Properties

Label 859.2.f.a.524.1
Level $859$
Weight $2$
Character 859.524
Analytic conductor $6.859$
Analytic rank $0$
Dimension $840$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [859,2,Mod(100,859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(859, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([22]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("859.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 859 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 859.f (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.85914953363\)
Analytic rank: \(0\)
Dimension: \(840\)
Relative dimension: \(70\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

Embedding invariants

Embedding label 524.1
Character \(\chi\) \(=\) 859.524
Dual form 859.2.f.a.100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.48316 - 1.30326i) q^{2} +(-0.107649 - 0.155957i) q^{3} +(3.33145 + 4.82644i) q^{4} +(0.315645 - 0.457291i) q^{5} +(0.0640574 + 0.527560i) q^{6} +(-0.162393 + 1.33743i) q^{7} +(-1.30634 - 10.7587i) q^{8} +(1.05108 - 2.77147i) q^{9} +O(q^{10})\) \(q+(-2.48316 - 1.30326i) q^{2} +(-0.107649 - 0.155957i) q^{3} +(3.33145 + 4.82644i) q^{4} +(0.315645 - 0.457291i) q^{5} +(0.0640574 + 0.527560i) q^{6} +(-0.162393 + 1.33743i) q^{7} +(-1.30634 - 10.7587i) q^{8} +(1.05108 - 2.77147i) q^{9} +(-1.37977 + 0.724157i) q^{10} +(0.445108 - 3.66580i) q^{11} +(0.394088 - 1.03912i) q^{12} +5.88536 q^{13} +(2.14626 - 3.10940i) q^{14} -0.105297 q^{15} +(-6.61833 + 17.4511i) q^{16} +(-0.137731 - 0.0339478i) q^{17} +(-6.22195 + 5.51217i) q^{18} -2.45468 q^{19} +3.25864 q^{20} +(0.226062 - 0.118646i) q^{21} +(-5.88277 + 8.52266i) q^{22} +(-0.885034 + 0.464502i) q^{23} +(-1.53726 + 1.36190i) q^{24} +(1.66354 + 4.38640i) q^{25} +(-14.6143 - 7.67016i) q^{26} +(-1.09736 + 0.270476i) q^{27} +(-6.99601 + 3.67179i) q^{28} +(0.189875 + 0.500659i) q^{29} +(0.261468 + 0.137229i) q^{30} +(-1.07134 + 0.949122i) q^{31} +(22.9534 - 20.3350i) q^{32} +(-0.619621 + 0.325202i) q^{33} +(0.297766 + 0.263798i) q^{34} +(0.560334 + 0.496413i) q^{35} +(16.8780 - 4.16004i) q^{36} +(4.13803 - 10.9111i) q^{37} +(6.09536 + 3.19909i) q^{38} +(-0.633554 - 0.917861i) q^{39} +(-5.33219 - 2.79855i) q^{40} +(5.05797 + 7.32774i) q^{41} -0.715975 q^{42} -5.45910 q^{43} +(19.1756 - 10.0641i) q^{44} +(-0.935601 - 1.35545i) q^{45} +2.80305 q^{46} +(-7.41265 - 6.56704i) q^{47} +(3.43408 - 0.846423i) q^{48} +(5.03426 + 1.24083i) q^{49} +(1.58579 - 13.0601i) q^{50} +(0.00953230 + 0.0251346i) q^{51} +(19.6068 + 28.4053i) q^{52} +(-8.74760 + 2.15609i) q^{53} +(3.07742 + 0.758517i) q^{54} +(-1.53584 - 1.36064i) q^{55} +14.6011 q^{56} +(0.264244 + 0.382824i) q^{57} +(0.181000 - 1.49067i) q^{58} +(5.53914 + 2.90716i) q^{59} +(-0.350790 - 0.508207i) q^{60} +9.22891 q^{61} +(3.89725 - 0.960587i) q^{62} +(3.53595 + 1.85581i) q^{63} +(-47.2555 + 11.6474i) q^{64} +(1.85768 - 2.69132i) q^{65} +1.96244 q^{66} +(3.88701 - 10.2492i) q^{67} +(-0.294999 - 0.777848i) q^{68} +(0.167715 + 0.0880238i) q^{69} +(-0.744443 - 1.96293i) q^{70} +(11.6561 - 2.87297i) q^{71} +(-31.1905 - 7.68776i) q^{72} +(-1.79871 - 14.8137i) q^{73} +(-24.4954 + 21.7010i) q^{74} +(0.505009 - 0.731632i) q^{75} +(-8.17765 - 11.8474i) q^{76} +(4.83045 + 1.19060i) q^{77} +(0.377001 + 3.10488i) q^{78} +(-5.67316 - 8.21899i) q^{79} +(5.89119 + 8.53486i) q^{80} +(-6.49565 - 5.75464i) q^{81} +(-3.00978 - 24.7878i) q^{82} +(1.28301 - 10.5665i) q^{83} +(1.32575 + 0.695810i) q^{84} +(-0.0589983 + 0.0522679i) q^{85} +(13.5558 + 7.11464i) q^{86} +(0.0576412 - 0.0835078i) q^{87} -40.0206 q^{88} +(-11.1238 + 2.74178i) q^{89} +(0.556736 + 4.58513i) q^{90} +(-0.955740 + 7.87123i) q^{91} +(-5.19034 - 2.72410i) q^{92} +(0.263351 + 0.0649101i) q^{93} +(9.84822 + 25.9676i) q^{94} +(-0.774808 + 1.12250i) q^{95} +(-5.64229 - 1.39070i) q^{96} +(6.91023 + 1.70322i) q^{97} +(-10.8837 - 9.64214i) q^{98} +(-9.69181 - 5.08665i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9} + 7 q^{10} - 25 q^{11} - 58 q^{12} - 10 q^{13} + 9 q^{14} - 148 q^{15} - 40 q^{16} - q^{17} + 5 q^{18} - 38 q^{19} - 92 q^{20} + 17 q^{21} + 15 q^{22} - 18 q^{23} + 27 q^{24} - 66 q^{25} + 7 q^{26} - 17 q^{27} + 29 q^{28} + 7 q^{29} - 5 q^{30} + 27 q^{31} + 20 q^{32} + 49 q^{33} + 5 q^{34} + 43 q^{35} + 32 q^{36} - 86 q^{37} - 13 q^{38} + 2 q^{39} + 59 q^{40} + 9 q^{41} + 72 q^{42} + 40 q^{43} + 44 q^{44} - 49 q^{45} + 52 q^{46} - 22 q^{47} + 159 q^{48} - 11 q^{49} - 73 q^{50} + 65 q^{51} + 73 q^{52} + 25 q^{53} + 11 q^{54} + 81 q^{55} - 302 q^{56} - 192 q^{57} + 27 q^{58} - 23 q^{59} - 62 q^{60} + 26 q^{61} + 79 q^{62} + 93 q^{63} - 78 q^{64} + 10 q^{65} + 74 q^{66} + 65 q^{67} + 69 q^{68} - 57 q^{69} + 19 q^{70} + 21 q^{71} - 234 q^{72} - 95 q^{73} + 25 q^{74} - 120 q^{75} - 18 q^{76} - 95 q^{77} - 3 q^{78} - 13 q^{79} - 244 q^{80} - 95 q^{81} - 19 q^{82} - 16 q^{83} - 48 q^{84} + 99 q^{85} + 45 q^{86} - 123 q^{87} + 110 q^{88} + 49 q^{89} + 217 q^{90} - 82 q^{91} + 3 q^{92} - 57 q^{93} - 77 q^{94} - 12 q^{95} + 56 q^{96} + 5 q^{97} + 5 q^{98} - 121 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/859\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{13}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.48316 1.30326i −1.75586 0.921545i −0.938396 0.345562i \(-0.887688\pi\)
−0.817462 0.575983i \(-0.804619\pi\)
\(3\) −0.107649 0.155957i −0.0621513 0.0900416i 0.790676 0.612235i \(-0.209729\pi\)
−0.852827 + 0.522193i \(0.825114\pi\)
\(4\) 3.33145 + 4.82644i 1.66573 + 2.41322i
\(5\) 0.315645 0.457291i 0.141161 0.204507i −0.746026 0.665916i \(-0.768041\pi\)
0.887187 + 0.461410i \(0.152656\pi\)
\(6\) 0.0640574 + 0.527560i 0.0261513 + 0.215375i
\(7\) −0.162393 + 1.33743i −0.0613787 + 0.505499i 0.929305 + 0.369314i \(0.120407\pi\)
−0.990683 + 0.136185i \(0.956516\pi\)
\(8\) −1.30634 10.7587i −0.461862 3.80377i
\(9\) 1.05108 2.77147i 0.350360 0.923824i
\(10\) −1.37977 + 0.724157i −0.436321 + 0.228999i
\(11\) 0.445108 3.66580i 0.134205 1.10528i −0.757555 0.652771i \(-0.773606\pi\)
0.891760 0.452508i \(-0.149471\pi\)
\(12\) 0.394088 1.03912i 0.113763 0.299969i
\(13\) 5.88536 1.63230 0.816152 0.577837i \(-0.196103\pi\)
0.816152 + 0.577837i \(0.196103\pi\)
\(14\) 2.14626 3.10940i 0.573613 0.831022i
\(15\) −0.105297 −0.0271875
\(16\) −6.61833 + 17.4511i −1.65458 + 4.36278i
\(17\) −0.137731 0.0339478i −0.0334048 0.00823354i 0.222578 0.974915i \(-0.428553\pi\)
−0.255983 + 0.966681i \(0.582399\pi\)
\(18\) −6.22195 + 5.51217i −1.46653 + 1.29923i
\(19\) −2.45468 −0.563142 −0.281571 0.959540i \(-0.590856\pi\)
−0.281571 + 0.959540i \(0.590856\pi\)
\(20\) 3.25864 0.728655
\(21\) 0.226062 0.118646i 0.0493308 0.0258908i
\(22\) −5.88277 + 8.52266i −1.25421 + 1.81704i
\(23\) −0.885034 + 0.464502i −0.184542 + 0.0968553i −0.554464 0.832208i \(-0.687077\pi\)
0.369922 + 0.929063i \(0.379384\pi\)
\(24\) −1.53726 + 1.36190i −0.313793 + 0.277996i
\(25\) 1.66354 + 4.38640i 0.332708 + 0.877280i
\(26\) −14.6143 7.67016i −2.86609 1.50424i
\(27\) −1.09736 + 0.270476i −0.211187 + 0.0520530i
\(28\) −6.99601 + 3.67179i −1.32212 + 0.693903i
\(29\) 0.189875 + 0.500659i 0.0352589 + 0.0929700i 0.951489 0.307681i \(-0.0995531\pi\)
−0.916231 + 0.400651i \(0.868784\pi\)
\(30\) 0.261468 + 0.137229i 0.0477373 + 0.0250545i
\(31\) −1.07134 + 0.949122i −0.192418 + 0.170467i −0.753831 0.657068i \(-0.771796\pi\)
0.561413 + 0.827536i \(0.310258\pi\)
\(32\) 22.9534 20.3350i 4.05763 3.59475i
\(33\) −0.619621 + 0.325202i −0.107862 + 0.0566104i
\(34\) 0.297766 + 0.263798i 0.0510665 + 0.0452410i
\(35\) 0.560334 + 0.496413i 0.0947138 + 0.0839091i
\(36\) 16.8780 4.16004i 2.81299 0.693341i
\(37\) 4.13803 10.9111i 0.680289 1.79377i 0.0758545 0.997119i \(-0.475832\pi\)
0.604434 0.796655i \(-0.293399\pi\)
\(38\) 6.09536 + 3.19909i 0.988798 + 0.518961i
\(39\) −0.633554 0.917861i −0.101450 0.146975i
\(40\) −5.33219 2.79855i −0.843094 0.442490i
\(41\) 5.05797 + 7.32774i 0.789923 + 1.14440i 0.986476 + 0.163907i \(0.0524098\pi\)
−0.196553 + 0.980493i \(0.562975\pi\)
\(42\) −0.715975 −0.110477
\(43\) −5.45910 −0.832505 −0.416253 0.909249i \(-0.636657\pi\)
−0.416253 + 0.909249i \(0.636657\pi\)
\(44\) 19.1756 10.0641i 2.89083 1.51723i
\(45\) −0.935601 1.35545i −0.139471 0.202059i
\(46\) 2.80305 0.413286
\(47\) −7.41265 6.56704i −1.08125 0.957901i −0.0819972 0.996633i \(-0.526130\pi\)
−0.999250 + 0.0387315i \(0.987668\pi\)
\(48\) 3.43408 0.846423i 0.495666 0.122171i
\(49\) 5.03426 + 1.24083i 0.719179 + 0.177262i
\(50\) 1.58579 13.0601i 0.224264 1.84698i
\(51\) 0.00953230 + 0.0251346i 0.00133479 + 0.00351955i
\(52\) 19.6068 + 28.4053i 2.71897 + 3.93911i
\(53\) −8.74760 + 2.15609i −1.20158 + 0.296162i −0.788788 0.614666i \(-0.789291\pi\)
−0.412788 + 0.910827i \(0.635445\pi\)
\(54\) 3.07742 + 0.758517i 0.418784 + 0.103221i
\(55\) −1.53584 1.36064i −0.207093 0.183468i
\(56\) 14.6011 1.95115
\(57\) 0.264244 + 0.382824i 0.0350000 + 0.0507063i
\(58\) 0.181000 1.49067i 0.0237665 0.195735i
\(59\) 5.53914 + 2.90716i 0.721134 + 0.378480i 0.785015 0.619477i \(-0.212655\pi\)
−0.0638805 + 0.997958i \(0.520348\pi\)
\(60\) −0.350790 0.508207i −0.0452868 0.0656093i
\(61\) 9.22891 1.18164 0.590821 0.806803i \(-0.298804\pi\)
0.590821 + 0.806803i \(0.298804\pi\)
\(62\) 3.89725 0.960587i 0.494952 0.121995i
\(63\) 3.53595 + 1.85581i 0.445488 + 0.233810i
\(64\) −47.2555 + 11.6474i −5.90694 + 1.45593i
\(65\) 1.85768 2.69132i 0.230417 0.333817i
\(66\) 1.96244 0.241560
\(67\) 3.88701 10.2492i 0.474873 1.25214i −0.457036 0.889448i \(-0.651089\pi\)
0.931910 0.362690i \(-0.118142\pi\)
\(68\) −0.294999 0.777848i −0.0357739 0.0943279i
\(69\) 0.167715 + 0.0880238i 0.0201905 + 0.0105968i
\(70\) −0.744443 1.96293i −0.0889779 0.234615i
\(71\) 11.6561 2.87297i 1.38332 0.340959i 0.523707 0.851899i \(-0.324549\pi\)
0.859616 + 0.510940i \(0.170703\pi\)
\(72\) −31.1905 7.68776i −3.67583 0.906011i
\(73\) −1.79871 14.8137i −0.210523 1.73382i −0.588936 0.808180i \(-0.700453\pi\)
0.378412 0.925637i \(-0.376470\pi\)
\(74\) −24.4954 + 21.7010i −2.84753 + 2.52269i
\(75\) 0.505009 0.731632i 0.0583135 0.0844816i
\(76\) −8.17765 11.8474i −0.938041 1.35899i
\(77\) 4.83045 + 1.19060i 0.550481 + 0.135681i
\(78\) 0.377001 + 3.10488i 0.0426869 + 0.351558i
\(79\) −5.67316 8.21899i −0.638281 0.924709i 0.361691 0.932298i \(-0.382200\pi\)
−0.999971 + 0.00758906i \(0.997584\pi\)
\(80\) 5.89119 + 8.53486i 0.658655 + 0.954227i
\(81\) −6.49565 5.75464i −0.721738 0.639404i
\(82\) −3.00978 24.7878i −0.332375 2.73735i
\(83\) 1.28301 10.5665i 0.140828 1.15982i −0.735299 0.677743i \(-0.762958\pi\)
0.876127 0.482081i \(-0.160119\pi\)
\(84\) 1.32575 + 0.695810i 0.144652 + 0.0759191i
\(85\) −0.0589983 + 0.0522679i −0.00639926 + 0.00566925i
\(86\) 13.5558 + 7.11464i 1.46176 + 0.767191i
\(87\) 0.0576412 0.0835078i 0.00617979 0.00895297i
\(88\) −40.0206 −4.26621
\(89\) −11.1238 + 2.74178i −1.17913 + 0.290628i −0.779710 0.626141i \(-0.784633\pi\)
−0.399416 + 0.916770i \(0.630787\pi\)
\(90\) 0.556736 + 4.58513i 0.0586851 + 0.483315i
\(91\) −0.955740 + 7.87123i −0.100189 + 0.825129i
\(92\) −5.19034 2.72410i −0.541130 0.284007i
\(93\) 0.263351 + 0.0649101i 0.0273082 + 0.00673086i
\(94\) 9.84822 + 25.9676i 1.01577 + 2.67836i
\(95\) −0.774808 + 1.12250i −0.0794937 + 0.115166i
\(96\) −5.64229 1.39070i −0.575864 0.141938i
\(97\) 6.91023 + 1.70322i 0.701627 + 0.172936i 0.573962 0.818882i \(-0.305406\pi\)
0.127665 + 0.991817i \(0.459252\pi\)
\(98\) −10.8837 9.64214i −1.09942 0.974003i
\(99\) −9.69181 5.08665i −0.974063 0.511228i
\(100\) −15.6287 + 22.6421i −1.56287 + 2.26421i
\(101\) 0.00172123 0.000424245i 0.000171269 4.22140e-5i −0.239230 0.970963i \(-0.576895\pi\)
0.239401 + 0.970921i \(0.423049\pi\)
\(102\) 0.00908676 0.0748362i 0.000899724 0.00740989i
\(103\) −11.1053 + 9.83842i −1.09424 + 0.969408i −0.999659 0.0261091i \(-0.991688\pi\)
−0.0945769 + 0.995518i \(0.530150\pi\)
\(104\) −7.68829 63.3187i −0.753899 6.20891i
\(105\) 0.0170994 0.140826i 0.00166873 0.0137432i
\(106\) 24.5316 + 6.04650i 2.38272 + 0.587288i
\(107\) 8.76622 4.60087i 0.847462 0.444783i 0.0156752 0.999877i \(-0.495010\pi\)
0.831787 + 0.555095i \(0.187318\pi\)
\(108\) −4.96124 4.39528i −0.477396 0.422936i
\(109\) −0.967641 + 7.96924i −0.0926832 + 0.763315i 0.870069 + 0.492930i \(0.164074\pi\)
−0.962752 + 0.270385i \(0.912849\pi\)
\(110\) 2.04047 + 5.38027i 0.194551 + 0.512989i
\(111\) −2.14712 + 0.529216i −0.203795 + 0.0502310i
\(112\) −22.2648 11.6855i −2.10383 1.10417i
\(113\) −5.93418 + 3.11450i −0.558241 + 0.292987i −0.720150 0.693818i \(-0.755927\pi\)
0.161909 + 0.986806i \(0.448235\pi\)
\(114\) −0.157240 1.29499i −0.0147269 0.121287i
\(115\) −0.0669443 + 0.551336i −0.00624259 + 0.0514123i
\(116\) −1.78384 + 2.58434i −0.165625 + 0.239950i
\(117\) 6.18598 16.3111i 0.571894 1.50796i
\(118\) −9.96575 14.4379i −0.917422 1.32912i
\(119\) 0.0677692 0.178693i 0.00621240 0.0163807i
\(120\) 0.137553 + 1.13285i 0.0125568 + 0.103415i
\(121\) −2.55958 0.630880i −0.232689 0.0573528i
\(122\) −22.9168 12.0277i −2.07479 1.08894i
\(123\) 0.598323 1.57765i 0.0539490 0.142252i
\(124\) −8.14999 2.00879i −0.731891 0.180395i
\(125\) 5.22847 + 1.28870i 0.467648 + 0.115265i
\(126\) −6.36171 9.21653i −0.566747 0.821074i
\(127\) 2.59645 6.84627i 0.230397 0.607508i −0.769103 0.639125i \(-0.779297\pi\)
0.999500 + 0.0316173i \(0.0100658\pi\)
\(128\) 72.9738 + 17.9864i 6.45004 + 1.58979i
\(129\) 0.587668 + 0.851384i 0.0517413 + 0.0749602i
\(130\) −8.12042 + 4.26193i −0.712208 + 0.373796i
\(131\) 5.39563 0.471418 0.235709 0.971824i \(-0.424259\pi\)
0.235709 + 0.971824i \(0.424259\pi\)
\(132\) −3.63381 1.90717i −0.316282 0.165998i
\(133\) 0.398623 3.28295i 0.0345650 0.284668i
\(134\) −23.0094 + 20.3846i −1.98771 + 1.76096i
\(135\) −0.222691 + 0.587188i −0.0191662 + 0.0505371i
\(136\) −0.185309 + 1.52616i −0.0158901 + 0.130867i
\(137\) 2.83928 + 1.49017i 0.242576 + 0.127314i 0.581631 0.813453i \(-0.302415\pi\)
−0.339055 + 0.940767i \(0.610107\pi\)
\(138\) −0.301745 0.437154i −0.0256863 0.0372130i
\(139\) 11.1392 2.74557i 0.944815 0.232876i 0.263328 0.964706i \(-0.415180\pi\)
0.681487 + 0.731830i \(0.261334\pi\)
\(140\) −0.529181 + 4.35820i −0.0447239 + 0.368335i
\(141\) −0.226208 + 1.86299i −0.0190501 + 0.156892i
\(142\) −32.6881 8.05690i −2.74313 0.676120i
\(143\) 2.61962 21.5745i 0.219064 1.80415i
\(144\) 41.4088 + 36.6850i 3.45074 + 3.05709i
\(145\) 0.288880 + 0.0712025i 0.0239902 + 0.00591305i
\(146\) −14.8397 + 39.1290i −1.22814 + 3.23834i
\(147\) −0.348417 0.918701i −0.0287370 0.0757732i
\(148\) 66.4474 16.3778i 5.46195 1.34625i
\(149\) 4.72648 4.18729i 0.387208 0.343036i −0.446953 0.894557i \(-0.647491\pi\)
0.834161 + 0.551521i \(0.185952\pi\)
\(150\) −2.20753 + 1.15860i −0.180244 + 0.0945992i
\(151\) −9.27205 + 8.21432i −0.754549 + 0.668472i −0.950003 0.312241i \(-0.898920\pi\)
0.195454 + 0.980713i \(0.437382\pi\)
\(152\) 3.20665 + 26.4092i 0.260094 + 2.14207i
\(153\) −0.238852 + 0.346037i −0.0193101 + 0.0279754i
\(154\) −10.4431 9.25178i −0.841529 0.745530i
\(155\) 0.0958625 + 0.789499i 0.00769986 + 0.0634141i
\(156\) 2.31935 6.11562i 0.185696 0.489641i
\(157\) 0.396698 + 0.0977772i 0.0316599 + 0.00780347i 0.255114 0.966911i \(-0.417887\pi\)
−0.223454 + 0.974715i \(0.571733\pi\)
\(158\) 3.37586 + 27.8027i 0.268569 + 2.21186i
\(159\) 1.27793 + 1.13215i 0.101346 + 0.0897850i
\(160\) −2.05386 16.9150i −0.162372 1.33725i
\(161\) −0.477513 1.25910i −0.0376333 0.0992309i
\(162\) 8.62991 + 22.7552i 0.678030 + 1.78782i
\(163\) −6.10651 3.20495i −0.478299 0.251031i 0.208303 0.978064i \(-0.433206\pi\)
−0.686602 + 0.727034i \(0.740898\pi\)
\(164\) −18.5165 + 48.8240i −1.44590 + 3.81251i
\(165\) −0.0468684 + 0.385996i −0.00364870 + 0.0300497i
\(166\) −16.9568 + 24.5662i −1.31610 + 1.90671i
\(167\) 2.12368 + 0.523440i 0.164335 + 0.0405050i 0.320625 0.947206i \(-0.396107\pi\)
−0.156290 + 0.987711i \(0.549953\pi\)
\(168\) −1.57179 2.27714i −0.121267 0.175685i
\(169\) 21.6374 1.66442
\(170\) 0.214621 0.0528993i 0.0164607 0.00405719i
\(171\) −2.58007 + 6.80308i −0.197303 + 0.520244i
\(172\) −18.1867 26.3480i −1.38673 2.00902i
\(173\) 6.56312 5.81442i 0.498985 0.442062i −0.375709 0.926738i \(-0.622601\pi\)
0.874694 + 0.484676i \(0.161062\pi\)
\(174\) −0.251965 + 0.132241i −0.0191014 + 0.0100252i
\(175\) −6.13663 + 1.51254i −0.463886 + 0.114338i
\(176\) 61.0263 + 32.0291i 4.60003 + 2.41428i
\(177\) −0.142892 1.17682i −0.0107404 0.0884551i
\(178\) 31.1955 + 7.68901i 2.33820 + 0.576315i
\(179\) −7.46233 6.61105i −0.557761 0.494133i 0.336497 0.941684i \(-0.390758\pi\)
−0.894258 + 0.447551i \(0.852296\pi\)
\(180\) 3.42510 9.03124i 0.255292 0.673149i
\(181\) −0.365672 0.529768i −0.0271802 0.0393773i 0.809158 0.587591i \(-0.199924\pi\)
−0.836338 + 0.548213i \(0.815308\pi\)
\(182\) 12.6315 18.2999i 0.936311 1.35648i
\(183\) −0.993485 1.43931i −0.0734405 0.106397i
\(184\) 6.15359 + 8.91501i 0.453648 + 0.657223i
\(185\) −3.68340 5.33632i −0.270809 0.392334i
\(186\) −0.569346 0.504397i −0.0417465 0.0369842i
\(187\) −0.185751 + 0.489785i −0.0135835 + 0.0358166i
\(188\) 7.00052 57.6545i 0.510566 4.20489i
\(189\) −0.183537 1.51156i −0.0133504 0.109950i
\(190\) 3.38689 1.77758i 0.245711 0.128959i
\(191\) −3.57648 9.43041i −0.258785 0.682360i −0.999939 0.0110254i \(-0.996490\pi\)
0.741154 0.671335i \(-0.234279\pi\)
\(192\) 6.90351 + 6.11598i 0.498218 + 0.441383i
\(193\) −3.53840 9.32998i −0.254699 0.671587i −0.999988 0.00484528i \(-0.998458\pi\)
0.745289 0.666742i \(-0.232312\pi\)
\(194\) −14.9394 13.2352i −1.07259 0.950231i
\(195\) −0.619708 −0.0443782
\(196\) 10.7826 + 28.4313i 0.770184 + 2.03081i
\(197\) −1.43851 + 3.79303i −0.102489 + 0.270242i −0.976446 0.215762i \(-0.930777\pi\)
0.873957 + 0.486004i \(0.161546\pi\)
\(198\) 17.4370 + 25.2619i 1.23920 + 1.79529i
\(199\) 13.1143 6.88292i 0.929649 0.487917i 0.0692844 0.997597i \(-0.477928\pi\)
0.860364 + 0.509680i \(0.170236\pi\)
\(200\) 45.0187 23.6277i 3.18331 1.67073i
\(201\) −2.01686 + 0.497112i −0.142259 + 0.0350636i
\(202\) −0.00482699 0.00118975i −0.000339626 8.37102e-5i
\(203\) −0.700428 + 0.172640i −0.0491604 + 0.0121170i
\(204\) −0.0895542 + 0.129742i −0.00627005 + 0.00908374i
\(205\) 4.94743 0.345544
\(206\) 40.3982 9.95726i 2.81468 0.693755i
\(207\) 0.357111 + 2.94107i 0.0248209 + 0.204419i
\(208\) −38.9512 + 102.706i −2.70078 + 7.12138i
\(209\) −1.09260 + 8.99836i −0.0755766 + 0.622430i
\(210\) −0.225994 + 0.327409i −0.0155951 + 0.0225934i
\(211\) 11.4048 16.5227i 0.785139 1.13747i −0.202277 0.979328i \(-0.564834\pi\)
0.987416 0.158142i \(-0.0505504\pi\)
\(212\) −39.5484 35.0369i −2.71620 2.40634i
\(213\) −1.70283 1.50857i −0.116676 0.103366i
\(214\) −27.7640 −1.89791
\(215\) −1.72314 + 2.49640i −0.117517 + 0.170253i
\(216\) 4.34349 + 11.4528i 0.295537 + 0.779268i
\(217\) −1.09540 1.58697i −0.0743608 0.107730i
\(218\) 12.7888 18.5278i 0.866168 1.25486i
\(219\) −2.11667 + 1.87521i −0.143031 + 0.126715i
\(220\) 1.45045 11.9455i 0.0977893 0.805367i
\(221\) −0.810599 0.199795i −0.0545268 0.0134396i
\(222\) 6.02133 + 1.48413i 0.404125 + 0.0996080i
\(223\) −0.607578 + 5.00385i −0.0406864 + 0.335083i 0.958125 + 0.286349i \(0.0924417\pi\)
−0.998812 + 0.0487338i \(0.984481\pi\)
\(224\) 23.4690 + 34.0008i 1.56809 + 2.27177i
\(225\) 13.9053 0.927019
\(226\) 18.7945 1.25019
\(227\) 5.67534 5.02791i 0.376686 0.333714i −0.453444 0.891285i \(-0.649805\pi\)
0.830130 + 0.557570i \(0.188266\pi\)
\(228\) −0.967360 + 2.55072i −0.0640650 + 0.168925i
\(229\) −21.8695 −1.44517 −0.722587 0.691280i \(-0.757047\pi\)
−0.722587 + 0.691280i \(0.757047\pi\)
\(230\) 0.884768 1.28181i 0.0583399 0.0845199i
\(231\) −0.334312 0.881508i −0.0219961 0.0579989i
\(232\) 5.13839 2.69684i 0.337352 0.177056i
\(233\) 19.5904 + 10.2818i 1.28341 + 0.673584i 0.961920 0.273330i \(-0.0881250\pi\)
0.321487 + 0.946914i \(0.395817\pi\)
\(234\) −36.6184 + 32.4411i −2.39382 + 2.12074i
\(235\) −5.34282 + 1.31689i −0.348527 + 0.0859042i
\(236\) 4.42211 + 36.4194i 0.287855 + 2.37070i
\(237\) −0.671096 + 1.76954i −0.0435924 + 0.114944i
\(238\) −0.401165 + 0.355401i −0.0260037 + 0.0230372i
\(239\) −15.4857 + 13.7192i −1.00169 + 0.887420i −0.993646 0.112548i \(-0.964099\pi\)
−0.00804342 + 0.999968i \(0.502560\pi\)
\(240\) 0.696888 1.83754i 0.0449839 0.118613i
\(241\) 18.4441 + 16.3400i 1.18809 + 1.05255i 0.997484 + 0.0708871i \(0.0225830\pi\)
0.190604 + 0.981667i \(0.438955\pi\)
\(242\) 5.53364 + 4.90238i 0.355716 + 0.315137i
\(243\) −0.606917 + 4.99841i −0.0389338 + 0.320648i
\(244\) 30.7457 + 44.5428i 1.96829 + 2.85156i
\(245\) 2.15646 1.91046i 0.137771 0.122055i
\(246\) −3.54182 + 3.13778i −0.225818 + 0.200058i
\(247\) −14.4467 −0.919220
\(248\) 11.6108 + 10.2863i 0.737289 + 0.653181i
\(249\) −1.78603 + 0.937382i −0.113185 + 0.0594041i
\(250\) −11.3036 10.0141i −0.714902 0.633348i
\(251\) 8.31888 7.36988i 0.525083 0.465183i −0.358452 0.933548i \(-0.616695\pi\)
0.883535 + 0.468365i \(0.155157\pi\)
\(252\) 2.82289 + 23.2486i 0.177825 + 1.46452i
\(253\) 1.30883 + 3.45111i 0.0822856 + 0.216969i
\(254\) −15.3699 + 13.6165i −0.964391 + 0.854376i
\(255\) 0.0145027 + 0.00357458i 0.000908191 + 0.000223849i
\(256\) −84.9047 75.2190i −5.30655 4.70119i
\(257\) −0.211269 + 0.306075i −0.0131786 + 0.0190925i −0.829518 0.558480i \(-0.811385\pi\)
0.816339 + 0.577573i \(0.196000\pi\)
\(258\) −0.349696 2.88000i −0.0217711 0.179301i
\(259\) 13.9208 + 7.30620i 0.864996 + 0.453985i
\(260\) 19.1783 1.18939
\(261\) 1.58714 0.0982412
\(262\) −13.3982 7.03191i −0.827743 0.434433i
\(263\) 3.96666 + 0.977694i 0.244595 + 0.0602872i 0.359707 0.933065i \(-0.382877\pi\)
−0.115112 + 0.993352i \(0.536723\pi\)
\(264\) 4.30819 + 6.24149i 0.265151 + 0.384137i
\(265\) −1.77518 + 4.68076i −0.109048 + 0.287537i
\(266\) −5.26839 + 7.63258i −0.323026 + 0.467984i
\(267\) 1.62507 + 1.43969i 0.0994528 + 0.0881075i
\(268\) 62.4165 15.3843i 3.81269 0.939745i
\(269\) −20.1059 −1.22588 −0.612939 0.790131i \(-0.710013\pi\)
−0.612939 + 0.790131i \(0.710013\pi\)
\(270\) 1.31824 1.16786i 0.0802254 0.0710735i
\(271\) −5.29868 + 7.67646i −0.321872 + 0.466312i −0.950202 0.311635i \(-0.899123\pi\)
0.628330 + 0.777947i \(0.283739\pi\)
\(272\) 1.50398 2.17889i 0.0911921 0.132115i
\(273\) 1.33046 0.698277i 0.0805228 0.0422616i
\(274\) −5.10830 7.40065i −0.308604 0.447090i
\(275\) 16.8201 4.14578i 1.01429 0.250000i
\(276\) 0.133894 + 1.10271i 0.00805946 + 0.0663756i
\(277\) 1.04266 8.58704i 0.0626471 0.515945i −0.927280 0.374368i \(-0.877860\pi\)
0.989927 0.141577i \(-0.0452173\pi\)
\(278\) −31.2386 7.69962i −1.87357 0.461793i
\(279\) 1.50440 + 3.96679i 0.0900663 + 0.237485i
\(280\) 4.60876 6.67695i 0.275426 0.399024i
\(281\) −1.44801 2.09780i −0.0863810 0.125145i 0.777411 0.628993i \(-0.216532\pi\)
−0.863792 + 0.503848i \(0.831917\pi\)
\(282\) 2.98967 4.33129i 0.178032 0.257924i
\(283\) −0.129522 + 1.06671i −0.00769927 + 0.0634092i −0.996052 0.0887706i \(-0.971706\pi\)
0.988353 + 0.152180i \(0.0486293\pi\)
\(284\) 52.6979 + 46.6863i 3.12704 + 2.77032i
\(285\) 0.258469 0.0153104
\(286\) −34.6222 + 50.1589i −2.04725 + 2.96596i
\(287\) −10.6217 + 5.57469i −0.626978 + 0.329064i
\(288\) −32.2319 84.9885i −1.89928 5.00799i
\(289\) −15.0349 7.89094i −0.884408 0.464173i
\(290\) −0.624539 0.553293i −0.0366742 0.0324905i
\(291\) −0.478252 1.26105i −0.0280356 0.0739238i
\(292\) 65.5053 58.0326i 3.83341 3.39610i
\(293\) −10.8197 + 15.6750i −0.632092 + 0.915744i −0.999900 0.0141581i \(-0.995493\pi\)
0.367807 + 0.929902i \(0.380109\pi\)
\(294\) −0.332132 + 2.73536i −0.0193704 + 0.159529i
\(295\) 3.07782 1.61537i 0.179198 0.0940502i
\(296\) −122.795 30.2662i −7.13731 1.75919i
\(297\) 0.503063 + 4.14310i 0.0291907 + 0.240407i
\(298\) −17.1937 + 4.23787i −0.996006 + 0.245493i
\(299\) −5.20874 + 2.73376i −0.301229 + 0.158097i
\(300\) 5.21359 0.301007
\(301\) 0.886520 7.30115i 0.0510981 0.420831i
\(302\) 33.7294 8.31354i 1.94091 0.478391i
\(303\) −0.000251453 0 0.000222768i −1.44456e−5 0 1.27977e-5i
\(304\) 16.2459 42.8369i 0.931766 2.45687i
\(305\) 2.91306 4.22030i 0.166801 0.241654i
\(306\) 1.04408 0.547978i 0.0596863 0.0313258i
\(307\) −7.79957 + 20.5658i −0.445145 + 1.17375i 0.505323 + 0.862930i \(0.331373\pi\)
−0.950468 + 0.310821i \(0.899396\pi\)
\(308\) 10.3460 + 27.2803i 0.589521 + 1.55444i
\(309\) 2.72984 + 0.672846i 0.155295 + 0.0382768i
\(310\) 0.790882 2.08538i 0.0449191 0.118442i
\(311\) 3.44723 + 28.3905i 0.195475 + 1.60988i 0.678722 + 0.734395i \(0.262534\pi\)
−0.483248 + 0.875484i \(0.660543\pi\)
\(312\) −9.04734 + 8.01525i −0.512205 + 0.453774i
\(313\) 5.97997 0.338008 0.169004 0.985615i \(-0.445945\pi\)
0.169004 + 0.985615i \(0.445945\pi\)
\(314\) −0.857634 0.759797i −0.0483991 0.0428778i
\(315\) 1.96475 1.03118i 0.110701 0.0581005i
\(316\) 20.7686 54.7624i 1.16833 3.08062i
\(317\) −23.6789 + 12.4277i −1.32994 + 0.698007i −0.971833 0.235672i \(-0.924271\pi\)
−0.358109 + 0.933680i \(0.616578\pi\)
\(318\) −1.69782 4.47677i −0.0952088 0.251045i
\(319\) 1.91983 0.473195i 0.107490 0.0264938i
\(320\) −9.58971 + 25.2860i −0.536081 + 1.41353i
\(321\) −1.66121 0.871871i −0.0927198 0.0486631i
\(322\) −0.455195 + 3.74887i −0.0253670 + 0.208916i
\(323\) 0.338087 + 0.0833309i 0.0188117 + 0.00463666i
\(324\) 6.13450 50.5221i 0.340805 2.80679i
\(325\) 9.79053 + 25.8155i 0.543081 + 1.43199i
\(326\) 10.9866 + 15.9168i 0.608489 + 0.881548i
\(327\) 1.34702 0.706972i 0.0744905 0.0390956i
\(328\) 72.2294 63.9897i 3.98820 3.53324i
\(329\) 9.98669 8.84744i 0.550584 0.487775i
\(330\) 0.619435 0.897406i 0.0340988 0.0494006i
\(331\) −2.32684 19.1632i −0.127895 1.05331i −0.905438 0.424478i \(-0.860458\pi\)
0.777543 0.628829i \(-0.216466\pi\)
\(332\) 55.2729 29.0094i 3.03349 1.59210i
\(333\) −25.8904 22.9369i −1.41879 1.25693i
\(334\) −4.59125 4.06749i −0.251222 0.222563i
\(335\) −3.45995 5.01260i −0.189037 0.273868i
\(336\) 0.574359 + 4.73027i 0.0313339 + 0.258058i
\(337\) 4.97064 + 2.60879i 0.270768 + 0.142110i 0.594643 0.803990i \(-0.297293\pi\)
−0.323875 + 0.946100i \(0.604986\pi\)
\(338\) −53.7291 28.1992i −2.92248 1.53384i
\(339\) 1.12454 + 0.590202i 0.0610764 + 0.0320554i
\(340\) −0.448818 0.110624i −0.0243406 0.00599941i
\(341\) 3.00243 + 4.34977i 0.162591 + 0.235553i
\(342\) 15.2729 13.5306i 0.825864 0.731652i
\(343\) −5.82124 + 15.3493i −0.314317 + 0.828786i
\(344\) 7.13145 + 58.7328i 0.384502 + 3.16666i
\(345\) 0.0931910 0.0489104i 0.00501723 0.00263325i
\(346\) −23.8750 + 5.88465i −1.28353 + 0.316361i
\(347\) −0.472744 1.24652i −0.0253782 0.0669168i 0.921728 0.387836i \(-0.126777\pi\)
−0.947107 + 0.320919i \(0.896008\pi\)
\(348\) 0.595074 0.0318993
\(349\) 7.44346 + 6.59433i 0.398439 + 0.352987i 0.838424 0.545019i \(-0.183478\pi\)
−0.439984 + 0.898005i \(0.645016\pi\)
\(350\) 17.2095 + 4.24175i 0.919884 + 0.226731i
\(351\) −6.45837 + 1.59185i −0.344722 + 0.0849664i
\(352\) −64.3271 93.1939i −3.42865 4.96725i
\(353\) 3.04956 25.1153i 0.162311 1.33676i −0.652835 0.757500i \(-0.726421\pi\)
0.815146 0.579255i \(-0.196656\pi\)
\(354\) −1.17888 + 3.10845i −0.0626568 + 0.165212i
\(355\) 2.36541 6.23706i 0.125543 0.331029i
\(356\) −50.2916 44.5545i −2.66545 2.36138i
\(357\) −0.0351636 + 0.00866706i −0.00186106 + 0.000458709i
\(358\) 9.91422 + 26.1416i 0.523983 + 1.38163i
\(359\) 3.70484 + 9.76887i 0.195534 + 0.515581i 0.996544 0.0830705i \(-0.0264727\pi\)
−0.801010 + 0.598652i \(0.795703\pi\)
\(360\) −13.3607 + 11.8365i −0.704169 + 0.623839i
\(361\) −12.9745 −0.682871
\(362\) 0.217596 + 1.79206i 0.0114366 + 0.0941888i
\(363\) 0.177147 + 0.467098i 0.00929780 + 0.0245163i
\(364\) −41.1740 + 21.6098i −2.15810 + 1.13266i
\(365\) −7.34195 3.85335i −0.384295 0.201694i
\(366\) 0.591180 + 4.86881i 0.0309015 + 0.254497i
\(367\) 2.66114 0.655912i 0.138910 0.0342383i −0.169247 0.985574i \(-0.554134\pi\)
0.308158 + 0.951335i \(0.400288\pi\)
\(368\) −2.24862 18.5190i −0.117217 0.965372i
\(369\) 25.6250 6.31598i 1.33398 0.328797i
\(370\) 2.19183 + 18.0514i 0.113948 + 0.938446i
\(371\) −1.46306 12.0494i −0.0759584 0.625574i
\(372\) 0.564055 + 1.48729i 0.0292449 + 0.0771124i
\(373\) −6.72295 + 9.73988i −0.348101 + 0.504312i −0.957453 0.288588i \(-0.906814\pi\)
0.609352 + 0.792900i \(0.291430\pi\)
\(374\) 1.09957 0.974132i 0.0568573 0.0503711i
\(375\) −0.361859 0.954142i −0.0186863 0.0492717i
\(376\) −60.9693 + 88.3293i −3.14425 + 4.55523i
\(377\) 1.11748 + 2.94656i 0.0575532 + 0.151755i
\(378\) −1.51421 + 3.99265i −0.0778827 + 0.205360i
\(379\) −1.87256 + 1.65895i −0.0961871 + 0.0852143i −0.709846 0.704357i \(-0.751235\pi\)
0.613659 + 0.789571i \(0.289697\pi\)
\(380\) −7.99893 −0.410337
\(381\) −1.34723 + 0.332062i −0.0690205 + 0.0170120i
\(382\) −3.40932 + 28.0783i −0.174436 + 1.43661i
\(383\) −13.7300 + 3.38415i −0.701572 + 0.172922i −0.573937 0.818899i \(-0.694585\pi\)
−0.127635 + 0.991821i \(0.540739\pi\)
\(384\) −5.05046 13.3170i −0.257730 0.679579i
\(385\) 2.06916 1.83311i 0.105454 0.0934241i
\(386\) −3.37301 + 27.7793i −0.171682 + 1.41393i
\(387\) −5.73796 + 15.1297i −0.291677 + 0.769088i
\(388\) 14.8006 + 39.0260i 0.751387 + 1.98124i
\(389\) 17.3033 + 4.26489i 0.877314 + 0.216238i 0.652157 0.758084i \(-0.273864\pi\)
0.225157 + 0.974323i \(0.427711\pi\)
\(390\) 1.53883 + 0.807641i 0.0779218 + 0.0408965i
\(391\) 0.137666 0.0339316i 0.00696206 0.00171599i
\(392\) 6.77328 55.7830i 0.342102 2.81747i
\(393\) −0.580835 0.841484i −0.0292992 0.0424473i
\(394\) 8.51534 7.54393i 0.428997 0.380058i
\(395\) −5.54918 −0.279210
\(396\) −7.73735 63.7228i −0.388817 3.20219i
\(397\) 0.457362 3.76671i 0.0229543 0.189046i −0.976721 0.214512i \(-0.931184\pi\)
0.999676 + 0.0254661i \(0.00810699\pi\)
\(398\) −41.5351 −2.08197
\(399\) −0.554910 + 0.291239i −0.0277803 + 0.0145802i
\(400\) −87.5574 −4.37787
\(401\) −15.2502 8.00390i −0.761556 0.399696i 0.0387792 0.999248i \(-0.487653\pi\)
−0.800336 + 0.599552i \(0.795345\pi\)
\(402\) 5.65606 + 1.39409i 0.282098 + 0.0695310i
\(403\) −6.30520 + 5.58592i −0.314085 + 0.278255i
\(404\) 0.00778179 + 0.00689406i 0.000387158 + 0.000342992i
\(405\) −4.68186 + 1.15398i −0.232644 + 0.0573415i
\(406\) 1.96427 + 0.484149i 0.0974851 + 0.0240279i
\(407\) −38.1560 20.0258i −1.89132 0.992643i
\(408\) 0.257963 0.135389i 0.0127711 0.00670277i
\(409\) 34.3488 + 18.0277i 1.69844 + 0.891410i 0.980805 + 0.194992i \(0.0624679\pi\)
0.717636 + 0.696419i \(0.245224\pi\)
\(410\) −12.2853 6.44780i −0.606726 0.318434i
\(411\) −0.0732442 0.603220i −0.00361287 0.0297547i
\(412\) −84.4813 20.8228i −4.16209 1.02586i
\(413\) −4.78763 + 6.93608i −0.235584 + 0.341302i
\(414\) 2.94623 7.76856i 0.144799 0.381804i
\(415\) −4.42699 3.92197i −0.217313 0.192522i
\(416\) 135.089 119.679i 6.62329 5.86772i
\(417\) −1.62732 1.44168i −0.0796900 0.0705992i
\(418\) 14.4403 20.9204i 0.706299 1.02325i
\(419\) −14.9222 + 21.6185i −0.728997 + 1.05613i 0.266728 + 0.963772i \(0.414057\pi\)
−0.995725 + 0.0923629i \(0.970558\pi\)
\(420\) 0.736656 0.386627i 0.0359451 0.0188655i
\(421\) 21.2371 5.23447i 1.03503 0.255112i 0.315028 0.949082i \(-0.397986\pi\)
0.720004 + 0.693970i \(0.244140\pi\)
\(422\) −49.8533 + 26.1650i −2.42682 + 1.27369i
\(423\) −25.9917 + 13.6415i −1.26376 + 0.663271i
\(424\) 34.6241 + 91.2962i 1.68149 + 4.43373i
\(425\) −0.0802136 0.660619i −0.00389093 0.0320447i
\(426\) 2.26232 + 5.96525i 0.109610 + 0.289017i
\(427\) −1.49871 + 12.3430i −0.0725277 + 0.597319i
\(428\) 51.4100 + 26.9821i 2.48500 + 1.30423i
\(429\) −3.64669 + 1.91393i −0.176064 + 0.0924055i
\(430\) 7.53229 3.95325i 0.363239 0.190643i
\(431\) 3.22489 + 1.69255i 0.155337 + 0.0815274i 0.540601 0.841279i \(-0.318197\pi\)
−0.385263 + 0.922807i \(0.625889\pi\)
\(432\) 2.54261 20.9403i 0.122331 1.00749i
\(433\) −3.28282 8.65608i −0.157762 0.415985i 0.832708 0.553712i \(-0.186789\pi\)
−0.990470 + 0.137728i \(0.956020\pi\)
\(434\) 0.651827 + 5.36828i 0.0312887 + 0.257686i
\(435\) −0.0199932 0.0527177i −0.000958599 0.00252762i
\(436\) −41.6867 + 21.8789i −1.99643 + 1.04781i
\(437\) 2.17248 1.14020i 0.103924 0.0545433i
\(438\) 7.69992 1.89786i 0.367916 0.0906832i
\(439\) −4.03730 + 2.11894i −0.192690 + 0.101132i −0.558309 0.829633i \(-0.688550\pi\)
0.365619 + 0.930765i \(0.380857\pi\)
\(440\) −12.6323 + 18.3011i −0.602222 + 0.872470i
\(441\) 8.73034 12.6481i 0.415731 0.602290i
\(442\) 1.75246 + 1.55254i 0.0833560 + 0.0738470i
\(443\) −20.5516 + 18.2071i −0.976435 + 0.865046i −0.990866 0.134850i \(-0.956945\pi\)
0.0144310 + 0.999896i \(0.495406\pi\)
\(444\) −9.70724 8.59986i −0.460685 0.408131i
\(445\) −2.25740 + 5.95227i −0.107011 + 0.282165i
\(446\) 8.03004 11.6335i 0.380234 0.550863i
\(447\) −1.16184 0.286367i −0.0549530 0.0135447i
\(448\) −7.90363 65.0922i −0.373411 3.07532i
\(449\) 13.3935 + 7.02947i 0.632080 + 0.331741i 0.750154 0.661264i \(-0.229980\pi\)
−0.118073 + 0.993005i \(0.537672\pi\)
\(450\) −34.5290 18.1222i −1.62771 0.854290i
\(451\) 29.1133 15.2799i 1.37089 0.719500i
\(452\) −34.8014 18.2652i −1.63692 0.859121i
\(453\) 2.27921 + 0.561774i 0.107086 + 0.0263944i
\(454\) −20.6455 + 5.08865i −0.968939 + 0.238822i
\(455\) 3.29777 + 2.92157i 0.154602 + 0.136965i
\(456\) 3.77349 3.34302i 0.176710 0.156551i
\(457\) 30.9523 + 7.62906i 1.44789 + 0.356872i 0.883420 0.468583i \(-0.155235\pi\)
0.564468 + 0.825455i \(0.309081\pi\)
\(458\) 54.3053 + 28.5016i 2.53752 + 1.33179i
\(459\) 0.160323 0.00748326
\(460\) −2.88401 + 1.51365i −0.134468 + 0.0705741i
\(461\) 20.9030 0.973551 0.486775 0.873527i \(-0.338173\pi\)
0.486775 + 0.873527i \(0.338173\pi\)
\(462\) −0.318686 + 2.62462i −0.0148266 + 0.122108i
\(463\) 2.00464 + 16.5097i 0.0931637 + 0.767272i 0.962166 + 0.272464i \(0.0878385\pi\)
−0.869002 + 0.494808i \(0.835238\pi\)
\(464\) −9.99371 −0.463946
\(465\) 0.112808 0.0999393i 0.00523135 0.00463457i
\(466\) −35.2461 51.0627i −1.63274 2.36544i
\(467\) −1.95599 + 16.1090i −0.0905123 + 0.745436i 0.874826 + 0.484436i \(0.160975\pi\)
−0.965339 + 0.261000i \(0.915948\pi\)
\(468\) 99.3328 24.4833i 4.59166 1.13174i
\(469\) 13.0763 + 6.86298i 0.603808 + 0.316903i
\(470\) 14.9833 + 3.69305i 0.691128 + 0.170348i
\(471\) −0.0274552 0.0723933i −0.00126507 0.00333571i
\(472\) 24.0413 63.3916i 1.10659 2.91784i
\(473\) −2.42989 + 20.0120i −0.111727 + 0.920151i
\(474\) 3.97261 3.51942i 0.182468 0.161652i
\(475\) −4.08346 10.7672i −0.187362 0.494033i
\(476\) 1.08822 0.268222i 0.0498785 0.0122939i
\(477\) −3.21889 + 26.5100i −0.147383 + 1.21381i
\(478\) 56.3332 13.8849i 2.57662 0.635080i
\(479\) 35.8931 1.64000 0.819998 0.572366i \(-0.193974\pi\)
0.819998 + 0.572366i \(0.193974\pi\)
\(480\) −2.41692 + 2.14120i −0.110317 + 0.0977321i
\(481\) 24.3538 64.2157i 1.11044 2.92799i
\(482\) −24.5042 64.6123i −1.11614 2.94301i
\(483\) −0.144961 + 0.210012i −0.00659595 + 0.00955589i
\(484\) −5.48222 14.4554i −0.249192 0.657064i
\(485\) 2.96005 2.62237i 0.134409 0.119076i
\(486\) 8.02131 11.6209i 0.363854 0.527133i
\(487\) 10.7766 + 28.4156i 0.488336 + 1.28764i 0.922220 + 0.386666i \(0.126374\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(488\) −12.0561 99.2910i −0.545755 4.49469i
\(489\) 0.157528 + 1.29736i 0.00712367 + 0.0586687i
\(490\) −7.84466 + 1.93353i −0.354386 + 0.0873482i
\(491\) 3.77187 + 31.0641i 0.170222 + 1.40190i 0.788060 + 0.615599i \(0.211086\pi\)
−0.617838 + 0.786306i \(0.711991\pi\)
\(492\) 9.60771 2.36809i 0.433149 0.106762i
\(493\) −0.00915550 0.0754023i −0.000412343 0.00339595i
\(494\) 35.8734 + 18.8278i 1.61402 + 0.847103i
\(495\) −5.38525 + 2.82640i −0.242049 + 0.127037i
\(496\) −9.47277 24.9776i −0.425340 1.12153i
\(497\) 1.94952 + 16.0557i 0.0874477 + 0.720197i
\(498\) 5.65665 0.253481
\(499\) 8.55377 7.57798i 0.382919 0.339237i −0.449603 0.893229i \(-0.648434\pi\)
0.832522 + 0.553992i \(0.186896\pi\)
\(500\) 11.1985 + 29.5281i 0.500814 + 1.32054i
\(501\) −0.146978 0.387550i −0.00656650 0.0173144i
\(502\) −30.2620 + 7.45891i −1.35066 + 0.332907i
\(503\) −13.9410 12.3506i −0.621598 0.550687i 0.292457 0.956279i \(-0.405527\pi\)
−0.914055 + 0.405591i \(0.867066\pi\)
\(504\) 15.3469 40.4665i 0.683606 1.80252i
\(505\) 0.000349295 0 0.000921014i 1.55434e−5 0 4.09846e-5i
\(506\) 1.24766 10.2754i 0.0554652 0.456797i
\(507\) −2.32925 3.37450i −0.103446 0.149867i
\(508\) 41.6930 10.2764i 1.84983 0.455942i
\(509\) −4.60564 1.13519i −0.204141 0.0503163i 0.135919 0.990720i \(-0.456601\pi\)
−0.340060 + 0.940404i \(0.610447\pi\)
\(510\) −0.0313537 0.0277770i −0.00138837 0.00122999i
\(511\) 20.1044 0.889365
\(512\) 59.4991 + 156.886i 2.62952 + 6.93346i
\(513\) 2.69367 0.663931i 0.118929 0.0293133i
\(514\) 0.923509 0.484695i 0.0407343 0.0213790i
\(515\) 0.993693 + 8.18380i 0.0437873 + 0.360621i
\(516\) −2.15137 + 5.67269i −0.0947086 + 0.249726i
\(517\) −27.3729 + 24.2502i −1.20386 + 1.06652i
\(518\) −25.0457 36.2849i −1.10044 1.59427i
\(519\) −1.61331 0.397646i −0.0708165 0.0174547i
\(520\) −31.3819 16.4705i −1.37619 0.722278i
\(521\) −26.7520 14.0405i −1.17202 0.615126i −0.237626 0.971357i \(-0.576369\pi\)
−0.934398 + 0.356231i \(0.884062\pi\)
\(522\) −3.94111 2.06845i −0.172498 0.0905337i
\(523\) 4.97215 + 40.9493i 0.217417 + 1.79059i 0.537565 + 0.843222i \(0.319344\pi\)
−0.320149 + 0.947367i \(0.603733\pi\)
\(524\) 17.9753 + 26.0417i 0.785253 + 1.13764i
\(525\) 0.896494 + 0.794224i 0.0391262 + 0.0346628i
\(526\) −8.57565 7.59737i −0.373916 0.331261i
\(527\) 0.179778 0.0943545i 0.00783123 0.00411015i
\(528\) −1.57428 12.9654i −0.0685118 0.564245i
\(529\) −12.4980 + 18.1064i −0.543390 + 0.787236i
\(530\) 10.5083 9.30954i 0.456451 0.404381i
\(531\) 13.8792 12.2959i 0.602306 0.533596i
\(532\) 17.1730 9.01307i 0.744543 0.390766i
\(533\) 29.7680 + 43.1264i 1.28939 + 1.86801i
\(534\) −2.15902 5.69287i −0.0934299 0.246354i
\(535\) 0.663080 5.46096i 0.0286675 0.236098i
\(536\) −115.346 28.4302i −4.98217 1.22800i
\(537\) −0.227724 + 1.87547i −0.00982701 + 0.0809327i
\(538\) 49.9261 + 26.2032i 2.15247 + 1.12970i
\(539\) 6.78943 17.9023i 0.292441 0.771105i
\(540\) −3.57591 + 0.881384i −0.153883 + 0.0379287i
\(541\) 8.72758 + 23.0127i 0.375228 + 0.989394i 0.981043 + 0.193789i \(0.0620777\pi\)
−0.605815 + 0.795605i \(0.707153\pi\)
\(542\) 23.1619 12.1563i 0.994889 0.522158i
\(543\) −0.0432565 + 0.114058i −0.00185632 + 0.00489470i
\(544\) −3.85174 + 2.02155i −0.165142 + 0.0866731i
\(545\) 3.33883 + 2.95795i 0.143020 + 0.126705i
\(546\) −4.21377 −0.180333
\(547\) −33.8830 + 30.0177i −1.44873 + 1.28347i −0.557302 + 0.830310i \(0.688163\pi\)
−0.891431 + 0.453156i \(0.850298\pi\)
\(548\) 2.26671 + 18.6680i 0.0968291 + 0.797459i
\(549\) 9.70033 25.5777i 0.414000 1.09163i
\(550\) −47.1700 11.6264i −2.01134 0.495750i
\(551\) −0.466082 1.22896i −0.0198558 0.0523554i
\(552\) 0.727927 1.91939i 0.0309826 0.0816945i
\(553\) 11.9136 6.25273i 0.506617 0.265893i
\(554\) −13.7802 + 19.9641i −0.585466 + 0.848194i
\(555\) −0.435721 + 1.14890i −0.0184953 + 0.0487681i
\(556\) 50.3610 + 44.6160i 2.13578 + 1.89214i
\(557\) 10.0222 2.47026i 0.424655 0.104668i −0.0211957 0.999775i \(-0.506747\pi\)
0.445851 + 0.895107i \(0.352901\pi\)
\(558\) 1.43409 11.8108i 0.0607098 0.499990i
\(559\) −32.1288 −1.35890
\(560\) −12.3714 + 6.49303i −0.522788 + 0.274381i
\(561\) 0.0963812 0.0237558i 0.00406922 0.00100297i
\(562\) 0.861649 + 7.09632i 0.0363465 + 0.299340i
\(563\) −28.6882 7.07099i −1.20906 0.298007i −0.417261 0.908787i \(-0.637010\pi\)
−0.791800 + 0.610780i \(0.790856\pi\)
\(564\) −9.74521 + 5.11468i −0.410347 + 0.215367i
\(565\) −0.448864 + 3.69672i −0.0188838 + 0.155522i
\(566\) 1.71182 2.48000i 0.0719533 0.104242i
\(567\) 8.75125 7.75293i 0.367518 0.325592i
\(568\) −46.1362 121.651i −1.93583 5.10437i
\(569\) −10.9118 9.66700i −0.457446 0.405262i 0.402682 0.915340i \(-0.368078\pi\)
−0.860128 + 0.510078i \(0.829616\pi\)
\(570\) −0.641820 0.336853i −0.0268829 0.0141092i
\(571\) −2.39445 6.31364i −0.100205 0.264218i 0.875534 0.483156i \(-0.160510\pi\)
−0.975739 + 0.218939i \(0.929741\pi\)
\(572\) 112.855 59.2310i 4.71872 2.47657i
\(573\) −1.08573 + 1.57295i −0.0453570 + 0.0657110i
\(574\) 33.6406 1.40413
\(575\) −3.50978 3.10939i −0.146368 0.129671i
\(576\) −17.3888 + 143.210i −0.724534 + 5.96707i
\(577\) −13.8364 + 20.0455i −0.576016 + 0.834504i −0.997376 0.0723897i \(-0.976937\pi\)
0.421360 + 0.906893i \(0.361553\pi\)
\(578\) 27.0501 + 39.1889i 1.12514 + 1.63004i
\(579\) −1.07417 + 1.55620i −0.0446409 + 0.0646735i
\(580\) 0.618735 + 1.63147i 0.0256916 + 0.0677431i
\(581\) 13.9236 + 3.43185i 0.577647 + 0.142377i
\(582\) −0.455899 + 3.75466i −0.0188976 + 0.155636i
\(583\) 4.01016 + 33.0266i 0.166084 + 1.36782i
\(584\) −157.027 + 38.7036i −6.49781 + 1.60157i
\(585\) −5.50634 7.97732i −0.227659 0.329821i
\(586\) 47.2956 24.8226i 1.95376 1.02541i
\(587\) 15.9710 23.1380i 0.659193 0.955006i −0.340697 0.940173i \(-0.610663\pi\)
0.999890 0.0148331i \(-0.00472169\pi\)
\(588\) 3.27332 4.74222i 0.134989 0.195566i
\(589\) 2.62979 2.32979i 0.108359 0.0959974i
\(590\) −9.74796 −0.401317
\(591\) 0.746402 0.183972i 0.0307029 0.00756758i
\(592\) 163.024 + 144.427i 6.70024 + 5.93590i
\(593\) 0.0280832 0.0406856i 0.00115324 0.00167076i −0.822407 0.568900i \(-0.807369\pi\)
0.823560 + 0.567229i \(0.191985\pi\)
\(594\) 4.15036 10.9436i 0.170291 0.449021i
\(595\) −0.0603236 0.0873938i −0.00247303 0.00358280i
\(596\) 35.9557 + 8.86229i 1.47280 + 0.363014i
\(597\) −2.48518 1.30432i −0.101712 0.0533824i
\(598\) 16.4969 0.674609
\(599\) −8.94234 −0.365374 −0.182687 0.983171i \(-0.558480\pi\)
−0.182687 + 0.983171i \(0.558480\pi\)
\(600\) −8.53112 4.47748i −0.348282 0.182792i
\(601\) 1.82008 + 14.9897i 0.0742426 + 0.611443i 0.981582 + 0.191043i \(0.0611870\pi\)
−0.907339 + 0.420400i \(0.861890\pi\)
\(602\) −11.7167 + 16.9745i −0.477536 + 0.691830i
\(603\) −24.3198 21.5455i −0.990378 0.877399i
\(604\) −70.5353 17.3854i −2.87004 0.707402i
\(605\) −1.09642 + 0.971340i −0.0445756 + 0.0394906i
\(606\) 0.000334072 0 0.000880876i 1.35708e−5 0 3.57832e-5i
\(607\) 0.807930 + 6.65390i 0.0327929 + 0.270073i 0.999878 + 0.0156205i \(0.00497235\pi\)
−0.967085 + 0.254453i \(0.918105\pi\)
\(608\) −56.3434 + 49.9159i −2.28503 + 2.02436i
\(609\) 0.102325 + 0.0906520i 0.00414641 + 0.00367340i
\(610\) −12.7337 + 6.68319i −0.515574 + 0.270594i
\(611\) −43.6261 38.6494i −1.76492 1.56359i
\(612\) −2.46585 −0.0996761
\(613\) 30.0453 26.6178i 1.21352 1.07508i 0.218455 0.975847i \(-0.429898\pi\)
0.995064 0.0992364i \(-0.0316400\pi\)
\(614\) 46.1702 40.9032i 1.86328 1.65072i
\(615\) −0.532587 0.771585i −0.0214760 0.0311133i
\(616\) 6.49907 53.5246i 0.261855 2.15657i
\(617\) −23.4866 20.8073i −0.945533 0.837669i 0.0413436 0.999145i \(-0.486836\pi\)
−0.986877 + 0.161476i \(0.948375\pi\)
\(618\) −5.90173 5.22848i −0.237403 0.210320i
\(619\) −11.7156 + 30.8914i −0.470889 + 1.24163i 0.463729 + 0.885977i \(0.346511\pi\)
−0.934618 + 0.355654i \(0.884258\pi\)
\(620\) −3.49111 + 3.09285i −0.140206 + 0.124212i
\(621\) 0.845566 0.749107i 0.0339314 0.0300606i
\(622\) 28.4403 74.9908i 1.14035 3.00686i
\(623\) −1.86050 15.3226i −0.0745392 0.613886i
\(624\) 20.2108 4.98150i 0.809078 0.199420i
\(625\) −15.3176 + 13.5702i −0.612705 + 0.542809i
\(626\) −14.8492 7.79346i −0.593494 0.311489i
\(627\) 1.52097 0.798268i 0.0607418 0.0318797i
\(628\) 0.849663 + 2.24038i 0.0339053 + 0.0894008i
\(629\) −0.940345 + 1.36233i −0.0374940 + 0.0543195i
\(630\) −6.22268 −0.247918
\(631\) 4.48227 11.8188i 0.178437 0.470499i −0.815720 0.578447i \(-0.803659\pi\)
0.994156 + 0.107949i \(0.0344282\pi\)
\(632\) −81.0145 + 71.7726i −3.22259 + 2.85496i
\(633\) −3.80454 −0.151217
\(634\) 74.9950 2.97843
\(635\) −2.31118 3.34832i −0.0917164 0.132874i
\(636\) −1.20688 + 9.93953i −0.0478558 + 0.394128i
\(637\) 29.6284 + 7.30274i 1.17392 + 0.289345i
\(638\) −5.38393 1.32702i −0.213152 0.0525372i
\(639\) 4.28914 35.3242i 0.169676 1.39741i
\(640\) 31.2589 27.6929i 1.23562 1.09466i
\(641\) −6.19367 + 8.97308i −0.244635 + 0.354415i −0.925997 0.377532i \(-0.876773\pi\)
0.681361 + 0.731947i \(0.261388\pi\)
\(642\) 2.98877 + 4.32999i 0.117958 + 0.170891i
\(643\) −14.2068 37.4602i −0.560261 1.47729i −0.853420 0.521224i \(-0.825476\pi\)
0.293159 0.956064i \(-0.405294\pi\)
\(644\) 4.48615 6.49931i 0.176779 0.256109i
\(645\) 0.574825 0.0226337
\(646\) −0.730921 0.647540i −0.0287577 0.0254771i
\(647\) 29.4207 + 26.0645i 1.15665 + 1.02470i 0.999310 + 0.0371548i \(0.0118295\pi\)
0.157337 + 0.987545i \(0.449709\pi\)
\(648\) −53.4269 + 77.4022i −2.09881 + 3.04064i
\(649\) 13.1226 19.0113i 0.515106 0.746261i
\(650\) 9.33293 76.8636i 0.366068 3.01484i
\(651\) −0.129579 + 0.341671i −0.00507859 + 0.0133911i
\(652\) −4.87507 40.1498i −0.190923 1.57239i
\(653\) 23.4527 5.78057i 0.917775 0.226211i 0.247987 0.968763i \(-0.420231\pi\)
0.669788 + 0.742552i \(0.266385\pi\)
\(654\) −4.26624 −0.166823
\(655\) 1.70310 2.46737i 0.0665458 0.0964082i
\(656\) −161.352 + 39.7698i −6.29976 + 1.55275i
\(657\) −42.9464 10.5853i −1.67550 0.412974i
\(658\) −36.3290 + 8.95431i −1.41625 + 0.349075i
\(659\) −23.9016 + 12.5445i −0.931074 + 0.488665i −0.860846 0.508866i \(-0.830065\pi\)
−0.0702281 + 0.997531i \(0.522373\pi\)
\(660\) −2.01912 + 1.05972i −0.0785943 + 0.0412495i
\(661\) 11.4803 + 16.6320i 0.446530 + 0.646911i 0.980021 0.198895i \(-0.0637354\pi\)
−0.533491 + 0.845806i \(0.679120\pi\)
\(662\) −19.1968 + 50.6178i −0.746105 + 1.96732i
\(663\) 0.0561010 + 0.147926i 0.00217878 + 0.00574497i
\(664\) −115.358 −4.47675
\(665\) −1.37544 1.21854i −0.0533374 0.0472528i
\(666\) 34.3972 + 90.6979i 1.33286 + 3.51447i
\(667\) −0.400603 0.354903i −0.0155114 0.0137419i
\(668\) 4.54858 + 11.9936i 0.175990 + 0.464047i
\(669\) 0.845790 0.443905i 0.0327001 0.0171624i
\(670\) 2.05887 + 16.9563i 0.0795410 + 0.655079i
\(671\) 4.10787 33.8313i 0.158582 1.30604i
\(672\) 2.77623 7.32031i 0.107095 0.282387i
\(673\) −0.557785 0.494154i −0.0215010 0.0190482i 0.652304 0.757958i \(-0.273803\pi\)
−0.673805 + 0.738909i \(0.735341\pi\)
\(674\) −8.94295 12.9561i −0.344469 0.499050i
\(675\) −3.01192 4.36352i −0.115929 0.167952i
\(676\) 72.0840 + 104.432i 2.77246 + 4.01661i
\(677\) −6.57711 + 9.52858i −0.252779 + 0.366213i −0.928745 0.370719i \(-0.879111\pi\)
0.675966 + 0.736933i \(0.263727\pi\)
\(678\) −2.02321 2.93113i −0.0777010 0.112569i
\(679\) −3.40010 + 8.96532i −0.130484 + 0.344058i
\(680\) 0.639406 + 0.566465i 0.0245201 + 0.0217229i
\(681\) −1.39508 0.343857i −0.0534597 0.0131766i
\(682\) −1.78662 14.7141i −0.0684131 0.563432i
\(683\) 17.7842 + 9.33388i 0.680494 + 0.357151i 0.769291 0.638899i \(-0.220610\pi\)
−0.0887966 + 0.996050i \(0.528302\pi\)
\(684\) −41.4300 + 10.2116i −1.58412 + 0.390450i
\(685\) 1.57765 0.828013i 0.0602788 0.0316367i
\(686\) 34.4592 30.5282i 1.31566 1.16557i
\(687\) 2.35423 + 3.41069i 0.0898194 + 0.130126i
\(688\) 36.1302 95.2674i 1.37745 3.63204i
\(689\) −51.4828 + 12.6894i −1.96134 + 0.483426i
\(690\) −0.295151 −0.0112362
\(691\) 17.4969 + 25.3486i 0.665613 + 0.964306i 0.999763 + 0.0217865i \(0.00693540\pi\)
−0.334150 + 0.942520i \(0.608449\pi\)
\(692\) 49.9277 + 12.3061i 1.89796 + 0.467806i
\(693\) 8.37690 12.1360i 0.318212 0.461010i
\(694\) −0.450648 + 3.71142i −0.0171064 + 0.140884i
\(695\) 2.26051 5.96049i 0.0857462 0.226094i
\(696\) −0.973733 0.511055i −0.0369093 0.0193715i
\(697\) −0.447882 1.18097i −0.0169647 0.0447323i
\(698\) −9.88915 26.0755i −0.374310 0.986974i
\(699\) −0.505368 4.16208i −0.0191148 0.157424i
\(700\) −27.7441 24.5791i −1.04863 0.929003i
\(701\) −2.64846 21.8121i −0.100031 0.823830i −0.953230 0.302245i \(-0.902264\pi\)
0.853199 0.521585i \(-0.174659\pi\)
\(702\) 18.1117 + 4.46414i 0.683584 + 0.168488i
\(703\) −10.1576 + 26.7833i −0.383099 + 1.01015i
\(704\) 21.6633 + 178.414i 0.816467 + 6.72421i
\(705\) 0.780527 + 0.691487i 0.0293963 + 0.0260429i
\(706\) −40.3044 + 58.3910i −1.51688 + 2.19757i
\(707\) 0.000287881 0.00237091i 1.08269e−5 8.91673e-5i
\(708\) 5.20381 4.61017i 0.195571 0.173261i
\(709\) 3.89936 2.04654i 0.146444 0.0768596i −0.389910 0.920853i \(-0.627494\pi\)
0.536353 + 0.843994i \(0.319801\pi\)
\(710\) −14.0022 + 12.4049i −0.525493 + 0.465546i
\(711\) −28.7417 + 7.08418i −1.07790 + 0.265678i
\(712\) 44.0295 + 116.096i 1.65008 + 4.35089i
\(713\) 0.507301 1.33764i 0.0189986 0.0500951i
\(714\) 0.0986123 + 0.0243057i 0.00369047 + 0.000909620i
\(715\) −9.03896 8.00782i −0.338038 0.299476i
\(716\) 7.04744 58.0409i 0.263375 2.16909i
\(717\) 3.80662 + 0.938249i 0.142161 + 0.0350395i
\(718\) 3.53168 29.0860i 0.131801 1.08548i
\(719\) −3.22213 + 26.5366i −0.120165 + 0.989650i 0.800510 + 0.599320i \(0.204562\pi\)
−0.920675 + 0.390330i \(0.872361\pi\)
\(720\) 29.8462 7.35644i 1.11230 0.274158i
\(721\) −11.3547 16.4502i −0.422873 0.612637i
\(722\) 32.2178 + 16.9092i 1.19902 + 0.629296i
\(723\) 0.562848 4.63547i 0.0209325 0.172395i
\(724\) 1.33867 3.52979i 0.0497514 0.131184i
\(725\) −1.88022 + 1.66573i −0.0698298 + 0.0618638i
\(726\) 0.168867 1.39075i 0.00626725 0.0516154i
\(727\) 14.4599 + 7.58916i 0.536290 + 0.281467i 0.711046 0.703145i \(-0.248222\pi\)
−0.174757 + 0.984612i \(0.555914\pi\)
\(728\) 85.9326 3.18488
\(729\) −22.2073 + 11.6553i −0.822494 + 0.431678i
\(730\) 13.2093 + 19.1370i 0.488898 + 0.708290i
\(731\) 0.751890 + 0.185324i 0.0278097 + 0.00685447i
\(732\) 3.63700 9.58999i 0.134427 0.354456i
\(733\) −4.86633 7.05009i −0.179742 0.260401i 0.722748 0.691111i \(-0.242879\pi\)
−0.902490 + 0.430710i \(0.858263\pi\)
\(734\) −7.46285 1.83943i −0.275459 0.0678945i
\(735\) −0.530090 0.130655i −0.0195527 0.00481930i
\(736\) −10.8689 + 28.6590i −0.400634 + 1.05639i
\(737\) −35.8413 18.8110i −1.32023 0.692911i
\(738\) −71.8622 17.7124i −2.64528 0.652004i
\(739\) −2.03141 16.7302i −0.0747266 0.615429i −0.981176 0.193115i \(-0.938141\pi\)
0.906450 0.422314i \(-0.138782\pi\)
\(740\) 13.4844 35.5554i 0.495696 1.30704i
\(741\) 1.55517 + 2.25306i 0.0571307 + 0.0827681i
\(742\) −12.0705 + 31.8273i −0.443122 + 1.16842i
\(743\) −0.559814 + 0.811031i −0.0205376 + 0.0297538i −0.833118 0.553095i \(-0.813447\pi\)
0.812581 + 0.582849i \(0.198062\pi\)
\(744\) 0.354322 2.91810i 0.0129901 0.106983i
\(745\) −0.422922 3.48307i −0.0154947 0.127610i
\(746\) 29.3878 15.4239i 1.07596 0.564709i
\(747\) −27.9362 14.6621i −1.02213 0.536457i
\(748\) −2.98274 + 0.735179i −0.109060 + 0.0268808i
\(749\) 4.72975 + 12.4713i 0.172821 + 0.455692i
\(750\) −0.344946 + 2.84088i −0.0125956 + 0.103734i
\(751\) −37.5905 33.3023i −1.37170 1.21522i −0.951448 0.307811i \(-0.900404\pi\)
−0.420251 0.907408i \(-0.638058\pi\)
\(752\) 163.662 85.8962i 5.96812 3.13231i
\(753\) −2.04490 0.504023i −0.0745204 0.0183676i
\(754\) 1.06525 8.77313i 0.0387942 0.319499i
\(755\) 0.829657 + 6.83284i 0.0301943 + 0.248672i
\(756\) 6.68403 5.92153i 0.243096 0.215364i
\(757\) −0.608413 + 5.01073i −0.0221131 + 0.182118i −0.999580 0.0289695i \(-0.990777\pi\)
0.977467 + 0.211088i \(0.0677005\pi\)
\(758\) 6.81191 1.67898i 0.247420 0.0609835i
\(759\) 0.397329 0.575630i 0.0144221 0.0208940i
\(760\) 13.0888 + 6.86955i 0.474782 + 0.249185i
\(761\) −31.7963 28.1691i −1.15262 1.02113i −0.999458 0.0329260i \(-0.989517\pi\)
−0.153157 0.988202i \(-0.548944\pi\)
\(762\) 3.77814 + 0.931228i 0.136868 + 0.0337348i
\(763\) −10.5011 2.58830i −0.380167 0.0937026i
\(764\) 33.6004 48.6786i 1.21562 1.76113i
\(765\) 0.0828471 + 0.218450i 0.00299534 + 0.00789807i
\(766\) 38.5043 + 9.49045i 1.39122 + 0.342904i
\(767\) 32.5998 + 17.1097i 1.17711 + 0.617795i
\(768\) −2.59099 + 21.3387i −0.0934943 + 0.769995i
\(769\) −0.576308 4.74633i −0.0207822 0.171157i 0.978622 0.205666i \(-0.0659362\pi\)
−0.999404 + 0.0345095i \(0.989013\pi\)
\(770\) −7.52707 + 1.85526i −0.271257 + 0.0668588i
\(771\) 0.0704774 0.00253818
\(772\) 33.2426 48.1602i 1.19643 1.73332i
\(773\) 40.2453 + 21.1223i 1.44752 + 0.759718i 0.991482 0.130242i \(-0.0415754\pi\)
0.456039 + 0.889960i \(0.349268\pi\)
\(774\) 33.9663 30.0915i 1.22089 1.08162i
\(775\) −5.94544 3.12041i −0.213567 0.112088i
\(776\) 9.29728 76.5700i 0.333753 2.74870i
\(777\) −0.359111 2.95755i −0.0128830 0.106101i
\(778\) −37.4086 33.1412i −1.34116 1.18817i
\(779\) −12.4157 17.9873i −0.444839 0.644460i
\(780\) −2.06453 2.99098i −0.0739219 0.107094i
\(781\) −5.34349 44.0076i −0.191205 1.57472i
\(782\) −0.386068 0.0951571i −0.0138057 0.00340281i
\(783\) −0.343778 0.498048i −0.0122856 0.0177988i
\(784\) −54.9723 + 79.6411i −1.96330 + 2.84433i
\(785\) 0.169928 0.150543i 0.00606501 0.00537313i
\(786\) 0.345630 + 2.84652i 0.0123282 + 0.101532i
\(787\) 48.4734 + 11.9476i 1.72789 + 0.425887i 0.973157 0.230143i \(-0.0739195\pi\)
0.754735 + 0.656030i \(0.227766\pi\)
\(788\) −23.0991 + 5.69342i −0.822872 + 0.202820i
\(789\) −0.274530 0.723875i −0.00977352 0.0257706i
\(790\) 13.7795 + 7.23203i 0.490252 + 0.257304i
\(791\) −3.20174 8.44230i −0.113841 0.300174i
\(792\) −42.0649 + 110.916i −1.49471 + 3.94123i
\(793\) 54.3155 1.92880
\(794\) −6.04471 + 8.75728i −0.214519 + 0.310784i
\(795\) 0.921092 0.227029i 0.0326678 0.00805188i
\(796\) 76.9097 + 40.3653i 2.72599 + 1.43071i
\(797\) 30.2265 7.45016i 1.07068 0.263898i 0.335685 0.941974i \(-0.391032\pi\)
0.734992 + 0.678076i \(0.237186\pi\)
\(798\) 1.75749 0.0622145
\(799\) 0.798020 + 1.15613i 0.0282319 + 0.0409010i
\(800\) 127.381 + 66.8548i 4.50361 + 2.36368i
\(801\) −4.09329 + 33.7113i −0.144629 + 1.19113i
\(802\) 27.4374 + 39.7499i 0.968847 + 1.40362i
\(803\) −55.1048 −1.94461
\(804\) −9.11836 8.07816i −0.321580 0.284895i
\(805\) −0.726499 0.179066i −0.0256057 0.00631125i
\(806\) 22.9367 5.65340i 0.807912 0.199132i
\(807\) 2.16438 + 3.13565i 0.0761898 + 0.110380i
\(808\) −0.00681284 0.0179640i −0.000239675 0.000631970i
\(809\) 1.89535 15.6096i 0.0666371 0.548806i −0.920712 0.390243i \(-0.872391\pi\)
0.987349 0.158563i \(-0.0506860\pi\)
\(810\) 13.1297 + 3.23619i 0.461332 + 0.113708i
\(811\) 51.6236 12.7241i 1.81275 0.446803i 0.820562 0.571558i \(-0.193661\pi\)
0.992188 + 0.124755i \(0.0398144\pi\)
\(812\) −3.16668 2.80543i −0.111129 0.0984514i
\(813\) 1.76759 0.0619922
\(814\) 68.6485 + 99.4545i 2.40613 + 3.48588i
\(815\) −3.39308 + 1.78083i −0.118855 + 0.0623797i
\(816\) −0.501714 −0.0175635
\(817\) 13.4004 0.468819
\(818\) −61.7988 89.5310i −2.16074 3.13038i
\(819\) 20.8103 + 10.9221i 0.727172 + 0.381649i
\(820\) 16.4821 + 23.8785i 0.575581 + 0.833873i
\(821\) 22.5314 + 11.8254i 0.786351 + 0.412709i 0.809571 0.587021i \(-0.199700\pi\)
−0.0232203 + 0.999730i \(0.507392\pi\)
\(822\) −0.604277 + 1.59335i −0.0210766 + 0.0555744i
\(823\) −3.39876 + 0.837718i −0.118473 + 0.0292010i −0.298106 0.954533i \(-0.596355\pi\)
0.179633 + 0.983734i \(0.442509\pi\)
\(824\) 120.356 + 106.626i 4.19279 + 3.71449i
\(825\) −2.45723 2.17692i −0.0855498 0.0757905i
\(826\) 20.9280 10.9838i 0.728177 0.382177i
\(827\) −17.2539 + 15.2856i −0.599977 + 0.531533i −0.907524 0.419999i \(-0.862030\pi\)
0.307547 + 0.951533i \(0.400492\pi\)
\(828\) −13.0052 + 11.5216i −0.451963 + 0.400404i
\(829\) −17.0213 8.93348i −0.591175 0.310273i 0.142477 0.989798i \(-0.454493\pi\)
−0.733652 + 0.679525i \(0.762186\pi\)
\(830\) 5.88156 + 15.5084i 0.204152 + 0.538305i
\(831\) −1.45145 + 0.761779i −0.0503502 + 0.0264258i
\(832\) −278.116 + 68.5494i −9.64193 + 2.37652i
\(833\) −0.651252 0.341803i −0.0225645 0.0118428i
\(834\) 2.16200 + 5.70073i 0.0748640 + 0.197400i
\(835\) 0.909694 0.805918i 0.0314812 0.0278899i
\(836\) −47.0700 + 24.7042i −1.62795 + 0.854414i
\(837\) 0.918931 1.33130i 0.0317629 0.0460165i
\(838\) 65.2288 34.2347i 2.25329 1.18262i
\(839\) −49.1605 −1.69721 −0.848604 0.529029i \(-0.822556\pi\)
−0.848604 + 0.529029i \(0.822556\pi\)
\(840\) −1.53744 −0.0530469
\(841\) 21.4922 19.0404i 0.741111 0.656567i
\(842\) −59.5569 14.6795i −2.05247 0.505887i
\(843\) −0.171290 + 0.451654i −0.00589953 + 0.0155558i
\(844\) 117.740 4.05279
\(845\) 6.82975 9.89460i 0.234951 0.340385i
\(846\) 82.3198 2.83021
\(847\) 1.25941 3.32080i 0.0432740 0.114104i
\(848\) 20.2684 166.925i 0.696019 5.73223i
\(849\) 0.180303 0.0946304i 0.00618799 0.00324771i
\(850\) −0.661776 + 1.74496i −0.0226987 + 0.0598516i
\(851\) 1.40592 + 11.5788i 0.0481944 + 0.396917i
\(852\) 1.60815 13.2443i 0.0550944 0.453743i
\(853\) −0.513583 4.22973i −0.0175847 0.144823i 0.981272 0.192627i \(-0.0617008\pi\)
−0.998857 + 0.0478039i \(0.984778\pi\)
\(854\) 19.8077 28.6964i 0.677805 0.981970i
\(855\) 2.29660 + 3.32720i 0.0785421 + 0.113788i
\(856\) −60.9510 88.3027i −2.08326 3.01813i
\(857\) 3.87371 + 2.03308i 0.132323 + 0.0694486i 0.529586 0.848256i \(-0.322347\pi\)
−0.397262 + 0.917705i \(0.630040\pi\)
\(858\) 11.5497 0.394299
\(859\) 29.2586 1.71274i 0.998291 0.0584381i
\(860\) −17.7893 −0.606609
\(861\) 2.01283 + 1.05641i 0.0685969 + 0.0360024i
\(862\) −5.80207 8.40575i −0.197619 0.286301i
\(863\) −15.3600 22.2529i −0.522862 0.757496i 0.469221 0.883081i \(-0.344535\pi\)
−0.992083 + 0.125585i \(0.959919\pi\)
\(864\) −19.6881 + 28.5232i −0.669804 + 0.970378i
\(865\) −0.587264 4.83655i −0.0199676 0.164448i
\(866\) −3.12938 + 25.7728i −0.106341 + 0.875795i
\(867\) 0.387852 + 3.19425i 0.0131722 + 0.108482i
\(868\) 4.01011 10.5738i 0.136112 0.358898i
\(869\) −32.6543 + 17.1383i −1.10772 + 0.581378i
\(870\) −0.0190587 + 0.156963i −0.000646151 + 0.00532153i
\(871\) 22.8764 60.3202i 0.775138 2.04387i
\(872\) 87.0027 2.94628
\(873\) 11.9836 17.3613i 0.405584 0.587590i
\(874\) −6.88058 −0.232739
\(875\) −2.57261 + 6.78341i −0.0869701 + 0.229321i
\(876\) −16.1022 3.96883i −0.544042 0.134094i
\(877\) −24.1161 + 21.3650i −0.814344 + 0.721446i −0.963599 0.267353i \(-0.913851\pi\)
0.149254 + 0.988799i \(0.452313\pi\)
\(878\) 12.7868 0.431534
\(879\) 3.60935 0.121740
\(880\) 33.9093 17.7970i 1.14308 0.599936i
\(881\) −16.5613 + 23.9932i −0.557964 + 0.808351i −0.995881 0.0906646i \(-0.971101\pi\)
0.437917 + 0.899015i \(0.355716\pi\)
\(882\) −38.1626 + 20.0293i −1.28500 + 0.674420i
\(883\) −11.1679 + 9.89386i −0.375829 + 0.332955i −0.829800 0.558061i \(-0.811545\pi\)
0.453971 + 0.891016i \(0.350007\pi\)
\(884\) −1.73617 4.57791i −0.0583938 0.153972i
\(885\) −0.583252 0.306114i −0.0196058 0.0102899i
\(886\) 74.7614 18.4270i 2.51166 0.619069i
\(887\) 33.6012 17.6353i 1.12822 0.592134i 0.205902 0.978573i \(-0.433987\pi\)
0.922315 + 0.386438i \(0.126295\pi\)
\(888\) 8.49854 + 22.4088i 0.285192 + 0.751991i
\(889\) 8.73473 + 4.58434i 0.292953 + 0.153754i
\(890\) 13.3628 11.8384i 0.447923 0.396825i
\(891\) −23.9866 + 21.2503i −0.803581 + 0.711911i
\(892\) −26.1749 + 13.7377i −0.876401 + 0.459971i
\(893\) 18.1957 + 16.1200i 0.608896 + 0.539435i
\(894\) 2.51181 + 2.22527i 0.0840076 + 0.0744243i
\(895\) −5.37862 + 1.32571i −0.179788 + 0.0443137i
\(896\) −35.9059 + 94.6762i −1.19953 + 3.16291i
\(897\) 0.987064 + 0.518051i 0.0329571 + 0.0172972i
\(898\) −24.0970 34.9106i −0.804128 1.16498i
\(899\) −0.678607 0.356160i −0.0226328 0.0118786i
\(900\) 46.3248 + 67.1131i 1.54416 + 2.23710i
\(901\) 1.27801 0.0425768
\(902\) −92.2067 −3.07015
\(903\) −1.23410 + 0.647703i −0.0410681 + 0.0215542i
\(904\) 41.2600 + 59.7754i 1.37229 + 1.98810i
\(905\) −0.357681 −0.0118897
\(906\) −4.92749 4.36538i −0.163705 0.145030i
\(907\) −38.0668 + 9.38263i −1.26399 + 0.311545i −0.813672 0.581324i \(-0.802535\pi\)
−0.450316 + 0.892869i \(0.648689\pi\)
\(908\) 43.1740 + 10.6414i 1.43278 + 0.353149i
\(909\) 0.000633368 0.00521626i 2.10075e−5 0.000173012i
\(910\) −4.38131 11.5526i −0.145239 0.382964i
\(911\) −1.67044 2.42005i −0.0553442 0.0801799i 0.794335 0.607480i \(-0.207820\pi\)
−0.849679 + 0.527300i \(0.823204\pi\)
\(912\) −8.42956 + 2.07770i −0.279131 + 0.0687995i
\(913\) −38.1636 9.40648i −1.26303 0.311309i
\(914\) −66.9168 59.2831i −2.21341 1.96091i
\(915\) −0.971773 −0.0321258
\(916\) −72.8570 105.552i −2.40726 3.48752i
\(917\) −0.876211 + 7.21625i −0.0289351 + 0.238302i
\(918\) −0.398108 0.208943i −0.0131395 0.00689616i
\(919\) −18.6779 27.0597i −0.616128 0.892616i 0.383392 0.923586i \(-0.374756\pi\)
−0.999520 + 0.0309696i \(0.990140\pi\)
\(920\) 6.01910 0.198444
\(921\) 4.04699 0.997493i 0.133353 0.0328685i
\(922\) −51.9055 27.2421i −1.70942 0.897171i
\(923\) 68.6002 16.9084i 2.25800 0.556548i
\(924\) 3.14080 4.55024i 0.103325 0.149692i
\(925\) 54.7442 1.79998
\(926\) 16.5386 43.6088i 0.543494 1.43307i
\(927\) 15.5944 + 41.1189i 0.512186 + 1.35052i
\(928\) 14.5392 + 7.63074i 0.477271 + 0.250491i
\(929\) −18.0080 47.4831i −0.590822 1.55787i −0.812630 0.582780i \(-0.801965\pi\)
0.221807 0.975091i \(-0.428804\pi\)
\(930\) −0.410367 + 0.101146i −0.0134565 + 0.00331672i
\(931\) −12.3575 3.04585i −0.405001 0.0998237i
\(932\) 15.6398 + 128.805i 0.512298 + 4.21915i
\(933\) 4.05660 3.59383i 0.132807 0.117657i
\(934\) 25.8513 37.4521i 0.845880 1.22547i
\(935\) 0.165343 + 0.239541i 0.00540729 + 0.00783382i
\(936\) −183.567 45.2452i −6.00008 1.47889i
\(937\) −1.55161 12.7787i −0.0506890 0.417462i −0.995861 0.0908888i \(-0.971029\pi\)
0.945172 0.326573i \(-0.105894\pi\)
\(938\) −23.5263 34.0837i −0.768161 1.11287i
\(939\) −0.643739 0.932616i −0.0210076 0.0304348i
\(940\) −24.1552 21.3996i −0.787856 0.697979i
\(941\) 3.44344 + 28.3593i 0.112253 + 0.924486i 0.934649 + 0.355571i \(0.115714\pi\)
−0.822396 + 0.568915i \(0.807363\pi\)
\(942\) −0.0261719 + 0.215545i −0.000852728 + 0.00702284i
\(943\) −7.88022 4.13586i −0.256615 0.134682i
\(944\) −87.3931 + 77.4235i −2.84440 + 2.51992i
\(945\) −0.749157 0.393188i −0.0243701 0.0127904i
\(946\) 32.1146 46.5261i 1.04414 1.51269i
\(947\) 10.3717 0.337036 0.168518 0.985699i \(-0.446102\pi\)
0.168518 + 0.985699i \(0.446102\pi\)
\(948\) −10.7763 + 2.65611i −0.349997 + 0.0862666i
\(949\) −10.5861 87.1841i −0.343638 2.83012i
\(950\) −3.89261 + 32.0585i −0.126293 + 1.04011i
\(951\) 4.48720 + 2.35506i 0.145507 + 0.0763681i
\(952\) −2.01103 0.495674i −0.0651779 0.0160649i
\(953\) 10.5433 + 27.8005i 0.341532 + 0.900546i 0.990223 + 0.139494i \(0.0445476\pi\)
−0.648691 + 0.761052i \(0.724683\pi\)
\(954\) 42.5424 61.6333i 1.37736 1.99545i
\(955\) −5.44134 1.34117i −0.176078 0.0433992i
\(956\) −117.805 29.0363i −3.81008 0.939100i
\(957\) −0.280466 0.248471i −0.00906617 0.00803193i
\(958\) −89.1282 46.7781i −2.87960 1.51133i
\(959\) −2.45407 + 3.55533i −0.0792461 + 0.114808i
\(960\) 4.97584 1.22644i 0.160595 0.0395830i
\(961\) −3.48971 + 28.7403i −0.112571 + 0.927107i
\(962\) −144.164 + 127.718i −4.64804 + 4.11781i
\(963\) −3.53717 29.1312i −0.113984 0.938740i
\(964\) −17.4186 + 143.455i −0.561016 + 4.62038i
\(965\) −5.38340 1.32689i −0.173298 0.0427140i
\(966\) 0.633662 0.332571i 0.0203877 0.0107003i
\(967\) −21.6300 19.1625i −0.695574 0.616225i 0.239409 0.970919i \(-0.423046\pi\)
−0.934982 + 0.354694i \(0.884585\pi\)
\(968\) −3.44376 + 28.3619i −0.110687 + 0.911586i
\(969\) −0.0233987 0.0616974i −0.000751676 0.00198201i
\(970\) −10.7679 + 2.65405i −0.345736 + 0.0852164i
\(971\) −11.9494 6.27154i −0.383475 0.201263i 0.261959 0.965079i \(-0.415631\pi\)
−0.645434 + 0.763816i \(0.723324\pi\)
\(972\) −26.1465 + 13.7227i −0.838648 + 0.440156i
\(973\) 1.86307 + 15.3437i 0.0597271 + 0.491897i
\(974\) 10.2729 84.6052i 0.329166 2.71093i
\(975\) 2.97216 4.30592i 0.0951853 0.137900i
\(976\) −61.0800 + 161.055i −1.95512 + 5.15524i
\(977\) −4.23441 6.13460i −0.135471 0.196263i 0.749377 0.662144i \(-0.230353\pi\)
−0.884848 + 0.465880i \(0.845738\pi\)
\(978\) 1.29963 3.42685i 0.0415577 0.109579i
\(979\) 5.09950 + 41.9982i 0.162981 + 1.34227i
\(980\) 16.4049 + 4.04343i 0.524034 + 0.129163i
\(981\) 21.0695 + 11.0581i 0.672696 + 0.353058i
\(982\) 31.1185 82.0529i 0.993033 2.61841i
\(983\) −20.6411 5.08758i −0.658350 0.162269i −0.104032 0.994574i \(-0.533175\pi\)
−0.554318 + 0.832305i \(0.687021\pi\)
\(984\) −17.7551 4.37623i −0.566011 0.139509i
\(985\) 1.28046 + 1.85507i 0.0407988 + 0.0591073i
\(986\) −0.0755344 + 0.199168i −0.00240551 + 0.00634280i
\(987\) −2.45488 0.605072i −0.0781395 0.0192597i
\(988\) −48.1284 69.7260i −1.53117 2.21828i
\(989\) 4.83149 2.53576i 0.153632 0.0806325i
\(990\) 17.0560 0.542074
\(991\) −7.77075 4.07840i −0.246846 0.129555i 0.336763 0.941589i \(-0.390668\pi\)
−0.583609 + 0.812035i \(0.698360\pi\)
\(992\) −5.29051 + 43.5712i −0.167974 + 1.38339i
\(993\) −2.73815 + 2.42579i −0.0868927 + 0.0769802i
\(994\) 16.0838 42.4096i 0.510148 1.34515i
\(995\) 0.991971 8.16962i 0.0314476 0.258994i
\(996\) −10.4743 5.49733i −0.331891 0.174190i
\(997\) −15.1244 21.9115i −0.478994 0.693943i 0.506769 0.862082i \(-0.330840\pi\)
−0.985763 + 0.168139i \(0.946224\pi\)
\(998\) −31.1164 + 7.66952i −0.984974 + 0.242774i
\(999\) −1.58974 + 13.0927i −0.0502971 + 0.414234i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 859.2.f.a.524.1 yes 840
859.100 even 13 inner 859.2.f.a.100.1 840
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
859.2.f.a.100.1 840 859.100 even 13 inner
859.2.f.a.524.1 yes 840 1.1 even 1 trivial