Properties

Label 859.2.f.a.100.4
Level $859$
Weight $2$
Character 859.100
Analytic conductor $6.859$
Analytic rank $0$
Dimension $840$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [859,2,Mod(100,859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(859, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([22]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("859.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 859 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 859.f (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.85914953363\)
Analytic rank: \(0\)
Dimension: \(840\)
Relative dimension: \(70\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 100.4
Character \(\chi\) \(=\) 859.100
Dual form 859.2.f.a.524.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.20441 + 1.15696i) q^{2} +(1.29739 - 1.87959i) q^{3} +(2.38474 - 3.45489i) q^{4} +(-0.179952 - 0.260706i) q^{5} +(-0.685356 + 5.64442i) q^{6} +(0.00469214 + 0.0386433i) q^{7} +(-0.659588 + 5.43220i) q^{8} +(-0.785826 - 2.07205i) q^{9} +O(q^{10})\) \(q+(-2.20441 + 1.15696i) q^{2} +(1.29739 - 1.87959i) q^{3} +(2.38474 - 3.45489i) q^{4} +(-0.179952 - 0.260706i) q^{5} +(-0.685356 + 5.64442i) q^{6} +(0.00469214 + 0.0386433i) q^{7} +(-0.659588 + 5.43220i) q^{8} +(-0.785826 - 2.07205i) q^{9} +(0.698316 + 0.366504i) q^{10} +(-0.248869 - 2.04962i) q^{11} +(-3.39984 - 8.96465i) q^{12} -1.98457 q^{13} +(-0.0550523 - 0.0797571i) q^{14} -0.723486 q^{15} +(-1.85360 - 4.88753i) q^{16} +(-7.44131 + 1.83412i) q^{17} +(4.12958 + 3.65849i) q^{18} -4.18117 q^{19} -1.32985 q^{20} +(0.0787210 + 0.0413160i) q^{21} +(2.91995 + 4.23028i) q^{22} +(-2.75053 - 1.44359i) q^{23} +(9.35456 + 8.28741i) q^{24} +(1.73744 - 4.58125i) q^{25} +(4.37480 - 2.29607i) q^{26} +(1.73839 + 0.428474i) q^{27} +(0.144698 + 0.0759432i) q^{28} +(0.646273 - 1.70408i) q^{29} +(1.59486 - 0.837048i) q^{30} +(0.477445 + 0.422979i) q^{31} +(1.54894 + 1.37224i) q^{32} +(-4.17533 - 2.19138i) q^{33} +(14.2817 - 12.6525i) q^{34} +(0.00923016 - 0.00817721i) q^{35} +(-9.03270 - 2.22636i) q^{36} +(-0.417728 - 1.10146i) q^{37} +(9.21702 - 4.83747i) q^{38} +(-2.57475 + 3.73017i) q^{39} +(1.53490 - 0.805577i) q^{40} +(-2.47468 + 3.58519i) q^{41} -0.221335 q^{42} +0.328996 q^{43} +(-7.67471 - 4.02800i) q^{44} +(-0.398785 + 0.577740i) q^{45} +7.73349 q^{46} +(-8.82036 + 7.81416i) q^{47} +(-11.5914 - 2.85702i) q^{48} +(6.79512 - 1.67485i) q^{49} +(1.47031 + 12.1091i) q^{50} +(-6.20686 + 16.3662i) q^{51} +(-4.73267 + 6.85646i) q^{52} +(-0.851314 - 0.209830i) q^{53} +(-4.32785 + 1.06672i) q^{54} +(-0.489564 + 0.433716i) q^{55} -0.213013 q^{56} +(-5.42459 + 7.85888i) q^{57} +(0.546910 + 4.50421i) q^{58} +(-2.74074 + 1.43845i) q^{59} +(-1.72532 + 2.49956i) q^{60} -4.46186 q^{61} +(-1.54186 - 0.380034i) q^{62} +(0.0763837 - 0.0400893i) q^{63} +(5.14850 + 1.26899i) q^{64} +(0.357127 + 0.517388i) q^{65} +11.7395 q^{66} +(-3.41249 - 8.99799i) q^{67} +(-11.4089 + 30.0828i) q^{68} +(-6.28186 + 3.29697i) q^{69} +(-0.0108863 + 0.0287049i) q^{70} +(-4.78883 - 1.18034i) q^{71} +(11.7741 - 2.90206i) q^{72} +(0.106690 - 0.878674i) q^{73} +(2.19519 + 1.94477i) q^{74} +(-6.35674 - 9.20932i) q^{75} +(-9.97099 + 14.4455i) q^{76} +(0.0780365 - 0.0192343i) q^{77} +(1.36014 - 11.2017i) q^{78} +(-2.73870 + 3.96769i) q^{79} +(-0.940648 + 1.36276i) q^{80} +(8.03695 - 7.12012i) q^{81} +(1.30727 - 10.7663i) q^{82} +(-0.248151 - 2.04371i) q^{83} +(0.330471 - 0.173444i) q^{84} +(1.81724 + 1.60994i) q^{85} +(-0.725242 + 0.380636i) q^{86} +(-2.36451 - 3.42558i) q^{87} +11.2981 q^{88} +(0.781030 + 0.192507i) q^{89} +(0.210662 - 1.73496i) q^{90} +(-0.00931188 - 0.0766902i) q^{91} +(-11.5467 + 6.06020i) q^{92} +(1.41446 - 0.348632i) q^{93} +(10.4030 - 27.4305i) q^{94} +(0.752410 + 1.09005i) q^{95} +(4.58883 - 1.13104i) q^{96} +(-4.56478 + 1.12512i) q^{97} +(-13.0415 + 11.5538i) q^{98} +(-4.05136 + 2.12632i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9} + 7 q^{10} - 25 q^{11} - 58 q^{12} - 10 q^{13} + 9 q^{14} - 148 q^{15} - 40 q^{16} - q^{17} + 5 q^{18} - 38 q^{19} - 92 q^{20} + 17 q^{21} + 15 q^{22} - 18 q^{23} + 27 q^{24} - 66 q^{25} + 7 q^{26} - 17 q^{27} + 29 q^{28} + 7 q^{29} - 5 q^{30} + 27 q^{31} + 20 q^{32} + 49 q^{33} + 5 q^{34} + 43 q^{35} + 32 q^{36} - 86 q^{37} - 13 q^{38} + 2 q^{39} + 59 q^{40} + 9 q^{41} + 72 q^{42} + 40 q^{43} + 44 q^{44} - 49 q^{45} + 52 q^{46} - 22 q^{47} + 159 q^{48} - 11 q^{49} - 73 q^{50} + 65 q^{51} + 73 q^{52} + 25 q^{53} + 11 q^{54} + 81 q^{55} - 302 q^{56} - 192 q^{57} + 27 q^{58} - 23 q^{59} - 62 q^{60} + 26 q^{61} + 79 q^{62} + 93 q^{63} - 78 q^{64} + 10 q^{65} + 74 q^{66} + 65 q^{67} + 69 q^{68} - 57 q^{69} + 19 q^{70} + 21 q^{71} - 234 q^{72} - 95 q^{73} + 25 q^{74} - 120 q^{75} - 18 q^{76} - 95 q^{77} - 3 q^{78} - 13 q^{79} - 244 q^{80} - 95 q^{81} - 19 q^{82} - 16 q^{83} - 48 q^{84} + 99 q^{85} + 45 q^{86} - 123 q^{87} + 110 q^{88} + 49 q^{89} + 217 q^{90} - 82 q^{91} + 3 q^{92} - 57 q^{93} - 77 q^{94} - 12 q^{95} + 56 q^{96} + 5 q^{97} + 5 q^{98} - 121 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/859\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20441 + 1.15696i −1.55875 + 0.818098i −0.999937 0.0111929i \(-0.996437\pi\)
−0.558818 + 0.829291i \(0.688745\pi\)
\(3\) 1.29739 1.87959i 0.749046 1.08518i −0.244265 0.969709i \(-0.578547\pi\)
0.993311 0.115472i \(-0.0368381\pi\)
\(4\) 2.38474 3.45489i 1.19237 1.72744i
\(5\) −0.179952 0.260706i −0.0804770 0.116591i 0.780678 0.624933i \(-0.214874\pi\)
−0.861155 + 0.508342i \(0.830258\pi\)
\(6\) −0.685356 + 5.64442i −0.279796 + 2.30432i
\(7\) 0.00469214 + 0.0386433i 0.00177346 + 0.0146058i 0.993569 0.113231i \(-0.0361199\pi\)
−0.991795 + 0.127836i \(0.959197\pi\)
\(8\) −0.659588 + 5.43220i −0.233200 + 1.92057i
\(9\) −0.785826 2.07205i −0.261942 0.690685i
\(10\) 0.698316 + 0.366504i 0.220827 + 0.115899i
\(11\) −0.248869 2.04962i −0.0750369 0.617985i −0.980914 0.194443i \(-0.937710\pi\)
0.905877 0.423541i \(-0.139213\pi\)
\(12\) −3.39984 8.96465i −0.981450 2.58787i
\(13\) −1.98457 −0.550420 −0.275210 0.961384i \(-0.588747\pi\)
−0.275210 + 0.961384i \(0.588747\pi\)
\(14\) −0.0550523 0.0797571i −0.0147134 0.0213160i
\(15\) −0.723486 −0.186803
\(16\) −1.85360 4.88753i −0.463399 1.22188i
\(17\) −7.44131 + 1.83412i −1.80478 + 0.444839i −0.990718 0.135935i \(-0.956596\pi\)
−0.814065 + 0.580774i \(0.802750\pi\)
\(18\) 4.12958 + 3.65849i 0.973351 + 0.862314i
\(19\) −4.18117 −0.959226 −0.479613 0.877480i \(-0.659223\pi\)
−0.479613 + 0.877480i \(0.659223\pi\)
\(20\) −1.32985 −0.297363
\(21\) 0.0787210 + 0.0413160i 0.0171783 + 0.00901588i
\(22\) 2.91995 + 4.23028i 0.622536 + 0.901899i
\(23\) −2.75053 1.44359i −0.573526 0.301009i 0.152914 0.988239i \(-0.451134\pi\)
−0.726440 + 0.687230i \(0.758826\pi\)
\(24\) 9.35456 + 8.28741i 1.90949 + 1.69166i
\(25\) 1.73744 4.58125i 0.347488 0.916250i
\(26\) 4.37480 2.29607i 0.857970 0.450297i
\(27\) 1.73839 + 0.428474i 0.334553 + 0.0824598i
\(28\) 0.144698 + 0.0759432i 0.0273453 + 0.0143519i
\(29\) 0.646273 1.70408i 0.120010 0.316440i −0.861527 0.507711i \(-0.830492\pi\)
0.981537 + 0.191271i \(0.0612610\pi\)
\(30\) 1.59486 0.837048i 0.291181 0.152823i
\(31\) 0.477445 + 0.422979i 0.0857517 + 0.0759693i 0.704910 0.709297i \(-0.250988\pi\)
−0.619158 + 0.785266i \(0.712526\pi\)
\(32\) 1.54894 + 1.37224i 0.273817 + 0.242581i
\(33\) −4.17533 2.19138i −0.726831 0.381471i
\(34\) 14.2817 12.6525i 2.44929 2.16988i
\(35\) 0.00923016 0.00817721i 0.00156018 0.00138220i
\(36\) −9.03270 2.22636i −1.50545 0.371060i
\(37\) −0.417728 1.10146i −0.0686741 0.181079i 0.896285 0.443478i \(-0.146256\pi\)
−0.964959 + 0.262399i \(0.915486\pi\)
\(38\) 9.21702 4.83747i 1.49520 0.784741i
\(39\) −2.57475 + 3.73017i −0.412290 + 0.597305i
\(40\) 1.53490 0.805577i 0.242689 0.127373i
\(41\) −2.47468 + 3.58519i −0.386479 + 0.559912i −0.967143 0.254231i \(-0.918178\pi\)
0.580664 + 0.814143i \(0.302793\pi\)
\(42\) −0.221335 −0.0341527
\(43\) 0.328996 0.0501714 0.0250857 0.999685i \(-0.492014\pi\)
0.0250857 + 0.999685i \(0.492014\pi\)
\(44\) −7.67471 4.02800i −1.15701 0.607243i
\(45\) −0.398785 + 0.577740i −0.0594473 + 0.0861243i
\(46\) 7.73349 1.14024
\(47\) −8.82036 + 7.81416i −1.28658 + 1.13981i −0.304265 + 0.952587i \(0.598411\pi\)
−0.982317 + 0.187225i \(0.940051\pi\)
\(48\) −11.5914 2.85702i −1.67307 0.412375i
\(49\) 6.79512 1.67485i 0.970732 0.239264i
\(50\) 1.47031 + 12.1091i 0.207934 + 1.71249i
\(51\) −6.20686 + 16.3662i −0.869135 + 2.29172i
\(52\) −4.73267 + 6.85646i −0.656303 + 0.950819i
\(53\) −0.851314 0.209830i −0.116937 0.0288224i 0.180413 0.983591i \(-0.442257\pi\)
−0.297350 + 0.954769i \(0.596103\pi\)
\(54\) −4.32785 + 1.06672i −0.588946 + 0.145162i
\(55\) −0.489564 + 0.433716i −0.0660128 + 0.0584822i
\(56\) −0.213013 −0.0284650
\(57\) −5.42459 + 7.85888i −0.718505 + 1.04093i
\(58\) 0.546910 + 4.50421i 0.0718129 + 0.591432i
\(59\) −2.74074 + 1.43845i −0.356814 + 0.187271i −0.633600 0.773661i \(-0.718423\pi\)
0.276785 + 0.960932i \(0.410731\pi\)
\(60\) −1.72532 + 2.49956i −0.222738 + 0.322692i
\(61\) −4.46186 −0.571282 −0.285641 0.958337i \(-0.592207\pi\)
−0.285641 + 0.958337i \(0.592207\pi\)
\(62\) −1.54186 0.380034i −0.195816 0.0482643i
\(63\) 0.0763837 0.0400893i 0.00962345 0.00505077i
\(64\) 5.14850 + 1.26899i 0.643562 + 0.158624i
\(65\) 0.357127 + 0.517388i 0.0442962 + 0.0641741i
\(66\) 11.7395 1.44503
\(67\) −3.41249 8.99799i −0.416902 1.09928i −0.964858 0.262772i \(-0.915363\pi\)
0.547956 0.836507i \(-0.315406\pi\)
\(68\) −11.4089 + 30.0828i −1.38353 + 3.64807i
\(69\) −6.28186 + 3.29697i −0.756247 + 0.396909i
\(70\) −0.0108863 + 0.0287049i −0.00130117 + 0.00343089i
\(71\) −4.78883 1.18034i −0.568329 0.140081i −0.0553278 0.998468i \(-0.517620\pi\)
−0.513002 + 0.858388i \(0.671467\pi\)
\(72\) 11.7741 2.90206i 1.38759 0.342011i
\(73\) 0.106690 0.878674i 0.0124872 0.102841i −0.985133 0.171795i \(-0.945043\pi\)
0.997620 + 0.0689543i \(0.0219663\pi\)
\(74\) 2.19519 + 1.94477i 0.255186 + 0.226075i
\(75\) −6.35674 9.20932i −0.734013 1.06340i
\(76\) −9.97099 + 14.4455i −1.14375 + 1.65701i
\(77\) 0.0780365 0.0192343i 0.00889308 0.00219195i
\(78\) 1.36014 11.2017i 0.154005 1.26835i
\(79\) −2.73870 + 3.96769i −0.308128 + 0.446400i −0.946203 0.323574i \(-0.895116\pi\)
0.638075 + 0.769974i \(0.279731\pi\)
\(80\) −0.940648 + 1.36276i −0.105168 + 0.152362i
\(81\) 8.03695 7.12012i 0.892995 0.791124i
\(82\) 1.30727 10.7663i 0.144364 1.18894i
\(83\) −0.248151 2.04371i −0.0272381 0.224326i 0.972733 0.231928i \(-0.0745034\pi\)
−0.999971 + 0.00760169i \(0.997580\pi\)
\(84\) 0.330471 0.173444i 0.0360573 0.0189243i
\(85\) 1.81724 + 1.60994i 0.197108 + 0.174622i
\(86\) −0.725242 + 0.380636i −0.0782048 + 0.0410451i
\(87\) −2.36451 3.42558i −0.253502 0.367260i
\(88\) 11.2981 1.20438
\(89\) 0.781030 + 0.192507i 0.0827890 + 0.0204057i 0.280493 0.959856i \(-0.409502\pi\)
−0.197704 + 0.980262i \(0.563348\pi\)
\(90\) 0.210662 1.73496i 0.0222057 0.182880i
\(91\) −0.00931188 0.0766902i −0.000976150 0.00803932i
\(92\) −11.5467 + 6.06020i −1.20383 + 0.631819i
\(93\) 1.41446 0.348632i 0.146672 0.0361515i
\(94\) 10.4030 27.4305i 1.07299 2.82924i
\(95\) 0.752410 + 1.09005i 0.0771956 + 0.111837i
\(96\) 4.58883 1.13104i 0.468345 0.115437i
\(97\) −4.56478 + 1.12512i −0.463484 + 0.114238i −0.464141 0.885761i \(-0.653637\pi\)
0.000657384 1.00000i \(0.499791\pi\)
\(98\) −13.0415 + 11.5538i −1.31739 + 1.16711i
\(99\) −4.05136 + 2.12632i −0.407177 + 0.213703i
\(100\) −11.6844 16.9277i −1.16844 1.69277i
\(101\) −4.58603 1.13036i −0.456327 0.112475i 0.00445048 0.999990i \(-0.498583\pi\)
−0.460778 + 0.887515i \(0.652430\pi\)
\(102\) −5.25258 43.2589i −0.520083 4.28327i
\(103\) 6.20417 + 5.49641i 0.611315 + 0.541578i 0.910971 0.412469i \(-0.135334\pi\)
−0.299657 + 0.954047i \(0.596872\pi\)
\(104\) 1.30900 10.7806i 0.128358 1.05712i
\(105\) −0.00339470 0.0279579i −0.000331289 0.00272841i
\(106\) 2.11941 0.522388i 0.205856 0.0507388i
\(107\) −10.0993 5.30051i −0.976335 0.512420i −0.100451 0.994942i \(-0.532029\pi\)
−0.875884 + 0.482522i \(0.839721\pi\)
\(108\) 5.62592 4.98413i 0.541355 0.479598i
\(109\) −2.34774 19.3354i −0.224873 1.85199i −0.470209 0.882555i \(-0.655821\pi\)
0.245336 0.969438i \(-0.421102\pi\)
\(110\) 0.577407 1.52250i 0.0550536 0.145164i
\(111\) −2.61224 0.643860i −0.247943 0.0611125i
\(112\) 0.180173 0.0945620i 0.0170247 0.00893527i
\(113\) 11.0753 + 5.81278i 1.04188 + 0.546821i 0.896725 0.442588i \(-0.145940\pi\)
0.145155 + 0.989409i \(0.453632\pi\)
\(114\) 2.86559 23.6003i 0.268387 2.21037i
\(115\) 0.118612 + 0.976856i 0.0110606 + 0.0910923i
\(116\) −4.34622 6.29658i −0.403536 0.584623i
\(117\) 1.55953 + 4.11213i 0.144178 + 0.380167i
\(118\) 4.37749 6.34189i 0.402981 0.583818i
\(119\) −0.105792 0.278951i −0.00969794 0.0255714i
\(120\) 0.477203 3.93012i 0.0435625 0.358769i
\(121\) 6.54134 1.61230i 0.594667 0.146572i
\(122\) 9.83577 5.16221i 0.890489 0.467365i
\(123\) 3.52806 + 9.30274i 0.318115 + 0.838800i
\(124\) 2.59993 0.640824i 0.233480 0.0575477i
\(125\) −3.04489 + 0.750499i −0.272344 + 0.0671266i
\(126\) −0.121999 + 0.176747i −0.0108686 + 0.0157458i
\(127\) −2.99992 7.91014i −0.266200 0.701912i −0.999752 0.0222781i \(-0.992908\pi\)
0.733552 0.679633i \(-0.237861\pi\)
\(128\) −16.8361 + 4.14972i −1.48811 + 0.366786i
\(129\) 0.426834 0.618376i 0.0375807 0.0544450i
\(130\) −1.38585 0.727353i −0.121547 0.0637930i
\(131\) −0.283622 −0.0247802 −0.0123901 0.999923i \(-0.503944\pi\)
−0.0123901 + 0.999923i \(0.503944\pi\)
\(132\) −17.5280 + 9.19942i −1.52562 + 0.800707i
\(133\) −0.0196186 0.161574i −0.00170115 0.0140103i
\(134\) 17.9329 + 15.8872i 1.54917 + 1.37244i
\(135\) −0.201121 0.530312i −0.0173097 0.0456420i
\(136\) −5.05509 41.6324i −0.433471 3.56995i
\(137\) 5.50144 2.88738i 0.470019 0.246685i −0.213046 0.977042i \(-0.568339\pi\)
0.683066 + 0.730357i \(0.260646\pi\)
\(138\) 10.0333 14.5358i 0.854093 1.23737i
\(139\) −2.09970 0.517529i −0.178094 0.0438963i 0.149260 0.988798i \(-0.452311\pi\)
−0.327354 + 0.944902i \(0.606157\pi\)
\(140\) −0.00623983 0.0513896i −0.000527362 0.00434322i
\(141\) 3.24399 + 26.7166i 0.273193 + 2.24995i
\(142\) 11.9222 2.93855i 1.00049 0.246598i
\(143\) 0.493898 + 4.06762i 0.0413018 + 0.340151i
\(144\) −8.67062 + 7.68150i −0.722552 + 0.640125i
\(145\) −0.560562 + 0.138166i −0.0465521 + 0.0114741i
\(146\) 0.781406 + 2.06040i 0.0646696 + 0.170520i
\(147\) 5.66787 14.9450i 0.467478 1.23264i
\(148\) −4.80159 1.18349i −0.394688 0.0972819i
\(149\) −13.1433 11.6439i −1.07674 0.953906i −0.0776652 0.996979i \(-0.524747\pi\)
−0.999072 + 0.0430737i \(0.986285\pi\)
\(150\) 24.6677 + 12.9466i 2.01411 + 1.05709i
\(151\) 11.4728 + 10.1640i 0.933640 + 0.827133i 0.985177 0.171539i \(-0.0548738\pi\)
−0.0515378 + 0.998671i \(0.516412\pi\)
\(152\) 2.75785 22.7129i 0.223691 1.84226i
\(153\) 9.64797 + 13.9775i 0.779992 + 1.13001i
\(154\) −0.149771 + 0.132686i −0.0120689 + 0.0106921i
\(155\) 0.0243559 0.200589i 0.00195631 0.0161117i
\(156\) 6.74721 + 17.7909i 0.540209 + 1.42442i
\(157\) −15.5728 + 3.83836i −1.24285 + 0.306334i −0.805304 0.592863i \(-0.797998\pi\)
−0.437544 + 0.899197i \(0.644152\pi\)
\(158\) 1.44674 11.9150i 0.115097 0.947907i
\(159\) −1.49888 + 1.32789i −0.118869 + 0.105308i
\(160\) 0.0790160 0.650756i 0.00624677 0.0514468i
\(161\) 0.0428792 0.113063i 0.00337935 0.00891062i
\(162\) −9.47903 + 24.9941i −0.744743 + 1.96373i
\(163\) −0.793566 + 0.416496i −0.0621569 + 0.0326224i −0.495515 0.868599i \(-0.665021\pi\)
0.433358 + 0.901222i \(0.357328\pi\)
\(164\) 6.48497 + 17.0995i 0.506391 + 1.33524i
\(165\) 0.180054 + 1.48287i 0.0140172 + 0.115442i
\(166\) 2.91153 + 4.21808i 0.225978 + 0.327386i
\(167\) −13.8283 + 3.40838i −1.07007 + 0.263748i −0.734738 0.678352i \(-0.762695\pi\)
−0.335332 + 0.942100i \(0.608849\pi\)
\(168\) −0.276360 + 0.400377i −0.0213216 + 0.0308897i
\(169\) −9.06149 −0.697038
\(170\) −5.86860 1.44648i −0.450101 0.110940i
\(171\) 3.28567 + 8.66361i 0.251262 + 0.662523i
\(172\) 0.784568 1.13664i 0.0598227 0.0866682i
\(173\) 13.9008 + 12.3151i 1.05686 + 0.936298i 0.998078 0.0619729i \(-0.0197392\pi\)
0.0587839 + 0.998271i \(0.481278\pi\)
\(174\) 9.17562 + 4.81574i 0.695602 + 0.365080i
\(175\) 0.185187 + 0.0456445i 0.0139988 + 0.00345040i
\(176\) −9.55629 + 5.01553i −0.720333 + 0.378060i
\(177\) −0.852103 + 7.01770i −0.0640480 + 0.527482i
\(178\) −1.94444 + 0.479260i −0.145742 + 0.0359221i
\(179\) 7.89490 6.99427i 0.590092 0.522776i −0.314386 0.949295i \(-0.601799\pi\)
0.904479 + 0.426519i \(0.140260\pi\)
\(180\) 1.04503 + 2.75551i 0.0778918 + 0.205384i
\(181\) 1.13113 1.63872i 0.0840760 0.121805i −0.778689 0.627410i \(-0.784115\pi\)
0.862765 + 0.505605i \(0.168731\pi\)
\(182\) 0.109255 + 0.158283i 0.00809852 + 0.0117327i
\(183\) −5.78875 + 8.38645i −0.427917 + 0.619944i
\(184\) 9.65609 13.9893i 0.711857 1.03130i
\(185\) −0.211985 + 0.307114i −0.0155855 + 0.0225795i
\(186\) −2.71469 + 2.40501i −0.199051 + 0.176344i
\(187\) 5.61117 + 14.7954i 0.410329 + 1.08195i
\(188\) 5.96280 + 49.1081i 0.434882 + 3.58157i
\(189\) −0.00840088 + 0.0691874i −0.000611074 + 0.00503265i
\(190\) −2.91978 1.53242i −0.211823 0.111173i
\(191\) 1.73146 4.56548i 0.125284 0.330346i −0.857670 0.514201i \(-0.828088\pi\)
0.982953 + 0.183855i \(0.0588577\pi\)
\(192\) 9.06477 8.03069i 0.654193 0.579565i
\(193\) −7.39796 + 19.5068i −0.532517 + 1.40413i 0.351284 + 0.936269i \(0.385745\pi\)
−0.883801 + 0.467863i \(0.845024\pi\)
\(194\) 8.76094 7.76152i 0.628999 0.557245i
\(195\) 1.43581 0.102820
\(196\) 10.4182 27.4704i 0.744155 1.96217i
\(197\) −4.18400 11.0323i −0.298098 0.786019i −0.997458 0.0712503i \(-0.977301\pi\)
0.699361 0.714769i \(-0.253468\pi\)
\(198\) 6.47080 9.37457i 0.459860 0.666222i
\(199\) 2.34500 + 1.23075i 0.166232 + 0.0872454i 0.545787 0.837924i \(-0.316231\pi\)
−0.379555 + 0.925169i \(0.623923\pi\)
\(200\) 23.7403 + 12.4599i 1.67869 + 0.881045i
\(201\) −21.3398 5.25979i −1.50520 0.370997i
\(202\) 11.4173 2.81411i 0.803318 0.198000i
\(203\) 0.0688837 + 0.0169783i 0.00483469 + 0.00119164i
\(204\) 41.7415 + 60.4730i 2.92249 + 4.23396i
\(205\) 1.38000 0.0963835
\(206\) −20.0357 4.93836i −1.39595 0.344072i
\(207\) −0.829757 + 6.83366i −0.0576721 + 0.474972i
\(208\) 3.67859 + 9.69963i 0.255064 + 0.672548i
\(209\) 1.04057 + 8.56982i 0.0719774 + 0.592787i
\(210\) 0.0398296 + 0.0577032i 0.00274850 + 0.00398190i
\(211\) −1.30491 1.89048i −0.0898335 0.130146i 0.775490 0.631359i \(-0.217503\pi\)
−0.865324 + 0.501213i \(0.832887\pi\)
\(212\) −2.75510 + 2.44080i −0.189221 + 0.167635i
\(213\) −8.43151 + 7.46967i −0.577718 + 0.511813i
\(214\) 28.3955 1.94108
\(215\) −0.0592034 0.0857710i −0.00403764 0.00584953i
\(216\) −3.47418 + 9.16065i −0.236388 + 0.623303i
\(217\) −0.0141051 + 0.0204347i −0.000957515 + 0.00138720i
\(218\) 27.5457 + 39.9069i 1.86563 + 2.70284i
\(219\) −1.51313 1.34051i −0.102248 0.0905835i
\(220\) 0.330958 + 2.72569i 0.0223132 + 0.183766i
\(221\) 14.7678 3.63993i 0.993388 0.244848i
\(222\) 6.50339 1.60294i 0.436479 0.107582i
\(223\) −2.01256 16.5749i −0.134771 1.10994i −0.890477 0.455028i \(-0.849629\pi\)
0.755706 0.654911i \(-0.227294\pi\)
\(224\) −0.0457601 + 0.0662950i −0.00305748 + 0.00442952i
\(225\) −10.8579 −0.723862
\(226\) −31.1398 −2.07139
\(227\) −7.02250 6.22139i −0.466100 0.412928i 0.397112 0.917770i \(-0.370012\pi\)
−0.863212 + 0.504842i \(0.831551\pi\)
\(228\) 14.2153 + 37.4827i 0.941432 + 2.48235i
\(229\) 11.0936 0.733086 0.366543 0.930401i \(-0.380541\pi\)
0.366543 + 0.930401i \(0.380541\pi\)
\(230\) −1.39166 2.01616i −0.0917632 0.132942i
\(231\) 0.0650909 0.171631i 0.00428267 0.0112925i
\(232\) 8.83064 + 4.63468i 0.579760 + 0.304281i
\(233\) 26.8245 14.0786i 1.75733 0.922317i 0.821215 0.570618i \(-0.193296\pi\)
0.936113 0.351699i \(-0.114396\pi\)
\(234\) −8.19543 7.26051i −0.535752 0.474635i
\(235\) 3.62444 + 0.893344i 0.236432 + 0.0582753i
\(236\) −1.56626 + 12.8993i −0.101955 + 0.839672i
\(237\) 3.90447 + 10.2953i 0.253623 + 0.668749i
\(238\) 0.555945 + 0.492525i 0.0360366 + 0.0319256i
\(239\) 21.7197 + 19.2420i 1.40493 + 1.24466i 0.931458 + 0.363850i \(0.118538\pi\)
0.473472 + 0.880809i \(0.343001\pi\)
\(240\) 1.34105 + 3.53606i 0.0865645 + 0.228252i
\(241\) 10.2774 9.10500i 0.662027 0.586505i −0.263743 0.964593i \(-0.584957\pi\)
0.925769 + 0.378089i \(0.123419\pi\)
\(242\) −12.5544 + 11.1223i −0.807030 + 0.714966i
\(243\) −2.30843 19.0116i −0.148086 1.21960i
\(244\) −10.6404 + 15.4152i −0.681179 + 0.986858i
\(245\) −1.65944 1.47013i −0.106018 0.0939234i
\(246\) −18.5403 16.4252i −1.18208 1.04723i
\(247\) 8.29781 0.527977
\(248\) −2.61263 + 2.31458i −0.165902 + 0.146976i
\(249\) −4.16328 2.18506i −0.263837 0.138472i
\(250\) 5.84390 5.17724i 0.369601 0.327438i
\(251\) −10.3241 9.14634i −0.651650 0.577312i 0.271175 0.962530i \(-0.412588\pi\)
−0.922825 + 0.385218i \(0.874126\pi\)
\(252\) 0.0436512 0.359500i 0.00274976 0.0226463i
\(253\) −2.27429 + 5.99682i −0.142984 + 0.377017i
\(254\) 15.7648 + 13.9664i 0.989173 + 0.876331i
\(255\) 5.38369 1.32696i 0.337140 0.0830974i
\(256\) 24.3745 21.5939i 1.52340 1.34962i
\(257\) −4.27307 6.19060i −0.266546 0.386159i 0.666741 0.745290i \(-0.267689\pi\)
−0.933287 + 0.359130i \(0.883073\pi\)
\(258\) −0.225479 + 1.85699i −0.0140377 + 0.115611i
\(259\) 0.0406040 0.0213106i 0.00252301 0.00132418i
\(260\) 2.63917 0.163674
\(261\) −4.03881 −0.249996
\(262\) 0.625221 0.328141i 0.0386263 0.0202726i
\(263\) −15.8070 + 3.89607i −0.974700 + 0.240242i −0.694335 0.719652i \(-0.744302\pi\)
−0.280365 + 0.959894i \(0.590455\pi\)
\(264\) 14.6580 21.2358i 0.902139 1.30697i
\(265\) 0.0984918 + 0.259702i 0.00605030 + 0.0159533i
\(266\) 0.230183 + 0.333478i 0.0141134 + 0.0204468i
\(267\) 1.37513 1.21826i 0.0841566 0.0745563i
\(268\) −39.2249 9.66808i −2.39604 0.590572i
\(269\) 27.4629 1.67444 0.837220 0.546866i \(-0.184179\pi\)
0.837220 + 0.546866i \(0.184179\pi\)
\(270\) 1.05691 + 0.936337i 0.0643212 + 0.0569836i
\(271\) −6.01212 8.71006i −0.365210 0.529099i 0.596700 0.802465i \(-0.296478\pi\)
−0.961910 + 0.273366i \(0.911863\pi\)
\(272\) 22.7575 + 32.9699i 1.37988 + 1.99909i
\(273\) −0.156227 0.0819943i −0.00945529 0.00496252i
\(274\) −8.78684 + 12.7299i −0.530832 + 0.769043i
\(275\) −9.82224 2.42096i −0.592303 0.145990i
\(276\) −3.58991 + 29.5655i −0.216087 + 1.77964i
\(277\) 2.82524 + 23.2679i 0.169752 + 1.39803i 0.789749 + 0.613430i \(0.210211\pi\)
−0.619997 + 0.784604i \(0.712866\pi\)
\(278\) 5.22737 1.28843i 0.313517 0.0772749i
\(279\) 0.501247 1.32168i 0.0300089 0.0791269i
\(280\) 0.0383321 + 0.0555337i 0.00229078 + 0.00331877i
\(281\) 0.330685 0.479081i 0.0197270 0.0285796i −0.812996 0.582269i \(-0.802165\pi\)
0.832723 + 0.553689i \(0.186780\pi\)
\(282\) −38.0613 55.1413i −2.26652 3.28362i
\(283\) −1.92753 15.8747i −0.114580 0.943651i −0.930704 0.365774i \(-0.880804\pi\)
0.816124 0.577877i \(-0.196119\pi\)
\(284\) −15.4980 + 13.7301i −0.919639 + 0.814729i
\(285\) 3.02502 0.179187
\(286\) −5.79484 8.39528i −0.342656 0.496423i
\(287\) −0.150155 0.0788074i −0.00886336 0.00465185i
\(288\) 1.62616 4.28783i 0.0958225 0.252663i
\(289\) 36.9564 19.3962i 2.17390 1.14095i
\(290\) 1.07586 0.953125i 0.0631764 0.0559694i
\(291\) −3.80753 + 10.0396i −0.223201 + 0.588533i
\(292\) −2.78129 2.46401i −0.162763 0.144195i
\(293\) −5.94415 8.61158i −0.347261 0.503094i 0.609968 0.792426i \(-0.291182\pi\)
−0.957229 + 0.289332i \(0.906567\pi\)
\(294\) 4.79646 + 39.5024i 0.279735 + 2.30382i
\(295\) 0.868215 + 0.455674i 0.0505494 + 0.0265304i
\(296\) 6.25887 1.54267i 0.363790 0.0896661i
\(297\) 0.445579 3.66967i 0.0258551 0.212936i
\(298\) 42.4447 + 10.4617i 2.45876 + 0.606029i
\(299\) 5.45862 + 2.86490i 0.315680 + 0.165682i
\(300\) −46.9763 −2.71218
\(301\) 0.00154369 + 0.0127135i 8.89771e−5 + 0.000732792i
\(302\) −37.0500 9.13202i −2.13199 0.525488i
\(303\) −8.07446 + 7.15335i −0.463866 + 0.410949i
\(304\) 7.75020 + 20.4356i 0.444504 + 1.17206i
\(305\) 0.802920 + 1.16323i 0.0459751 + 0.0666064i
\(306\) −37.4396 19.6498i −2.14028 1.12330i
\(307\) 5.32175 + 14.0323i 0.303728 + 0.800865i 0.996795 + 0.0799924i \(0.0254896\pi\)
−0.693067 + 0.720873i \(0.743741\pi\)
\(308\) 0.119644 0.315476i 0.00681736 0.0179759i
\(309\) 18.3802 4.53031i 1.04561 0.257720i
\(310\) 0.178384 + 0.470359i 0.0101315 + 0.0267146i
\(311\) 0.768531 6.32942i 0.0435794 0.358909i −0.954564 0.298005i \(-0.903679\pi\)
0.998144 0.0609035i \(-0.0193982\pi\)
\(312\) −18.5647 16.4469i −1.05102 0.931124i
\(313\) 3.12101 0.176410 0.0882049 0.996102i \(-0.471887\pi\)
0.0882049 + 0.996102i \(0.471887\pi\)
\(314\) 29.8881 26.4785i 1.68668 1.49427i
\(315\) −0.0241969 0.0126995i −0.00136334 0.000715537i
\(316\) 7.17685 + 18.9238i 0.403729 + 1.06455i
\(317\) 16.2088 + 8.50702i 0.910375 + 0.477802i 0.853803 0.520597i \(-0.174290\pi\)
0.0565726 + 0.998398i \(0.481983\pi\)
\(318\) 1.76782 4.66136i 0.0991345 0.261396i
\(319\) −3.65356 0.900522i −0.204560 0.0504196i
\(320\) −0.595650 1.57060i −0.0332978 0.0877992i
\(321\) −23.0655 + 12.1057i −1.28739 + 0.675673i
\(322\) 0.0362867 + 0.298847i 0.00202218 + 0.0166541i
\(323\) 31.1134 7.66876i 1.73119 0.426701i
\(324\) −5.43319 44.7464i −0.301844 2.48591i
\(325\) −3.44807 + 9.09180i −0.191264 + 0.504322i
\(326\) 1.26748 1.83626i 0.0701990 0.101701i
\(327\) −39.3885 20.6727i −2.17819 1.14320i
\(328\) −17.8432 15.8077i −0.985225 0.872833i
\(329\) −0.343351 0.304183i −0.0189296 0.0167701i
\(330\) −2.11255 3.06055i −0.116292 0.168478i
\(331\) 0.843596 6.94764i 0.0463682 0.381877i −0.950989 0.309224i \(-0.899931\pi\)
0.997357 0.0726524i \(-0.0231464\pi\)
\(332\) −7.65256 4.01637i −0.419989 0.220427i
\(333\) −1.95402 + 1.73111i −0.107080 + 0.0948643i
\(334\) 26.5400 23.5124i 1.45220 1.28654i
\(335\) −1.73174 + 2.50886i −0.0946152 + 0.137074i
\(336\) 0.0560161 0.461334i 0.00305593 0.0251678i
\(337\) 10.4806 5.50062i 0.570913 0.299638i −0.154455 0.988000i \(-0.549362\pi\)
0.725368 + 0.688362i \(0.241670\pi\)
\(338\) 19.9753 10.4838i 1.08651 0.570245i
\(339\) 25.2946 13.2756i 1.37382 0.721034i
\(340\) 9.89580 2.43910i 0.536675 0.132279i
\(341\) 0.748127 1.08385i 0.0405134 0.0586937i
\(342\) −17.2665 15.2968i −0.933664 0.827154i
\(343\) 0.193231 + 0.509509i 0.0104335 + 0.0275109i
\(344\) −0.217002 + 1.78717i −0.0116999 + 0.0963577i
\(345\) 1.98997 + 1.04442i 0.107137 + 0.0562296i
\(346\) −44.8913 11.0647i −2.41337 0.594843i
\(347\) 0.938442 2.47447i 0.0503782 0.132836i −0.907465 0.420127i \(-0.861985\pi\)
0.957843 + 0.287291i \(0.0927546\pi\)
\(348\) −17.4737 −0.936689
\(349\) −3.44258 + 3.04986i −0.184277 + 0.163255i −0.750218 0.661191i \(-0.770051\pi\)
0.565941 + 0.824446i \(0.308513\pi\)
\(350\) −0.461037 + 0.113636i −0.0246435 + 0.00607407i
\(351\) −3.44995 0.850335i −0.184144 0.0453875i
\(352\) 2.42710 3.51626i 0.129365 0.187417i
\(353\) −0.112198 0.924033i −0.00597169 0.0491813i 0.989418 0.145090i \(-0.0463473\pi\)
−0.995390 + 0.0959090i \(0.969424\pi\)
\(354\) −6.24084 16.4558i −0.331697 0.874613i
\(355\) 0.554038 + 1.46088i 0.0294053 + 0.0775354i
\(356\) 2.52764 2.23929i 0.133965 0.118682i
\(357\) −0.661566 0.163061i −0.0350138 0.00863012i
\(358\) −9.31148 + 24.5524i −0.492127 + 1.29763i
\(359\) 1.62493 4.28459i 0.0857606 0.226132i −0.885275 0.465069i \(-0.846030\pi\)
0.971035 + 0.238937i \(0.0767988\pi\)
\(360\) −2.87536 2.54735i −0.151545 0.134257i
\(361\) −1.51782 −0.0798855
\(362\) −0.597529 + 4.92109i −0.0314054 + 0.258647i
\(363\) 5.45619 14.3868i 0.286376 0.755111i
\(364\) −0.287162 0.150714i −0.0150514 0.00789958i
\(365\) −0.248274 + 0.130304i −0.0129953 + 0.00682045i
\(366\) 3.05796 25.1846i 0.159842 1.31642i
\(367\) −17.2120 4.24237i −0.898457 0.221450i −0.237068 0.971493i \(-0.576186\pi\)
−0.661389 + 0.750043i \(0.730033\pi\)
\(368\) −1.95722 + 16.1191i −0.102027 + 0.840268i
\(369\) 9.37336 + 2.31033i 0.487958 + 0.120271i
\(370\) 0.111983 0.922266i 0.00582173 0.0479463i
\(371\) 0.00411403 0.0338821i 0.000213590 0.00175907i
\(372\) 2.16862 5.71819i 0.112438 0.296474i
\(373\) −16.1496 23.3967i −0.836192 1.21143i −0.975240 0.221148i \(-0.929020\pi\)
0.139048 0.990286i \(-0.455596\pi\)
\(374\) −29.4871 26.1233i −1.52474 1.35080i
\(375\) −2.53977 + 6.69683i −0.131153 + 0.345823i
\(376\) −36.6303 53.0681i −1.88906 2.73678i
\(377\) −1.28257 + 3.38186i −0.0660558 + 0.174175i
\(378\) −0.0615284 0.162237i −0.00316468 0.00834458i
\(379\) 10.6184 + 9.40705i 0.545429 + 0.483208i 0.890257 0.455458i \(-0.150524\pi\)
−0.344828 + 0.938666i \(0.612063\pi\)
\(380\) 5.56031 0.285238
\(381\) −18.7599 4.62389i −0.961097 0.236889i
\(382\) 1.46525 + 12.0674i 0.0749688 + 0.617423i
\(383\) −17.8209 4.39245i −0.910603 0.224443i −0.243929 0.969793i \(-0.578436\pi\)
−0.666674 + 0.745350i \(0.732283\pi\)
\(384\) −14.0431 + 37.0286i −0.716634 + 1.88961i
\(385\) −0.0190573 0.0168833i −0.000971250 0.000860452i
\(386\) −6.26055 51.5603i −0.318654 2.62435i
\(387\) −0.258533 0.681696i −0.0131420 0.0346526i
\(388\) −6.99865 + 18.4539i −0.355303 + 0.936856i
\(389\) 7.69866 1.89755i 0.390338 0.0962096i −0.0392623 0.999229i \(-0.512501\pi\)
0.429600 + 0.903019i \(0.358655\pi\)
\(390\) −3.16511 + 1.66118i −0.160272 + 0.0841171i
\(391\) 23.1153 + 5.69741i 1.16899 + 0.288130i
\(392\) 4.61612 + 38.0172i 0.233149 + 1.92016i
\(393\) −0.367968 + 0.533093i −0.0185615 + 0.0268910i
\(394\) 21.9873 + 19.4790i 1.10770 + 0.981338i
\(395\) 1.52723 0.0768435
\(396\) −2.31524 + 19.0677i −0.116345 + 0.958189i
\(397\) 2.50621 + 20.6405i 0.125783 + 1.03592i 0.909762 + 0.415130i \(0.136264\pi\)
−0.783979 + 0.620787i \(0.786813\pi\)
\(398\) −6.59327 −0.330491
\(399\) −0.329146 0.172749i −0.0164779 0.00864827i
\(400\) −25.6115 −1.28058
\(401\) 16.1205 8.46072i 0.805022 0.422508i −0.0114207 0.999935i \(-0.503635\pi\)
0.816443 + 0.577427i \(0.195943\pi\)
\(402\) 53.1272 13.0947i 2.64974 0.653103i
\(403\) −0.947522 0.839431i −0.0471994 0.0418150i
\(404\) −14.8417 + 13.1486i −0.738404 + 0.654169i
\(405\) −3.30252 0.813998i −0.164104 0.0404479i
\(406\) −0.171491 + 0.0422688i −0.00851097 + 0.00209777i
\(407\) −2.15362 + 1.13031i −0.106751 + 0.0560272i
\(408\) −84.8103 44.5119i −4.19873 2.20367i
\(409\) −30.9413 + 16.2392i −1.52995 + 0.802978i −0.999012 0.0444344i \(-0.985851\pi\)
−0.530935 + 0.847413i \(0.678159\pi\)
\(410\) −3.04209 + 1.59661i −0.150238 + 0.0788511i
\(411\) 1.71041 14.0865i 0.0843682 0.694834i
\(412\) 33.7848 8.32720i 1.66446 0.410252i
\(413\) −0.0684465 0.0991619i −0.00336803 0.00487944i
\(414\) −6.07718 16.0242i −0.298677 0.787547i
\(415\) −0.488151 + 0.432464i −0.0239624 + 0.0212288i
\(416\) −3.07398 2.72331i −0.150714 0.133521i
\(417\) −3.69686 + 3.27513i −0.181036 + 0.160384i
\(418\) −12.2088 17.6875i −0.597153 0.865125i
\(419\) −17.1211 24.8043i −0.836423 1.21177i −0.975174 0.221440i \(-0.928924\pi\)
0.138751 0.990327i \(-0.455691\pi\)
\(420\) −0.104687 0.0549439i −0.00510819 0.00268099i
\(421\) 10.0981 + 2.48897i 0.492153 + 0.121305i 0.477579 0.878589i \(-0.341515\pi\)
0.0145742 + 0.999894i \(0.495361\pi\)
\(422\) 5.06378 + 2.65768i 0.246501 + 0.129374i
\(423\) 23.1226 + 12.1357i 1.12426 + 0.590058i
\(424\) 1.70136 4.48610i 0.0826251 0.217864i
\(425\) −4.52627 + 37.2772i −0.219556 + 1.80821i
\(426\) 9.94439 26.2212i 0.481807 1.27042i
\(427\) −0.0209357 0.172421i −0.00101315 0.00834403i
\(428\) −42.3968 + 22.2516i −2.04933 + 1.07557i
\(429\) 8.28622 + 4.34894i 0.400062 + 0.209969i
\(430\) 0.229743 + 0.120578i 0.0110792 + 0.00581480i
\(431\) 31.2233 16.3872i 1.50397 0.789346i 0.506627 0.862165i \(-0.330892\pi\)
0.997345 + 0.0728197i \(0.0231998\pi\)
\(432\) −1.12809 9.29064i −0.0542751 0.446996i
\(433\) 6.10513 16.0979i 0.293394 0.773616i −0.704558 0.709646i \(-0.748855\pi\)
0.997952 0.0639693i \(-0.0203760\pi\)
\(434\) 0.00745114 0.0613656i 0.000357666 0.00294564i
\(435\) −0.467570 + 1.23288i −0.0224182 + 0.0591121i
\(436\) −72.4003 37.9986i −3.46735 1.81980i
\(437\) 11.5004 + 6.03590i 0.550141 + 0.288736i
\(438\) 4.88648 + 1.20441i 0.233485 + 0.0575489i
\(439\) 21.9020 + 11.4951i 1.04533 + 0.548629i 0.897788 0.440427i \(-0.145173\pi\)
0.147537 + 0.989056i \(0.452865\pi\)
\(440\) −2.03312 2.94548i −0.0969252 0.140420i
\(441\) −8.81016 12.7637i −0.419531 0.607796i
\(442\) −28.3430 + 25.1097i −1.34814 + 1.19435i
\(443\) −19.4470 17.2285i −0.923955 0.818553i 0.0597740 0.998212i \(-0.480962\pi\)
−0.983729 + 0.179659i \(0.942500\pi\)
\(444\) −8.45398 + 7.48957i −0.401208 + 0.355439i
\(445\) −0.0903605 0.238261i −0.00428350 0.0112947i
\(446\) 23.6131 + 34.2095i 1.11811 + 1.61987i
\(447\) −38.9376 + 9.59726i −1.84169 + 0.453935i
\(448\) −0.0248805 + 0.204909i −0.00117549 + 0.00968105i
\(449\) −10.4214 + 5.46956i −0.491815 + 0.258124i −0.692350 0.721562i \(-0.743424\pi\)
0.200535 + 0.979687i \(0.435732\pi\)
\(450\) 23.9353 12.5622i 1.12832 0.592190i
\(451\) 7.96415 + 4.17991i 0.375017 + 0.196824i
\(452\) 46.4943 24.4021i 2.18691 1.14778i
\(453\) 33.9887 8.37746i 1.59693 0.393607i
\(454\) 22.6784 + 5.58973i 1.06435 + 0.262339i
\(455\) −0.0183179 + 0.0162282i −0.000858755 + 0.000760791i
\(456\) −39.1130 34.6511i −1.83163 1.62269i
\(457\) −6.32752 + 1.55959i −0.295989 + 0.0729547i −0.384514 0.923119i \(-0.625631\pi\)
0.0885248 + 0.996074i \(0.471785\pi\)
\(458\) −24.4549 + 12.8349i −1.14270 + 0.599736i
\(459\) −13.7217 −0.640476
\(460\) 3.65779 + 1.91975i 0.170545 + 0.0895090i
\(461\) 3.03680 0.141438 0.0707190 0.997496i \(-0.477471\pi\)
0.0707190 + 0.997496i \(0.477471\pi\)
\(462\) 0.0550834 + 0.453653i 0.00256271 + 0.0211058i
\(463\) −1.90316 + 15.6739i −0.0884473 + 0.728429i 0.879258 + 0.476346i \(0.158039\pi\)
−0.967705 + 0.252084i \(0.918884\pi\)
\(464\) −9.52668 −0.442265
\(465\) −0.345425 0.306020i −0.0160187 0.0141913i
\(466\) −42.8438 + 62.0699i −1.98470 + 2.87533i
\(467\) −0.761124 6.26842i −0.0352206 0.290068i −0.999667 0.0257906i \(-0.991790\pi\)
0.964447 0.264277i \(-0.0851334\pi\)
\(468\) 17.9260 + 4.41836i 0.828630 + 0.204239i
\(469\) 0.331700 0.174090i 0.0153165 0.00803871i
\(470\) −9.02332 + 2.22405i −0.416215 + 0.102588i
\(471\) −12.9894 + 34.2503i −0.598522 + 1.57817i
\(472\) −6.00620 15.8371i −0.276458 0.728959i
\(473\) −0.0818769 0.674317i −0.00376470 0.0310051i
\(474\) −20.5183 18.1776i −0.942438 0.834927i
\(475\) −7.26453 + 19.1550i −0.333319 + 0.878891i
\(476\) −1.21603 0.299724i −0.0557366 0.0137378i
\(477\) 0.234206 + 1.92886i 0.0107235 + 0.0883163i
\(478\) −70.1414 17.2883i −3.20819 0.790749i
\(479\) 26.8997 1.22908 0.614539 0.788886i \(-0.289342\pi\)
0.614539 + 0.788886i \(0.289342\pi\)
\(480\) −1.12064 0.992799i −0.0511499 0.0453149i
\(481\) 0.829010 + 2.18592i 0.0377996 + 0.0996694i
\(482\) −12.1215 + 31.9618i −0.552120 + 1.45582i
\(483\) −0.156881 0.227282i −0.00713834 0.0103417i
\(484\) 10.0291 26.4445i 0.455867 1.20202i
\(485\) 1.11477 + 0.987597i 0.0506190 + 0.0448445i
\(486\) 27.0845 + 39.2387i 1.22858 + 1.77990i
\(487\) 2.58988 6.82896i 0.117359 0.309450i −0.863446 0.504441i \(-0.831699\pi\)
0.980805 + 0.194991i \(0.0624678\pi\)
\(488\) 2.94299 24.2377i 0.133223 1.09719i
\(489\) −0.246721 + 2.03193i −0.0111571 + 0.0918872i
\(490\) 5.35898 + 1.32087i 0.242094 + 0.0596708i
\(491\) 2.53902 20.9107i 0.114584 0.943685i −0.816112 0.577893i \(-0.803875\pi\)
0.930697 0.365792i \(-0.119202\pi\)
\(492\) 40.5534 + 9.99552i 1.82829 + 0.450633i
\(493\) −1.68363 + 13.8659i −0.0758269 + 0.624490i
\(494\) −18.2918 + 9.60028i −0.822987 + 0.431937i
\(495\) 1.28339 + 0.673577i 0.0576843 + 0.0302750i
\(496\) 1.18233 3.11756i 0.0530884 0.139983i
\(497\) 0.0231423 0.190594i 0.00103808 0.00854933i
\(498\) 11.7056 0.524541
\(499\) −17.8047 15.7735i −0.797046 0.706121i 0.162797 0.986660i \(-0.447948\pi\)
−0.959843 + 0.280539i \(0.909487\pi\)
\(500\) −4.66838 + 12.3095i −0.208776 + 0.550498i
\(501\) −11.5344 + 30.4136i −0.515317 + 1.35878i
\(502\) 33.3405 + 8.21770i 1.48806 + 0.366774i
\(503\) 17.3001 15.3266i 0.771375 0.683379i −0.182626 0.983183i \(-0.558460\pi\)
0.954001 + 0.299804i \(0.0969211\pi\)
\(504\) 0.167391 + 0.441374i 0.00745619 + 0.0196604i
\(505\) 0.530576 + 1.39901i 0.0236103 + 0.0622553i
\(506\) −1.92463 15.8507i −0.0855602 0.704652i
\(507\) −11.7563 + 17.0319i −0.522114 + 0.756412i
\(508\) −34.4827 8.49921i −1.52992 0.377092i
\(509\) 26.1327 6.44112i 1.15831 0.285498i 0.387075 0.922048i \(-0.373486\pi\)
0.771235 + 0.636551i \(0.219639\pi\)
\(510\) −10.3326 + 9.15390i −0.457536 + 0.405342i
\(511\) 0.0344555 0.00152422
\(512\) −16.4503 + 43.3760i −0.727009 + 1.91697i
\(513\) −7.26849 1.79152i −0.320912 0.0790976i
\(514\) 16.5819 + 8.70286i 0.731397 + 0.383867i
\(515\) 0.316493 2.60655i 0.0139463 0.114858i
\(516\) −1.11853 2.94933i −0.0492407 0.129837i
\(517\) 18.2112 + 16.1337i 0.800928 + 0.709560i
\(518\) −0.0648522 + 0.0939547i −0.00284944 + 0.00412813i
\(519\) 41.1820 10.1505i 1.80769 0.445556i
\(520\) −3.04611 + 1.59872i −0.133581 + 0.0701086i
\(521\) 18.0905 9.49464i 0.792560 0.415968i −0.0193044 0.999814i \(-0.506145\pi\)
0.811864 + 0.583846i \(0.198453\pi\)
\(522\) 8.90319 4.67276i 0.389682 0.204521i
\(523\) 3.62655 29.8673i 0.158578 1.30601i −0.668413 0.743791i \(-0.733026\pi\)
0.826990 0.562216i \(-0.190051\pi\)
\(524\) −0.676365 + 0.979883i −0.0295471 + 0.0428064i
\(525\) 0.326052 0.288857i 0.0142301 0.0126067i
\(526\) 30.3375 26.8767i 1.32278 1.17188i
\(527\) −4.32861 2.27183i −0.188557 0.0989625i
\(528\) −2.97107 + 24.4690i −0.129299 + 1.06488i
\(529\) −7.58401 10.9873i −0.329740 0.477711i
\(530\) −0.517582 0.458538i −0.0224823 0.0199176i
\(531\) 5.13430 + 4.54859i 0.222810 + 0.197392i
\(532\) −0.605006 0.317531i −0.0262303 0.0137667i
\(533\) 4.91116 7.11504i 0.212726 0.308187i
\(534\) −1.62187 + 4.27653i −0.0701853 + 0.185063i
\(535\) 0.435514 + 3.58678i 0.0188289 + 0.155070i
\(536\) 51.1297 12.6023i 2.20847 0.544338i
\(537\) −2.90361 23.9134i −0.125300 1.03194i
\(538\) −60.5395 + 31.7736i −2.61004 + 1.36986i
\(539\) −5.12390 13.5106i −0.220702 0.581944i
\(540\) −2.31179 0.569805i −0.0994835 0.0245205i
\(541\) 2.42211 6.38658i 0.104135 0.274580i −0.872815 0.488052i \(-0.837708\pi\)
0.976949 + 0.213471i \(0.0684770\pi\)
\(542\) 23.3304 + 12.2448i 1.00213 + 0.525957i
\(543\) −1.61261 4.25211i −0.0692038 0.182475i
\(544\) −14.0430 7.37034i −0.602089 0.316001i
\(545\) −4.61836 + 4.09151i −0.197829 + 0.175261i
\(546\) 0.439253 0.0187983
\(547\) 10.3692 + 9.18631i 0.443355 + 0.392778i 0.855052 0.518543i \(-0.173525\pi\)
−0.411697 + 0.911321i \(0.635064\pi\)
\(548\) 3.14392 25.8925i 0.134301 1.10607i
\(549\) 3.50624 + 9.24521i 0.149643 + 0.394576i
\(550\) 24.4532 6.02718i 1.04269 0.257000i
\(551\) −2.70218 + 7.12505i −0.115117 + 0.303537i
\(552\) −13.7664 36.2990i −0.585936 1.54499i
\(553\) −0.166175 0.0872154i −0.00706648 0.00370877i
\(554\) −33.1482 48.0234i −1.40833 2.04032i
\(555\) 0.302221 + 0.796891i 0.0128286 + 0.0338261i
\(556\) −6.79524 + 6.02005i −0.288182 + 0.255307i
\(557\) 9.97275 + 2.45806i 0.422559 + 0.104151i 0.444861 0.895600i \(-0.353253\pi\)
−0.0223015 + 0.999751i \(0.507099\pi\)
\(558\) 0.424182 + 3.49345i 0.0179571 + 0.147890i
\(559\) −0.652914 −0.0276153
\(560\) −0.0570753 0.0299554i −0.00241187 0.00126585i
\(561\) 35.0892 + 8.64870i 1.48147 + 0.365149i
\(562\) −0.174688 + 1.43868i −0.00736876 + 0.0606872i
\(563\) −6.09011 + 1.50108i −0.256667 + 0.0632628i −0.365550 0.930792i \(-0.619119\pi\)
0.108882 + 0.994055i \(0.465273\pi\)
\(564\) 100.039 + 52.5045i 4.21240 + 2.21084i
\(565\) −0.477604 3.93342i −0.0200930 0.165480i
\(566\) 22.6155 + 32.7642i 0.950600 + 1.37718i
\(567\) 0.312855 + 0.277166i 0.0131387 + 0.0116399i
\(568\) 9.57050 25.2353i 0.401569 1.05885i
\(569\) 11.6007 10.2773i 0.486326 0.430847i −0.383993 0.923336i \(-0.625451\pi\)
0.870319 + 0.492489i \(0.163913\pi\)
\(570\) −6.66839 + 3.49984i −0.279308 + 0.146592i
\(571\) 11.7089 30.8738i 0.490002 1.29203i −0.430959 0.902372i \(-0.641824\pi\)
0.920960 0.389657i \(-0.127406\pi\)
\(572\) 15.2310 + 7.99383i 0.636839 + 0.334239i
\(573\) −6.33485 9.17761i −0.264642 0.383400i
\(574\) 0.422181 0.0176215
\(575\) −11.3923 + 10.0927i −0.475093 + 0.420896i
\(576\) −1.41641 11.6652i −0.0590170 0.486049i
\(577\) 6.27686 + 9.09359i 0.261309 + 0.378571i 0.931575 0.363550i \(-0.118435\pi\)
−0.670266 + 0.742121i \(0.733820\pi\)
\(578\) −59.0263 + 85.5144i −2.45517 + 3.55693i
\(579\) 27.0668 + 39.2130i 1.12486 + 1.62964i
\(580\) −0.859444 + 2.26617i −0.0356865 + 0.0940975i
\(581\) 0.0778113 0.0191788i 0.00322816 0.000795669i
\(582\) −3.22213 26.5367i −0.133562 1.09998i
\(583\) −0.218207 + 1.79709i −0.00903719 + 0.0744280i
\(584\) 4.70276 + 1.15913i 0.194602 + 0.0479650i
\(585\) 0.791415 1.14656i 0.0327210 0.0474046i
\(586\) 23.0667 + 12.1063i 0.952875 + 0.500107i
\(587\) −23.3594 33.8420i −0.964147 1.39681i −0.917429 0.397901i \(-0.869739\pi\)
−0.0467188 0.998908i \(-0.514876\pi\)
\(588\) −38.1167 55.2216i −1.57191 2.27730i
\(589\) −1.99628 1.76855i −0.0822552 0.0728718i
\(590\) −2.44110 −0.100499
\(591\) −26.1645 6.44896i −1.07626 0.265275i
\(592\) −4.60911 + 4.08332i −0.189433 + 0.167823i
\(593\) −16.8446 24.4036i −0.691724 1.00214i −0.998728 0.0504270i \(-0.983942\pi\)
0.307004 0.951708i \(-0.400674\pi\)
\(594\) 3.26344 + 8.60499i 0.133901 + 0.353067i
\(595\) −0.0536865 + 0.0777783i −0.00220093 + 0.00318860i
\(596\) −71.5716 + 17.6408i −2.93169 + 0.722596i
\(597\) 5.35566 2.81087i 0.219193 0.115041i
\(598\) −15.3476 −0.627611
\(599\) −19.3017 −0.788646 −0.394323 0.918972i \(-0.629021\pi\)
−0.394323 + 0.918972i \(0.629021\pi\)
\(600\) 54.2197 28.4567i 2.21351 1.16174i
\(601\) 1.02963 8.47974i 0.0419993 0.345896i −0.956528 0.291641i \(-0.905799\pi\)
0.998527 0.0542545i \(-0.0172782\pi\)
\(602\) −0.0181120 0.0262397i −0.000738189 0.00106945i
\(603\) −15.9627 + 14.1417i −0.650051 + 0.575895i
\(604\) 62.4749 15.3987i 2.54207 0.626563i
\(605\) −1.59746 1.41523i −0.0649461 0.0575372i
\(606\) 9.52327 25.1108i 0.386856 1.02006i
\(607\) 2.19441 18.0726i 0.0890685 0.733545i −0.877935 0.478781i \(-0.841079\pi\)
0.967003 0.254765i \(-0.0819980\pi\)
\(608\) −6.47639 5.73758i −0.262652 0.232690i
\(609\) 0.121281 0.107446i 0.00491455 0.00435391i
\(610\) −3.11578 1.63529i −0.126154 0.0662110i
\(611\) 17.5046 15.5077i 0.708161 0.627375i
\(612\) 71.2985 2.88207
\(613\) 26.8323 + 23.7713i 1.08374 + 0.960114i 0.999340 0.0363175i \(-0.0115628\pi\)
0.0844045 + 0.996432i \(0.473101\pi\)
\(614\) −27.9662 24.7759i −1.12862 0.999873i
\(615\) 1.79039 2.59383i 0.0721957 0.104593i
\(616\) 0.0530124 + 0.436596i 0.00213593 + 0.0175910i
\(617\) −31.4711 + 27.8809i −1.26698 + 1.12244i −0.280273 + 0.959920i \(0.590425\pi\)
−0.986705 + 0.162524i \(0.948036\pi\)
\(618\) −35.2761 + 31.2519i −1.41901 + 1.25714i
\(619\) 0.888727 + 2.34338i 0.0357210 + 0.0941885i 0.951690 0.307061i \(-0.0993454\pi\)
−0.915969 + 0.401249i \(0.868576\pi\)
\(620\) −0.634929 0.562498i −0.0254994 0.0225905i
\(621\) −4.16295 3.68805i −0.167053 0.147996i
\(622\) 5.62876 + 14.8418i 0.225693 + 0.595103i
\(623\) −0.00377438 + 0.0310848i −0.000151217 + 0.00124539i
\(624\) 23.0039 + 5.66994i 0.920891 + 0.226979i
\(625\) −17.5936 15.5866i −0.703744 0.623463i
\(626\) −6.87999 + 3.61090i −0.274980 + 0.144320i
\(627\) 17.4578 + 9.16254i 0.697196 + 0.365916i
\(628\) −23.8760 + 62.9559i −0.952757 + 2.51221i
\(629\) 5.12865 + 7.43014i 0.204493 + 0.296259i
\(630\) 0.0680329 0.00271049
\(631\) 6.73178 + 17.7503i 0.267988 + 0.706626i 0.999687 + 0.0249990i \(0.00795825\pi\)
−0.731699 + 0.681627i \(0.761273\pi\)
\(632\) −19.7469 17.4942i −0.785489 0.695882i
\(633\) −5.24630 −0.208522
\(634\) −45.5731 −1.80994
\(635\) −1.52238 + 2.20554i −0.0604137 + 0.0875243i
\(636\) 1.01328 + 8.34511i 0.0401792 + 0.330905i
\(637\) −13.4854 + 3.32385i −0.534310 + 0.131696i
\(638\) 9.09583 2.24192i 0.360107 0.0887585i
\(639\) 1.31746 + 10.8503i 0.0521179 + 0.429229i
\(640\) 4.11154 + 3.64250i 0.162523 + 0.143983i
\(641\) −12.6409 18.3135i −0.499284 0.723338i 0.489613 0.871940i \(-0.337138\pi\)
−0.988897 + 0.148602i \(0.952523\pi\)
\(642\) 36.8399 53.3718i 1.45396 2.10642i
\(643\) 0.631821 1.66597i 0.0249166 0.0656996i −0.921981 0.387236i \(-0.873430\pi\)
0.946897 + 0.321536i \(0.104199\pi\)
\(644\) −0.288365 0.417769i −0.0113632 0.0164624i
\(645\) −0.238024 −0.00937218
\(646\) −59.7142 + 52.9022i −2.34942 + 2.08141i
\(647\) −24.0058 + 21.2672i −0.943764 + 0.836102i −0.986630 0.162979i \(-0.947890\pi\)
0.0428657 + 0.999081i \(0.486351\pi\)
\(648\) 33.3768 + 48.3547i 1.31117 + 1.89955i
\(649\) 3.63037 + 5.25951i 0.142505 + 0.206454i
\(650\) −2.91794 24.0314i −0.114451 0.942588i
\(651\) 0.0201091 + 0.0530234i 0.000788139 + 0.00207815i
\(652\) −0.453501 + 3.73491i −0.0177605 + 0.146270i
\(653\) 20.0432 + 4.94020i 0.784351 + 0.193325i 0.611101 0.791553i \(-0.290727\pi\)
0.173250 + 0.984878i \(0.444573\pi\)
\(654\) 110.746 4.33051
\(655\) 0.0510384 + 0.0739419i 0.00199424 + 0.00288915i
\(656\) 22.1098 + 5.44957i 0.863241 + 0.212770i
\(657\) −1.90450 + 0.469417i −0.0743016 + 0.0183137i
\(658\) 1.10882 + 0.273299i 0.0432262 + 0.0106543i
\(659\) 33.3277 + 17.4917i 1.29826 + 0.681380i 0.965197 0.261524i \(-0.0842250\pi\)
0.333064 + 0.942904i \(0.391917\pi\)
\(660\) 5.55255 + 2.91420i 0.216133 + 0.113435i
\(661\) −13.4574 + 19.4964i −0.523432 + 0.758322i −0.992154 0.125024i \(-0.960099\pi\)
0.468722 + 0.883346i \(0.344715\pi\)
\(662\) 6.17854 + 16.2915i 0.240136 + 0.633186i
\(663\) 12.3179 32.4797i 0.478389 1.26141i
\(664\) 11.2655 0.437187
\(665\) −0.0385929 + 0.0341903i −0.00149657 + 0.00132584i
\(666\) 2.30463 6.07682i 0.0893027 0.235472i
\(667\) −4.23759 + 3.75418i −0.164080 + 0.145362i
\(668\) −21.2014 + 55.9035i −0.820306 + 2.16297i
\(669\) −33.7651 17.7213i −1.30543 0.685145i
\(670\) 0.914809 7.53413i 0.0353422 0.291069i
\(671\) 1.11042 + 9.14513i 0.0428673 + 0.353044i
\(672\) 0.0652387 + 0.172020i 0.00251664 + 0.00663583i
\(673\) −11.3622 + 10.0660i −0.437979 + 0.388015i −0.853097 0.521752i \(-0.825279\pi\)
0.415118 + 0.909767i \(0.363740\pi\)
\(674\) −16.7395 + 24.2513i −0.644780 + 0.934125i
\(675\) 4.98329 7.21954i 0.191807 0.277880i
\(676\) −21.6093 + 31.3064i −0.831126 + 1.20409i
\(677\) 19.9974 + 28.9713i 0.768564 + 1.11346i 0.990381 + 0.138368i \(0.0441858\pi\)
−0.221817 + 0.975088i \(0.571199\pi\)
\(678\) −40.4003 + 58.5300i −1.55157 + 2.24783i
\(679\) −0.0648969 0.171119i −0.00249051 0.00656695i
\(680\) −9.94414 + 8.80974i −0.381340 + 0.337838i
\(681\) −20.8046 + 5.12786i −0.797232 + 0.196500i
\(682\) −0.395205 + 3.25481i −0.0151332 + 0.124633i
\(683\) −36.2333 + 19.0167i −1.38643 + 0.727655i −0.982347 0.187068i \(-0.940102\pi\)
−0.404083 + 0.914722i \(0.632409\pi\)
\(684\) 37.7673 + 9.30879i 1.44407 + 0.355931i
\(685\) −1.74275 0.914666i −0.0665870 0.0349476i
\(686\) −1.01545 0.899607i −0.0387699 0.0343472i
\(687\) 14.3927 20.8514i 0.549115 0.795531i
\(688\) −0.609825 1.60798i −0.0232493 0.0613035i
\(689\) 1.68949 + 0.416422i 0.0643644 + 0.0158644i
\(690\) −5.59508 −0.213001
\(691\) −8.07443 + 11.6978i −0.307166 + 0.445006i −0.945918 0.324406i \(-0.894836\pi\)
0.638752 + 0.769413i \(0.279451\pi\)
\(692\) 75.6971 18.6576i 2.87757 0.709257i
\(693\) −0.101178 0.146581i −0.00384342 0.00556815i
\(694\) 0.794159 + 6.54049i 0.0301459 + 0.248274i
\(695\) 0.242922 + 0.640534i 0.00921457 + 0.0242968i
\(696\) 20.1680 10.5850i 0.764467 0.401223i
\(697\) 11.8392 31.2173i 0.448441 1.18244i
\(698\) 4.06028 10.7061i 0.153684 0.405231i
\(699\) 8.33978 68.6843i 0.315439 2.59788i
\(700\) 0.599319 0.530950i 0.0226521 0.0200680i
\(701\) 3.77804 31.1150i 0.142695 1.17520i −0.728777 0.684751i \(-0.759911\pi\)
0.871472 0.490446i \(-0.163166\pi\)
\(702\) 8.58891 2.11698i 0.324168 0.0799001i
\(703\) 1.74659 + 4.60539i 0.0658740 + 0.173695i
\(704\) 1.31965 10.8683i 0.0497362 0.409614i
\(705\) 6.38141 5.65344i 0.240338 0.212921i
\(706\) 1.31640 + 1.90714i 0.0495435 + 0.0717762i
\(707\) 0.0221623 0.182523i 0.000833500 0.00686449i
\(708\) 22.2133 + 19.6793i 0.834827 + 0.739593i
\(709\) −31.1906 16.3701i −1.17139 0.614791i −0.237160 0.971471i \(-0.576217\pi\)
−0.934227 + 0.356679i \(0.883909\pi\)
\(710\) −2.91152 2.57938i −0.109267 0.0968023i
\(711\) 10.3734 + 2.55682i 0.389033 + 0.0958881i
\(712\) −1.56089 + 4.11574i −0.0584970 + 0.154244i
\(713\) −0.702619 1.85265i −0.0263133 0.0693824i
\(714\) 1.64702 0.405954i 0.0616382 0.0151924i
\(715\) 0.971572 0.860738i 0.0363347 0.0321898i
\(716\) −5.33716 43.9555i −0.199459 1.64269i
\(717\) 64.3458 15.8598i 2.40304 0.592295i
\(718\) 1.37510 + 11.3250i 0.0513184 + 0.422645i
\(719\) 0.351152 + 2.89200i 0.0130958 + 0.107853i 0.997791 0.0664320i \(-0.0211615\pi\)
−0.984695 + 0.174285i \(0.944238\pi\)
\(720\) 3.56291 + 0.878177i 0.132782 + 0.0327277i
\(721\) −0.183289 + 0.265539i −0.00682602 + 0.00988920i
\(722\) 3.34591 1.75607i 0.124522 0.0653541i
\(723\) −3.77987 31.1300i −0.140575 1.15774i
\(724\) −2.96415 7.81583i −0.110162 0.290473i
\(725\) −6.68397 5.92148i −0.248236 0.219918i
\(726\) 4.61732 + 38.0270i 0.171365 + 1.41132i
\(727\) 22.1929 11.6477i 0.823089 0.431990i 6.70287e−5 1.00000i \(-0.499979\pi\)
0.823022 + 0.568010i \(0.192286\pi\)
\(728\) 0.422738 0.0156677
\(729\) −10.2068 5.35696i −0.378031 0.198406i
\(730\) 0.396542 0.574490i 0.0146767 0.0212628i
\(731\) −2.44816 + 0.603417i −0.0905484 + 0.0223182i
\(732\) 15.1696 + 39.9990i 0.560685 + 1.47840i
\(733\) −8.28254 + 11.9993i −0.305922 + 0.443205i −0.945549 0.325481i \(-0.894474\pi\)
0.639626 + 0.768686i \(0.279089\pi\)
\(734\) 42.8505 10.5617i 1.58164 0.389840i
\(735\) −4.91618 + 1.21173i −0.181336 + 0.0446953i
\(736\) −2.27946 6.01044i −0.0840219 0.221548i
\(737\) −17.5932 + 9.23364i −0.648055 + 0.340125i
\(738\) −23.3357 + 5.75174i −0.859000 + 0.211724i
\(739\) −3.79329 + 31.2406i −0.139539 + 1.14920i 0.739739 + 0.672894i \(0.234949\pi\)
−0.879278 + 0.476310i \(0.841974\pi\)
\(740\) 0.555515 + 1.46477i 0.0204211 + 0.0538461i
\(741\) 10.7655 15.5965i 0.395479 0.572951i
\(742\) 0.0301314 + 0.0794499i 0.00110616 + 0.00291670i
\(743\) 10.3657 + 15.0174i 0.380282 + 0.550934i 0.965654 0.259831i \(-0.0836668\pi\)
−0.585372 + 0.810765i \(0.699051\pi\)
\(744\) 0.960881 + 7.91357i 0.0352276 + 0.290126i
\(745\) −0.670476 + 5.52186i −0.0245643 + 0.202305i
\(746\) 62.6694 + 32.8914i 2.29449 + 1.20424i
\(747\) −4.03967 + 2.12018i −0.147804 + 0.0775735i
\(748\) 64.4977 + 15.8973i 2.35827 + 0.581261i
\(749\) 0.157442 0.415140i 0.00575280 0.0151689i
\(750\) −2.14929 17.7010i −0.0784810 0.646349i
\(751\) −35.9535 + 31.8520i −1.31196 + 1.16230i −0.336609 + 0.941644i \(0.609280\pi\)
−0.975353 + 0.220652i \(0.929181\pi\)
\(752\) 54.5413 + 28.6255i 1.98892 + 1.04386i
\(753\) −30.5857 + 7.53869i −1.11460 + 0.274725i
\(754\) −1.08538 8.93891i −0.0395272 0.325536i
\(755\) 0.585259 4.82004i 0.0212997 0.175419i
\(756\) 0.219001 + 0.194018i 0.00796499 + 0.00705636i
\(757\) 6.33105 + 52.1409i 0.230106 + 1.89509i 0.411071 + 0.911604i \(0.365155\pi\)
−0.180965 + 0.983490i \(0.557922\pi\)
\(758\) −34.2909 8.45195i −1.24550 0.306989i
\(759\) 8.32092 + 12.0549i 0.302030 + 0.437566i
\(760\) −6.41767 + 3.36825i −0.232793 + 0.122179i
\(761\) −31.4542 + 27.8660i −1.14021 + 1.01014i −0.140415 + 0.990093i \(0.544844\pi\)
−0.999799 + 0.0200490i \(0.993618\pi\)
\(762\) 46.7042 11.5115i 1.69191 0.417019i
\(763\) 0.736167 0.181449i 0.0266510 0.00656889i
\(764\) −11.6441 16.8695i −0.421270 0.610315i
\(765\) 1.90784 5.03056i 0.0689781 0.181880i
\(766\) 44.3664 10.9353i 1.60302 0.395110i
\(767\) 5.43919 2.85471i 0.196398 0.103077i
\(768\) −8.96453 73.8295i −0.323480 2.66409i
\(769\) −1.34246 + 11.0561i −0.0484102 + 0.398694i 0.948282 + 0.317428i \(0.102819\pi\)
−0.996692 + 0.0812657i \(0.974104\pi\)
\(770\) 0.0615435 + 0.0151691i 0.00221787 + 0.000546657i
\(771\) −17.1796 −0.618708
\(772\) 49.7517 + 72.0778i 1.79060 + 2.59414i
\(773\) 22.0259 11.5601i 0.792217 0.415788i −0.0195207 0.999809i \(-0.506214\pi\)
0.811738 + 0.584022i \(0.198522\pi\)
\(774\) 1.35861 + 1.20363i 0.0488343 + 0.0432634i
\(775\) 2.76731 1.45239i 0.0994046 0.0521716i
\(776\) −3.10099 25.5389i −0.111319 0.916794i
\(777\) 0.0126239 0.103967i 0.000452878 0.00372979i
\(778\) −14.7756 + 13.0901i −0.529732 + 0.469301i
\(779\) 10.3470 14.9903i 0.370721 0.537082i
\(780\) 3.42402 4.96055i 0.122600 0.177616i
\(781\) −1.22746 + 10.1090i −0.0439220 + 0.361730i
\(782\) −57.5473 + 14.1841i −2.05789 + 0.507224i
\(783\) 1.85363 2.68544i 0.0662432 0.0959698i
\(784\) −20.7813 30.1069i −0.742188 1.07525i
\(785\) 3.80305 + 3.36920i 0.135737 + 0.120252i
\(786\) 0.194382 1.60088i 0.00693339 0.0571016i
\(787\) 47.1705 11.6265i 1.68145 0.414439i 0.721006 0.692929i \(-0.243680\pi\)
0.960439 + 0.278490i \(0.0898338\pi\)
\(788\) −48.0931 11.8539i −1.71325 0.422277i
\(789\) −13.1847 + 34.7653i −0.469389 + 1.23768i
\(790\) −3.36665 + 1.76696i −0.119780 + 0.0628655i
\(791\) −0.172658 + 0.455262i −0.00613901 + 0.0161872i
\(792\) −8.87836 23.4103i −0.315479 0.831849i
\(793\) 8.85485 0.314445
\(794\) −29.4051 42.6006i −1.04355 1.51184i
\(795\) 0.615914 + 0.151809i 0.0218442 + 0.00538412i
\(796\) 9.84429 5.16668i 0.348922 0.183128i
\(797\) −37.0905 9.14198i −1.31381 0.323826i −0.480678 0.876897i \(-0.659609\pi\)
−0.833134 + 0.553072i \(0.813456\pi\)
\(798\) 0.925437 0.0327601
\(799\) 51.3030 74.3252i 1.81497 2.62944i
\(800\) 8.97778 4.71190i 0.317413 0.166591i
\(801\) −0.214870 1.76961i −0.00759206 0.0625262i
\(802\) −25.7476 + 37.3018i −0.909179 + 1.31717i
\(803\) −1.82750 −0.0644912
\(804\) −69.0619 + 61.1835i −2.43562 + 2.15777i
\(805\) −0.0371924 + 0.00916710i −0.00131086 + 0.000323098i
\(806\) 3.05992 + 0.754203i 0.107781 + 0.0265657i
\(807\) 35.6299 51.6189i 1.25423 1.81707i
\(808\) 9.16521 24.1667i 0.322431 0.850181i
\(809\) 5.51186 + 45.3942i 0.193787 + 1.59598i 0.687389 + 0.726289i \(0.258757\pi\)
−0.493603 + 0.869688i \(0.664320\pi\)
\(810\) 8.22188 2.02651i 0.288888 0.0712044i
\(811\) −27.6633 6.81839i −0.971390 0.239426i −0.278474 0.960444i \(-0.589828\pi\)
−0.692917 + 0.721018i \(0.743675\pi\)
\(812\) 0.222928 0.197497i 0.00782323 0.00693077i
\(813\) −24.1714 −0.847727
\(814\) 3.43974 4.98332i 0.120563 0.174665i
\(815\) 0.251387 + 0.131938i 0.00880569 + 0.00462158i
\(816\) 91.4951 3.20297
\(817\) −1.37559 −0.0481257
\(818\) 49.4191 71.5959i 1.72790 2.50329i
\(819\) −0.151589 + 0.0795599i −0.00529694 + 0.00278005i
\(820\) 3.29094 4.76775i 0.114925 0.166497i
\(821\) −31.0366 + 16.2893i −1.08319 + 0.568500i −0.909247 0.416256i \(-0.863342\pi\)
−0.173939 + 0.984756i \(0.555650\pi\)
\(822\) 12.5271 + 33.0313i 0.436933 + 1.15210i
\(823\) −45.2723 11.1586i −1.57809 0.388965i −0.649589 0.760285i \(-0.725059\pi\)
−0.928505 + 0.371320i \(0.878905\pi\)
\(824\) −33.9498 + 30.0769i −1.18270 + 1.04778i
\(825\) −17.2937 + 15.3208i −0.602088 + 0.533403i
\(826\) 0.265611 + 0.139403i 0.00924179 + 0.00485047i
\(827\) −15.6470 13.8620i −0.544100 0.482030i 0.345723 0.938337i \(-0.387634\pi\)
−0.889823 + 0.456306i \(0.849172\pi\)
\(828\) 21.6308 + 19.1632i 0.751722 + 0.665967i
\(829\) −48.8147 + 25.6199i −1.69540 + 0.889817i −0.713449 + 0.700707i \(0.752868\pi\)
−0.981956 + 0.189110i \(0.939440\pi\)
\(830\) 0.575741 1.51810i 0.0199842 0.0526941i
\(831\) 47.3995 + 24.8772i 1.64427 + 0.862980i
\(832\) −10.2175 2.51840i −0.354230 0.0873097i
\(833\) −47.4927 + 24.9261i −1.64553 + 0.863639i
\(834\) 4.36019 11.4969i 0.150981 0.398105i
\(835\) 3.37702 + 2.99178i 0.116867 + 0.103535i
\(836\) 32.0893 + 16.8417i 1.10983 + 0.582484i
\(837\) 0.648749 + 0.939875i 0.0224240 + 0.0324868i
\(838\) 66.4397 + 34.8703i 2.29512 + 1.20457i
\(839\) 15.7465 0.543629 0.271815 0.962350i \(-0.412376\pi\)
0.271815 + 0.962350i \(0.412376\pi\)
\(840\) 0.154112 0.00531737
\(841\) 19.2206 + 17.0280i 0.662779 + 0.587171i
\(842\) −25.1401 + 6.19648i −0.866385 + 0.213545i
\(843\) −0.471448 1.24310i −0.0162375 0.0428148i
\(844\) −9.64327 −0.331935
\(845\) 1.63063 + 2.36238i 0.0560955 + 0.0812684i
\(846\) −65.0124 −2.23517
\(847\) 0.0929973 + 0.245214i 0.00319542 + 0.00842564i
\(848\) 0.552441 + 4.54976i 0.0189709 + 0.156239i
\(849\) −32.3386 16.9726i −1.10986 0.582498i
\(850\) −33.1506 87.4110i −1.13706 2.99817i
\(851\) −0.441081 + 3.63263i −0.0151201 + 0.124525i
\(852\) 5.69993 + 46.9431i 0.195276 + 1.60824i
\(853\) −3.21714 + 26.4955i −0.110153 + 0.907189i 0.827943 + 0.560813i \(0.189511\pi\)
−0.938095 + 0.346377i \(0.887412\pi\)
\(854\) 0.245636 + 0.355865i 0.00840548 + 0.0121774i
\(855\) 1.66739 2.41563i 0.0570234 0.0826127i
\(856\) 35.4548 51.3652i 1.21182 1.75563i
\(857\) −41.6392 + 21.8539i −1.42237 + 0.746516i −0.988034 0.154236i \(-0.950708\pi\)
−0.434333 + 0.900752i \(0.643016\pi\)
\(858\) −23.2978 −0.795374
\(859\) 0.962852 29.2929i 0.0328521 0.999460i
\(860\) −0.437514 −0.0149191
\(861\) −0.342934 + 0.179986i −0.0116872 + 0.00613390i
\(862\) −49.8695 + 72.2485i −1.69856 + 2.46079i
\(863\) −18.6464 + 27.0140i −0.634731 + 0.919567i −0.999935 0.0113608i \(-0.996384\pi\)
0.365204 + 0.930927i \(0.380999\pi\)
\(864\) 2.10469 + 3.04917i 0.0716030 + 0.103735i
\(865\) 0.709123 5.84015i 0.0241109 0.198571i
\(866\) 5.16648 + 42.5498i 0.175564 + 1.44590i
\(867\) 11.4898 94.6271i 0.390214 3.21370i
\(868\) 0.0369628 + 0.0974629i 0.00125460 + 0.00330811i
\(869\) 8.81385 + 4.62587i 0.298989 + 0.156922i
\(870\) −0.395682 3.25874i −0.0134149 0.110482i
\(871\) 6.77231 + 17.8571i 0.229471 + 0.605065i
\(872\) 106.582 3.60933
\(873\) 5.91843 + 8.57433i 0.200309 + 0.290197i
\(874\) −32.3350 −1.09375
\(875\) −0.0432888 0.114143i −0.00146343 0.00385874i
\(876\) −8.23973 + 2.03091i −0.278395 + 0.0686182i
\(877\) −28.6250 25.3595i −0.966598 0.856331i 0.0230667 0.999734i \(-0.492657\pi\)
−0.989664 + 0.143403i \(0.954195\pi\)
\(878\) −61.5804 −2.07824
\(879\) −23.8981 −0.806062
\(880\) 3.02725 + 1.58882i 0.102049 + 0.0535593i
\(881\) 19.7750 + 28.6490i 0.666236 + 0.965210i 0.999748 + 0.0224638i \(0.00715104\pi\)
−0.333511 + 0.942746i \(0.608234\pi\)
\(882\) 34.1884 + 17.9435i 1.15118 + 0.604188i
\(883\) −37.7950 33.4835i −1.27190 1.12681i −0.985677 0.168647i \(-0.946060\pi\)
−0.286227 0.958162i \(-0.592401\pi\)
\(884\) 22.6417 59.7013i 0.761523 2.00797i
\(885\) 1.98289 1.04070i 0.0666541 0.0349828i
\(886\) 62.8020 + 15.4793i 2.10988 + 0.520038i
\(887\) −26.7199 14.0237i −0.897166 0.470869i −0.0479110 0.998852i \(-0.515256\pi\)
−0.849255 + 0.527982i \(0.822949\pi\)
\(888\) 5.22058 13.7655i 0.175191 0.461942i
\(889\) 0.291598 0.153042i 0.00977987 0.00513287i
\(890\) 0.474851 + 0.420681i 0.0159170 + 0.0141013i
\(891\) −16.5937 14.7007i −0.555910 0.492494i
\(892\) −62.0639 32.5737i −2.07805 1.09065i
\(893\) 36.8794 32.6723i 1.23412 1.09334i
\(894\) 74.7309 66.2058i 2.49937 2.21425i
\(895\) −3.24415 0.799610i −0.108440 0.0267280i
\(896\) −0.239356 0.631129i −0.00799632 0.0210846i
\(897\) 12.4668 6.54307i 0.416253 0.218467i
\(898\) 16.6449 24.1143i 0.555448 0.804705i
\(899\) 1.02935 0.540245i 0.0343308 0.0180182i
\(900\) −25.8933 + 37.5129i −0.863110 + 1.25043i
\(901\) 6.71974 0.223867
\(902\) −22.3923 −0.745582
\(903\) 0.0258988 + 0.0135928i 0.000861860 + 0.000452339i
\(904\) −38.8814 + 56.3294i −1.29317 + 1.87349i
\(905\) −0.630772 −0.0209676
\(906\) −65.2326 + 57.7911i −2.16721 + 1.91998i
\(907\) −1.43575 0.353880i −0.0476732 0.0117504i 0.215407 0.976524i \(-0.430892\pi\)
−0.263080 + 0.964774i \(0.584738\pi\)
\(908\) −38.2410 + 9.42557i −1.26907 + 0.312798i
\(909\) 1.26167 + 10.3908i 0.0418469 + 0.344640i
\(910\) 0.0216047 0.0569668i 0.000716188 0.00188843i
\(911\) 30.8030 44.6259i 1.02055 1.47852i 0.148619 0.988895i \(-0.452517\pi\)
0.871932 0.489628i \(-0.162867\pi\)
\(912\) 48.4655 + 11.9457i 1.60485 + 0.395561i
\(913\) −4.12708 + 1.01723i −0.136586 + 0.0336655i
\(914\) 12.1441 10.7587i 0.401690 0.355866i
\(915\) 3.22809 0.106717
\(916\) 26.4553 38.3272i 0.874109 1.26636i
\(917\) −0.00133080 0.0109601i −4.39468e−5 0.000361934i
\(918\) 30.2484 15.8756i 0.998346 0.523972i
\(919\) −16.9383 + 24.5394i −0.558743 + 0.809479i −0.995953 0.0898806i \(-0.971351\pi\)
0.437209 + 0.899360i \(0.355967\pi\)
\(920\) −5.38471 −0.177529
\(921\) 33.2793 + 8.20261i 1.09659 + 0.270285i
\(922\) −6.69437 + 3.51348i −0.220467 + 0.115710i
\(923\) 9.50375 + 2.34246i 0.312820 + 0.0771032i
\(924\) −0.437740 0.634176i −0.0144006 0.0208629i
\(925\) −5.77184 −0.189777
\(926\) −13.9388 36.7537i −0.458058 1.20780i
\(927\) 6.51346 17.1746i 0.213930 0.564088i
\(928\) 3.33945 1.75268i 0.109623 0.0575345i
\(929\) −6.14828 + 16.2117i −0.201718 + 0.531888i −0.997257 0.0740150i \(-0.976419\pi\)
0.795539 + 0.605903i \(0.207188\pi\)
\(930\) 1.11551 + 0.274949i 0.0365791 + 0.00901594i
\(931\) −28.4116 + 7.00282i −0.931151 + 0.229508i
\(932\) 15.3294 126.249i 0.502132 4.13543i
\(933\) −10.8996 9.65623i −0.356838 0.316131i
\(934\) 8.93017 + 12.9376i 0.292204 + 0.423331i
\(935\) 2.84751 4.12533i 0.0931235 0.134913i
\(936\) −23.3666 + 5.75934i −0.763760 + 0.188250i
\(937\) −2.35361 + 19.3837i −0.0768889 + 0.633237i 0.902419 + 0.430860i \(0.141790\pi\)
−0.979308 + 0.202377i \(0.935133\pi\)
\(938\) −0.529788 + 0.767530i −0.0172982 + 0.0250608i
\(939\) 4.04915 5.86621i 0.132139 0.191436i
\(940\) 11.7297 10.3916i 0.382582 0.338938i
\(941\) −1.30175 + 10.7208i −0.0424357 + 0.349489i 0.955990 + 0.293399i \(0.0947865\pi\)
−0.998426 + 0.0560901i \(0.982137\pi\)
\(942\) −10.9924 90.5302i −0.358150 2.94963i
\(943\) 11.9822 6.28875i 0.390195 0.204790i
\(944\) 12.1107 + 10.7292i 0.394170 + 0.349204i
\(945\) 0.0195493 0.0102603i 0.000635939 0.000333767i
\(946\) 0.960652 + 1.39174i 0.0312335 + 0.0452495i
\(947\) 43.5476 1.41511 0.707553 0.706660i \(-0.249799\pi\)
0.707553 + 0.706660i \(0.249799\pi\)
\(948\) 44.8801 + 11.0619i 1.45764 + 0.359275i
\(949\) −0.211734 + 1.74379i −0.00687318 + 0.0566058i
\(950\) −6.14763 50.6303i −0.199456 1.64266i
\(951\) 37.0187 19.4289i 1.20041 0.630026i
\(952\) 1.58510 0.390691i 0.0513732 0.0126624i
\(953\) 19.3476 51.0155i 0.626731 1.65256i −0.124265 0.992249i \(-0.539657\pi\)
0.750997 0.660306i \(-0.229573\pi\)
\(954\) −2.74791 3.98103i −0.0889668 0.128891i
\(955\) −1.50182 + 0.370167i −0.0485979 + 0.0119783i
\(956\) 118.275 29.1521i 3.82527 0.942845i
\(957\) −6.43269 + 5.69887i −0.207939 + 0.184218i
\(958\) −59.2980 + 31.1220i −1.91583 + 1.00551i
\(959\) 0.137391 + 0.199046i 0.00443659 + 0.00642752i
\(960\) −3.72487 0.918098i −0.120220 0.0296315i
\(961\) −3.68759 30.3701i −0.118955 0.979680i
\(962\) −4.35651 3.85953i −0.140460 0.124436i
\(963\) −3.04667 + 25.0915i −0.0981774 + 0.808564i
\(964\) −6.94781 57.2204i −0.223774 1.84294i
\(965\) 6.41682 1.58160i 0.206565 0.0509136i
\(966\) 0.608788 + 0.319517i 0.0195874 + 0.0102803i
\(967\) −6.81606 + 6.03850i −0.219190 + 0.194185i −0.765571 0.643351i \(-0.777543\pi\)
0.546381 + 0.837537i \(0.316005\pi\)
\(968\) 4.44372 + 36.5973i 0.142826 + 1.17628i
\(969\) 25.9520 68.4297i 0.833697 2.19828i
\(970\) −3.60002 0.887326i −0.115590 0.0284903i
\(971\) 25.7375 13.5081i 0.825954 0.433494i 0.00189536 0.999998i \(-0.499397\pi\)
0.824059 + 0.566504i \(0.191704\pi\)
\(972\) −71.1880 37.3623i −2.28336 1.19840i
\(973\) 0.0101469 0.0835676i 0.000325296 0.00267905i
\(974\) 2.19170 + 18.0502i 0.0702265 + 0.578367i
\(975\) 12.6154 + 18.2765i 0.404015 + 0.585317i
\(976\) 8.27048 + 21.8075i 0.264732 + 0.698040i
\(977\) −18.7430 + 27.1540i −0.599643 + 0.868732i −0.998841 0.0481323i \(-0.984673\pi\)
0.399198 + 0.916865i \(0.369288\pi\)
\(978\) −1.80700 4.76467i −0.0577815 0.152357i
\(979\) 0.200192 1.64873i 0.00639816 0.0526936i
\(980\) −9.03647 + 2.22729i −0.288659 + 0.0711482i
\(981\) −38.2190 + 20.0589i −1.22024 + 0.640431i
\(982\) 18.5959 + 49.0333i 0.593418 + 1.56472i
\(983\) −6.94164 + 1.71096i −0.221404 + 0.0545712i −0.348457 0.937325i \(-0.613294\pi\)
0.127053 + 0.991896i \(0.459448\pi\)
\(984\) −52.8614 + 13.0292i −1.68516 + 0.415355i
\(985\) −2.12326 + 3.07608i −0.0676528 + 0.0980120i
\(986\) −12.3310 32.5141i −0.392699 1.03546i
\(987\) −1.01720 + 0.250717i −0.0323777 + 0.00798040i
\(988\) 19.7881 28.6680i 0.629543 0.912051i
\(989\) −0.904913 0.474935i −0.0287746 0.0151021i
\(990\) −3.60844 −0.114684
\(991\) −27.2813 + 14.3184i −0.866620 + 0.454837i −0.838586 0.544770i \(-0.816617\pi\)
−0.0280345 + 0.999607i \(0.508925\pi\)
\(992\) 0.159104 + 1.31034i 0.00505156 + 0.0416034i
\(993\) −11.9642 10.5994i −0.379673 0.336361i
\(994\) 0.169496 + 0.446924i 0.00537608 + 0.0141756i
\(995\) −0.101124 0.832829i −0.00320584 0.0264025i
\(996\) −17.4775 + 9.17288i −0.553794 + 0.290654i
\(997\) 11.1156 16.1037i 0.352035 0.510011i −0.606462 0.795112i \(-0.707412\pi\)
0.958497 + 0.285101i \(0.0920273\pi\)
\(998\) 57.4982 + 14.1720i 1.82008 + 0.448608i
\(999\) −0.254227 2.09375i −0.00804339 0.0662432i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 859.2.f.a.100.4 840
859.524 even 13 inner 859.2.f.a.524.4 yes 840
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
859.2.f.a.100.4 840 1.1 even 1 trivial
859.2.f.a.524.4 yes 840 859.524 even 13 inner