i −0.121664 0.611645i
\(793\) −17.6196 11.7730i −0.625689 0.418072i
\(794\) 14.0544 + 21.0338i 0.498771 + 0.746463i
\(795\) 0 0
\(796\) 0.957161 4.81198i 0.0339257 0.170556i
\(797\) 12.3988 29.9332i 0.439186 1.06029i −0.537044 0.843554i \(-0.680459\pi\)
0.976230 0.216736i \(-0.0695409\pi\)
\(798\) −29.3978 29.3978i −1.04067 1.04067i
\(799\) 13.5795 13.5380i 0.480408 0.478941i
\(800\) 0 0
\(801\) −41.6521 + 17.2529i −1.47170 + 0.609600i
\(802\) 5.70419 + 8.53692i 0.201422 + 0.301449i
\(803\) 29.2447i 1.03202i
\(804\) 7.90995 5.28526i 0.278962 0.186397i
\(805\) 0 0
\(806\) 13.6966 20.4984i 0.482441 0.722024i
\(807\) −11.9681 + 4.95737i −0.421299 + 0.174508i
\(808\) 11.8328 4.90129i 0.416275 0.172427i
\(809\) 2.83469 4.24242i 0.0996626 0.149156i −0.778287 0.627909i \(-0.783911\pi\)
0.877950 + 0.478753i \(0.158911\pi\)
\(810\) 0 0
\(811\) −17.3551 + 11.5963i −0.609421 + 0.407202i −0.821629 0.570022i \(-0.806934\pi\)
0.212208 + 0.977224i \(0.431934\pi\)
\(812\) 14.8363i 0.520651i
\(813\) −5.42890 8.12493i −0.190400 0.284954i
\(814\) −20.0315 + 8.29733i −0.702105 + 0.290821i
\(815\) 0 0
\(816\) 2.41701 12.0548i 0.0846123 0.422001i
\(817\) 8.58292 + 8.58292i 0.300278 + 0.300278i
\(818\) −7.22198 + 17.4354i −0.252511 + 0.609615i
\(819\) 12.6539 63.6154i 0.442163 2.22290i
\(820\) 0 0
\(821\) −12.5463 18.7769i −0.437870 0.655318i 0.545252 0.838272i \(-0.316434\pi\)
−0.983121 + 0.182954i \(0.941434\pi\)
\(822\) −8.18101 5.46638i −0.285346 0.190662i
\(823\) −5.50950 27.6981i −0.192049 0.965496i −0.949777 0.312926i \(-0.898691\pi\)
0.757728 0.652570i \(-0.226309\pi\)
\(824\) −11.3530 4.70255i −0.395499 0.163821i
\(825\) 0 0
\(826\) 7.11721 + 4.75557i 0.247639 + 0.165467i
\(827\) −13.1935 + 19.7455i −0.458783 + 0.686617i −0.986677 0.162693i \(-0.947982\pi\)
0.527894 + 0.849310i \(0.322982\pi\)
\(828\) −1.75392 + 8.81754i −0.0609528 + 0.306431i
\(829\) −29.1861 + 29.1861i −1.01367 + 1.01367i −0.0137698 + 0.999905i \(0.504383\pi\)
−0.999905 + 0.0137698i \(0.995617\pi\)
\(830\) 0 0
\(831\) 19.5644 + 47.2327i 0.678683 + 1.63848i
\(832\) −3.60818 + 3.60818i −0.125091 + 0.125091i
\(833\) 8.92846 + 3.71429i 0.309353 + 0.128693i
\(834\) 39.6537i 1.37309i
\(835\) 0 0
\(836\) −18.8805 3.75557i −0.652996 0.129889i
\(837\) 41.6601 1.43998
\(838\) −2.17804 0.433238i −0.0752390 0.0149660i
\(839\) −2.28546 11.4898i −0.0789027 0.396671i −0.999974 0.00727558i \(-0.997684\pi\)
0.921071 0.389395i \(-0.127316\pi\)
\(840\) 0 0
\(841\) −6.99907 + 16.8972i −0.241347 + 0.582664i
\(842\) 10.5724 + 25.5242i 0.364351 + 0.879620i
\(843\) 83.5845 16.6260i 2.87880 0.572630i
\(844\) −26.1283 + 5.19724i −0.899373 + 0.178896i
\(845\) 0 0
\(846\) −19.3749 19.3749i −0.666122 0.666122i
\(847\) 3.81479 2.54896i 0.131078 0.0875834i
\(848\) −2.70105 1.11881i −0.0927544 0.0384201i
\(849\) 8.99114 0.308575
\(850\) 0 0
\(851\) 11.1067 0.380732
\(852\) 15.8283 + 6.55631i 0.542270 + 0.224616i
\(853\) 7.11121 4.75156i 0.243483 0.162690i −0.427841 0.903854i \(-0.640726\pi\)
0.671324 + 0.741164i \(0.265726\pi\)
\(854\) 6.33539 + 6.33539i 0.216792 + 0.216792i
\(855\) 0 0
\(856\) −2.44404 + 0.486150i −0.0835355 + 0.0166162i
\(857\) 38.0331 7.56525i 1.29919 0.258424i 0.503427 0.864038i \(-0.332072\pi\)
0.795759 + 0.605614i \(0.207072\pi\)
\(858\) −17.3453 41.8752i −0.592158 1.42960i
\(859\) 3.49731 8.44324i 0.119327 0.288080i −0.852919 0.522044i \(-0.825170\pi\)
0.972245 + 0.233964i \(0.0751698\pi\)
\(860\) 0 0
\(861\) −4.55731 22.9112i −0.155313 0.780810i
\(862\) −26.3843 5.24817i −0.898654 0.178753i
\(863\) 40.0088 1.36191 0.680957 0.732323i \(-0.261564\pi\)
0.680957 + 0.732323i \(0.261564\pi\)
\(864\) −8.45716 1.68223i −0.287719 0.0572308i
\(865\) 0 0
\(866\) 6.95003i 0.236172i
\(867\) 28.0341 + 42.2350i 0.952088 + 1.43438i
\(868\) −7.37050 + 7.37050i −0.250171 + 0.250171i
\(869\) −17.5977 42.4846i −0.596962 1.44119i
\(870\) 0 0
\(871\) 11.5112 11.5112i 0.390044 0.390044i
\(872\) 3.56398 17.9173i 0.120692 0.606758i
\(873\) 8.78710 13.1508i 0.297398 0.445088i
\(874\) 8.19919 + 5.47853i 0.277342 + 0.185314i
\(875\) 0 0
\(876\) −27.0465 11.2030i −0.913816 0.378515i
\(877\) −0.434606 2.18491i −0.0146756 0.0737792i 0.972753 0.231842i \(-0.0744752\pi\)
−0.987429 + 0.158063i \(0.949475\pi\)
\(878\) −10.1492 6.78147i −0.342519 0.228864i
\(879\) 13.1021 + 19.6087i 0.441923 + 0.661385i
\(880\) 0 0
\(881\) −6.84061 + 34.3901i −0.230466 + 1.15863i 0.676179 + 0.736737i \(0.263635\pi\)
−0.906645 + 0.421894i \(0.861365\pi\)
\(882\) 5.28804 12.7665i 0.178058 0.429869i
\(883\) 8.59552 + 8.59552i 0.289262 + 0.289262i 0.836788 0.547526i \(-0.184430\pi\)
−0.547526 + 0.836788i \(0.684430\pi\)
\(884\) 0.0321684 21.0391i 0.00108194 0.707621i
\(885\) 0 0
\(886\) 23.9375 9.91525i 0.804197 0.333109i
\(887\) 3.09981 + 4.63920i 0.104082 + 0.155769i 0.879855 0.475243i \(-0.157640\pi\)
−0.775773 + 0.631012i \(0.782640\pi\)
\(888\) 21.7043i 0.728350i
\(889\) −4.00025 + 2.67288i −0.134164 + 0.0896456i
\(890\) 0 0
\(891\) 13.3013 19.9068i 0.445610 0.666903i
\(892\) 9.12708 3.78056i 0.305597 0.126583i
\(893\) −27.7665 + 11.5013i −0.929170 + 0.384875i
\(894\) 13.5475 20.2752i 0.453095 0.678105i
\(895\) 0 0
\(896\) 1.79386 1.19862i 0.0599287 0.0400431i
\(897\) 23.2181i 0.775230i
\(898\) 20.8568 + 31.2145i 0.696002 + 1.04164i
\(899\) 30.6950 12.7143i 1.02373 0.424045i
\(900\) 0 0
\(901\) 11.1437 4.59594i 0.371252 0.153113i
\(902\) −7.64836 7.64836i −0.254662 0.254662i
\(903\) 4.62414 11.1637i 0.153882 0.371503i
\(904\) −2.45178 + 12.3259i −0.0815448 + 0.409954i
\(905\) 0 0
\(906\) −14.3554 21.4844i −0.476928 0.713773i
\(907\) −0.544935 0.364114i −0.0180943 0.0120902i 0.546490 0.837465i \(-0.315964\pi\)
−0.564584 + 0.825375i \(0.690964\pi\)
\(908\) 1.61484 + 8.11835i 0.0535904 + 0.269417i
\(909\) 69.7155 + 28.8771i 2.31232 + 0.957793i
\(910\) 0 0
\(911\) −0.784565 0.524230i −0.0259938 0.0173685i 0.542505 0.840052i \(-0.317476\pi\)
−0.568499 + 0.822684i \(0.692476\pi\)
\(912\) −10.7060 + 16.0226i −0.354510 + 0.530562i
\(913\) 5.68051 28.5579i 0.187998 0.945127i
\(914\) −12.7246 + 12.7246i −0.420891 + 0.420891i
\(915\) 0 0
\(916\) 8.77812 + 21.1923i 0.290037 + 0.700212i
\(917\) 19.2525 19.2525i 0.635773 0.635773i
\(918\) 29.5913 19.7069i 0.976660 0.650425i
\(919\) 7.40165i 0.244158i −0.992520 0.122079i \(-0.961044\pi\)
0.992520 0.122079i \(-0.0389561\pi\)
\(920\) 0 0
\(921\) 44.7210 + 8.89556i 1.47361 + 0.293119i
\(922\) −23.9859 −0.789933
\(923\) 28.7544 + 5.71960i 0.946462 + 0.188263i
\(924\) 3.73867 + 18.7955i 0.122993 + 0.618328i
\(925\) 0 0
\(926\) −13.5396 + 32.6876i −0.444940 + 1.07418i
\(927\) −27.7061 66.8885i −0.909989 2.19691i
\(928\) −6.74460 + 1.34158i −0.221402 + 0.0440397i
\(929\) 45.9163 9.13333i 1.50647 0.299655i 0.628285 0.777983i \(-0.283757\pi\)
0.878181 + 0.478328i \(0.158757\pi\)
\(930\) 0 0
\(931\) −10.7174 10.7174i −0.351250 0.351250i
\(932\) 23.0506 15.4019i 0.755047 0.504506i
\(933\) 1.78052 + 0.737517i 0.0582917 + 0.0241452i
\(934\) 22.4584 0.734861
\(935\) 0 0
\(936\) −30.0639 −0.982671
\(937\) 20.4567 + 8.47343i 0.668291 + 0.276815i 0.690923 0.722929i \(-0.257205\pi\)
−0.0226319 + 0.999744i \(0.507205\pi\)
\(938\) −5.72299 + 3.82398i −0.186862 + 0.124857i
\(939\) −6.97700 6.97700i −0.227686 0.227686i
\(940\) 0 0
\(941\) 16.4307 3.26827i 0.535626 0.106543i 0.0801364 0.996784i \(-0.474464\pi\)
0.455489 + 0.890241i \(0.349464\pi\)
\(942\) 17.9102 3.56257i 0.583547 0.116075i
\(943\) 2.12035 + 5.11898i 0.0690481 + 0.166697i
\(944\) 1.51831 3.66553i 0.0494168 0.119303i
\(945\) 0 0
\(946\) −1.09153 5.48751i −0.0354888 0.178414i
\(947\) −41.4186 8.23868i −1.34592 0.267721i −0.531041 0.847346i \(-0.678199\pi\)
−0.814883 + 0.579625i \(0.803199\pi\)
\(948\) −46.0325 −1.49507
\(949\) −49.1337 9.77330i −1.59495 0.317255i
\(950\) 0 0
\(951\) 42.2819i 1.37109i
\(952\) −1.74875 + 8.72184i −0.0566773 + 0.282676i
\(953\) −24.8733 + 24.8733i −0.805725 + 0.805725i −0.983984 0.178259i \(-0.942954\pi\)
0.178259 + 0.983984i \(0.442954\pi\)
\(954\) −6.59173 15.9138i −0.213415 0.515230i
\(955\) 0 0
\(956\) −15.4390 + 15.4390i −0.499332 + 0.499332i
\(957\) 11.9167 59.9094i 0.385213 1.93659i
\(958\) 10.7052 16.0214i 0.345868 0.517628i
\(959\) 5.91911 + 3.95502i 0.191138 + 0.127714i
\(960\) 0 0
\(961\) 7.07502 + 2.93057i 0.228226 + 0.0945345i
\(962\) 7.24590 + 36.4276i 0.233617 + 1.17447i
\(963\) −12.2074 8.15673i −0.393378 0.262847i
\(964\) −6.19568 9.27249i −0.199549 0.298647i
\(965\) 0 0
\(966\) 1.91515 9.62809i 0.0616188 0.309779i
\(967\) −17.9448 + 43.3226i −0.577066 + 1.39316i 0.318369 + 0.947967i \(0.396865\pi\)
−0.895435 + 0.445193i \(0.853135\pi\)
\(968\) −1.50372 1.50372i −0.0483314 0.0483314i
\(969\) −15.3814 77.9502i −0.494122 2.50412i
\(970\) 0 0
\(971\) 4.40078 1.82286i 0.141228 0.0584985i −0.310950 0.950426i \(-0.600647\pi\)
0.452178 + 0.891928i \(0.350647\pi\)
\(972\) 1.05678 + 1.58158i 0.0338963 + 0.0507294i
\(973\) 28.6901i 0.919764i
\(974\) 25.8876 17.2975i 0.829492 0.554249i
\(975\) 0 0
\(976\) 2.30720 3.45296i 0.0738516 0.110527i
\(977\) 2.57938 1.06842i 0.0825218 0.0341816i −0.341041 0.940049i \(-0.610779\pi\)
0.423562 + 0.905867i \(0.360779\pi\)
\(978\) −36.3659 + 15.0633i −1.16285 + 0.481670i
\(979\) 12.6638 18.9527i 0.404736 0.605730i
\(980\) 0 0
\(981\) 89.4929 59.7973i 2.85729 1.90918i
\(982\) 31.6963i 1.01147i
\(983\) −7.38005 11.0450i −0.235387 0.352281i 0.694905 0.719102i \(-0.255446\pi\)
−0.930292 + 0.366820i \(0.880446\pi\)
\(984\) −10.0034 + 4.14353i −0.318896 + 0.132091i
\(985\) 0 0
\(986\) 15.7884 23.5510i 0.502805 0.750015i
\(987\) 21.1559 + 21.1559i 0.673400 + 0.673400i
\(988\) −12.6193 + 30.4658i −0.401475 + 0.969246i
\(989\) −0.559142 + 2.81100i −0.0177797 + 0.0893845i
\(990\) 0 0
\(991\) 7.46029 + 11.1651i 0.236984 + 0.354671i 0.930830 0.365451i \(-0.119085\pi\)
−0.693847 + 0.720123i \(0.744085\pi\)
\(992\) 4.01713 + 2.68416i 0.127544 + 0.0852222i
\(993\) −16.5132 83.0174i −0.524030 2.63448i
\(994\) −11.4521 4.74361i −0.363238 0.150458i
\(995\) 0 0
\(996\) −24.2352 16.1934i −0.767920 0.513108i
\(997\) 3.11894 4.66783i 0.0987780 0.147832i −0.778789 0.627286i \(-0.784166\pi\)
0.877567 + 0.479455i \(0.159166\pi\)
\(998\) −5.07928 + 25.5353i −0.160782 + 0.808305i
\(999\) −44.3802 + 44.3802i −1.40413 + 1.40413i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.d.207.5 40
5.2 odd 4 170.2.o.b.3.1 40
5.3 odd 4 850.2.s.d.343.5 40
5.4 even 2 170.2.r.b.37.1 yes 40
17.6 odd 16 850.2.s.d.57.5 40
85.23 even 16 inner 850.2.v.d.193.5 40
85.57 even 16 170.2.r.b.23.1 yes 40
85.74 odd 16 170.2.o.b.57.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.b.3.1 40 5.2 odd 4
170.2.o.b.57.1 yes 40 85.74 odd 16
170.2.r.b.23.1 yes 40 85.57 even 16
170.2.r.b.37.1 yes 40 5.4 even 2
850.2.s.d.57.5 40 17.6 odd 16
850.2.s.d.343.5 40 5.3 odd 4
850.2.v.d.193.5 40 85.23 even 16 inner
850.2.v.d.207.5 40 1.1 even 1 trivial