Properties

Label 864.4.p.b.143.18
Level $864$
Weight $4$
Character 864.143
Analytic conductor $50.978$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,4,Mod(143,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.143");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 864.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.9776502450\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 143.18
Character \(\chi\) \(=\) 864.143
Dual form 864.4.p.b.719.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.46312 + 2.53420i) q^{5} +(4.48829 + 2.59132i) q^{7} +O(q^{10})\) \(q+(1.46312 + 2.53420i) q^{5} +(4.48829 + 2.59132i) q^{7} +(-13.6440 - 7.87738i) q^{11} +(-37.3474 + 21.5625i) q^{13} -3.31600i q^{17} +15.0818 q^{19} +(-61.7219 - 106.905i) q^{23} +(58.2185 - 100.837i) q^{25} +(-11.7175 + 20.2953i) q^{29} +(274.752 - 158.628i) q^{31} +15.1657i q^{35} +286.660i q^{37} +(-284.954 + 164.518i) q^{41} +(175.008 - 303.123i) q^{43} +(165.936 - 287.410i) q^{47} +(-158.070 - 273.786i) q^{49} -521.214 q^{53} -46.1023i q^{55} +(-130.749 + 75.4878i) q^{59} +(650.051 + 375.307i) q^{61} +(-109.288 - 63.0972i) q^{65} +(-126.364 - 218.868i) q^{67} +1083.28 q^{71} +678.405 q^{73} +(-40.8256 - 70.7119i) q^{77} +(-97.5980 - 56.3482i) q^{79} +(-857.418 - 495.030i) q^{83} +(8.40342 - 4.85171i) q^{85} -566.656i q^{89} -223.501 q^{91} +(22.0666 + 38.2204i) q^{95} +(73.8806 - 127.965i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 48 q^{11} + 220 q^{19} - 902 q^{25} - 1620 q^{41} + 292 q^{43} + 1762 q^{49} + 5592 q^{59} + 6 q^{65} - 68 q^{67} - 868 q^{73} + 3654 q^{83} + 1380 q^{91} - 1912 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.46312 + 2.53420i 0.130866 + 0.226666i 0.924011 0.382367i \(-0.124891\pi\)
−0.793145 + 0.609033i \(0.791558\pi\)
\(6\) 0 0
\(7\) 4.48829 + 2.59132i 0.242345 + 0.139918i 0.616254 0.787547i \(-0.288649\pi\)
−0.373909 + 0.927465i \(0.621983\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.6440 7.87738i −0.373984 0.215920i 0.301213 0.953557i \(-0.402608\pi\)
−0.675198 + 0.737637i \(0.735942\pi\)
\(12\) 0 0
\(13\) −37.3474 + 21.5625i −0.796793 + 0.460028i −0.842348 0.538933i \(-0.818827\pi\)
0.0455558 + 0.998962i \(0.485494\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.31600i 0.0473087i −0.999720 0.0236544i \(-0.992470\pi\)
0.999720 0.0236544i \(-0.00753012\pi\)
\(18\) 0 0
\(19\) 15.0818 0.182106 0.0910528 0.995846i \(-0.470977\pi\)
0.0910528 + 0.995846i \(0.470977\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −61.7219 106.905i −0.559561 0.969188i −0.997533 0.0701991i \(-0.977637\pi\)
0.437972 0.898988i \(-0.355697\pi\)
\(24\) 0 0
\(25\) 58.2185 100.837i 0.465748 0.806700i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −11.7175 + 20.2953i −0.0750306 + 0.129957i −0.901100 0.433612i \(-0.857239\pi\)
0.826069 + 0.563569i \(0.190572\pi\)
\(30\) 0 0
\(31\) 274.752 158.628i 1.59184 0.919048i 0.598846 0.800865i \(-0.295626\pi\)
0.992992 0.118183i \(-0.0377070\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 15.1657i 0.0732418i
\(36\) 0 0
\(37\) 286.660i 1.27369i 0.770991 + 0.636846i \(0.219761\pi\)
−0.770991 + 0.636846i \(0.780239\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −284.954 + 164.518i −1.08542 + 0.626669i −0.932354 0.361547i \(-0.882249\pi\)
−0.153068 + 0.988216i \(0.548915\pi\)
\(42\) 0 0
\(43\) 175.008 303.123i 0.620663 1.07502i −0.368700 0.929548i \(-0.620197\pi\)
0.989363 0.145471i \(-0.0464697\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 165.936 287.410i 0.514984 0.891979i −0.484864 0.874589i \(-0.661131\pi\)
0.999849 0.0173897i \(-0.00553559\pi\)
\(48\) 0 0
\(49\) −158.070 273.786i −0.460846 0.798209i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −521.214 −1.35083 −0.675417 0.737436i \(-0.736036\pi\)
−0.675417 + 0.737436i \(0.736036\pi\)
\(54\) 0 0
\(55\) 46.1023i 0.113026i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −130.749 + 75.4878i −0.288509 + 0.166571i −0.637269 0.770641i \(-0.719936\pi\)
0.348760 + 0.937212i \(0.386603\pi\)
\(60\) 0 0
\(61\) 650.051 + 375.307i 1.36443 + 0.787756i 0.990210 0.139582i \(-0.0445760\pi\)
0.374223 + 0.927339i \(0.377909\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −109.288 63.0972i −0.208546 0.120404i
\(66\) 0 0
\(67\) −126.364 218.868i −0.230415 0.399090i 0.727515 0.686091i \(-0.240675\pi\)
−0.957930 + 0.287001i \(0.907342\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1083.28 1.81072 0.905362 0.424640i \(-0.139599\pi\)
0.905362 + 0.424640i \(0.139599\pi\)
\(72\) 0 0
\(73\) 678.405 1.08769 0.543845 0.839186i \(-0.316968\pi\)
0.543845 + 0.839186i \(0.316968\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −40.8256 70.7119i −0.0604221 0.104654i
\(78\) 0 0
\(79\) −97.5980 56.3482i −0.138995 0.0802490i 0.428890 0.903357i \(-0.358905\pi\)
−0.567885 + 0.823108i \(0.692238\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −857.418 495.030i −1.13390 0.654658i −0.188988 0.981979i \(-0.560521\pi\)
−0.944913 + 0.327321i \(0.893854\pi\)
\(84\) 0 0
\(85\) 8.40342 4.85171i 0.0107233 0.00619109i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 566.656i 0.674893i −0.941345 0.337446i \(-0.890437\pi\)
0.941345 0.337446i \(-0.109563\pi\)
\(90\) 0 0
\(91\) −223.501 −0.257465
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 22.0666 + 38.2204i 0.0238314 + 0.0412771i
\(96\) 0 0
\(97\) 73.8806 127.965i 0.0773344 0.133947i −0.824765 0.565476i \(-0.808692\pi\)
0.902099 + 0.431529i \(0.142026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 733.536 1270.52i 0.722669 1.25170i −0.237258 0.971447i \(-0.576249\pi\)
0.959926 0.280252i \(-0.0904181\pi\)
\(102\) 0 0
\(103\) 1005.07 580.278i 0.961482 0.555112i 0.0648531 0.997895i \(-0.479342\pi\)
0.896629 + 0.442783i \(0.146009\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1244.09i 1.12402i −0.827130 0.562011i \(-0.810028\pi\)
0.827130 0.562011i \(-0.189972\pi\)
\(108\) 0 0
\(109\) 569.937i 0.500826i −0.968139 0.250413i \(-0.919434\pi\)
0.968139 0.250413i \(-0.0805664\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 824.716 476.150i 0.686573 0.396393i −0.115754 0.993278i \(-0.536928\pi\)
0.802327 + 0.596885i \(0.203595\pi\)
\(114\) 0 0
\(115\) 180.613 312.831i 0.146455 0.253667i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.59280 14.8832i 0.00661934 0.0114650i
\(120\) 0 0
\(121\) −541.394 937.722i −0.406757 0.704524i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 706.504 0.505533
\(126\) 0 0
\(127\) 1274.79i 0.890701i 0.895356 + 0.445350i \(0.146921\pi\)
−0.895356 + 0.445350i \(0.853079\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −470.494 + 271.640i −0.313796 + 0.181170i −0.648624 0.761109i \(-0.724655\pi\)
0.334828 + 0.942279i \(0.391322\pi\)
\(132\) 0 0
\(133\) 67.6916 + 39.0818i 0.0441324 + 0.0254798i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2185.39 1261.73i −1.36285 0.786840i −0.372846 0.927893i \(-0.621618\pi\)
−0.990002 + 0.141053i \(0.954951\pi\)
\(138\) 0 0
\(139\) −937.946 1624.57i −0.572342 0.991326i −0.996325 0.0856555i \(-0.972702\pi\)
0.423983 0.905670i \(-0.360632\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 679.425 0.397317
\(144\) 0 0
\(145\) −68.5766 −0.0392757
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 998.646 + 1729.71i 0.549076 + 0.951027i 0.998338 + 0.0576270i \(0.0183534\pi\)
−0.449263 + 0.893400i \(0.648313\pi\)
\(150\) 0 0
\(151\) 35.3646 + 20.4177i 0.0190591 + 0.0110038i 0.509499 0.860471i \(-0.329831\pi\)
−0.490440 + 0.871475i \(0.663164\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 803.992 + 464.185i 0.416634 + 0.240544i
\(156\) 0 0
\(157\) 1170.05 675.530i 0.594779 0.343396i −0.172206 0.985061i \(-0.555089\pi\)
0.766985 + 0.641665i \(0.221756\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 639.763i 0.313170i
\(162\) 0 0
\(163\) 1922.43 0.923779 0.461890 0.886937i \(-0.347172\pi\)
0.461890 + 0.886937i \(0.347172\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1311.20 2271.06i −0.607566 1.05234i −0.991640 0.129033i \(-0.958813\pi\)
0.384074 0.923302i \(-0.374521\pi\)
\(168\) 0 0
\(169\) −168.615 + 292.049i −0.0767477 + 0.132931i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1385.77 2400.23i 0.609008 1.05483i −0.382396 0.923998i \(-0.624901\pi\)
0.991404 0.130834i \(-0.0417656\pi\)
\(174\) 0 0
\(175\) 522.603 301.725i 0.225743 0.130333i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2108.40i 0.880389i −0.897903 0.440194i \(-0.854910\pi\)
0.897903 0.440194i \(-0.145090\pi\)
\(180\) 0 0
\(181\) 583.190i 0.239493i 0.992805 + 0.119746i \(0.0382081\pi\)
−0.992805 + 0.119746i \(0.961792\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −726.455 + 419.419i −0.288703 + 0.166683i
\(186\) 0 0
\(187\) −26.1214 + 45.2436i −0.0102149 + 0.0176927i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −622.663 + 1078.48i −0.235886 + 0.408567i −0.959530 0.281607i \(-0.909133\pi\)
0.723644 + 0.690174i \(0.242466\pi\)
\(192\) 0 0
\(193\) −1316.15 2279.63i −0.490872 0.850215i 0.509073 0.860723i \(-0.329988\pi\)
−0.999945 + 0.0105083i \(0.996655\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1210.94 0.437948 0.218974 0.975731i \(-0.429729\pi\)
0.218974 + 0.975731i \(0.429729\pi\)
\(198\) 0 0
\(199\) 2015.72i 0.718043i 0.933329 + 0.359021i \(0.116890\pi\)
−0.933329 + 0.359021i \(0.883110\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −105.183 + 60.7275i −0.0363666 + 0.0209962i
\(204\) 0 0
\(205\) −833.845 481.421i −0.284089 0.164019i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −205.777 118.805i −0.0681046 0.0393202i
\(210\) 0 0
\(211\) 601.260 + 1041.41i 0.196173 + 0.339781i 0.947284 0.320394i \(-0.103815\pi\)
−0.751112 + 0.660175i \(0.770482\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1024.23 0.324894
\(216\) 0 0
\(217\) 1644.22 0.514365
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 71.5013 + 123.844i 0.0217634 + 0.0376952i
\(222\) 0 0
\(223\) 1135.80 + 655.752i 0.341070 + 0.196917i 0.660745 0.750611i \(-0.270241\pi\)
−0.319675 + 0.947527i \(0.603574\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2494.70 1440.32i −0.729423 0.421133i 0.0887881 0.996051i \(-0.471701\pi\)
−0.818211 + 0.574918i \(0.805034\pi\)
\(228\) 0 0
\(229\) 3858.07 2227.46i 1.11331 0.642771i 0.173627 0.984812i \(-0.444451\pi\)
0.939685 + 0.342040i \(0.111118\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1085.86i 0.305309i 0.988280 + 0.152654i \(0.0487821\pi\)
−0.988280 + 0.152654i \(0.951218\pi\)
\(234\) 0 0
\(235\) 971.139 0.269575
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1617.59 2801.74i −0.437795 0.758283i 0.559724 0.828679i \(-0.310907\pi\)
−0.997519 + 0.0703960i \(0.977574\pi\)
\(240\) 0 0
\(241\) 715.242 1238.84i 0.191173 0.331122i −0.754466 0.656339i \(-0.772104\pi\)
0.945639 + 0.325217i \(0.105437\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 462.552 801.164i 0.120618 0.208916i
\(246\) 0 0
\(247\) −563.267 + 325.202i −0.145100 + 0.0837738i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5903.80i 1.48464i 0.670046 + 0.742320i \(0.266275\pi\)
−0.670046 + 0.742320i \(0.733725\pi\)
\(252\) 0 0
\(253\) 1944.83i 0.483281i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1225.66 + 707.636i −0.297489 + 0.171755i −0.641314 0.767278i \(-0.721611\pi\)
0.343825 + 0.939034i \(0.388277\pi\)
\(258\) 0 0
\(259\) −742.827 + 1286.61i −0.178212 + 0.308673i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2793.50 + 4838.48i −0.654959 + 1.13442i 0.326945 + 0.945043i \(0.393981\pi\)
−0.981904 + 0.189379i \(0.939352\pi\)
\(264\) 0 0
\(265\) −762.599 1320.86i −0.176778 0.306188i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5030.52 −1.14021 −0.570105 0.821572i \(-0.693097\pi\)
−0.570105 + 0.821572i \(0.693097\pi\)
\(270\) 0 0
\(271\) 1317.52i 0.295328i 0.989038 + 0.147664i \(0.0471754\pi\)
−0.989038 + 0.147664i \(0.952825\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1588.67 + 917.219i −0.348365 + 0.201129i
\(276\) 0 0
\(277\) −2626.49 1516.41i −0.569714 0.328924i 0.187321 0.982299i \(-0.440019\pi\)
−0.757035 + 0.653374i \(0.773353\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2118.05 + 1222.86i 0.449653 + 0.259607i 0.707683 0.706530i \(-0.249740\pi\)
−0.258031 + 0.966137i \(0.583074\pi\)
\(282\) 0 0
\(283\) −4229.51 7325.72i −0.888403 1.53876i −0.841763 0.539847i \(-0.818482\pi\)
−0.0466401 0.998912i \(-0.514851\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1705.27 −0.350729
\(288\) 0 0
\(289\) 4902.00 0.997762
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 219.370 + 379.960i 0.0437397 + 0.0757593i 0.887066 0.461642i \(-0.152739\pi\)
−0.843327 + 0.537401i \(0.819406\pi\)
\(294\) 0 0
\(295\) −382.603 220.896i −0.0755118 0.0435968i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4610.30 + 2661.76i 0.891708 + 0.514828i
\(300\) 0 0
\(301\) 1570.97 907.003i 0.300829 0.173684i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2196.48i 0.412361i
\(306\) 0 0
\(307\) 7875.21 1.46405 0.732023 0.681280i \(-0.238577\pi\)
0.732023 + 0.681280i \(0.238577\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 532.946 + 923.090i 0.0971724 + 0.168308i 0.910513 0.413480i \(-0.135687\pi\)
−0.813341 + 0.581788i \(0.802354\pi\)
\(312\) 0 0
\(313\) −4954.30 + 8581.10i −0.894676 + 1.54962i −0.0604700 + 0.998170i \(0.519260\pi\)
−0.834206 + 0.551454i \(0.814073\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −35.1444 + 60.8718i −0.00622683 + 0.0107852i −0.869122 0.494598i \(-0.835315\pi\)
0.862895 + 0.505383i \(0.168649\pi\)
\(318\) 0 0
\(319\) 319.748 184.607i 0.0561205 0.0324012i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 50.0113i 0.00861518i
\(324\) 0 0
\(325\) 5021.36i 0.857030i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1489.54 859.986i 0.249608 0.144111i
\(330\) 0 0
\(331\) −4684.34 + 8113.51i −0.777868 + 1.34731i 0.155300 + 0.987867i \(0.450366\pi\)
−0.933168 + 0.359440i \(0.882968\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 369.771 640.463i 0.0603067 0.104454i
\(336\) 0 0
\(337\) 3086.72 + 5346.35i 0.498944 + 0.864197i 0.999999 0.00121842i \(-0.000387836\pi\)
−0.501055 + 0.865416i \(0.667055\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4998.30 −0.793763
\(342\) 0 0
\(343\) 3416.08i 0.537758i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5102.09 2945.69i 0.789321 0.455715i −0.0504023 0.998729i \(-0.516050\pi\)
0.839724 + 0.543014i \(0.182717\pi\)
\(348\) 0 0
\(349\) −8150.29 4705.57i −1.25007 0.721729i −0.278948 0.960306i \(-0.589986\pi\)
−0.971123 + 0.238577i \(0.923319\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6050.47 + 3493.24i 0.912278 + 0.526704i 0.881163 0.472812i \(-0.156761\pi\)
0.0311148 + 0.999516i \(0.490094\pi\)
\(354\) 0 0
\(355\) 1584.97 + 2745.25i 0.236962 + 0.410430i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3844.64 0.565215 0.282607 0.959236i \(-0.408801\pi\)
0.282607 + 0.959236i \(0.408801\pi\)
\(360\) 0 0
\(361\) −6631.54 −0.966838
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 992.590 + 1719.22i 0.142341 + 0.246542i
\(366\) 0 0
\(367\) −11663.0 6733.63i −1.65886 0.957746i −0.973240 0.229789i \(-0.926196\pi\)
−0.685624 0.727956i \(-0.740470\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2339.36 1350.63i −0.327368 0.189006i
\(372\) 0 0
\(373\) −5361.43 + 3095.42i −0.744248 + 0.429692i −0.823612 0.567154i \(-0.808044\pi\)
0.0793639 + 0.996846i \(0.474711\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1010.64i 0.138065i
\(378\) 0 0
\(379\) −7854.31 −1.06451 −0.532255 0.846584i \(-0.678655\pi\)
−0.532255 + 0.846584i \(0.678655\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5216.45 + 9035.15i 0.695948 + 1.20542i 0.969860 + 0.243662i \(0.0783489\pi\)
−0.273912 + 0.961755i \(0.588318\pi\)
\(384\) 0 0
\(385\) 119.466 206.920i 0.0158144 0.0273913i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5731.82 + 9927.81i −0.747082 + 1.29398i 0.202133 + 0.979358i \(0.435213\pi\)
−0.949216 + 0.314626i \(0.898121\pi\)
\(390\) 0 0
\(391\) −354.498 + 204.670i −0.0458510 + 0.0264721i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 329.777i 0.0420074i
\(396\) 0 0
\(397\) 8809.54i 1.11370i 0.830614 + 0.556849i \(0.187990\pi\)
−0.830614 + 0.556849i \(0.812010\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6817.45 3936.06i 0.848996 0.490168i −0.0113159 0.999936i \(-0.503602\pi\)
0.860312 + 0.509768i \(0.170269\pi\)
\(402\) 0 0
\(403\) −6840.85 + 11848.7i −0.845576 + 1.46458i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2258.13 3911.20i 0.275016 0.476341i
\(408\) 0 0
\(409\) 170.965 + 296.120i 0.0206691 + 0.0358000i 0.876175 0.481993i \(-0.160087\pi\)
−0.855506 + 0.517793i \(0.826754\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −782.451 −0.0932249
\(414\) 0 0
\(415\) 2897.16i 0.342689i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1154.35 666.463i 0.134591 0.0777060i −0.431193 0.902260i \(-0.641907\pi\)
0.565784 + 0.824554i \(0.308574\pi\)
\(420\) 0 0
\(421\) −5457.42 3150.84i −0.631777 0.364757i 0.149663 0.988737i \(-0.452181\pi\)
−0.781440 + 0.623980i \(0.785515\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −334.377 193.053i −0.0381639 0.0220340i
\(426\) 0 0
\(427\) 1945.08 + 3368.97i 0.220442 + 0.381817i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1791.33 0.200198 0.100099 0.994977i \(-0.468084\pi\)
0.100099 + 0.994977i \(0.468084\pi\)
\(432\) 0 0
\(433\) 7947.77 0.882092 0.441046 0.897485i \(-0.354608\pi\)
0.441046 + 0.897485i \(0.354608\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −930.878 1612.33i −0.101899 0.176495i
\(438\) 0 0
\(439\) −10066.8 5812.07i −1.09445 0.631879i −0.159690 0.987167i \(-0.551049\pi\)
−0.934757 + 0.355288i \(0.884383\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12771.4 + 7373.55i 1.36972 + 0.790808i 0.990892 0.134660i \(-0.0429942\pi\)
0.378827 + 0.925467i \(0.376328\pi\)
\(444\) 0 0
\(445\) 1436.02 829.088i 0.152975 0.0883203i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8413.52i 0.884317i 0.896937 + 0.442159i \(0.145787\pi\)
−0.896937 + 0.442159i \(0.854213\pi\)
\(450\) 0 0
\(451\) 5183.89 0.541241
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −327.010 566.398i −0.0336933 0.0583585i
\(456\) 0 0
\(457\) −9060.70 + 15693.6i −0.927443 + 1.60638i −0.139860 + 0.990171i \(0.544665\pi\)
−0.787584 + 0.616208i \(0.788668\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8300.14 + 14376.3i −0.838560 + 1.45243i 0.0525393 + 0.998619i \(0.483269\pi\)
−0.891099 + 0.453809i \(0.850065\pi\)
\(462\) 0 0
\(463\) 9006.61 5199.97i 0.904045 0.521950i 0.0255344 0.999674i \(-0.491871\pi\)
0.878510 + 0.477724i \(0.158538\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4926.33i 0.488144i −0.969757 0.244072i \(-0.921517\pi\)
0.969757 0.244072i \(-0.0784833\pi\)
\(468\) 0 0
\(469\) 1309.79i 0.128957i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4775.63 + 2757.21i −0.464236 + 0.268027i
\(474\) 0 0
\(475\) 878.042 1520.81i 0.0848154 0.146905i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 934.274 1618.21i 0.0891191 0.154359i −0.818020 0.575190i \(-0.804928\pi\)
0.907139 + 0.420831i \(0.138261\pi\)
\(480\) 0 0
\(481\) −6181.12 10706.0i −0.585935 1.01487i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 432.385 0.0404817
\(486\) 0 0
\(487\) 3289.20i 0.306053i 0.988222 + 0.153026i \(0.0489020\pi\)
−0.988222 + 0.153026i \(0.951098\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1189.49 + 686.750i −0.109329 + 0.0631214i −0.553668 0.832738i \(-0.686772\pi\)
0.444338 + 0.895859i \(0.353439\pi\)
\(492\) 0 0
\(493\) 67.2993 + 38.8553i 0.00614809 + 0.00354960i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4862.07 + 2807.11i 0.438820 + 0.253353i
\(498\) 0 0
\(499\) 925.039 + 1602.21i 0.0829868 + 0.143737i 0.904532 0.426407i \(-0.140221\pi\)
−0.821545 + 0.570144i \(0.806887\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17948.3 −1.59100 −0.795502 0.605951i \(-0.792793\pi\)
−0.795502 + 0.605951i \(0.792793\pi\)
\(504\) 0 0
\(505\) 4293.01 0.378290
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −131.163 227.180i −0.0114218 0.0197831i 0.860258 0.509859i \(-0.170302\pi\)
−0.871680 + 0.490076i \(0.836969\pi\)
\(510\) 0 0
\(511\) 3044.88 + 1757.96i 0.263596 + 0.152187i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2941.09 + 1698.04i 0.251650 + 0.145290i
\(516\) 0 0
\(517\) −4528.07 + 2614.28i −0.385192 + 0.222391i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 938.595i 0.0789263i −0.999221 0.0394631i \(-0.987435\pi\)
0.999221 0.0394631i \(-0.0125648\pi\)
\(522\) 0 0
\(523\) 7118.07 0.595127 0.297563 0.954702i \(-0.403826\pi\)
0.297563 + 0.954702i \(0.403826\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −526.011 911.078i −0.0434790 0.0753078i
\(528\) 0 0
\(529\) −1535.67 + 2659.87i −0.126216 + 0.218613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7094.86 12288.7i 0.576571 0.998650i
\(534\) 0 0
\(535\) 3152.77 1820.25i 0.254777 0.147096i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4980.71i 0.398023i
\(540\) 0 0
\(541\) 6529.45i 0.518896i −0.965757 0.259448i \(-0.916459\pi\)
0.965757 0.259448i \(-0.0835407\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1444.33 833.887i 0.113520 0.0655409i
\(546\) 0 0
\(547\) 902.529 1563.23i 0.0705473 0.122192i −0.828594 0.559850i \(-0.810859\pi\)
0.899141 + 0.437658i \(0.144192\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −176.721 + 306.090i −0.0136635 + 0.0236659i
\(552\) 0 0
\(553\) −292.032 505.814i −0.0224565 0.0388959i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 25569.6 1.94510 0.972550 0.232694i \(-0.0747540\pi\)
0.972550 + 0.232694i \(0.0747540\pi\)
\(558\) 0 0
\(559\) 15094.5i 1.14209i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4254.07 + 2456.09i −0.318451 + 0.183858i −0.650702 0.759333i \(-0.725525\pi\)
0.332251 + 0.943191i \(0.392192\pi\)
\(564\) 0 0
\(565\) 2413.32 + 1393.33i 0.179698 + 0.103748i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13142.2 7587.64i −0.968275 0.559034i −0.0695650 0.997577i \(-0.522161\pi\)
−0.898710 + 0.438544i \(0.855494\pi\)
\(570\) 0 0
\(571\) −6558.52 11359.7i −0.480675 0.832554i 0.519079 0.854726i \(-0.326275\pi\)
−0.999754 + 0.0221726i \(0.992942\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14373.4 −1.04246
\(576\) 0 0
\(577\) 9122.28 0.658173 0.329086 0.944300i \(-0.393259\pi\)
0.329086 + 0.944300i \(0.393259\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2565.56 4443.68i −0.183197 0.317306i
\(582\) 0 0
\(583\) 7111.45 + 4105.80i 0.505191 + 0.291672i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13405.1 7739.45i −0.942570 0.544193i −0.0518051 0.998657i \(-0.516497\pi\)
−0.890765 + 0.454464i \(0.849831\pi\)
\(588\) 0 0
\(589\) 4143.76 2392.40i 0.289883 0.167364i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13499.3i 0.934824i −0.884040 0.467412i \(-0.845187\pi\)
0.884040 0.467412i \(-0.154813\pi\)
\(594\) 0 0
\(595\) 50.2893 0.00346498
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7097.54 + 12293.3i 0.484136 + 0.838548i 0.999834 0.0182222i \(-0.00580063\pi\)
−0.515698 + 0.856771i \(0.672467\pi\)
\(600\) 0 0
\(601\) 505.327 875.253i 0.0342974 0.0594048i −0.848367 0.529408i \(-0.822414\pi\)
0.882665 + 0.470003i \(0.155747\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1584.25 2744.00i 0.106461 0.184396i
\(606\) 0 0
\(607\) −7769.04 + 4485.46i −0.519498 + 0.299933i −0.736729 0.676188i \(-0.763631\pi\)
0.217231 + 0.976120i \(0.430298\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14312.0i 0.947630i
\(612\) 0 0
\(613\) 14462.3i 0.952897i −0.879202 0.476449i \(-0.841924\pi\)
0.879202 0.476449i \(-0.158076\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18159.9 + 10484.6i −1.18491 + 0.684108i −0.957145 0.289608i \(-0.906475\pi\)
−0.227764 + 0.973716i \(0.573142\pi\)
\(618\) 0 0
\(619\) 3168.60 5488.18i 0.205746 0.356363i −0.744624 0.667484i \(-0.767371\pi\)
0.950370 + 0.311121i \(0.100705\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1468.39 2543.32i 0.0944296 0.163557i
\(624\) 0 0
\(625\) −6243.62 10814.3i −0.399591 0.692113i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 950.565 0.0602568
\(630\) 0 0
\(631\) 26190.2i 1.65232i 0.563436 + 0.826160i \(0.309479\pi\)
−0.563436 + 0.826160i \(0.690521\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3230.57 + 1865.17i −0.201892 + 0.116562i
\(636\) 0 0
\(637\) 11807.0 + 6816.79i 0.734397 + 0.424004i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21831.2 + 12604.3i 1.34521 + 0.776660i 0.987567 0.157197i \(-0.0502458\pi\)
0.357647 + 0.933857i \(0.383579\pi\)
\(642\) 0 0
\(643\) −3931.26 6809.13i −0.241110 0.417614i 0.719921 0.694056i \(-0.244178\pi\)
−0.961031 + 0.276442i \(0.910845\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 188.733 0.0114681 0.00573404 0.999984i \(-0.498175\pi\)
0.00573404 + 0.999984i \(0.498175\pi\)
\(648\) 0 0
\(649\) 2378.58 0.143864
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15259.4 26430.1i −0.914468 1.58390i −0.807678 0.589623i \(-0.799276\pi\)
−0.106790 0.994282i \(-0.534057\pi\)
\(654\) 0 0
\(655\) −1376.78 794.884i −0.0821301 0.0474178i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16805.7 9702.80i −0.993412 0.573547i −0.0871197 0.996198i \(-0.527766\pi\)
−0.906292 + 0.422651i \(0.861100\pi\)
\(660\) 0 0
\(661\) 26953.4 15561.6i 1.58603 0.915696i 0.592079 0.805880i \(-0.298307\pi\)
0.993952 0.109816i \(-0.0350262\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 228.726i 0.0133377i
\(666\) 0 0
\(667\) 2892.91 0.167937
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5912.87 10241.4i −0.340185 0.589217i
\(672\) 0 0
\(673\) 16571.1 28701.9i 0.949134 1.64395i 0.201880 0.979410i \(-0.435295\pi\)
0.747254 0.664539i \(-0.231372\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3831.16 6635.77i 0.217494 0.376711i −0.736547 0.676386i \(-0.763545\pi\)
0.954041 + 0.299675i \(0.0968783\pi\)
\(678\) 0 0
\(679\) 663.195 382.896i 0.0374832 0.0216409i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8233.45i 0.461265i −0.973041 0.230633i \(-0.925920\pi\)
0.973041 0.230633i \(-0.0740795\pi\)
\(684\) 0 0
\(685\) 7384.28i 0.411882i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 19466.0 11238.7i 1.07633 0.621422i
\(690\) 0 0
\(691\) 9201.53 15937.5i 0.506574 0.877412i −0.493397 0.869804i \(-0.664245\pi\)
0.999971 0.00760808i \(-0.00242175\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2744.66 4753.89i 0.149800 0.259461i
\(696\) 0 0
\(697\) 545.542 + 944.907i 0.0296469 + 0.0513499i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2617.11 −0.141008 −0.0705041 0.997511i \(-0.522461\pi\)
−0.0705041 + 0.997511i \(0.522461\pi\)
\(702\) 0 0
\(703\) 4323.36i 0.231947i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6584.64 3801.65i 0.350270 0.202229i
\(708\) 0 0
\(709\) 15311.9 + 8840.30i 0.811070 + 0.468271i 0.847327 0.531071i \(-0.178210\pi\)
−0.0362573 + 0.999342i \(0.511544\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33916.4 19581.7i −1.78146 1.02853i
\(714\) 0 0
\(715\) 994.082 + 1721.80i 0.0519952 + 0.0900583i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7767.21 0.402876 0.201438 0.979501i \(-0.435438\pi\)
0.201438 + 0.979501i \(0.435438\pi\)
\(720\) 0 0
\(721\) 6014.74 0.310680
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1364.35 + 2363.13i 0.0698907 + 0.121054i
\(726\) 0 0
\(727\) 9187.03 + 5304.13i 0.468677 + 0.270591i 0.715686 0.698423i \(-0.246114\pi\)
−0.247009 + 0.969013i \(0.579448\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1005.16 580.327i −0.0508578 0.0293628i
\(732\) 0 0
\(733\) −7738.67 + 4467.92i −0.389951 + 0.225138i −0.682139 0.731223i \(-0.738950\pi\)
0.292188 + 0.956361i \(0.405617\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3981.66i 0.199005i
\(738\) 0 0
\(739\) −5767.08 −0.287071 −0.143535 0.989645i \(-0.545847\pi\)
−0.143535 + 0.989645i \(0.545847\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 711.865 + 1232.99i 0.0351491 + 0.0608801i 0.883065 0.469251i \(-0.155476\pi\)
−0.847916 + 0.530131i \(0.822143\pi\)
\(744\) 0 0
\(745\) −2922.28 + 5061.54i −0.143710 + 0.248913i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3223.82 5583.82i 0.157271 0.272401i
\(750\) 0 0
\(751\) 16310.8 9417.02i 0.792527 0.457566i −0.0483243 0.998832i \(-0.515388\pi\)
0.840851 + 0.541266i \(0.182055\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 119.495i 0.00576007i
\(756\) 0 0
\(757\) 21381.1i 1.02657i 0.858219 + 0.513283i \(0.171571\pi\)
−0.858219 + 0.513283i \(0.828429\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15809.6 + 9127.66i −0.753083 + 0.434793i −0.826807 0.562486i \(-0.809845\pi\)
0.0737237 + 0.997279i \(0.476512\pi\)
\(762\) 0 0
\(763\) 1476.89 2558.04i 0.0700745 0.121373i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3255.42 5638.55i 0.153255 0.265445i
\(768\) 0 0
\(769\) −7996.45 13850.3i −0.374980 0.649484i 0.615344 0.788259i \(-0.289017\pi\)
−0.990324 + 0.138774i \(0.955684\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23733.1 1.10429 0.552147 0.833747i \(-0.313809\pi\)
0.552147 + 0.833747i \(0.313809\pi\)
\(774\) 0 0
\(775\) 36940.4i 1.71218i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4297.62 + 2481.23i −0.197662 + 0.114120i
\(780\) 0 0
\(781\) −14780.3 8533.39i −0.677182 0.390971i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3423.86 + 1976.77i 0.155672 + 0.0898775i
\(786\) 0 0
\(787\) −3774.80 6538.15i −0.170975 0.296137i 0.767786 0.640706i \(-0.221358\pi\)
−0.938761 + 0.344569i \(0.888025\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4935.42 0.221850
\(792\) 0 0
\(793\) −32370.3 −1.44956
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13480.4 + 23348.7i 0.599120 + 1.03771i 0.992951 + 0.118524i \(0.0378161\pi\)
−0.393831 + 0.919183i \(0.628851\pi\)
\(798\) 0 0
\(799\) −953.051 550.244i −0.0421984 0.0243632i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9256.18 5344.06i −0.406779 0.234854i
\(804\) 0 0
\(805\) 1621.29 936.052i 0.0709850 0.0409832i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 33739.1i 1.46626i −0.680090 0.733129i \(-0.738059\pi\)
0.680090 0.733129i \(-0.261941\pi\)
\(810\) 0 0
\(811\) 9809.12 0.424716 0.212358 0.977192i \(-0.431886\pi\)
0.212358 + 0.977192i \(0.431886\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2812.74 + 4871.82i 0.120891 + 0.209389i
\(816\) 0 0
\(817\) 2639.44 4571.65i 0.113026 0.195767i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9274.38 + 16063.7i −0.394248 + 0.682858i −0.993005 0.118073i \(-0.962328\pi\)
0.598756 + 0.800931i \(0.295662\pi\)
\(822\) 0 0
\(823\) 1262.62 728.972i 0.0534775 0.0308753i −0.473023 0.881050i \(-0.656837\pi\)
0.526500 + 0.850175i \(0.323504\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42187.5i 1.77388i −0.461881 0.886942i \(-0.652825\pi\)
0.461881 0.886942i \(-0.347175\pi\)
\(828\) 0 0
\(829\) 22370.3i 0.937218i 0.883406 + 0.468609i \(0.155245\pi\)
−0.883406 + 0.468609i \(0.844755\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −907.873 + 524.161i −0.0377622 + 0.0218020i
\(834\) 0 0
\(835\) 3836.89 6645.68i 0.159019 0.275429i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24035.3 41630.3i 0.989023 1.71304i 0.366548 0.930399i \(-0.380540\pi\)
0.622476 0.782639i \(-0.286127\pi\)
\(840\) 0 0
\(841\) 11919.9 + 20645.9i 0.488741 + 0.846524i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −986.816 −0.0401745
\(846\) 0 0
\(847\) 5611.69i 0.227650i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30645.5 17693.2i 1.23445 0.712708i
\(852\) 0 0
\(853\) −14708.0 8491.65i −0.590377 0.340854i 0.174870 0.984592i \(-0.444050\pi\)
−0.765246 + 0.643737i \(0.777383\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22340.4 12898.3i −0.890473 0.514115i −0.0163755 0.999866i \(-0.505213\pi\)
−0.874097 + 0.485751i \(0.838546\pi\)
\(858\) 0 0
\(859\) 9914.38 + 17172.2i 0.393800 + 0.682082i 0.992947 0.118557i \(-0.0378269\pi\)
−0.599147 + 0.800639i \(0.704494\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 42561.4 1.67880 0.839401 0.543513i \(-0.182906\pi\)
0.839401 + 0.543513i \(0.182906\pi\)
\(864\) 0 0
\(865\) 8110.22 0.318793
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 887.753 + 1537.63i 0.0346547 + 0.0600237i
\(870\) 0 0
\(871\) 9438.71 + 5449.44i 0.367185 + 0.211995i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3171.00 + 1830.78i 0.122513 + 0.0707331i
\(876\) 0 0
\(877\) −13338.6 + 7701.03i −0.513582 + 0.296517i −0.734305 0.678820i \(-0.762492\pi\)
0.220723 + 0.975337i \(0.429158\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 408.896i 0.0156368i −0.999969 0.00781842i \(-0.997511\pi\)
0.999969 0.00781842i \(-0.00248871\pi\)
\(882\) 0 0
\(883\) −24945.2 −0.950704 −0.475352 0.879796i \(-0.657679\pi\)
−0.475352 + 0.879796i \(0.657679\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5014.93 8686.11i −0.189836 0.328806i 0.755359 0.655311i \(-0.227462\pi\)
−0.945196 + 0.326505i \(0.894129\pi\)
\(888\) 0 0
\(889\) −3303.37 + 5721.61i −0.124625 + 0.215857i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2502.62 4334.66i 0.0937815 0.162434i
\(894\) 0 0
\(895\) 5343.12 3084.85i 0.199554 0.115213i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7434.91i 0.275827i
\(900\) 0 0
\(901\) 1728.34i 0.0639062i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1477.92 + 853.278i −0.0542848 + 0.0313413i
\(906\) 0 0
\(907\) −3767.44 + 6525.40i −0.137923 + 0.238889i −0.926710 0.375777i \(-0.877376\pi\)
0.788788 + 0.614666i \(0.210709\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11159.9 + 19329.6i −0.405867 + 0.702983i −0.994422 0.105475i \(-0.966364\pi\)
0.588555 + 0.808457i \(0.299697\pi\)
\(912\) 0 0
\(913\) 7799.08 + 13508.4i 0.282708 + 0.489664i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2815.62 −0.101396
\(918\) 0 0
\(919\) 40992.7i 1.47141i −0.677303 0.735704i \(-0.736851\pi\)
0.677303 0.735704i \(-0.263149\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −40457.6 + 23358.2i −1.44277 + 0.832985i
\(924\) 0 0
\(925\) 28906.1 + 16688.9i 1.02749 + 0.593220i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20199.6 + 11662.2i 0.713376 + 0.411868i 0.812310 0.583226i \(-0.198210\pi\)
−0.0989336 + 0.995094i \(0.531543\pi\)
\(930\) 0 0
\(931\) −2383.99 4129.18i −0.0839226 0.145358i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −152.875 −0.00534712
\(936\) 0 0
\(937\) −29355.3 −1.02348 −0.511738 0.859142i \(-0.670998\pi\)
−0.511738 + 0.859142i \(0.670998\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1391.16 + 2409.56i 0.0481939 + 0.0834743i 0.889116 0.457682i \(-0.151320\pi\)
−0.840922 + 0.541156i \(0.817987\pi\)
\(942\) 0 0
\(943\) 35175.8 + 20308.7i 1.21472 + 0.701319i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15438.1 + 8913.16i 0.529746 + 0.305849i 0.740913 0.671601i \(-0.234393\pi\)
−0.211167 + 0.977450i \(0.567726\pi\)
\(948\) 0 0
\(949\) −25336.7 + 14628.1i −0.866663 + 0.500368i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21508.9i 0.731104i 0.930791 + 0.365552i \(0.119120\pi\)
−0.930791 + 0.365552i \(0.880880\pi\)
\(954\) 0 0
\(955\) −3644.13 −0.123478
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6539.10 11326.1i −0.220186 0.381374i
\(960\) 0 0
\(961\) 35430.4 61367.2i 1.18930 2.05992i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3851.37 6670.76i 0.128477 0.222528i
\(966\) 0 0
\(967\) −8410.42 + 4855.76i −0.279691 + 0.161479i −0.633283 0.773920i \(-0.718293\pi\)
0.353593 + 0.935399i \(0.384960\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1908.56i 0.0630777i −0.999503 0.0315389i \(-0.989959\pi\)
0.999503 0.0315389i \(-0.0100408\pi\)
\(972\) 0 0
\(973\) 9722.06i 0.320324i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40899.7 23613.4i 1.33930 0.773245i 0.352596 0.935776i \(-0.385299\pi\)
0.986704 + 0.162531i \(0.0519656\pi\)
\(978\) 0 0
\(979\) −4463.77 + 7731.47i −0.145723 + 0.252399i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11777.7 + 20399.5i −0.382146 + 0.661895i −0.991369 0.131103i \(-0.958148\pi\)
0.609223 + 0.792999i \(0.291481\pi\)
\(984\) 0 0
\(985\) 1771.75 + 3068.76i 0.0573123 + 0.0992678i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −43207.3 −1.38919
\(990\) 0 0
\(991\) 31768.2i 1.01831i −0.860673 0.509157i \(-0.829957\pi\)
0.860673 0.509157i \(-0.170043\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5108.24 + 2949.24i −0.162756 + 0.0939672i
\(996\) 0 0
\(997\) 3600.15 + 2078.55i 0.114361 + 0.0660263i 0.556089 0.831122i \(-0.312301\pi\)
−0.441729 + 0.897149i \(0.645635\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.4.p.b.143.18 64
3.2 odd 2 288.4.p.b.47.7 64
4.3 odd 2 216.4.l.b.35.3 64
8.3 odd 2 inner 864.4.p.b.143.15 64
8.5 even 2 216.4.l.b.35.13 64
9.4 even 3 288.4.p.b.239.8 64
9.5 odd 6 inner 864.4.p.b.719.15 64
12.11 even 2 72.4.l.b.11.30 yes 64
24.5 odd 2 72.4.l.b.11.20 64
24.11 even 2 288.4.p.b.47.8 64
36.23 even 6 216.4.l.b.179.13 64
36.31 odd 6 72.4.l.b.59.20 yes 64
72.5 odd 6 216.4.l.b.179.3 64
72.13 even 6 72.4.l.b.59.30 yes 64
72.59 even 6 inner 864.4.p.b.719.18 64
72.67 odd 6 288.4.p.b.239.7 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.20 64 24.5 odd 2
72.4.l.b.11.30 yes 64 12.11 even 2
72.4.l.b.59.20 yes 64 36.31 odd 6
72.4.l.b.59.30 yes 64 72.13 even 6
216.4.l.b.35.3 64 4.3 odd 2
216.4.l.b.35.13 64 8.5 even 2
216.4.l.b.179.3 64 72.5 odd 6
216.4.l.b.179.13 64 36.23 even 6
288.4.p.b.47.7 64 3.2 odd 2
288.4.p.b.47.8 64 24.11 even 2
288.4.p.b.239.7 64 72.67 odd 6
288.4.p.b.239.8 64 9.4 even 3
864.4.p.b.143.15 64 8.3 odd 2 inner
864.4.p.b.143.18 64 1.1 even 1 trivial
864.4.p.b.719.15 64 9.5 odd 6 inner
864.4.p.b.719.18 64 72.59 even 6 inner