Properties

Label 859.2.f.a.100.20
Level $859$
Weight $2$
Character 859.100
Analytic conductor $6.859$
Analytic rank $0$
Dimension $840$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [859,2,Mod(100,859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(859, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([22]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("859.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 859 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 859.f (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.85914953363\)
Analytic rank: \(0\)
Dimension: \(840\)
Relative dimension: \(70\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 100.20
Character \(\chi\) \(=\) 859.100
Dual form 859.2.f.a.524.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37011 + 0.719088i) q^{2} +(-0.554289 + 0.803027i) q^{3} +(0.223979 - 0.324490i) q^{4} +(0.478083 + 0.692622i) q^{5} +(0.181989 - 1.49882i) q^{6} +(0.117665 + 0.969059i) q^{7} +(0.299485 - 2.46648i) q^{8} +(0.726199 + 1.91483i) q^{9} +O(q^{10})\) \(q+(-1.37011 + 0.719088i) q^{2} +(-0.554289 + 0.803027i) q^{3} +(0.223979 - 0.324490i) q^{4} +(0.478083 + 0.692622i) q^{5} +(0.181989 - 1.49882i) q^{6} +(0.117665 + 0.969059i) q^{7} +(0.299485 - 2.46648i) q^{8} +(0.726199 + 1.91483i) q^{9} +(-1.15308 - 0.605184i) q^{10} +(-0.555220 - 4.57265i) q^{11} +(0.136425 + 0.359722i) q^{12} +2.58710 q^{13} +(-0.858053 - 1.24310i) q^{14} -0.821190 q^{15} +(1.64292 + 4.33203i) q^{16} +(7.12190 - 1.75539i) q^{17} +(-2.37190 - 2.10132i) q^{18} -0.113591 q^{19} +0.331829 q^{20} +(-0.843401 - 0.442651i) q^{21} +(4.04885 + 5.86577i) q^{22} +(1.35192 + 0.709543i) q^{23} +(1.81465 + 1.60764i) q^{24} +(1.52186 - 4.01282i) q^{25} +(-3.54461 + 1.86035i) q^{26} +(-4.78237 - 1.17875i) q^{27} +(0.340804 + 0.178868i) q^{28} +(2.43340 - 6.41634i) q^{29} +(1.12512 - 0.590508i) q^{30} +(6.69609 + 5.93221i) q^{31} +(-1.64660 - 1.45876i) q^{32} +(3.97971 + 2.08871i) q^{33} +(-8.49549 + 7.52635i) q^{34} +(-0.614939 + 0.544788i) q^{35} +(0.783996 + 0.193238i) q^{36} +(-2.90106 - 7.64947i) q^{37} +(0.155632 - 0.0816818i) q^{38} +(-1.43400 + 2.07751i) q^{39} +(1.85152 - 0.971753i) q^{40} +(-0.748818 + 1.08485i) q^{41} +1.47386 q^{42} -3.79882 q^{43} +(-1.60814 - 0.844015i) q^{44} +(-0.979071 + 1.41843i) q^{45} -2.36250 q^{46} +(-5.64654 + 5.00240i) q^{47} +(-4.38939 - 1.08189i) q^{48} +(5.87136 - 1.44716i) q^{49} +(0.800456 + 6.59235i) q^{50} +(-2.53797 + 6.69207i) q^{51} +(0.579457 - 0.839488i) q^{52} +(8.70821 + 2.14638i) q^{53} +(7.40000 - 1.82394i) q^{54} +(2.90168 - 2.57066i) q^{55} +2.42541 q^{56} +(0.0629622 - 0.0912165i) q^{57} +(1.27990 + 10.5409i) q^{58} +(3.67423 - 1.92838i) q^{59} +(-0.183930 + 0.266468i) q^{60} -7.94101 q^{61} +(-13.4401 - 3.31270i) q^{62} +(-1.77014 + 0.929039i) q^{63} +(-5.69197 - 1.40294i) q^{64} +(1.23685 + 1.79188i) q^{65} -6.95460 q^{66} +(0.121415 + 0.320145i) q^{67} +(1.02555 - 2.70415i) q^{68} +(-1.31914 + 0.692337i) q^{69} +(0.450782 - 1.18861i) q^{70} +(12.1199 + 2.98728i) q^{71} +(4.94039 - 1.21770i) q^{72} +(-1.35044 + 11.1219i) q^{73} +(9.47542 + 8.39449i) q^{74} +(2.37885 + 3.44636i) q^{75} +(-0.0254420 + 0.0368591i) q^{76} +(4.36584 - 1.07608i) q^{77} +(0.470825 - 3.87759i) q^{78} +(-3.89207 + 5.63863i) q^{79} +(-2.21501 + 3.20900i) q^{80} +(-1.00127 + 0.887044i) q^{81} +(0.245859 - 2.02483i) q^{82} +(1.59758 + 13.1572i) q^{83} +(-0.332540 + 0.174530i) q^{84} +(4.62068 + 4.09356i) q^{85} +(5.20480 - 2.73169i) q^{86} +(3.80368 + 5.51059i) q^{87} -11.4446 q^{88} +(-5.66699 - 1.39679i) q^{89} +(0.321457 - 2.64744i) q^{90} +(0.304411 + 2.50705i) q^{91} +(0.533041 - 0.279762i) q^{92} +(-8.47530 + 2.08897i) q^{93} +(4.13921 - 10.9142i) q^{94} +(-0.0543058 - 0.0786756i) q^{95} +(2.08411 - 0.513687i) q^{96} +(-9.81680 + 2.41962i) q^{97} +(-7.00376 + 6.20479i) q^{98} +(8.35265 - 4.38381i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9} + 7 q^{10} - 25 q^{11} - 58 q^{12} - 10 q^{13} + 9 q^{14} - 148 q^{15} - 40 q^{16} - q^{17} + 5 q^{18} - 38 q^{19} - 92 q^{20} + 17 q^{21} + 15 q^{22} - 18 q^{23} + 27 q^{24} - 66 q^{25} + 7 q^{26} - 17 q^{27} + 29 q^{28} + 7 q^{29} - 5 q^{30} + 27 q^{31} + 20 q^{32} + 49 q^{33} + 5 q^{34} + 43 q^{35} + 32 q^{36} - 86 q^{37} - 13 q^{38} + 2 q^{39} + 59 q^{40} + 9 q^{41} + 72 q^{42} + 40 q^{43} + 44 q^{44} - 49 q^{45} + 52 q^{46} - 22 q^{47} + 159 q^{48} - 11 q^{49} - 73 q^{50} + 65 q^{51} + 73 q^{52} + 25 q^{53} + 11 q^{54} + 81 q^{55} - 302 q^{56} - 192 q^{57} + 27 q^{58} - 23 q^{59} - 62 q^{60} + 26 q^{61} + 79 q^{62} + 93 q^{63} - 78 q^{64} + 10 q^{65} + 74 q^{66} + 65 q^{67} + 69 q^{68} - 57 q^{69} + 19 q^{70} + 21 q^{71} - 234 q^{72} - 95 q^{73} + 25 q^{74} - 120 q^{75} - 18 q^{76} - 95 q^{77} - 3 q^{78} - 13 q^{79} - 244 q^{80} - 95 q^{81} - 19 q^{82} - 16 q^{83} - 48 q^{84} + 99 q^{85} + 45 q^{86} - 123 q^{87} + 110 q^{88} + 49 q^{89} + 217 q^{90} - 82 q^{91} + 3 q^{92} - 57 q^{93} - 77 q^{94} - 12 q^{95} + 56 q^{96} + 5 q^{97} + 5 q^{98} - 121 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/859\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37011 + 0.719088i −0.968813 + 0.508472i −0.873420 0.486968i \(-0.838103\pi\)
−0.0953927 + 0.995440i \(0.530411\pi\)
\(3\) −0.554289 + 0.803027i −0.320019 + 0.463628i −0.949671 0.313250i \(-0.898582\pi\)
0.629652 + 0.776878i \(0.283198\pi\)
\(4\) 0.223979 0.324490i 0.111990 0.162245i
\(5\) 0.478083 + 0.692622i 0.213805 + 0.309750i 0.915182 0.403040i \(-0.132047\pi\)
−0.701377 + 0.712790i \(0.747431\pi\)
\(6\) 0.181989 1.49882i 0.0742968 0.611889i
\(7\) 0.117665 + 0.969059i 0.0444732 + 0.366270i 0.997907 + 0.0646672i \(0.0205986\pi\)
−0.953434 + 0.301603i \(0.902478\pi\)
\(8\) 0.299485 2.46648i 0.105884 0.872034i
\(9\) 0.726199 + 1.91483i 0.242066 + 0.638277i
\(10\) −1.15308 0.605184i −0.364636 0.191376i
\(11\) −0.555220 4.57265i −0.167405 1.37871i −0.798030 0.602618i \(-0.794124\pi\)
0.630625 0.776088i \(-0.282799\pi\)
\(12\) 0.136425 + 0.359722i 0.0393824 + 0.103843i
\(13\) 2.58710 0.717533 0.358766 0.933427i \(-0.383197\pi\)
0.358766 + 0.933427i \(0.383197\pi\)
\(14\) −0.858053 1.24310i −0.229324 0.332234i
\(15\) −0.821190 −0.212030
\(16\) 1.64292 + 4.33203i 0.410731 + 1.08301i
\(17\) 7.12190 1.75539i 1.72731 0.425745i 0.754307 0.656521i \(-0.227973\pi\)
0.973007 + 0.230777i \(0.0741267\pi\)
\(18\) −2.37190 2.10132i −0.559063 0.495287i
\(19\) −0.113591 −0.0260595 −0.0130298 0.999915i \(-0.504148\pi\)
−0.0130298 + 0.999915i \(0.504148\pi\)
\(20\) 0.331829 0.0741993
\(21\) −0.843401 0.442651i −0.184045 0.0965944i
\(22\) 4.04885 + 5.86577i 0.863218 + 1.25059i
\(23\) 1.35192 + 0.709543i 0.281895 + 0.147950i 0.599745 0.800191i \(-0.295269\pi\)
−0.317850 + 0.948141i \(0.602961\pi\)
\(24\) 1.81465 + 1.60764i 0.370414 + 0.328158i
\(25\) 1.52186 4.01282i 0.304372 0.802564i
\(26\) −3.54461 + 1.86035i −0.695155 + 0.364845i
\(27\) −4.78237 1.17875i −0.920368 0.226850i
\(28\) 0.340804 + 0.178868i 0.0644060 + 0.0338029i
\(29\) 2.43340 6.41634i 0.451870 1.19148i −0.494722 0.869051i \(-0.664730\pi\)
0.946592 0.322433i \(-0.104501\pi\)
\(30\) 1.12512 0.590508i 0.205418 0.107812i
\(31\) 6.69609 + 5.93221i 1.20265 + 1.06546i 0.996208 + 0.0869988i \(0.0277276\pi\)
0.206444 + 0.978458i \(0.433811\pi\)
\(32\) −1.64660 1.45876i −0.291080 0.257874i
\(33\) 3.97971 + 2.08871i 0.692779 + 0.363598i
\(34\) −8.49549 + 7.52635i −1.45696 + 1.29076i
\(35\) −0.614939 + 0.544788i −0.103944 + 0.0920860i
\(36\) 0.783996 + 0.193238i 0.130666 + 0.0322063i
\(37\) −2.90106 7.64947i −0.476932 1.25757i −0.930483 0.366335i \(-0.880612\pi\)
0.453551 0.891230i \(-0.350157\pi\)
\(38\) 0.155632 0.0816818i 0.0252468 0.0132505i
\(39\) −1.43400 + 2.07751i −0.229624 + 0.332668i
\(40\) 1.85152 0.971753i 0.292751 0.153648i
\(41\) −0.748818 + 1.08485i −0.116946 + 0.169425i −0.877085 0.480335i \(-0.840515\pi\)
0.760139 + 0.649760i \(0.225131\pi\)
\(42\) 1.47386 0.227421
\(43\) −3.79882 −0.579315 −0.289658 0.957130i \(-0.593541\pi\)
−0.289658 + 0.957130i \(0.593541\pi\)
\(44\) −1.60814 0.844015i −0.242436 0.127240i
\(45\) −0.979071 + 1.41843i −0.145951 + 0.211447i
\(46\) −2.36250 −0.348332
\(47\) −5.64654 + 5.00240i −0.823633 + 0.729675i −0.965554 0.260203i \(-0.916211\pi\)
0.141921 + 0.989878i \(0.454672\pi\)
\(48\) −4.38939 1.08189i −0.633554 0.156157i
\(49\) 5.87136 1.44716i 0.838766 0.206737i
\(50\) 0.800456 + 6.59235i 0.113202 + 0.932299i
\(51\) −2.53797 + 6.69207i −0.355386 + 0.937077i
\(52\) 0.579457 0.839488i 0.0803562 0.116416i
\(53\) 8.70821 + 2.14638i 1.19616 + 0.294828i 0.786606 0.617456i \(-0.211837\pi\)
0.409559 + 0.912284i \(0.365683\pi\)
\(54\) 7.40000 1.82394i 1.00701 0.248206i
\(55\) 2.90168 2.57066i 0.391262 0.346628i
\(56\) 2.42541 0.324109
\(57\) 0.0629622 0.0912165i 0.00833954 0.0120819i
\(58\) 1.27990 + 10.5409i 0.168059 + 1.38409i
\(59\) 3.67423 1.92838i 0.478344 0.251054i −0.208277 0.978070i \(-0.566786\pi\)
0.686621 + 0.727016i \(0.259093\pi\)
\(60\) −0.183930 + 0.266468i −0.0237452 + 0.0344009i
\(61\) −7.94101 −1.01674 −0.508371 0.861138i \(-0.669752\pi\)
−0.508371 + 0.861138i \(0.669752\pi\)
\(62\) −13.4401 3.31270i −1.70690 0.420713i
\(63\) −1.77014 + 0.929039i −0.223016 + 0.117048i
\(64\) −5.69197 1.40294i −0.711496 0.175368i
\(65\) 1.23685 + 1.79188i 0.153412 + 0.222256i
\(66\) −6.95460 −0.856053
\(67\) 0.121415 + 0.320145i 0.0148332 + 0.0391119i 0.942228 0.334971i \(-0.108727\pi\)
−0.927395 + 0.374083i \(0.877957\pi\)
\(68\) 1.02555 2.70415i 0.124366 0.327927i
\(69\) −1.31914 + 0.692337i −0.158805 + 0.0833475i
\(70\) 0.450782 1.18861i 0.0538787 0.142067i
\(71\) 12.1199 + 2.98728i 1.43836 + 0.354525i 0.879961 0.475046i \(-0.157569\pi\)
0.558402 + 0.829571i \(0.311415\pi\)
\(72\) 4.94039 1.21770i 0.582230 0.143507i
\(73\) −1.35044 + 11.1219i −0.158057 + 1.30172i 0.670539 + 0.741874i \(0.266063\pi\)
−0.828597 + 0.559846i \(0.810860\pi\)
\(74\) 9.47542 + 8.39449i 1.10149 + 0.975839i
\(75\) 2.37885 + 3.44636i 0.274686 + 0.397951i
\(76\) −0.0254420 + 0.0368591i −0.00291839 + 0.00422802i
\(77\) 4.36584 1.07608i 0.497533 0.122631i
\(78\) 0.470825 3.87759i 0.0533104 0.439050i
\(79\) −3.89207 + 5.63863i −0.437892 + 0.634396i −0.978346 0.206978i \(-0.933637\pi\)
0.540454 + 0.841374i \(0.318253\pi\)
\(80\) −2.21501 + 3.20900i −0.247646 + 0.358777i
\(81\) −1.00127 + 0.887044i −0.111252 + 0.0985604i
\(82\) 0.245859 2.02483i 0.0271506 0.223605i
\(83\) 1.59758 + 13.1572i 0.175357 + 1.44419i 0.768888 + 0.639383i \(0.220810\pi\)
−0.593531 + 0.804811i \(0.702267\pi\)
\(84\) −0.332540 + 0.174530i −0.0362831 + 0.0190428i
\(85\) 4.62068 + 4.09356i 0.501183 + 0.444009i
\(86\) 5.20480 2.73169i 0.561248 0.294566i
\(87\) 3.80368 + 5.51059i 0.407798 + 0.590797i
\(88\) −11.4446 −1.22000
\(89\) −5.66699 1.39679i −0.600700 0.148059i −0.0727724 0.997349i \(-0.523185\pi\)
−0.527928 + 0.849289i \(0.677031\pi\)
\(90\) 0.321457 2.64744i 0.0338846 0.279065i
\(91\) 0.304411 + 2.50705i 0.0319110 + 0.262811i
\(92\) 0.533041 0.279762i 0.0555734 0.0291672i
\(93\) −8.47530 + 2.08897i −0.878847 + 0.216616i
\(94\) 4.13921 10.9142i 0.426927 1.12571i
\(95\) −0.0543058 0.0786756i −0.00557166 0.00807194i
\(96\) 2.08411 0.513687i 0.212709 0.0524280i
\(97\) −9.81680 + 2.41962i −0.996745 + 0.245676i −0.703757 0.710441i \(-0.748496\pi\)
−0.292988 + 0.956116i \(0.594650\pi\)
\(98\) −7.00376 + 6.20479i −0.707487 + 0.626779i
\(99\) 8.35265 4.38381i 0.839473 0.440589i
\(100\) −0.961254 1.39262i −0.0961254 0.139262i
\(101\) −2.74109 0.675618i −0.272748 0.0672265i 0.100569 0.994930i \(-0.467934\pi\)
−0.373318 + 0.927704i \(0.621780\pi\)
\(102\) −1.33490 10.9939i −0.132175 1.08856i
\(103\) 2.23121 + 1.97668i 0.219848 + 0.194768i 0.765857 0.643011i \(-0.222315\pi\)
−0.546009 + 0.837779i \(0.683854\pi\)
\(104\) 0.774799 6.38104i 0.0759753 0.625713i
\(105\) −0.0966255 0.795782i −0.00942968 0.0776604i
\(106\) −13.4746 + 3.32120i −1.30877 + 0.322583i
\(107\) 0.765558 + 0.401796i 0.0740093 + 0.0388431i 0.501322 0.865261i \(-0.332847\pi\)
−0.427313 + 0.904104i \(0.640540\pi\)
\(108\) −1.45364 + 1.28782i −0.139877 + 0.123920i
\(109\) −2.13404 17.5754i −0.204404 1.68342i −0.628506 0.777805i \(-0.716333\pi\)
0.424102 0.905615i \(-0.360590\pi\)
\(110\) −2.12708 + 5.60865i −0.202809 + 0.534764i
\(111\) 7.75076 + 1.91039i 0.735670 + 0.181326i
\(112\) −4.00468 + 2.10182i −0.378407 + 0.198603i
\(113\) 10.5939 + 5.56012i 0.996592 + 0.523052i 0.882447 0.470412i \(-0.155895\pi\)
0.114145 + 0.993464i \(0.463587\pi\)
\(114\) −0.0206723 + 0.170252i −0.00193614 + 0.0159455i
\(115\) 0.154885 + 1.27559i 0.0144431 + 0.118949i
\(116\) −1.53701 2.22674i −0.142707 0.206747i
\(117\) 1.87875 + 4.95386i 0.173691 + 0.457984i
\(118\) −3.64741 + 5.28419i −0.335771 + 0.486449i
\(119\) 2.53908 + 6.69499i 0.232757 + 0.613729i
\(120\) −0.245935 + 2.02545i −0.0224507 + 0.184898i
\(121\) −9.92048 + 2.44518i −0.901862 + 0.222289i
\(122\) 10.8800 5.71028i 0.985032 0.516985i
\(123\) −0.456102 1.20264i −0.0411253 0.108439i
\(124\) 3.42473 0.844119i 0.307550 0.0758042i
\(125\) 7.59266 1.87142i 0.679108 0.167385i
\(126\) 1.75722 2.54577i 0.156545 0.226795i
\(127\) 3.36921 + 8.88388i 0.298969 + 0.788317i 0.997361 + 0.0726011i \(0.0231300\pi\)
−0.698392 + 0.715715i \(0.746101\pi\)
\(128\) 13.0793 3.22375i 1.15605 0.284942i
\(129\) 2.10565 3.05056i 0.185392 0.268587i
\(130\) −2.98314 1.56567i −0.261639 0.137319i
\(131\) −16.7669 −1.46493 −0.732465 0.680805i \(-0.761630\pi\)
−0.732465 + 0.680805i \(0.761630\pi\)
\(132\) 1.56914 0.823547i 0.136576 0.0716806i
\(133\) −0.0133657 0.110076i −0.00115895 0.00954482i
\(134\) −0.396564 0.351325i −0.0342579 0.0303499i
\(135\) −1.46994 3.87592i −0.126513 0.333586i
\(136\) −2.19674 18.0918i −0.188369 1.55136i
\(137\) 20.3954 10.7043i 1.74250 0.914534i 0.788336 0.615245i \(-0.210943\pi\)
0.954163 0.299288i \(-0.0967493\pi\)
\(138\) 1.30951 1.89715i 0.111473 0.161496i
\(139\) −17.6559 4.35179i −1.49755 0.369114i −0.596426 0.802668i \(-0.703413\pi\)
−0.901127 + 0.433554i \(0.857259\pi\)
\(140\) 0.0390448 + 0.321562i 0.00329988 + 0.0271770i
\(141\) −0.887243 7.30710i −0.0747193 0.615369i
\(142\) −18.7536 + 4.62236i −1.57377 + 0.387900i
\(143\) −1.43641 11.8299i −0.120119 0.989266i
\(144\) −7.10202 + 6.29184i −0.591835 + 0.524320i
\(145\) 5.60746 1.38212i 0.465675 0.114778i
\(146\) −6.14737 16.2093i −0.508760 1.34149i
\(147\) −2.09232 + 5.51701i −0.172572 + 0.455035i
\(148\) −3.13195 0.771957i −0.257445 0.0634545i
\(149\) −3.73276 3.30693i −0.305799 0.270915i 0.496241 0.868185i \(-0.334713\pi\)
−0.802040 + 0.597271i \(0.796252\pi\)
\(150\) −5.73752 3.01128i −0.468466 0.245870i
\(151\) 11.6314 + 10.3045i 0.946547 + 0.838567i 0.987017 0.160614i \(-0.0513473\pi\)
−0.0404708 + 0.999181i \(0.512886\pi\)
\(152\) −0.0340188 + 0.280170i −0.00275929 + 0.0227248i
\(153\) 8.53319 + 12.3625i 0.689868 + 0.999446i
\(154\) −5.20787 + 4.61377i −0.419662 + 0.371788i
\(155\) −0.907502 + 7.47395i −0.0728923 + 0.600322i
\(156\) 0.352944 + 0.930638i 0.0282582 + 0.0745107i
\(157\) 23.9849 5.91176i 1.91421 0.471810i 0.916843 0.399249i \(-0.130729\pi\)
0.997364 0.0725608i \(-0.0231171\pi\)
\(158\) 1.27788 10.5243i 0.101663 0.837266i
\(159\) −6.55047 + 5.80321i −0.519486 + 0.460224i
\(160\) 0.223159 1.83788i 0.0176422 0.145297i
\(161\) −0.528515 + 1.39358i −0.0416528 + 0.109829i
\(162\) 0.733979 1.93534i 0.0576668 0.152055i
\(163\) 12.8452 6.74167i 1.00611 0.528048i 0.120618 0.992699i \(-0.461512\pi\)
0.885494 + 0.464651i \(0.153820\pi\)
\(164\) 0.184303 + 0.485968i 0.0143917 + 0.0379477i
\(165\) 0.455941 + 3.75501i 0.0354950 + 0.292328i
\(166\) −11.6501 16.8780i −0.904221 1.30999i
\(167\) −2.67985 + 0.660524i −0.207373 + 0.0511129i −0.341634 0.939833i \(-0.610980\pi\)
0.134261 + 0.990946i \(0.457134\pi\)
\(168\) −1.34438 + 1.94767i −0.103721 + 0.150266i
\(169\) −6.30691 −0.485147
\(170\) −9.27447 2.28595i −0.711319 0.175324i
\(171\) −0.0824896 0.217507i −0.00630814 0.0166332i
\(172\) −0.850857 + 1.23268i −0.0648773 + 0.0939909i
\(173\) 5.71110 + 5.05959i 0.434207 + 0.384674i 0.851720 0.523997i \(-0.175560\pi\)
−0.417513 + 0.908671i \(0.637098\pi\)
\(174\) −9.17406 4.81492i −0.695484 0.365018i
\(175\) 4.06773 + 1.00261i 0.307492 + 0.0757899i
\(176\) 18.8967 9.91774i 1.42439 0.747578i
\(177\) −0.488042 + 4.01938i −0.0366835 + 0.302115i
\(178\) 8.76881 2.16132i 0.657250 0.161998i
\(179\) 1.26596 1.12154i 0.0946224 0.0838281i −0.614486 0.788928i \(-0.710636\pi\)
0.709108 + 0.705100i \(0.249098\pi\)
\(180\) 0.240974 + 0.635397i 0.0179612 + 0.0473597i
\(181\) −5.67147 + 8.21654i −0.421557 + 0.610731i −0.975013 0.222148i \(-0.928693\pi\)
0.553456 + 0.832878i \(0.313309\pi\)
\(182\) −2.21987 3.21604i −0.164548 0.238389i
\(183\) 4.40161 6.37684i 0.325377 0.471390i
\(184\) 2.15496 3.12199i 0.158866 0.230156i
\(185\) 3.91125 5.66642i 0.287561 0.416604i
\(186\) 10.1099 8.95660i 0.741295 0.656730i
\(187\) −11.9810 31.5913i −0.876138 2.31019i
\(188\) 0.358520 + 2.95268i 0.0261478 + 0.215346i
\(189\) 0.579560 4.77310i 0.0421568 0.347192i
\(190\) 0.130980 + 0.0687433i 0.00950225 + 0.00498717i
\(191\) 5.84050 15.4001i 0.422604 1.11431i −0.539585 0.841931i \(-0.681419\pi\)
0.962189 0.272383i \(-0.0878119\pi\)
\(192\) 4.28160 3.79317i 0.308998 0.273748i
\(193\) −1.26313 + 3.33060i −0.0909221 + 0.239742i −0.972762 0.231808i \(-0.925536\pi\)
0.881840 + 0.471550i \(0.156305\pi\)
\(194\) 11.7102 10.3743i 0.840740 0.744831i
\(195\) −2.12450 −0.152139
\(196\) 0.845474 2.22933i 0.0603910 0.159238i
\(197\) −4.18287 11.0293i −0.298017 0.785807i −0.997467 0.0711255i \(-0.977341\pi\)
0.699450 0.714681i \(-0.253428\pi\)
\(198\) −8.29169 + 12.0126i −0.589264 + 0.853697i
\(199\) −10.1911 5.34873i −0.722431 0.379161i 0.0630800 0.998008i \(-0.479908\pi\)
−0.785511 + 0.618847i \(0.787600\pi\)
\(200\) −9.44178 4.95543i −0.667635 0.350402i
\(201\) −0.324384 0.0799534i −0.0228803 0.00563948i
\(202\) 4.24142 1.04542i 0.298425 0.0735552i
\(203\) 6.50414 + 1.60313i 0.456501 + 0.112517i
\(204\) 1.60306 + 2.32243i 0.112236 + 0.162602i
\(205\) −1.10939 −0.0774831
\(206\) −4.47841 1.10383i −0.312025 0.0769073i
\(207\) −0.376890 + 3.10397i −0.0261957 + 0.215741i
\(208\) 4.25041 + 11.2074i 0.294713 + 0.777094i
\(209\) 0.0630679 + 0.519411i 0.00436250 + 0.0359284i
\(210\) 0.704625 + 1.02083i 0.0486237 + 0.0704437i
\(211\) 2.90215 + 4.20450i 0.199793 + 0.289449i 0.910055 0.414487i \(-0.136039\pi\)
−0.710262 + 0.703937i \(0.751424\pi\)
\(212\) 2.64694 2.34498i 0.181792 0.161054i
\(213\) −9.11677 + 8.07676i −0.624671 + 0.553410i
\(214\) −1.33782 −0.0914517
\(215\) −1.81615 2.63115i −0.123861 0.179443i
\(216\) −4.33962 + 11.4426i −0.295274 + 0.778573i
\(217\) −4.96077 + 7.18692i −0.336759 + 0.487880i
\(218\) 15.5621 + 22.5457i 1.05400 + 1.52698i
\(219\) −8.18265 7.24919i −0.552932 0.489855i
\(220\) −0.184238 1.51734i −0.0124213 0.102299i
\(221\) 18.4251 4.54137i 1.23940 0.305486i
\(222\) −11.9931 + 2.95604i −0.804925 + 0.198396i
\(223\) −2.16736 17.8498i −0.145137 1.19531i −0.865209 0.501412i \(-0.832814\pi\)
0.720072 0.693900i \(-0.244109\pi\)
\(224\) 1.21988 1.76729i 0.0815063 0.118082i
\(225\) 8.78904 0.585936
\(226\) −18.5130 −1.23147
\(227\) −9.76702 8.65282i −0.648260 0.574308i 0.273594 0.961845i \(-0.411787\pi\)
−0.921854 + 0.387537i \(0.873326\pi\)
\(228\) −0.0154966 0.0408612i −0.00102629 0.00270610i
\(229\) −13.5295 −0.894057 −0.447029 0.894520i \(-0.647518\pi\)
−0.447029 + 0.894520i \(0.647518\pi\)
\(230\) −1.12947 1.63632i −0.0744751 0.107896i
\(231\) −1.55581 + 4.10234i −0.102365 + 0.269914i
\(232\) −15.0970 7.92353i −0.991169 0.520205i
\(233\) −13.4657 + 7.06734i −0.882167 + 0.462997i −0.844042 0.536276i \(-0.819831\pi\)
−0.0381240 + 0.999273i \(0.512138\pi\)
\(234\) −6.13635 5.43634i −0.401146 0.355384i
\(235\) −6.16429 1.51936i −0.402114 0.0991122i
\(236\) 0.197210 1.62417i 0.0128372 0.105724i
\(237\) −2.37064 6.25087i −0.153990 0.406037i
\(238\) −8.29310 7.34705i −0.537562 0.476238i
\(239\) −2.83491 2.51151i −0.183375 0.162456i 0.566441 0.824102i \(-0.308320\pi\)
−0.749816 + 0.661646i \(0.769858\pi\)
\(240\) −1.34915 3.55742i −0.0870874 0.229631i
\(241\) 5.20295 4.60941i 0.335151 0.296918i −0.478715 0.877970i \(-0.658897\pi\)
0.813866 + 0.581052i \(0.197359\pi\)
\(242\) 11.8338 10.4839i 0.760708 0.673928i
\(243\) −1.93844 15.9645i −0.124351 1.02412i
\(244\) −1.77862 + 2.57678i −0.113864 + 0.164961i
\(245\) 3.80933 + 3.37477i 0.243369 + 0.215606i
\(246\) 1.48972 + 1.31977i 0.0949808 + 0.0841456i
\(247\) −0.293871 −0.0186986
\(248\) 16.6371 14.7392i 1.05646 0.935939i
\(249\) −11.4511 6.01002i −0.725686 0.380869i
\(250\) −9.05705 + 8.02385i −0.572818 + 0.507473i
\(251\) 7.08834 + 6.27972i 0.447412 + 0.396372i 0.856520 0.516114i \(-0.172622\pi\)
−0.409108 + 0.912486i \(0.634160\pi\)
\(252\) −0.0950098 + 0.782476i −0.00598506 + 0.0492914i
\(253\) 2.49388 6.57581i 0.156789 0.413418i
\(254\) −11.0045 9.74911i −0.690482 0.611714i
\(255\) −5.84843 + 1.44151i −0.366243 + 0.0902708i
\(256\) −6.82584 + 6.04716i −0.426615 + 0.377948i
\(257\) −0.905060 1.31121i −0.0564561 0.0817908i 0.793739 0.608258i \(-0.208132\pi\)
−0.850195 + 0.526468i \(0.823516\pi\)
\(258\) −0.691345 + 5.69374i −0.0430413 + 0.354477i
\(259\) 7.07144 3.71138i 0.439398 0.230614i
\(260\) 0.858476 0.0532404
\(261\) 14.0533 0.869879
\(262\) 22.9724 12.0569i 1.41924 0.744876i
\(263\) 13.5221 3.33289i 0.833807 0.205515i 0.200772 0.979638i \(-0.435655\pi\)
0.633035 + 0.774123i \(0.281809\pi\)
\(264\) 6.34364 9.19036i 0.390424 0.565627i
\(265\) 2.67661 + 7.05765i 0.164423 + 0.433548i
\(266\) 0.0974670 + 0.141205i 0.00597608 + 0.00865785i
\(267\) 4.26281 3.77652i 0.260880 0.231119i
\(268\) 0.131078 + 0.0323079i 0.00800687 + 0.00197352i
\(269\) 1.70085 0.103702 0.0518512 0.998655i \(-0.483488\pi\)
0.0518512 + 0.998655i \(0.483488\pi\)
\(270\) 4.80111 + 4.25341i 0.292186 + 0.258854i
\(271\) −7.85017 11.3729i −0.476864 0.690857i 0.508550 0.861033i \(-0.330182\pi\)
−0.985414 + 0.170176i \(0.945566\pi\)
\(272\) 19.3051 + 27.9683i 1.17055 + 1.69583i
\(273\) −2.18196 1.14518i −0.132058 0.0693096i
\(274\) −20.2466 + 29.3322i −1.22314 + 1.77202i
\(275\) −19.1942 4.73094i −1.15745 0.285286i
\(276\) −0.0708030 + 0.583115i −0.00426184 + 0.0350994i
\(277\) 2.54073 + 20.9248i 0.152658 + 1.25725i 0.844640 + 0.535334i \(0.179814\pi\)
−0.691983 + 0.721914i \(0.743263\pi\)
\(278\) 27.3198 6.73373i 1.63853 0.403862i
\(279\) −6.49649 + 17.1298i −0.388935 + 1.02554i
\(280\) 1.15955 + 1.67989i 0.0692961 + 0.100393i
\(281\) 10.1940 14.7686i 0.608125 0.881021i −0.391102 0.920347i \(-0.627906\pi\)
0.999226 + 0.0393267i \(0.0125213\pi\)
\(282\) 6.47007 + 9.37351i 0.385287 + 0.558185i
\(283\) 0.331074 + 2.72664i 0.0196803 + 0.162082i 0.999236 0.0390933i \(-0.0124470\pi\)
−0.979555 + 0.201175i \(0.935524\pi\)
\(284\) 3.68394 3.26368i 0.218601 0.193664i
\(285\) 0.0932797 0.00552541
\(286\) 10.4748 + 15.1753i 0.619387 + 0.897337i
\(287\) −1.13939 0.598000i −0.0672563 0.0352988i
\(288\) 1.59752 4.21230i 0.0941345 0.248212i
\(289\) 32.5873 17.1031i 1.91690 1.00607i
\(290\) −6.68897 + 5.92591i −0.392790 + 0.347981i
\(291\) 3.49832 9.22432i 0.205075 0.540739i
\(292\) 3.30647 + 2.92928i 0.193497 + 0.171423i
\(293\) 10.1711 + 14.7354i 0.594203 + 0.860851i 0.998554 0.0537524i \(-0.0171182\pi\)
−0.404352 + 0.914604i \(0.632503\pi\)
\(294\) −1.10050 9.06346i −0.0641827 0.528592i
\(295\) 3.09223 + 1.62293i 0.180036 + 0.0944904i
\(296\) −19.7361 + 4.86452i −1.14714 + 0.282744i
\(297\) −2.73474 + 22.5226i −0.158686 + 1.30689i
\(298\) 7.49226 + 1.84668i 0.434015 + 0.106975i
\(299\) 3.49756 + 1.83566i 0.202269 + 0.106159i
\(300\) 1.65112 0.0953275
\(301\) −0.446989 3.68129i −0.0257640 0.212186i
\(302\) −23.3461 5.75429i −1.34341 0.331122i
\(303\) 2.06189 1.82668i 0.118453 0.104940i
\(304\) −0.186621 0.492079i −0.0107034 0.0282227i
\(305\) −3.79646 5.50012i −0.217385 0.314936i
\(306\) −20.5811 10.8018i −1.17654 0.617498i
\(307\) 2.70585 + 7.13473i 0.154431 + 0.407200i 0.989795 0.142496i \(-0.0455127\pi\)
−0.835365 + 0.549696i \(0.814743\pi\)
\(308\) 0.628679 1.65769i 0.0358223 0.0944556i
\(309\) −2.82406 + 0.696069i −0.160655 + 0.0395980i
\(310\) −4.13105 10.8927i −0.234628 0.618663i
\(311\) 1.41157 11.6253i 0.0800429 0.659212i −0.896371 0.443305i \(-0.853806\pi\)
0.976414 0.215908i \(-0.0692710\pi\)
\(312\) 4.69469 + 4.15913i 0.265784 + 0.235464i
\(313\) 29.2549 1.65358 0.826792 0.562507i \(-0.190163\pi\)
0.826792 + 0.562507i \(0.190163\pi\)
\(314\) −28.6109 + 25.3470i −1.61461 + 1.43042i
\(315\) −1.48974 0.781878i −0.0839376 0.0440539i
\(316\) 0.957937 + 2.52587i 0.0538881 + 0.142091i
\(317\) −1.53797 0.807191i −0.0863812 0.0453364i 0.420979 0.907070i \(-0.361686\pi\)
−0.507361 + 0.861734i \(0.669379\pi\)
\(318\) 4.80183 12.6614i 0.269273 0.710015i
\(319\) −30.6907 7.56458i −1.71835 0.423535i
\(320\) −1.74952 4.61311i −0.0978012 0.257881i
\(321\) −0.746993 + 0.392052i −0.0416931 + 0.0218822i
\(322\) −0.277984 2.28940i −0.0154914 0.127584i
\(323\) −0.808982 + 0.199396i −0.0450130 + 0.0110947i
\(324\) 0.0635741 + 0.523580i 0.00353189 + 0.0290878i
\(325\) 3.93721 10.3816i 0.218397 0.575866i
\(326\) −12.7514 + 18.4736i −0.706236 + 1.02316i
\(327\) 15.2964 + 8.02817i 0.845893 + 0.443959i
\(328\) 2.45151 + 2.17185i 0.135362 + 0.119920i
\(329\) −5.51202 4.88323i −0.303888 0.269221i
\(330\) −3.32488 4.81691i −0.183028 0.265162i
\(331\) −4.15615 + 34.2290i −0.228443 + 1.88140i 0.202889 + 0.979202i \(0.434967\pi\)
−0.431331 + 0.902194i \(0.641956\pi\)
\(332\) 4.62721 + 2.42855i 0.253951 + 0.133284i
\(333\) 12.5407 11.1101i 0.687226 0.608829i
\(334\) 3.19671 2.83204i 0.174916 0.154962i
\(335\) −0.163693 + 0.237150i −0.00894351 + 0.0129569i
\(336\) 0.531935 4.38088i 0.0290195 0.238997i
\(337\) −23.2397 + 12.1971i −1.26595 + 0.664420i −0.957941 0.286964i \(-0.907354\pi\)
−0.308006 + 0.951384i \(0.599662\pi\)
\(338\) 8.64115 4.53523i 0.470017 0.246684i
\(339\) −10.3370 + 5.42528i −0.561430 + 0.294661i
\(340\) 2.36326 0.582490i 0.128166 0.0315900i
\(341\) 23.4081 33.9125i 1.26762 1.83647i
\(342\) 0.269427 + 0.238691i 0.0145689 + 0.0129069i
\(343\) 4.51634 + 11.9086i 0.243859 + 0.643004i
\(344\) −1.13769 + 9.36974i −0.0613403 + 0.505183i
\(345\) −1.11018 0.582670i −0.0597703 0.0313699i
\(346\) −11.4631 2.82540i −0.616261 0.151895i
\(347\) −7.32513 + 19.3148i −0.393233 + 1.03687i 0.581509 + 0.813540i \(0.302462\pi\)
−0.974743 + 0.223332i \(0.928307\pi\)
\(348\) 2.64008 0.141523
\(349\) −15.1313 + 13.4052i −0.809962 + 0.717564i −0.962661 0.270709i \(-0.912742\pi\)
0.152699 + 0.988273i \(0.451203\pi\)
\(350\) −6.29419 + 1.55138i −0.336439 + 0.0829247i
\(351\) −12.3725 3.04954i −0.660394 0.162773i
\(352\) −5.75616 + 8.33924i −0.306804 + 0.444483i
\(353\) 1.16729 + 9.61346i 0.0621284 + 0.511673i 0.990240 + 0.139371i \(0.0445082\pi\)
−0.928112 + 0.372302i \(0.878569\pi\)
\(354\) −2.22162 5.85794i −0.118078 0.311346i
\(355\) 3.72524 + 9.82265i 0.197715 + 0.521332i
\(356\) −1.72253 + 1.52603i −0.0912940 + 0.0808794i
\(357\) −6.78364 1.67202i −0.359028 0.0884926i
\(358\) −0.928015 + 2.44697i −0.0490471 + 0.129327i
\(359\) 8.53610 22.5079i 0.450518 1.18792i −0.496868 0.867826i \(-0.665517\pi\)
0.947386 0.320093i \(-0.103714\pi\)
\(360\) 3.20532 + 2.83966i 0.168935 + 0.149663i
\(361\) −18.9871 −0.999321
\(362\) 1.86211 15.3358i 0.0978702 0.806033i
\(363\) 3.53527 9.32175i 0.185554 0.489265i
\(364\) 0.881695 + 0.462749i 0.0462134 + 0.0242547i
\(365\) −8.34890 + 4.38184i −0.437001 + 0.229356i
\(366\) −1.44518 + 11.9021i −0.0755406 + 0.622133i
\(367\) 12.5708 + 3.09843i 0.656193 + 0.161737i 0.553335 0.832959i \(-0.313355\pi\)
0.102858 + 0.994696i \(0.467201\pi\)
\(368\) −0.852660 + 7.02229i −0.0444480 + 0.366062i
\(369\) −2.62110 0.646042i −0.136449 0.0336316i
\(370\) −1.28418 + 10.5761i −0.0667612 + 0.549828i
\(371\) −1.05532 + 8.69132i −0.0547894 + 0.451231i
\(372\) −1.22044 + 3.21803i −0.0632768 + 0.166847i
\(373\) 17.7025 + 25.6465i 0.916601 + 1.32793i 0.944568 + 0.328317i \(0.106481\pi\)
−0.0279666 + 0.999609i \(0.508903\pi\)
\(374\) 39.1322 + 34.6681i 2.02348 + 1.79265i
\(375\) −2.70573 + 7.13442i −0.139723 + 0.368420i
\(376\) 10.6473 + 15.4253i 0.549092 + 0.795497i
\(377\) 6.29544 16.5997i 0.324232 0.854929i
\(378\) 2.63822 + 6.95642i 0.135696 + 0.357800i
\(379\) −8.95018 7.92917i −0.459740 0.407294i 0.401208 0.915987i \(-0.368590\pi\)
−0.860948 + 0.508693i \(0.830129\pi\)
\(380\) −0.0376928 −0.00193360
\(381\) −9.00151 2.21867i −0.461161 0.113666i
\(382\) 3.07194 + 25.2997i 0.157174 + 1.29444i
\(383\) −12.2907 3.02938i −0.628025 0.154794i −0.0875578 0.996159i \(-0.527906\pi\)
−0.540467 + 0.841365i \(0.681752\pi\)
\(384\) −4.66094 + 12.2899i −0.237853 + 0.627166i
\(385\) 2.83255 + 2.50942i 0.144360 + 0.127892i
\(386\) −0.664371 5.47159i −0.0338156 0.278496i
\(387\) −2.75870 7.27410i −0.140233 0.369764i
\(388\) −1.41362 + 3.72740i −0.0717654 + 0.189230i
\(389\) 17.6507 4.35050i 0.894924 0.220579i 0.235075 0.971977i \(-0.424466\pi\)
0.659849 + 0.751398i \(0.270620\pi\)
\(390\) 2.91080 1.52770i 0.147394 0.0773583i
\(391\) 10.8738 + 2.68014i 0.549910 + 0.135541i
\(392\) −1.81101 14.9150i −0.0914699 0.753323i
\(393\) 9.29370 13.4643i 0.468805 0.679182i
\(394\) 13.6620 + 12.1035i 0.688284 + 0.609766i
\(395\) −5.76617 −0.290128
\(396\) 0.448318 3.69223i 0.0225288 0.185542i
\(397\) 2.56362 + 21.1133i 0.128664 + 1.05965i 0.903831 + 0.427889i \(0.140743\pi\)
−0.775167 + 0.631756i \(0.782334\pi\)
\(398\) 17.8092 0.892694
\(399\) 0.0958026 + 0.0502811i 0.00479613 + 0.00251720i
\(400\) 19.8840 0.994198
\(401\) −16.5375 + 8.67957i −0.825845 + 0.433437i −0.824019 0.566561i \(-0.808273\pi\)
−0.00182547 + 0.999998i \(0.500581\pi\)
\(402\) 0.501934 0.123716i 0.0250342 0.00617038i
\(403\) 17.3234 + 15.3472i 0.862942 + 0.764500i
\(404\) −0.833178 + 0.738131i −0.0414521 + 0.0367234i
\(405\) −1.09307 0.269419i −0.0543153 0.0133875i
\(406\) −10.0642 + 2.48059i −0.499476 + 0.123110i
\(407\) −33.3676 + 17.5127i −1.65397 + 0.868071i
\(408\) 15.7458 + 8.26403i 0.779533 + 0.409131i
\(409\) −29.5657 + 15.5173i −1.46193 + 0.767281i −0.993240 0.116081i \(-0.962967\pi\)
−0.468691 + 0.883362i \(0.655274\pi\)
\(410\) 1.51998 0.797749i 0.0750666 0.0393980i
\(411\) −2.70909 + 22.3114i −0.133630 + 1.10054i
\(412\) 1.14116 0.281270i 0.0562208 0.0138572i
\(413\) 2.30105 + 3.33364i 0.113227 + 0.164038i
\(414\) −1.71565 4.52379i −0.0843195 0.222332i
\(415\) −8.34922 + 7.39676i −0.409847 + 0.363093i
\(416\) −4.25991 3.77395i −0.208859 0.185033i
\(417\) 13.2811 11.7660i 0.650377 0.576184i
\(418\) −0.459912 0.666298i −0.0224950 0.0325897i
\(419\) 13.9622 + 20.2277i 0.682096 + 0.988187i 0.999208 + 0.0397990i \(0.0126718\pi\)
−0.317111 + 0.948388i \(0.602713\pi\)
\(420\) −0.279865 0.146885i −0.0136560 0.00716724i
\(421\) −29.2412 7.20731i −1.42513 0.351263i −0.550006 0.835161i \(-0.685374\pi\)
−0.875124 + 0.483898i \(0.839221\pi\)
\(422\) −6.99967 3.67371i −0.340739 0.178833i
\(423\) −13.6793 7.17943i −0.665109 0.349076i
\(424\) 7.90200 20.8358i 0.383755 1.01188i
\(425\) 3.79448 31.2504i 0.184059 1.51586i
\(426\) 6.68306 17.6218i 0.323796 0.853779i
\(427\) −0.934379 7.69531i −0.0452178 0.372402i
\(428\) 0.301848 0.158422i 0.0145904 0.00765761i
\(429\) 10.2959 + 5.40371i 0.497091 + 0.260894i
\(430\) 4.38036 + 2.29899i 0.211239 + 0.110867i
\(431\) −6.39760 + 3.35772i −0.308162 + 0.161736i −0.611714 0.791079i \(-0.709520\pi\)
0.303552 + 0.952815i \(0.401827\pi\)
\(432\) −2.75069 22.6540i −0.132343 1.08994i
\(433\) −4.52755 + 11.9382i −0.217580 + 0.573712i −0.998717 0.0506487i \(-0.983871\pi\)
0.781136 + 0.624360i \(0.214640\pi\)
\(434\) 1.62877 13.4141i 0.0781832 0.643897i
\(435\) −1.99828 + 5.26903i −0.0958103 + 0.252631i
\(436\) −6.18102 3.24405i −0.296017 0.155362i
\(437\) −0.153566 0.0805975i −0.00734605 0.00385550i
\(438\) 16.4239 + 4.04813i 0.784765 + 0.193427i
\(439\) −19.7459 10.3635i −0.942423 0.494622i −0.0777587 0.996972i \(-0.524776\pi\)
−0.864664 + 0.502351i \(0.832469\pi\)
\(440\) −5.47149 7.92682i −0.260843 0.377896i
\(441\) 7.03485 + 10.1917i 0.334993 + 0.485321i
\(442\) −21.9787 + 19.4714i −1.04542 + 0.926161i
\(443\) −11.5280 10.2129i −0.547711 0.485230i 0.343291 0.939229i \(-0.388458\pi\)
−0.891002 + 0.453999i \(0.849997\pi\)
\(444\) 2.35591 2.08715i 0.111807 0.0990520i
\(445\) −1.74185 4.59287i −0.0825714 0.217723i
\(446\) 15.8051 + 22.8976i 0.748393 + 1.08423i
\(447\) 4.72458 1.16451i 0.223465 0.0550792i
\(448\) 0.689790 5.68093i 0.0325895 0.268399i
\(449\) 22.0500 11.5727i 1.04060 0.546150i 0.144273 0.989538i \(-0.453916\pi\)
0.896330 + 0.443388i \(0.146223\pi\)
\(450\) −12.0419 + 6.32010i −0.567663 + 0.297932i
\(451\) 5.37640 + 2.82175i 0.253165 + 0.132871i
\(452\) 4.17702 2.19227i 0.196470 0.103116i
\(453\) −14.7219 + 3.62863i −0.691696 + 0.170488i
\(454\) 19.6040 + 4.83196i 0.920062 + 0.226775i
\(455\) −1.59091 + 1.40942i −0.0745829 + 0.0660747i
\(456\) −0.206128 0.182613i −0.00965281 0.00855165i
\(457\) 26.9247 6.63634i 1.25948 0.310435i 0.447590 0.894239i \(-0.352283\pi\)
0.811895 + 0.583804i \(0.198436\pi\)
\(458\) 18.5369 9.72893i 0.866174 0.454603i
\(459\) −36.1288 −1.68635
\(460\) 0.448607 + 0.235447i 0.0209164 + 0.0109778i
\(461\) 26.4856 1.23356 0.616778 0.787137i \(-0.288438\pi\)
0.616778 + 0.787137i \(0.288438\pi\)
\(462\) −0.818314 6.73942i −0.0380714 0.313546i
\(463\) 1.01220 8.33620i 0.0470408 0.387416i −0.950106 0.311928i \(-0.899025\pi\)
0.997147 0.0754885i \(-0.0240516\pi\)
\(464\) 31.7937 1.47598
\(465\) −5.49876 4.87148i −0.254999 0.225909i
\(466\) 13.3674 19.3660i 0.619233 0.897114i
\(467\) 1.72972 + 14.2455i 0.0800420 + 0.659205i 0.976415 + 0.215904i \(0.0692697\pi\)
−0.896373 + 0.443301i \(0.853807\pi\)
\(468\) 2.02828 + 0.499926i 0.0937572 + 0.0231091i
\(469\) −0.295953 + 0.155328i −0.0136658 + 0.00717239i
\(470\) 9.53830 2.35098i 0.439969 0.108443i
\(471\) −8.54730 + 22.5374i −0.393839 + 1.03847i
\(472\) −3.65595 9.63995i −0.168279 0.443714i
\(473\) 2.10918 + 17.3707i 0.0969803 + 0.798705i
\(474\) 7.74296 + 6.85966i 0.355646 + 0.315075i
\(475\) −0.172870 + 0.455819i −0.00793180 + 0.0209144i
\(476\) 2.74116 + 0.675635i 0.125641 + 0.0309677i
\(477\) 2.21394 + 18.2334i 0.101369 + 0.834852i
\(478\) 5.69013 + 1.40249i 0.260260 + 0.0641484i
\(479\) −35.1522 −1.60615 −0.803073 0.595880i \(-0.796803\pi\)
−0.803073 + 0.595880i \(0.796803\pi\)
\(480\) 1.35217 + 1.19792i 0.0617178 + 0.0546772i
\(481\) −7.50534 19.7900i −0.342214 0.902344i
\(482\) −3.81403 + 10.0568i −0.173724 + 0.458073i
\(483\) −0.826132 1.19686i −0.0375903 0.0544589i
\(484\) −1.42855 + 3.76676i −0.0649339 + 0.171217i
\(485\) −6.36913 5.64256i −0.289207 0.256215i
\(486\) 14.1357 + 20.4792i 0.641210 + 0.928954i
\(487\) −7.11074 + 18.7495i −0.322218 + 0.849620i 0.671833 + 0.740703i \(0.265507\pi\)
−0.994051 + 0.108917i \(0.965262\pi\)
\(488\) −2.37822 + 19.5864i −0.107657 + 0.886633i
\(489\) −1.70620 + 14.0519i −0.0771572 + 0.635447i
\(490\) −7.64596 1.88456i −0.345409 0.0851357i
\(491\) 2.56728 21.1435i 0.115860 0.954191i −0.812616 0.582799i \(-0.801957\pi\)
0.928476 0.371392i \(-0.121119\pi\)
\(492\) −0.492402 0.121366i −0.0221992 0.00547162i
\(493\) 6.06722 49.9681i 0.273254 2.25045i
\(494\) 0.402635 0.211319i 0.0181154 0.00950770i
\(495\) 7.02958 + 3.68941i 0.315956 + 0.165827i
\(496\) −14.6974 + 38.7538i −0.659932 + 1.74010i
\(497\) −1.46876 + 12.0964i −0.0658831 + 0.542596i
\(498\) 20.0110 0.896715
\(499\) 20.5258 + 18.1843i 0.918862 + 0.814041i 0.982944 0.183904i \(-0.0588736\pi\)
−0.0640824 + 0.997945i \(0.520412\pi\)
\(500\) 1.09334 2.88290i 0.0488957 0.128927i
\(501\) 0.954994 2.51811i 0.0426660 0.112501i
\(502\) −14.2275 3.50675i −0.635003 0.156514i
\(503\) −10.1769 + 9.01590i −0.453763 + 0.401999i −0.858808 0.512298i \(-0.828794\pi\)
0.405045 + 0.914297i \(0.367256\pi\)
\(504\) 1.76133 + 4.64425i 0.0784559 + 0.206871i
\(505\) −0.842519 2.22154i −0.0374916 0.0988572i
\(506\) 1.31171 + 10.8029i 0.0583125 + 0.480247i
\(507\) 3.49585 5.06462i 0.155256 0.224928i
\(508\) 3.63736 + 0.896529i 0.161382 + 0.0397770i
\(509\) 3.51735 0.866950i 0.155904 0.0384269i −0.160591 0.987021i \(-0.551340\pi\)
0.316495 + 0.948594i \(0.397494\pi\)
\(510\) 6.97642 6.18057i 0.308921 0.273680i
\(511\) −10.9367 −0.483810
\(512\) −4.54986 + 11.9970i −0.201077 + 0.530198i
\(513\) 0.543234 + 0.133895i 0.0239844 + 0.00591161i
\(514\) 2.18290 + 1.14568i 0.0962837 + 0.0505336i
\(515\) −0.302390 + 2.49040i −0.0133249 + 0.109740i
\(516\) −0.518254 1.36652i −0.0228148 0.0601578i
\(517\) 26.0093 + 23.0422i 1.14389 + 1.01340i
\(518\) −7.01983 + 10.1700i −0.308434 + 0.446843i
\(519\) −7.22859 + 1.78169i −0.317300 + 0.0782074i
\(520\) 4.79007 2.51402i 0.210059 0.110247i
\(521\) 9.00700 4.72724i 0.394604 0.207104i −0.255737 0.966746i \(-0.582318\pi\)
0.650341 + 0.759642i \(0.274626\pi\)
\(522\) −19.2546 + 10.1056i −0.842750 + 0.442309i
\(523\) −4.11796 + 33.9145i −0.180066 + 1.48298i 0.570018 + 0.821633i \(0.306936\pi\)
−0.750083 + 0.661343i \(0.769987\pi\)
\(524\) −3.75543 + 5.44068i −0.164057 + 0.237677i
\(525\) −3.05982 + 2.71076i −0.133541 + 0.118307i
\(526\) −16.1301 + 14.2900i −0.703304 + 0.623073i
\(527\) 58.1022 + 30.4944i 2.53097 + 1.32836i
\(528\) −2.51001 + 20.6718i −0.109234 + 0.899626i
\(529\) −11.7413 17.0101i −0.510489 0.739571i
\(530\) −8.74232 7.74502i −0.379742 0.336422i
\(531\) 6.36075 + 5.63513i 0.276033 + 0.244544i
\(532\) −0.0387123 0.0203178i −0.00167839 0.000880886i
\(533\) −1.93727 + 2.80662i −0.0839124 + 0.121568i
\(534\) −3.12486 + 8.23958i −0.135226 + 0.356562i
\(535\) 0.0877072 + 0.722334i 0.00379191 + 0.0312292i
\(536\) 0.825994 0.203589i 0.0356775 0.00879372i
\(537\) 0.198921 + 1.63826i 0.00858407 + 0.0706962i
\(538\) −2.33034 + 1.22306i −0.100468 + 0.0527298i
\(539\) −9.87725 26.0442i −0.425443 1.12180i
\(540\) −1.58693 0.391144i −0.0682907 0.0168321i
\(541\) 16.4514 43.3788i 0.707301 1.86500i 0.285100 0.958498i \(-0.407973\pi\)
0.422201 0.906502i \(-0.361257\pi\)
\(542\) 18.9337 + 9.93719i 0.813274 + 0.426839i
\(543\) −3.45447 9.10868i −0.148245 0.390891i
\(544\) −14.2876 7.49870i −0.612575 0.321504i
\(545\) 11.1529 9.88059i 0.477737 0.423238i
\(546\) 3.81301 0.163182
\(547\) 11.4453 + 10.1396i 0.489366 + 0.433540i 0.871374 0.490619i \(-0.163229\pi\)
−0.382009 + 0.924159i \(0.624768\pi\)
\(548\) 1.09470 9.01566i 0.0467632 0.385130i
\(549\) −5.76675 15.2057i −0.246119 0.648963i
\(550\) 29.7001 7.32041i 1.26642 0.312143i
\(551\) −0.276411 + 0.728837i −0.0117755 + 0.0310495i
\(552\) 1.31257 + 3.46098i 0.0558669 + 0.147309i
\(553\) −5.92213 3.10817i −0.251835 0.132173i
\(554\) −18.5278 26.8422i −0.787172 1.14042i
\(555\) 2.38232 + 6.28167i 0.101124 + 0.266642i
\(556\) −5.36666 + 4.75445i −0.227597 + 0.201634i
\(557\) −24.8111 6.11540i −1.05128 0.259118i −0.324428 0.945910i \(-0.605172\pi\)
−0.726854 + 0.686793i \(0.759018\pi\)
\(558\) −3.41697 28.1413i −0.144652 1.19132i
\(559\) −9.82794 −0.415678
\(560\) −3.37034 1.76889i −0.142423 0.0747492i
\(561\) 32.0096 + 7.88966i 1.35145 + 0.333102i
\(562\) −3.34700 + 27.5650i −0.141184 + 1.16276i
\(563\) 3.29445 0.812010i 0.138845 0.0342221i −0.169281 0.985568i \(-0.554144\pi\)
0.308125 + 0.951346i \(0.400298\pi\)
\(564\) −2.56980 1.34874i −0.108208 0.0567921i
\(565\) 1.21371 + 9.99578i 0.0510611 + 0.420526i
\(566\) −2.41430 3.49772i −0.101481 0.147020i
\(567\) −0.977412 0.865911i −0.0410474 0.0363649i
\(568\) 10.9978 28.9988i 0.461457 1.21676i
\(569\) −3.99394 + 3.53832i −0.167434 + 0.148334i −0.742679 0.669647i \(-0.766445\pi\)
0.575245 + 0.817981i \(0.304907\pi\)
\(570\) −0.127803 + 0.0670763i −0.00535309 + 0.00280952i
\(571\) 12.6905 33.4620i 0.531079 1.40034i −0.354152 0.935188i \(-0.615230\pi\)
0.885231 0.465152i \(-0.154000\pi\)
\(572\) −4.16041 2.18355i −0.173955 0.0912988i
\(573\) 9.12939 + 13.2262i 0.381386 + 0.552533i
\(574\) 1.99111 0.0831073
\(575\) 4.90470 4.34519i 0.204540 0.181207i
\(576\) −1.44710 11.9180i −0.0602960 0.496582i
\(577\) 7.19947 + 10.4302i 0.299718 + 0.434216i 0.943689 0.330833i \(-0.107330\pi\)
−0.643971 + 0.765050i \(0.722714\pi\)
\(578\) −32.3495 + 46.8663i −1.34556 + 1.94938i
\(579\) −1.97442 2.86044i −0.0820542 0.118876i
\(580\) 0.807472 2.12913i 0.0335285 0.0884073i
\(581\) −12.5622 + 3.09629i −0.521166 + 0.128456i
\(582\) 1.84002 + 15.1539i 0.0762713 + 0.628150i
\(583\) 4.97967 41.0113i 0.206237 1.69851i
\(584\) 27.0276 + 6.66169i 1.11841 + 0.275663i
\(585\) −2.53296 + 3.66962i −0.104725 + 0.151720i
\(586\) −24.5316 12.8752i −1.01339 0.531868i
\(587\) −21.6018 31.2956i −0.891602 1.29171i −0.955874 0.293776i \(-0.905088\pi\)
0.0642720 0.997932i \(-0.479527\pi\)
\(588\) 1.32158 + 1.91463i 0.0545008 + 0.0789581i
\(589\) −0.760614 0.673845i −0.0313406 0.0277653i
\(590\) −5.40371 −0.222467
\(591\) 11.1754 + 2.75448i 0.459693 + 0.113304i
\(592\) 28.3715 25.1350i 1.16606 1.03304i
\(593\) −24.0356 34.8215i −0.987022 1.42995i −0.901082 0.433648i \(-0.857226\pi\)
−0.0859395 0.996300i \(-0.527389\pi\)
\(594\) −12.4488 32.8249i −0.510782 1.34682i
\(595\) −3.42321 + 4.95938i −0.140338 + 0.203315i
\(596\) −1.90913 + 0.470557i −0.0782008 + 0.0192748i
\(597\) 9.94401 5.21902i 0.406981 0.213600i
\(598\) −6.11203 −0.249939
\(599\) 13.4803 0.550791 0.275395 0.961331i \(-0.411191\pi\)
0.275395 + 0.961331i \(0.411191\pi\)
\(600\) 9.21282 4.83526i 0.376112 0.197399i
\(601\) −4.45713 + 36.7078i −0.181810 + 1.49734i 0.560986 + 0.827825i \(0.310422\pi\)
−0.742796 + 0.669517i \(0.766501\pi\)
\(602\) 3.25959 + 4.72234i 0.132851 + 0.192468i
\(603\) −0.524852 + 0.464978i −0.0213736 + 0.0189354i
\(604\) 5.94888 1.46627i 0.242057 0.0596616i
\(605\) −6.43640 5.70215i −0.261677 0.231825i
\(606\) −1.51148 + 3.98543i −0.0613995 + 0.161897i
\(607\) 0.758174 6.24412i 0.0307733 0.253441i −0.969201 0.246271i \(-0.920795\pi\)
0.999974 0.00716996i \(-0.00228229\pi\)
\(608\) 0.187038 + 0.165701i 0.00758540 + 0.00672008i
\(609\) −4.89253 + 4.33440i −0.198255 + 0.175639i
\(610\) 9.15663 + 4.80577i 0.370741 + 0.194580i
\(611\) −14.6082 + 12.9417i −0.590983 + 0.523566i
\(612\) 5.92275 0.239413
\(613\) −20.4780 18.1420i −0.827100 0.732747i 0.139173 0.990268i \(-0.455556\pi\)
−0.966273 + 0.257521i \(0.917094\pi\)
\(614\) −8.83780 7.82961i −0.356665 0.315977i
\(615\) 0.614923 0.890869i 0.0247961 0.0359233i
\(616\) −1.34664 11.0905i −0.0542575 0.446851i
\(617\) −23.8296 + 21.1112i −0.959345 + 0.849906i −0.988737 0.149662i \(-0.952181\pi\)
0.0293920 + 0.999568i \(0.490643\pi\)
\(618\) 3.36874 2.98444i 0.135510 0.120052i
\(619\) 0.232438 + 0.612888i 0.00934246 + 0.0246340i 0.939606 0.342257i \(-0.111191\pi\)
−0.930264 + 0.366891i \(0.880422\pi\)
\(620\) 2.22196 + 1.96848i 0.0892360 + 0.0790562i
\(621\) −5.62902 4.98688i −0.225885 0.200116i
\(622\) 6.42564 + 16.9430i 0.257645 + 0.679353i
\(623\) 0.686764 5.65601i 0.0275146 0.226603i
\(624\) −11.3558 2.79895i −0.454596 0.112048i
\(625\) −11.1358 9.86550i −0.445434 0.394620i
\(626\) −40.0824 + 21.0369i −1.60201 + 0.840802i
\(627\) −0.452059 0.237259i −0.0180535 0.00947520i
\(628\) 3.45382 9.10698i 0.137822 0.363408i
\(629\) −34.0889 49.3863i −1.35921 1.96916i
\(630\) 2.60335 0.103720
\(631\) −8.01712 21.1394i −0.319156 0.841546i −0.994566 0.104104i \(-0.966803\pi\)
0.675410 0.737442i \(-0.263967\pi\)
\(632\) 12.7420 + 11.2884i 0.506849 + 0.449029i
\(633\) −4.98496 −0.198134
\(634\) 2.68763 0.106740
\(635\) −4.54241 + 6.58082i −0.180260 + 0.261152i
\(636\) 0.415914 + 3.42536i 0.0164920 + 0.135824i
\(637\) 15.1898 3.74395i 0.601842 0.148341i
\(638\) 47.4892 11.7050i 1.88012 0.463407i
\(639\) 3.08131 + 25.3768i 0.121895 + 1.00389i
\(640\) 8.48581 + 7.51777i 0.335431 + 0.297166i
\(641\) −22.5011 32.5985i −0.888740 1.28756i −0.957057 0.289899i \(-0.906378\pi\)
0.0683172 0.997664i \(-0.478237\pi\)
\(642\) 0.741541 1.07431i 0.0292663 0.0423996i
\(643\) −0.819514 + 2.16088i −0.0323185 + 0.0852169i −0.950204 0.311628i \(-0.899126\pi\)
0.917886 + 0.396845i \(0.129895\pi\)
\(644\) 0.333826 + 0.483631i 0.0131546 + 0.0190577i
\(645\) 3.11956 0.122832
\(646\) 0.965010 0.854924i 0.0379678 0.0336365i
\(647\) −17.5298 + 15.5300i −0.689168 + 0.610549i −0.933260 0.359203i \(-0.883049\pi\)
0.244092 + 0.969752i \(0.421510\pi\)
\(648\) 1.88801 + 2.73526i 0.0741682 + 0.107451i
\(649\) −10.8578 15.7303i −0.426207 0.617467i
\(650\) 2.07086 + 17.0551i 0.0812258 + 0.668955i
\(651\) −3.02159 7.96727i −0.118425 0.312262i
\(652\) 0.689449 5.67812i 0.0270009 0.222372i
\(653\) 3.62732 + 0.894053i 0.141948 + 0.0349870i 0.309649 0.950851i \(-0.399788\pi\)
−0.167702 + 0.985838i \(0.553634\pi\)
\(654\) −26.7307 −1.04525
\(655\) −8.01596 11.6131i −0.313209 0.453762i
\(656\) −5.92986 1.46158i −0.231522 0.0570651i
\(657\) −22.2772 + 5.49085i −0.869118 + 0.214218i
\(658\) 11.0635 + 2.72692i 0.431302 + 0.106306i
\(659\) 24.9923 + 13.1170i 0.973561 + 0.510964i 0.874977 0.484165i \(-0.160876\pi\)
0.0985838 + 0.995129i \(0.468569\pi\)
\(660\) 1.32059 + 0.693097i 0.0514037 + 0.0269788i
\(661\) −18.2071 + 26.3775i −0.708174 + 1.02597i 0.289458 + 0.957191i \(0.406525\pi\)
−0.997632 + 0.0687764i \(0.978091\pi\)
\(662\) −18.9193 49.8861i −0.735319 1.93888i
\(663\) −6.56598 + 17.3131i −0.255001 + 0.672383i
\(664\) 32.9306 1.27795
\(665\) 0.0698514 0.0618829i 0.00270872 0.00239972i
\(666\) −9.19298 + 24.2399i −0.356221 + 0.939277i
\(667\) 7.84242 6.94778i 0.303660 0.269019i
\(668\) −0.385897 + 1.01753i −0.0149308 + 0.0393693i
\(669\) 15.5352 + 8.15351i 0.600626 + 0.315233i
\(670\) 0.0537452 0.442632i 0.00207636 0.0171003i
\(671\) 4.40901 + 36.3114i 0.170208 + 1.40179i
\(672\) 0.743021 + 1.95918i 0.0286626 + 0.0755772i
\(673\) 19.7806 17.5241i 0.762485 0.675503i −0.189420 0.981896i \(-0.560661\pi\)
0.951905 + 0.306394i \(0.0991223\pi\)
\(674\) 23.0701 33.4228i 0.888627 1.28740i
\(675\) −12.0082 + 17.3969i −0.462197 + 0.669607i
\(676\) −1.41262 + 2.04653i −0.0543314 + 0.0787126i
\(677\) −26.2519 38.0325i −1.00894 1.46171i −0.882831 0.469692i \(-0.844365\pi\)
−0.126113 0.992016i \(-0.540250\pi\)
\(678\) 10.2616 14.8665i 0.394093 0.570943i
\(679\) −3.49985 9.22836i −0.134312 0.354152i
\(680\) 11.4805 10.1709i 0.440259 0.390035i
\(681\) 12.3622 3.04701i 0.473721 0.116762i
\(682\) −7.68557 + 63.2963i −0.294296 + 2.42374i
\(683\) 9.37064 4.91809i 0.358558 0.188185i −0.275819 0.961210i \(-0.588949\pi\)
0.634377 + 0.773024i \(0.281257\pi\)
\(684\) −0.0890548 0.0219500i −0.00340510 0.000839281i
\(685\) 17.1648 + 9.00876i 0.655832 + 0.344207i
\(686\) −14.7512 13.0684i −0.563204 0.498955i
\(687\) 7.49928 10.8646i 0.286115 0.414510i
\(688\) −6.24118 16.4566i −0.237943 0.627403i
\(689\) 22.5290 + 5.55290i 0.858287 + 0.211549i
\(690\) 1.94006 0.0738570
\(691\) 25.5141 36.9636i 0.970603 1.40616i 0.0575398 0.998343i \(-0.481674\pi\)
0.913063 0.407818i \(-0.133710\pi\)
\(692\) 2.92095 0.719950i 0.111038 0.0273684i
\(693\) 5.23098 + 7.57839i 0.198709 + 0.287879i
\(694\) −3.85281 31.7307i −0.146251 1.20448i
\(695\) −5.42683 14.3094i −0.205852 0.542786i
\(696\) 14.7309 7.73139i 0.558374 0.293058i
\(697\) −3.42867 + 9.04067i −0.129870 + 0.342440i
\(698\) 11.0921 29.2473i 0.419840 1.10703i
\(699\) 1.78863 14.7307i 0.0676520 0.557165i
\(700\) 1.23642 1.09537i 0.0467324 0.0414013i
\(701\) −3.57090 + 29.4090i −0.134871 + 1.11076i 0.755379 + 0.655288i \(0.227453\pi\)
−0.890250 + 0.455473i \(0.849470\pi\)
\(702\) 19.1445 4.71870i 0.722564 0.178096i
\(703\) 0.329534 + 0.868910i 0.0124286 + 0.0327716i
\(704\) −3.25488 + 26.8063i −0.122673 + 1.01030i
\(705\) 4.63689 4.10792i 0.174635 0.154713i
\(706\) −8.51224 12.3321i −0.320362 0.464125i
\(707\) 0.332183 2.73577i 0.0124930 0.102889i
\(708\) 1.19494 + 1.05862i 0.0449085 + 0.0397855i
\(709\) 10.7245 + 5.62865i 0.402767 + 0.211388i 0.653928 0.756557i \(-0.273120\pi\)
−0.251161 + 0.967945i \(0.580812\pi\)
\(710\) −12.1673 10.7793i −0.456632 0.404541i
\(711\) −13.6234 3.35788i −0.510919 0.125930i
\(712\) −5.14234 + 13.5592i −0.192717 + 0.508154i
\(713\) 4.84342 + 12.7710i 0.181387 + 0.478279i
\(714\) 10.4967 2.58719i 0.392827 0.0968232i
\(715\) 7.50693 6.65056i 0.280743 0.248717i
\(716\) −0.0803806 0.661994i −0.00300396 0.0247399i
\(717\) 3.58817 0.884404i 0.134003 0.0330287i
\(718\) 4.48975 + 36.9764i 0.167556 + 1.37995i
\(719\) 2.62764 + 21.6405i 0.0979943 + 0.807056i 0.955990 + 0.293399i \(0.0947864\pi\)
−0.857996 + 0.513657i \(0.828291\pi\)
\(720\) −7.75322 1.91100i −0.288945 0.0712187i
\(721\) −1.65298 + 2.39476i −0.0615604 + 0.0891856i
\(722\) 26.0144 13.6534i 0.968155 0.508127i
\(723\) 0.817541 + 6.73305i 0.0304047 + 0.250405i
\(724\) 1.39589 + 3.68067i 0.0518779 + 0.136791i
\(725\) −22.0443 19.5296i −0.818705 0.725309i
\(726\) 1.85945 + 15.3140i 0.0690108 + 0.568355i
\(727\) 3.60780 1.89352i 0.133806 0.0702267i −0.396492 0.918038i \(-0.629772\pi\)
0.530298 + 0.847812i \(0.322080\pi\)
\(728\) 6.27478 0.232559
\(729\) 10.3410 + 5.42738i 0.383000 + 0.201014i
\(730\) 8.28797 12.0072i 0.306751 0.444406i
\(731\) −27.0548 + 6.66842i −1.00066 + 0.246640i
\(732\) −1.08335 2.85656i −0.0400417 0.105581i
\(733\) 5.20699 7.54363i 0.192325 0.278630i −0.714944 0.699181i \(-0.753548\pi\)
0.907269 + 0.420551i \(0.138163\pi\)
\(734\) −19.4515 + 4.79436i −0.717967 + 0.176963i
\(735\) −4.82151 + 1.18839i −0.177844 + 0.0438346i
\(736\) −1.19102 3.14045i −0.0439015 0.115759i
\(737\) 1.39650 0.732938i 0.0514406 0.0269981i
\(738\) 4.05575 0.999652i 0.149294 0.0367977i
\(739\) 5.64703 46.5075i 0.207729 1.71081i −0.399878 0.916568i \(-0.630948\pi\)
0.607608 0.794237i \(-0.292129\pi\)
\(740\) −0.962658 2.53832i −0.0353880 0.0933105i
\(741\) 0.162889 0.235986i 0.00598389 0.00866917i
\(742\) −4.80393 12.6669i −0.176358 0.465017i
\(743\) 0.155634 + 0.225474i 0.00570965 + 0.00827185i 0.825828 0.563922i \(-0.190708\pi\)
−0.820119 + 0.572194i \(0.806093\pi\)
\(744\) 2.61419 + 21.5298i 0.0958409 + 0.789321i
\(745\) 0.505890 4.16638i 0.0185344 0.152644i
\(746\) −42.6965 22.4088i −1.56323 0.820445i
\(747\) −24.0337 + 12.6139i −0.879348 + 0.461517i
\(748\) −12.9346 3.18808i −0.472934 0.116568i
\(749\) −0.299284 + 0.789148i −0.0109356 + 0.0288348i
\(750\) −1.42314 11.7206i −0.0519656 0.427975i
\(751\) 6.10158 5.40553i 0.222650 0.197250i −0.544423 0.838811i \(-0.683251\pi\)
0.767072 + 0.641561i \(0.221713\pi\)
\(752\) −30.9474 16.2424i −1.12854 0.592301i
\(753\) −8.97177 + 2.21134i −0.326949 + 0.0805858i
\(754\) 3.31122 + 27.2704i 0.120588 + 0.993129i
\(755\) −1.57637 + 12.9825i −0.0573698 + 0.472483i
\(756\) −1.41901 1.25714i −0.0516090 0.0457216i
\(757\) −4.04759 33.3349i −0.147112 1.21158i −0.859998 0.510297i \(-0.829535\pi\)
0.712886 0.701280i \(-0.247388\pi\)
\(758\) 17.9645 + 4.42785i 0.652500 + 0.160827i
\(759\) 3.89822 + 5.64755i 0.141497 + 0.204993i
\(760\) −0.210316 + 0.110382i −0.00762896 + 0.00400399i
\(761\) 30.4094 26.9404i 1.10234 0.976588i 0.102504 0.994733i \(-0.467314\pi\)
0.999835 + 0.0181447i \(0.00577594\pi\)
\(762\) 13.9285 3.43306i 0.504575 0.124367i
\(763\) 16.7805 4.13603i 0.607496 0.149734i
\(764\) −3.68903 5.34449i −0.133465 0.193357i
\(765\) −4.48295 + 11.8206i −0.162081 + 0.427373i
\(766\) 19.0180 4.68751i 0.687147 0.169367i
\(767\) 9.50559 4.98892i 0.343227 0.180139i
\(768\) −1.07255 8.83321i −0.0387021 0.318741i
\(769\) 2.60199 21.4293i 0.0938303 0.772762i −0.867514 0.497413i \(-0.834283\pi\)
0.961344 0.275349i \(-0.0887935\pi\)
\(770\) −5.68540 1.40132i −0.204887 0.0505002i
\(771\) 1.55460 0.0559875
\(772\) 0.797831 + 1.15586i 0.0287146 + 0.0416002i
\(773\) −24.9472 + 13.0933i −0.897289 + 0.470934i −0.849298 0.527914i \(-0.822974\pi\)
−0.0479913 + 0.998848i \(0.515282\pi\)
\(774\) 9.01045 + 7.98256i 0.323874 + 0.286927i
\(775\) 33.9954 17.8422i 1.22115 0.640910i
\(776\) 3.02798 + 24.9376i 0.108698 + 0.895209i
\(777\) −0.939288 + 7.73573i −0.0336968 + 0.277518i
\(778\) −21.0549 + 18.6530i −0.754856 + 0.668744i
\(779\) 0.0850589 0.123229i 0.00304755 0.00441514i
\(780\) −0.475844 + 0.689379i −0.0170380 + 0.0246837i
\(781\) 6.93058 57.0785i 0.247996 2.04243i
\(782\) −16.8255 + 4.14711i −0.601679 + 0.148300i
\(783\) −19.2007 + 27.8170i −0.686176 + 0.994097i
\(784\) 15.9153 + 23.0574i 0.568405 + 0.823477i
\(785\) 15.5614 + 13.7862i 0.555410 + 0.492051i
\(786\) −3.05139 + 25.1305i −0.108840 + 0.896374i
\(787\) −35.9509 + 8.86110i −1.28151 + 0.315864i −0.820559 0.571561i \(-0.806338\pi\)
−0.460951 + 0.887425i \(0.652492\pi\)
\(788\) −4.51578 1.11304i −0.160868 0.0396504i
\(789\) −4.81874 + 12.7060i −0.171552 + 0.452345i
\(790\) 7.90028 4.14639i 0.281079 0.147522i
\(791\) −4.14155 + 10.9204i −0.147257 + 0.388283i
\(792\) −8.31110 21.9146i −0.295322 0.778700i
\(793\) −20.5442 −0.729545
\(794\) −18.6947 27.0840i −0.663452 0.961176i
\(795\) −7.15110 1.76259i −0.253623 0.0625125i
\(796\) −4.01821 + 2.10892i −0.142422 + 0.0747487i
\(797\) −1.16823 0.287943i −0.0413808 0.0101994i 0.218571 0.975821i \(-0.429860\pi\)
−0.259952 + 0.965622i \(0.583707\pi\)
\(798\) −0.167416 −0.00592648
\(799\) −31.4329 + 45.5385i −1.11202 + 1.61104i
\(800\) −8.35962 + 4.38747i −0.295557 + 0.155120i
\(801\) −1.44075 11.8657i −0.0509066 0.419253i
\(802\) 16.4168 23.7839i 0.579699 0.839838i
\(803\) 51.6063 1.82115
\(804\) −0.0985993 + 0.0873513i −0.00347733 + 0.00308064i
\(805\) −1.21790 + 0.300185i −0.0429253 + 0.0105801i
\(806\) −34.7710 8.57029i −1.22476 0.301875i
\(807\) −0.942760 + 1.36582i −0.0331867 + 0.0480793i
\(808\) −2.48732 + 6.55851i −0.0875035 + 0.230728i
\(809\) 0.712943 + 5.87162i 0.0250658 + 0.206435i 0.999861 0.0166658i \(-0.00530515\pi\)
−0.974795 + 0.223101i \(0.928382\pi\)
\(810\) 1.69137 0.416884i 0.0594285 0.0146478i
\(811\) −47.7669 11.7735i −1.67732 0.413423i −0.718069 0.695972i \(-0.754974\pi\)
−0.959253 + 0.282549i \(0.908820\pi\)
\(812\) 1.97699 1.75146i 0.0693787 0.0614642i
\(813\) 13.4840 0.472906
\(814\) 33.1241 47.9885i 1.16100 1.68200i
\(815\) 10.8105 + 5.67378i 0.378675 + 0.198744i
\(816\) −33.1599 −1.16083
\(817\) 0.431512 0.0150967
\(818\) 29.3499 42.5207i 1.02620 1.48670i
\(819\) −4.57952 + 2.40352i −0.160021 + 0.0839857i
\(820\) −0.248480 + 0.359985i −0.00867730 + 0.0125712i
\(821\) −31.1406 + 16.3438i −1.08681 + 0.570403i −0.910323 0.413899i \(-0.864167\pi\)
−0.176490 + 0.984302i \(0.556474\pi\)
\(822\) −12.3321 32.5171i −0.430131 1.13416i
\(823\) −28.1723 6.94385i −0.982025 0.242048i −0.284554 0.958660i \(-0.591845\pi\)
−0.697472 + 0.716613i \(0.745692\pi\)
\(824\) 5.54366 4.91126i 0.193123 0.171092i
\(825\) 14.4382 12.7911i 0.502674 0.445330i
\(826\) −5.54986 2.91279i −0.193104 0.101349i
\(827\) −15.7506 13.9538i −0.547703 0.485223i 0.343296 0.939227i \(-0.388457\pi\)
−0.890999 + 0.454004i \(0.849995\pi\)
\(828\) 0.922791 + 0.817521i 0.0320692 + 0.0284108i
\(829\) −17.8516 + 9.36925i −0.620012 + 0.325407i −0.745316 0.666711i \(-0.767702\pi\)
0.125304 + 0.992118i \(0.460009\pi\)
\(830\) 6.12041 16.1382i 0.212443 0.560165i
\(831\) −18.2115 9.55811i −0.631748 0.331567i
\(832\) −14.7257 3.62956i −0.510522 0.125832i
\(833\) 39.2749 20.6131i 1.36079 0.714200i
\(834\) −9.73571 + 25.6710i −0.337120 + 0.888913i
\(835\) −1.73868 1.54034i −0.0601696 0.0533057i
\(836\) 0.182669 + 0.0958723i 0.00631775 + 0.00331581i
\(837\) −25.0306 36.2631i −0.865184 1.25344i
\(838\) −33.6752 17.6741i −1.16329 0.610541i
\(839\) −12.9114 −0.445753 −0.222876 0.974847i \(-0.571545\pi\)
−0.222876 + 0.974847i \(0.571545\pi\)
\(840\) −1.99172 −0.0687210
\(841\) −13.5412 11.9964i −0.466936 0.413670i
\(842\) 45.2463 11.1522i 1.55929 0.384331i
\(843\) 6.20914 + 16.3722i 0.213854 + 0.563887i
\(844\) 2.01434 0.0693364
\(845\) −3.01523 4.36831i −0.103727 0.150274i
\(846\) 23.9047 0.821861
\(847\) −3.53682 9.32582i −0.121527 0.320439i
\(848\) 5.00873 + 41.2506i 0.172000 + 1.41655i
\(849\) −2.37308 1.24549i −0.0814438 0.0427450i
\(850\) 17.2729 + 45.5449i 0.592456 + 1.56218i
\(851\) 1.50562 12.3999i 0.0516121 0.425063i
\(852\) 0.578858 + 4.76732i 0.0198313 + 0.163326i
\(853\) −1.20958 + 9.96180i −0.0414153 + 0.341085i 0.957242 + 0.289287i \(0.0934183\pi\)
−0.998658 + 0.0517981i \(0.983505\pi\)
\(854\) 6.81381 + 9.87150i 0.233164 + 0.337796i
\(855\) 0.111214 0.161121i 0.00380342 0.00551021i
\(856\) 1.22030 1.76790i 0.0417089 0.0604257i
\(857\) −9.22077 + 4.83943i −0.314975 + 0.165312i −0.614801 0.788682i \(-0.710764\pi\)
0.299826 + 0.953994i \(0.403071\pi\)
\(858\) −17.9923 −0.614246
\(859\) 22.1043 + 19.2457i 0.754190 + 0.656656i
\(860\) −1.26056 −0.0429848
\(861\) 1.11176 0.583499i 0.0378888 0.0198856i
\(862\) 6.35091 9.20088i 0.216313 0.313383i
\(863\) 29.6680 42.9815i 1.00991 1.46311i 0.127953 0.991780i \(-0.459159\pi\)
0.881958 0.471328i \(-0.156225\pi\)
\(864\) 6.15513 + 8.91725i 0.209402 + 0.303371i
\(865\) −0.774009 + 6.37454i −0.0263171 + 0.216741i
\(866\) −2.38136 19.6123i −0.0809220 0.666453i
\(867\) −4.32852 + 35.6485i −0.147004 + 1.21069i
\(868\) 1.22097 + 3.21944i 0.0414425 + 0.109275i
\(869\) 27.9444 + 14.6664i 0.947950 + 0.497522i
\(870\) −1.05104 8.65609i −0.0356336 0.293469i
\(871\) 0.314113 + 0.828247i 0.0106433 + 0.0280641i
\(872\) −43.9886 −1.48964
\(873\) −11.7621 17.0404i −0.398088 0.576729i
\(874\) 0.268359 0.00907736
\(875\) 2.70691 + 7.13754i 0.0915103 + 0.241293i
\(876\) −4.18503 + 1.03152i −0.141399 + 0.0348517i
\(877\) 0.873675 + 0.774008i 0.0295019 + 0.0261364i 0.677745 0.735297i \(-0.262957\pi\)
−0.648243 + 0.761434i \(0.724496\pi\)
\(878\) 34.5063 1.16453
\(879\) −17.4707 −0.589271
\(880\) 15.9034 + 8.34676i 0.536104 + 0.281369i
\(881\) 18.2714 + 26.4708i 0.615581 + 0.891822i 0.999502 0.0315432i \(-0.0100422\pi\)
−0.383922 + 0.923366i \(0.625427\pi\)
\(882\) −16.9673 8.90510i −0.571317 0.299850i
\(883\) −2.92982 2.59560i −0.0985964 0.0873488i 0.612385 0.790560i \(-0.290210\pi\)
−0.710981 + 0.703211i \(0.751749\pi\)
\(884\) 2.65320 6.99592i 0.0892368 0.235298i
\(885\) −3.01724 + 1.58357i −0.101423 + 0.0532311i
\(886\) 23.1386 + 5.70315i 0.777356 + 0.191601i
\(887\) −17.8446 9.36556i −0.599163 0.314465i 0.137735 0.990469i \(-0.456018\pi\)
−0.736898 + 0.676004i \(0.763710\pi\)
\(888\) 7.03319 18.5450i 0.236018 0.622329i
\(889\) −8.21256 + 4.31029i −0.275441 + 0.144562i
\(890\) 5.68919 + 5.04019i 0.190702 + 0.168947i
\(891\) 4.61206 + 4.08593i 0.154510 + 0.136884i
\(892\) −6.27752 3.29470i −0.210187 0.110315i
\(893\) 0.641395 0.568227i 0.0214635 0.0190150i
\(894\) −5.63581 + 4.99289i −0.188490 + 0.166987i
\(895\) 1.38204 + 0.340642i 0.0461965 + 0.0113864i
\(896\) 4.66298 + 12.2953i 0.155779 + 0.410756i
\(897\) −3.41274 + 1.79114i −0.113948 + 0.0598046i
\(898\) −21.8890 + 31.7118i −0.730447 + 1.05824i
\(899\) 54.3573 28.5289i 1.81292 0.951493i
\(900\) 1.96856 2.85196i 0.0656188 0.0950652i
\(901\) 65.7867 2.19167
\(902\) −9.39534 −0.312831
\(903\) 3.20393 + 1.68155i 0.106620 + 0.0559586i
\(904\) 16.8867 24.4646i 0.561642 0.813679i
\(905\) −8.40239 −0.279305
\(906\) 17.5613 15.5580i 0.583436 0.516879i
\(907\) −6.38548 1.57388i −0.212026 0.0522598i 0.131872 0.991267i \(-0.457901\pi\)
−0.343898 + 0.939007i \(0.611747\pi\)
\(908\) −4.99536 + 1.23125i −0.165777 + 0.0408603i
\(909\) −0.696884 5.73935i −0.0231142 0.190362i
\(910\) 1.16622 3.07506i 0.0386597 0.101937i
\(911\) −2.48342 + 3.59786i −0.0822794 + 0.119202i −0.861963 0.506972i \(-0.830765\pi\)
0.779683 + 0.626174i \(0.215380\pi\)
\(912\) 0.498595 + 0.122893i 0.0165101 + 0.00406938i
\(913\) 59.2764 14.6103i 1.96176 0.483531i
\(914\) −32.1176 + 28.4537i −1.06236 + 0.941166i
\(915\) 6.52108 0.215580
\(916\) −3.03033 + 4.39020i −0.100125 + 0.145056i
\(917\) −1.97288 16.2481i −0.0651501 0.536560i
\(918\) 49.5003 25.9798i 1.63375 0.857460i
\(919\) −20.7742 + 30.0966i −0.685278 + 0.992797i 0.313784 + 0.949494i \(0.398403\pi\)
−0.999062 + 0.0433023i \(0.986212\pi\)
\(920\) 3.19261 0.105257
\(921\) −7.22920 1.78184i −0.238210 0.0587135i
\(922\) −36.2881 + 19.0455i −1.19509 + 0.627229i
\(923\) 31.3553 + 7.72839i 1.03207 + 0.254383i
\(924\) 0.982699 + 1.42369i 0.0323284 + 0.0468358i
\(925\) −35.1110 −1.15444
\(926\) 4.60764 + 12.1494i 0.151417 + 0.399253i
\(927\) −2.16470 + 5.70785i −0.0710982 + 0.187470i
\(928\) −13.3667 + 7.01538i −0.438783 + 0.230291i
\(929\) −17.8712 + 47.1226i −0.586337 + 1.54604i 0.232848 + 0.972513i \(0.425195\pi\)
−0.819185 + 0.573529i \(0.805574\pi\)
\(930\) 11.0369 + 2.72036i 0.361915 + 0.0892040i
\(931\) −0.666933 + 0.164384i −0.0218578 + 0.00538747i
\(932\) −0.722754 + 5.95241i −0.0236746 + 0.194978i
\(933\) 8.55304 + 7.57733i 0.280014 + 0.248071i
\(934\) −12.6137 18.2741i −0.412733 0.597947i
\(935\) 16.1529 23.4016i 0.528258 0.765313i
\(936\) 12.7813 3.15030i 0.417769 0.102971i
\(937\) −1.72568 + 14.2123i −0.0563756 + 0.464295i 0.936995 + 0.349342i \(0.113595\pi\)
−0.993371 + 0.114953i \(0.963328\pi\)
\(938\) 0.293793 0.425633i 0.00959268 0.0138974i
\(939\) −16.2157 + 23.4925i −0.529179 + 0.766648i
\(940\) −1.87369 + 1.65994i −0.0611130 + 0.0541414i
\(941\) −3.03040 + 24.9576i −0.0987881 + 0.813593i 0.856138 + 0.516748i \(0.172858\pi\)
−0.954926 + 0.296845i \(0.904066\pi\)
\(942\) −4.49564 37.0249i −0.146476 1.20634i
\(943\) −1.78209 + 0.935314i −0.0580329 + 0.0304580i
\(944\) 14.3903 + 12.7487i 0.468364 + 0.414934i
\(945\) 3.58304 1.88052i 0.116556 0.0611734i
\(946\) −15.3809 22.2830i −0.500075 0.724484i
\(947\) −51.5764 −1.67601 −0.838004 0.545665i \(-0.816277\pi\)
−0.838004 + 0.545665i \(0.816277\pi\)
\(948\) −2.55932 0.630815i −0.0831227 0.0204879i
\(949\) −3.49373 + 28.7735i −0.113411 + 0.934027i
\(950\) −0.0909245 0.748830i −0.00294998 0.0242953i
\(951\) 1.50068 0.787617i 0.0486628 0.0255402i
\(952\) 17.2735 4.25754i 0.559838 0.137988i
\(953\) −20.1767 + 53.2015i −0.653586 + 1.72337i 0.0361921 + 0.999345i \(0.488477\pi\)
−0.689778 + 0.724021i \(0.742292\pi\)
\(954\) −16.1448 23.3898i −0.522707 0.757272i
\(955\) 13.4587 3.31728i 0.435514 0.107345i
\(956\) −1.44992 + 0.357373i −0.0468937 + 0.0115583i
\(957\) 23.0861 20.4525i 0.746268 0.661135i
\(958\) 48.1624 25.2776i 1.55606 0.816681i
\(959\) 12.7730 + 18.5048i 0.412461 + 0.597553i
\(960\) 4.67419 + 1.15208i 0.150859 + 0.0371834i
\(961\) 5.90976 + 48.6713i 0.190637 + 1.57004i
\(962\) 24.5139 + 21.7174i 0.790358 + 0.700196i
\(963\) −0.213423 + 1.75770i −0.00687746 + 0.0566410i
\(964\) −0.330355 2.72072i −0.0106400 0.0876284i
\(965\) −2.91073 + 0.717430i −0.0936997 + 0.0230949i
\(966\) 1.99254 + 1.04576i 0.0641088 + 0.0336469i
\(967\) −11.3034 + 10.0139i −0.363491 + 0.322025i −0.825024 0.565098i \(-0.808838\pi\)
0.461532 + 0.887123i \(0.347300\pi\)
\(968\) 3.05996 + 25.2010i 0.0983507 + 0.809991i
\(969\) 0.288290 0.760158i 0.00926120 0.0244198i
\(970\) 12.7839 + 3.15095i 0.410466 + 0.101171i
\(971\) 7.78350 4.08510i 0.249784 0.131097i −0.335185 0.942152i \(-0.608799\pi\)
0.584969 + 0.811055i \(0.301107\pi\)
\(972\) −5.61448 2.94671i −0.180085 0.0945157i
\(973\) 2.13966 17.6217i 0.0685943 0.564925i
\(974\) −3.74005 30.8021i −0.119839 0.986961i
\(975\) 6.15432 + 8.91608i 0.197096 + 0.285543i
\(976\) −13.0465 34.4007i −0.417607 1.10114i
\(977\) 6.01594 8.71560i 0.192467 0.278837i −0.714855 0.699273i \(-0.753507\pi\)
0.907322 + 0.420436i \(0.138123\pi\)
\(978\) −7.76684 20.4795i −0.248356 0.654861i
\(979\) −3.24059 + 26.6887i −0.103570 + 0.852974i
\(980\) 1.94829 0.480211i 0.0622359 0.0153398i
\(981\) 32.1042 16.8496i 1.02501 0.537966i
\(982\) 11.6866 + 30.8149i 0.372933 + 0.983344i
\(983\) 49.7986 12.2743i 1.58833 0.391488i 0.656483 0.754341i \(-0.272043\pi\)
0.931847 + 0.362852i \(0.118197\pi\)
\(984\) −3.10289 + 0.764795i −0.0989167 + 0.0243808i
\(985\) 5.63940 8.17008i 0.179686 0.260320i
\(986\) 27.6187 + 72.8245i 0.879558 + 2.31921i
\(987\) 6.97662 1.71958i 0.222068 0.0547349i
\(988\) −0.0658209 + 0.0953581i −0.00209404 + 0.00303375i
\(989\) −5.13571 2.69543i −0.163306 0.0857096i
\(990\) −12.2843 −0.390420
\(991\) 21.8548 11.4703i 0.694241 0.364366i −0.0804037 0.996762i \(-0.525621\pi\)
0.774645 + 0.632396i \(0.217929\pi\)
\(992\) −2.37209 19.5359i −0.0753140 0.620266i
\(993\) −25.1831 22.3103i −0.799161 0.707995i
\(994\) −6.68599 17.6295i −0.212067 0.559174i
\(995\) −1.16756 9.61575i −0.0370143 0.304840i
\(996\) −4.51500 + 2.36966i −0.143063 + 0.0750854i
\(997\) 13.3392 19.3252i 0.422458 0.612036i −0.552744 0.833351i \(-0.686419\pi\)
0.975202 + 0.221315i \(0.0710348\pi\)
\(998\) −41.1987 10.1546i −1.30412 0.321437i
\(999\) 4.85716 + 40.0023i 0.153674 + 1.26562i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 859.2.f.a.100.20 840
859.524 even 13 inner 859.2.f.a.524.20 yes 840
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
859.2.f.a.100.20 840 1.1 even 1 trivial
859.2.f.a.524.20 yes 840 859.524 even 13 inner