Properties

Label 864.5.t.b.559.36
Level $864$
Weight $5$
Character 864.559
Analytic conductor $89.312$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,5,Mod(559,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.559");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 864.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(89.3116481044\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.36
Character \(\chi\) \(=\) 864.559
Dual form 864.5.t.b.847.36

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(23.2381 - 13.4165i) q^{5} +(-52.2165 - 30.1472i) q^{7} +O(q^{10})\) \(q+(23.2381 - 13.4165i) q^{5} +(-52.2165 - 30.1472i) q^{7} +(92.8475 - 160.817i) q^{11} +(-166.026 + 95.8552i) q^{13} +425.178 q^{17} +114.203 q^{19} +(239.080 - 138.033i) q^{23} +(47.5051 - 82.2813i) q^{25} +(757.999 + 437.631i) q^{29} +(910.769 - 525.833i) q^{31} -1617.88 q^{35} -194.549i q^{37} +(-1420.33 - 2460.08i) q^{41} +(449.077 - 777.825i) q^{43} +(-348.382 - 201.138i) q^{47} +(617.208 + 1069.03i) q^{49} +4662.79i q^{53} -4982.75i q^{55} +(-1769.31 - 3064.53i) q^{59} +(-1797.64 - 1037.87i) q^{61} +(-2572.08 + 4454.98i) q^{65} +(-1465.53 - 2538.37i) q^{67} -3035.73i q^{71} +5570.78 q^{73} +(-9696.34 + 5598.18i) q^{77} +(-9323.76 - 5383.08i) q^{79} +(-1407.36 + 2437.61i) q^{83} +(9880.31 - 5704.40i) q^{85} +1868.54 q^{89} +11559.1 q^{91} +(2653.85 - 1532.20i) q^{95} +(1255.93 - 2175.33i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q+O(q^{10}) \) Copy content Toggle raw display \( 88 q + 44 q^{11} + 1156 q^{17} - 860 q^{19} + 5998 q^{25} - 2508 q^{35} - 2348 q^{41} - 3500 q^{43} + 16462 q^{49} - 3508 q^{59} + 2502 q^{65} - 5132 q^{67} + 19004 q^{73} + 17090 q^{83} + 8272 q^{89} + 9612 q^{91} + 9980 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 23.2381 13.4165i 0.929523 0.536660i 0.0428621 0.999081i \(-0.486352\pi\)
0.886661 + 0.462421i \(0.153019\pi\)
\(6\) 0 0
\(7\) −52.2165 30.1472i −1.06564 0.615249i −0.138655 0.990341i \(-0.544278\pi\)
−0.926988 + 0.375092i \(0.877611\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 92.8475 160.817i 0.767335 1.32906i −0.171669 0.985155i \(-0.554916\pi\)
0.939003 0.343908i \(-0.111751\pi\)
\(12\) 0 0
\(13\) −166.026 + 95.8552i −0.982402 + 0.567190i −0.902995 0.429652i \(-0.858636\pi\)
−0.0794078 + 0.996842i \(0.525303\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 425.178 1.47120 0.735602 0.677414i \(-0.236899\pi\)
0.735602 + 0.677414i \(0.236899\pi\)
\(18\) 0 0
\(19\) 114.203 0.316351 0.158175 0.987411i \(-0.449439\pi\)
0.158175 + 0.987411i \(0.449439\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 239.080 138.033i 0.451946 0.260931i −0.256705 0.966490i \(-0.582637\pi\)
0.708652 + 0.705558i \(0.249304\pi\)
\(24\) 0 0
\(25\) 47.5051 82.2813i 0.0760082 0.131650i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 757.999 + 437.631i 0.901306 + 0.520369i 0.877624 0.479350i \(-0.159128\pi\)
0.0236825 + 0.999720i \(0.492461\pi\)
\(30\) 0 0
\(31\) 910.769 525.833i 0.947730 0.547172i 0.0553551 0.998467i \(-0.482371\pi\)
0.892375 + 0.451294i \(0.149038\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1617.88 −1.32072
\(36\) 0 0
\(37\) 194.549i 0.142110i −0.997472 0.0710551i \(-0.977363\pi\)
0.997472 0.0710551i \(-0.0226366\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1420.33 2460.08i −0.844930 1.46346i −0.885682 0.464292i \(-0.846309\pi\)
0.0407524 0.999169i \(-0.487025\pi\)
\(42\) 0 0
\(43\) 449.077 777.825i 0.242876 0.420673i −0.718656 0.695365i \(-0.755243\pi\)
0.961532 + 0.274692i \(0.0885759\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −348.382 201.138i −0.157710 0.0910540i 0.419068 0.907955i \(-0.362357\pi\)
−0.576778 + 0.816901i \(0.695690\pi\)
\(48\) 0 0
\(49\) 617.208 + 1069.03i 0.257063 + 0.445246i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4662.79i 1.65995i 0.557802 + 0.829974i \(0.311645\pi\)
−0.557802 + 0.829974i \(0.688355\pi\)
\(54\) 0 0
\(55\) 4982.75i 1.64719i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1769.31 3064.53i −0.508276 0.880359i −0.999954 0.00958239i \(-0.996950\pi\)
0.491678 0.870777i \(-0.336384\pi\)
\(60\) 0 0
\(61\) −1797.64 1037.87i −0.483107 0.278922i 0.238604 0.971117i \(-0.423310\pi\)
−0.721710 + 0.692195i \(0.756644\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2572.08 + 4454.98i −0.608777 + 1.05443i
\(66\) 0 0
\(67\) −1465.53 2538.37i −0.326471 0.565465i 0.655338 0.755336i \(-0.272526\pi\)
−0.981809 + 0.189871i \(0.939193\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3035.73i 0.602208i −0.953591 0.301104i \(-0.902645\pi\)
0.953591 0.301104i \(-0.0973551\pi\)
\(72\) 0 0
\(73\) 5570.78 1.04537 0.522685 0.852526i \(-0.324930\pi\)
0.522685 + 0.852526i \(0.324930\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9696.34 + 5598.18i −1.63541 + 0.944204i
\(78\) 0 0
\(79\) −9323.76 5383.08i −1.49395 0.862535i −0.493978 0.869475i \(-0.664458\pi\)
−0.999976 + 0.00694001i \(0.997791\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1407.36 + 2437.61i −0.204291 + 0.353842i −0.949906 0.312534i \(-0.898822\pi\)
0.745616 + 0.666376i \(0.232155\pi\)
\(84\) 0 0
\(85\) 9880.31 5704.40i 1.36752 0.789537i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1868.54 0.235897 0.117949 0.993020i \(-0.462368\pi\)
0.117949 + 0.993020i \(0.462368\pi\)
\(90\) 0 0
\(91\) 11559.1 1.39585
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2653.85 1532.20i 0.294055 0.169773i
\(96\) 0 0
\(97\) 1255.93 2175.33i 0.133481 0.231197i −0.791535 0.611124i \(-0.790718\pi\)
0.925016 + 0.379927i \(0.124051\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4729.31 2730.47i −0.463612 0.267667i 0.249950 0.968259i \(-0.419586\pi\)
−0.713562 + 0.700592i \(0.752919\pi\)
\(102\) 0 0
\(103\) −9762.25 + 5636.24i −0.920186 + 0.531270i −0.883694 0.468064i \(-0.844952\pi\)
−0.0364916 + 0.999334i \(0.511618\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4850.33 0.423647 0.211823 0.977308i \(-0.432060\pi\)
0.211823 + 0.977308i \(0.432060\pi\)
\(108\) 0 0
\(109\) 17364.2i 1.46151i 0.682639 + 0.730756i \(0.260832\pi\)
−0.682639 + 0.730756i \(0.739168\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6670.25 11553.2i −0.522378 0.904786i −0.999661 0.0260362i \(-0.991711\pi\)
0.477283 0.878750i \(-0.341622\pi\)
\(114\) 0 0
\(115\) 3703.83 6415.23i 0.280063 0.485083i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −22201.3 12817.9i −1.56778 0.905157i
\(120\) 0 0
\(121\) −9920.81 17183.3i −0.677605 1.17365i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 14221.2i 0.910158i
\(126\) 0 0
\(127\) 1492.37i 0.0925269i −0.998929 0.0462634i \(-0.985269\pi\)
0.998929 0.0462634i \(-0.0147314\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3213.86 5566.56i −0.187277 0.324373i 0.757065 0.653340i \(-0.226633\pi\)
−0.944341 + 0.328967i \(0.893299\pi\)
\(132\) 0 0
\(133\) −5963.26 3442.89i −0.337117 0.194635i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10678.8 18496.2i 0.568959 0.985466i −0.427710 0.903916i \(-0.640680\pi\)
0.996669 0.0815500i \(-0.0259870\pi\)
\(138\) 0 0
\(139\) 10328.6 + 17889.6i 0.534578 + 0.925916i 0.999184 + 0.0403986i \(0.0128628\pi\)
−0.464606 + 0.885518i \(0.653804\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 35599.6i 1.74090i
\(144\) 0 0
\(145\) 23485.9 1.11705
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4499.97 2598.06i 0.202692 0.117025i −0.395218 0.918587i \(-0.629331\pi\)
0.597911 + 0.801563i \(0.295998\pi\)
\(150\) 0 0
\(151\) −17647.9 10189.0i −0.773998 0.446868i 0.0603013 0.998180i \(-0.480794\pi\)
−0.834299 + 0.551313i \(0.814127\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14109.7 24438.7i 0.587291 1.01722i
\(156\) 0 0
\(157\) −7737.56 + 4467.28i −0.313910 + 0.181236i −0.648675 0.761066i \(-0.724676\pi\)
0.334765 + 0.942302i \(0.391343\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16645.2 −0.642151
\(162\) 0 0
\(163\) −38000.8 −1.43027 −0.715134 0.698987i \(-0.753634\pi\)
−0.715134 + 0.698987i \(0.753634\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11942.4 6894.97i 0.428213 0.247229i −0.270372 0.962756i \(-0.587147\pi\)
0.698585 + 0.715527i \(0.253813\pi\)
\(168\) 0 0
\(169\) 4095.92 7094.35i 0.143410 0.248393i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9687.10 5592.85i −0.323669 0.186871i 0.329358 0.944205i \(-0.393168\pi\)
−0.653027 + 0.757335i \(0.726501\pi\)
\(174\) 0 0
\(175\) −4961.10 + 2864.29i −0.161995 + 0.0935279i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7133.34 0.222632 0.111316 0.993785i \(-0.464493\pi\)
0.111316 + 0.993785i \(0.464493\pi\)
\(180\) 0 0
\(181\) 26104.7i 0.796822i −0.917207 0.398411i \(-0.869562\pi\)
0.917207 0.398411i \(-0.130438\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2610.17 4520.94i −0.0762649 0.132095i
\(186\) 0 0
\(187\) 39476.7 68375.7i 1.12891 1.95532i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −39532.9 22824.3i −1.08366 0.625649i −0.151776 0.988415i \(-0.548499\pi\)
−0.931880 + 0.362766i \(0.881832\pi\)
\(192\) 0 0
\(193\) −6039.50 10460.7i −0.162139 0.280832i 0.773497 0.633800i \(-0.218506\pi\)
−0.935635 + 0.352968i \(0.885173\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 70123.2i 1.80688i −0.428714 0.903440i \(-0.641033\pi\)
0.428714 0.903440i \(-0.358967\pi\)
\(198\) 0 0
\(199\) 53477.1i 1.35040i −0.737636 0.675198i \(-0.764058\pi\)
0.737636 0.675198i \(-0.235942\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −26386.7 45703.1i −0.640314 1.10906i
\(204\) 0 0
\(205\) −66011.3 38111.6i −1.57076 0.906880i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10603.4 18365.7i 0.242747 0.420450i
\(210\) 0 0
\(211\) −16582.5 28721.8i −0.372465 0.645128i 0.617479 0.786587i \(-0.288154\pi\)
−0.989944 + 0.141459i \(0.954821\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 24100.2i 0.521367i
\(216\) 0 0
\(217\) −63409.5 −1.34659
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −70590.6 + 40755.5i −1.44531 + 0.834453i
\(222\) 0 0
\(223\) 53609.6 + 30951.5i 1.07804 + 0.622404i 0.930366 0.366633i \(-0.119490\pi\)
0.147669 + 0.989037i \(0.452823\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −121.231 + 209.978i −0.00235268 + 0.00407496i −0.867199 0.497961i \(-0.834082\pi\)
0.864847 + 0.502036i \(0.167416\pi\)
\(228\) 0 0
\(229\) −10175.3 + 5874.70i −0.194033 + 0.112025i −0.593869 0.804562i \(-0.702400\pi\)
0.399836 + 0.916587i \(0.369067\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 34752.2 0.640134 0.320067 0.947395i \(-0.396295\pi\)
0.320067 + 0.947395i \(0.396295\pi\)
\(234\) 0 0
\(235\) −10794.3 −0.195460
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −41098.0 + 23728.0i −0.719491 + 0.415398i −0.814565 0.580072i \(-0.803024\pi\)
0.0950746 + 0.995470i \(0.469691\pi\)
\(240\) 0 0
\(241\) 34530.8 59809.0i 0.594527 1.02975i −0.399086 0.916914i \(-0.630672\pi\)
0.993613 0.112838i \(-0.0359942\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 28685.4 + 16561.5i 0.477891 + 0.275911i
\(246\) 0 0
\(247\) −18960.6 + 10946.9i −0.310784 + 0.179431i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −59187.9 −0.939475 −0.469738 0.882806i \(-0.655652\pi\)
−0.469738 + 0.882806i \(0.655652\pi\)
\(252\) 0 0
\(253\) 51263.9i 0.800887i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −26280.3 45518.9i −0.397891 0.689168i 0.595574 0.803300i \(-0.296925\pi\)
−0.993466 + 0.114132i \(0.963591\pi\)
\(258\) 0 0
\(259\) −5865.11 + 10158.7i −0.0874332 + 0.151439i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 37110.2 + 21425.6i 0.536515 + 0.309757i 0.743665 0.668552i \(-0.233086\pi\)
−0.207150 + 0.978309i \(0.566419\pi\)
\(264\) 0 0
\(265\) 62558.4 + 108354.i 0.890828 + 1.54296i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10584.0i 0.146267i −0.997322 0.0731333i \(-0.976700\pi\)
0.997322 0.0731333i \(-0.0232998\pi\)
\(270\) 0 0
\(271\) 93339.2i 1.27094i 0.772125 + 0.635471i \(0.219194\pi\)
−0.772125 + 0.635471i \(0.780806\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8821.46 15279.2i −0.116647 0.202039i
\(276\) 0 0
\(277\) −20273.5 11704.9i −0.264222 0.152549i 0.362037 0.932164i \(-0.382081\pi\)
−0.626259 + 0.779615i \(0.715415\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3736.40 6471.63i 0.0473195 0.0819598i −0.841396 0.540420i \(-0.818265\pi\)
0.888715 + 0.458460i \(0.151599\pi\)
\(282\) 0 0
\(283\) 45059.8 + 78045.9i 0.562622 + 0.974490i 0.997267 + 0.0738877i \(0.0235407\pi\)
−0.434645 + 0.900602i \(0.643126\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 171276.i 2.07937i
\(288\) 0 0
\(289\) 97255.3 1.16444
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −118256. + 68274.9i −1.37748 + 0.795290i −0.991856 0.127365i \(-0.959348\pi\)
−0.385627 + 0.922655i \(0.626015\pi\)
\(294\) 0 0
\(295\) −82230.6 47475.8i −0.944907 0.545543i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26462.3 + 45834.0i −0.295995 + 0.512679i
\(300\) 0 0
\(301\) −46898.5 + 27076.9i −0.517638 + 0.298858i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −55698.2 −0.598745
\(306\) 0 0
\(307\) 168794. 1.79094 0.895468 0.445126i \(-0.146841\pi\)
0.895468 + 0.445126i \(0.146841\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −68907.1 + 39783.5i −0.712431 + 0.411323i −0.811961 0.583712i \(-0.801600\pi\)
0.0995292 + 0.995035i \(0.468266\pi\)
\(312\) 0 0
\(313\) 93373.0 161727.i 0.953087 1.65080i 0.214401 0.976746i \(-0.431220\pi\)
0.738686 0.674049i \(-0.235446\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 95810.6 + 55316.3i 0.953443 + 0.550471i 0.894149 0.447770i \(-0.147782\pi\)
0.0592945 + 0.998241i \(0.481115\pi\)
\(318\) 0 0
\(319\) 140757. 81265.8i 1.38321 0.798595i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 48556.4 0.465417
\(324\) 0 0
\(325\) 18214.4i 0.172444i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12127.5 + 21005.5i 0.112042 + 0.194062i
\(330\) 0 0
\(331\) 35525.1 61531.2i 0.324249 0.561616i −0.657111 0.753794i \(-0.728222\pi\)
0.981360 + 0.192178i \(0.0615550\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −68112.2 39324.6i −0.606925 0.350408i
\(336\) 0 0
\(337\) −3370.32 5837.57i −0.0296764 0.0514011i 0.850806 0.525480i \(-0.176114\pi\)
−0.880482 + 0.474079i \(0.842781\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 195289.i 1.67946i
\(342\) 0 0
\(343\) 70338.5i 0.597868i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 43353.9 + 75091.2i 0.360055 + 0.623634i 0.987970 0.154648i \(-0.0494245\pi\)
−0.627914 + 0.778283i \(0.716091\pi\)
\(348\) 0 0
\(349\) −108745. 62783.7i −0.892805 0.515461i −0.0179461 0.999839i \(-0.505713\pi\)
−0.874859 + 0.484378i \(0.839046\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24176.0 + 41874.1i −0.194015 + 0.336044i −0.946577 0.322477i \(-0.895484\pi\)
0.752562 + 0.658521i \(0.228818\pi\)
\(354\) 0 0
\(355\) −40728.9 70544.5i −0.323181 0.559766i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 59745.2i 0.463568i 0.972767 + 0.231784i \(0.0744563\pi\)
−0.972767 + 0.231784i \(0.925544\pi\)
\(360\) 0 0
\(361\) −117279. −0.899922
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 129454. 74740.4i 0.971696 0.561009i
\(366\) 0 0
\(367\) −145654. 84093.5i −1.08141 0.624353i −0.150135 0.988666i \(-0.547971\pi\)
−0.931277 + 0.364312i \(0.881304\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 140570. 243475.i 1.02128 1.76891i
\(372\) 0 0
\(373\) 233844. 135010.i 1.68077 0.970393i 0.719620 0.694368i \(-0.244316\pi\)
0.961150 0.276026i \(-0.0890175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −167797. −1.18059
\(378\) 0 0
\(379\) −110475. −0.769102 −0.384551 0.923104i \(-0.625644\pi\)
−0.384551 + 0.923104i \(0.625644\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 174715. 100872.i 1.19106 0.687659i 0.232513 0.972593i \(-0.425305\pi\)
0.958547 + 0.284934i \(0.0919718\pi\)
\(384\) 0 0
\(385\) −150216. + 260182.i −1.01343 + 1.75532i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28286.6 + 16331.2i 0.186931 + 0.107925i 0.590545 0.807005i \(-0.298913\pi\)
−0.403614 + 0.914929i \(0.632246\pi\)
\(390\) 0 0
\(391\) 101651. 58688.5i 0.664905 0.383883i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −288888. −1.85155
\(396\) 0 0
\(397\) 157999.i 1.00247i 0.865310 + 0.501237i \(0.167122\pi\)
−0.865310 + 0.501237i \(0.832878\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 71882.8 + 124505.i 0.447029 + 0.774277i 0.998191 0.0601210i \(-0.0191487\pi\)
−0.551162 + 0.834398i \(0.685815\pi\)
\(402\) 0 0
\(403\) −100808. + 174604.i −0.620702 + 1.07509i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −31286.7 18063.4i −0.188873 0.109046i
\(408\) 0 0
\(409\) −6867.24 11894.4i −0.0410521 0.0711044i 0.844769 0.535131i \(-0.179738\pi\)
−0.885821 + 0.464026i \(0.846404\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 213359.i 1.25086i
\(414\) 0 0
\(415\) 75527.3i 0.438538i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 135489. + 234673.i 0.771748 + 1.33671i 0.936604 + 0.350389i \(0.113951\pi\)
−0.164857 + 0.986318i \(0.552716\pi\)
\(420\) 0 0
\(421\) 206716. + 119347.i 1.16630 + 0.673362i 0.952805 0.303582i \(-0.0981828\pi\)
0.213493 + 0.976945i \(0.431516\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 20198.1 34984.2i 0.111824 0.193684i
\(426\) 0 0
\(427\) 62577.6 + 108388.i 0.343213 + 0.594462i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 208255.i 1.12109i −0.828124 0.560545i \(-0.810592\pi\)
0.828124 0.560545i \(-0.189408\pi\)
\(432\) 0 0
\(433\) −275527. −1.46957 −0.734783 0.678303i \(-0.762716\pi\)
−0.734783 + 0.678303i \(0.762716\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 27303.5 15763.7i 0.142974 0.0825458i
\(438\) 0 0
\(439\) −5755.89 3323.16i −0.0298664 0.0172434i 0.484992 0.874518i \(-0.338822\pi\)
−0.514859 + 0.857275i \(0.672156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −122953. + 212960.i −0.626514 + 1.08515i 0.361732 + 0.932282i \(0.382186\pi\)
−0.988246 + 0.152872i \(0.951148\pi\)
\(444\) 0 0
\(445\) 43421.3 25069.3i 0.219272 0.126597i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 282931. 1.40342 0.701711 0.712462i \(-0.252420\pi\)
0.701711 + 0.712462i \(0.252420\pi\)
\(450\) 0 0
\(451\) −527495. −2.59338
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 268610. 155082.i 1.29748 0.749099i
\(456\) 0 0
\(457\) 108539. 187995.i 0.519702 0.900150i −0.480036 0.877249i \(-0.659376\pi\)
0.999738 0.0229008i \(-0.00729020\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −86601.0 49999.1i −0.407494 0.235267i 0.282219 0.959350i \(-0.408930\pi\)
−0.689712 + 0.724084i \(0.742263\pi\)
\(462\) 0 0
\(463\) −6135.09 + 3542.10i −0.0286193 + 0.0165234i −0.514241 0.857645i \(-0.671926\pi\)
0.485622 + 0.874169i \(0.338593\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 429771. 1.97062 0.985312 0.170765i \(-0.0546240\pi\)
0.985312 + 0.170765i \(0.0546240\pi\)
\(468\) 0 0
\(469\) 176727.i 0.803445i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −83391.4 144438.i −0.372734 0.645594i
\(474\) 0 0
\(475\) 5425.21 9396.74i 0.0240453 0.0416476i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 49730.6 + 28712.0i 0.216747 + 0.125139i 0.604443 0.796648i \(-0.293396\pi\)
−0.387696 + 0.921787i \(0.626729\pi\)
\(480\) 0 0
\(481\) 18648.5 + 32300.2i 0.0806036 + 0.139609i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 67400.6i 0.286537i
\(486\) 0 0
\(487\) 265572.i 1.11976i 0.828574 + 0.559879i \(0.189152\pi\)
−0.828574 + 0.559879i \(0.810848\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −77229.5 133765.i −0.320347 0.554857i 0.660213 0.751079i \(-0.270466\pi\)
−0.980560 + 0.196222i \(0.937133\pi\)
\(492\) 0 0
\(493\) 322284. + 186071.i 1.32601 + 0.765570i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −91518.7 + 158515.i −0.370508 + 0.641738i
\(498\) 0 0
\(499\) 98724.4 + 170996.i 0.396482 + 0.686727i 0.993289 0.115658i \(-0.0368976\pi\)
−0.596807 + 0.802385i \(0.703564\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 343592.i 1.35802i −0.734127 0.679012i \(-0.762408\pi\)
0.734127 0.679012i \(-0.237592\pi\)
\(504\) 0 0
\(505\) −146533. −0.574584
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −73009.5 + 42152.1i −0.281802 + 0.162698i −0.634239 0.773137i \(-0.718686\pi\)
0.352437 + 0.935836i \(0.385353\pi\)
\(510\) 0 0
\(511\) −290887. 167943.i −1.11399 0.643163i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −151237. + 261951.i −0.570222 + 0.987654i
\(516\) 0 0
\(517\) −64692.7 + 37350.4i −0.242033 + 0.139738i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 397536. 1.46454 0.732270 0.681015i \(-0.238461\pi\)
0.732270 + 0.681015i \(0.238461\pi\)
\(522\) 0 0
\(523\) 286663. 1.04802 0.524008 0.851714i \(-0.324436\pi\)
0.524008 + 0.851714i \(0.324436\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 387239. 223572.i 1.39430 0.805002i
\(528\) 0 0
\(529\) −101814. + 176348.i −0.363830 + 0.630171i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 471622. + 272291.i 1.66012 + 0.958472i
\(534\) 0 0
\(535\) 112712. 65074.5i 0.393789 0.227354i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 229225. 0.789012
\(540\) 0 0
\(541\) 412153.i 1.40820i 0.710101 + 0.704100i \(0.248649\pi\)
−0.710101 + 0.704100i \(0.751351\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 232967. + 403511.i 0.784335 + 1.35851i
\(546\) 0 0
\(547\) 168911. 292563.i 0.564527 0.977789i −0.432567 0.901602i \(-0.642392\pi\)
0.997094 0.0761869i \(-0.0242746\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 86565.4 + 49978.6i 0.285129 + 0.164619i
\(552\) 0 0
\(553\) 324569. + 562171.i 1.06135 + 1.83831i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 251395.i 0.810302i 0.914250 + 0.405151i \(0.132781\pi\)
−0.914250 + 0.405151i \(0.867219\pi\)
\(558\) 0 0
\(559\) 172186.i 0.551027i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −32923.4 57025.0i −0.103870 0.179907i 0.809406 0.587249i \(-0.199789\pi\)
−0.913276 + 0.407342i \(0.866456\pi\)
\(564\) 0 0
\(565\) −310007. 178983.i −0.971125 0.560679i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −59792.5 + 103564.i −0.184681 + 0.319877i −0.943469 0.331461i \(-0.892459\pi\)
0.758788 + 0.651338i \(0.225792\pi\)
\(570\) 0 0
\(571\) −14325.3 24812.2i −0.0439372 0.0761014i 0.843220 0.537568i \(-0.180657\pi\)
−0.887158 + 0.461466i \(0.847323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 26229.0i 0.0793317i
\(576\) 0 0
\(577\) −101252. −0.304126 −0.152063 0.988371i \(-0.548592\pi\)
−0.152063 + 0.988371i \(0.548592\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 146975. 84855.8i 0.435401 0.251379i
\(582\) 0 0
\(583\) 749854. + 432929.i 2.20617 + 1.27374i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −36792.0 + 63725.7i −0.106777 + 0.184943i −0.914463 0.404670i \(-0.867386\pi\)
0.807686 + 0.589613i \(0.200720\pi\)
\(588\) 0 0
\(589\) 104012. 60051.5i 0.299815 0.173098i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −295880. −0.841407 −0.420704 0.907198i \(-0.638217\pi\)
−0.420704 + 0.907198i \(0.638217\pi\)
\(594\) 0 0
\(595\) −687887. −1.94305
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −528443. + 305097.i −1.47280 + 0.850323i −0.999532 0.0305942i \(-0.990260\pi\)
−0.473271 + 0.880917i \(0.656927\pi\)
\(600\) 0 0
\(601\) 56375.3 97644.9i 0.156077 0.270334i −0.777373 0.629039i \(-0.783448\pi\)
0.933451 + 0.358705i \(0.116782\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −461081. 266205.i −1.25970 0.727287i
\(606\) 0 0
\(607\) 121995. 70434.1i 0.331105 0.191164i −0.325226 0.945636i \(-0.605440\pi\)
0.656332 + 0.754472i \(0.272107\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 77120.6 0.206580
\(612\) 0 0
\(613\) 471219.i 1.25401i 0.779014 + 0.627006i \(0.215720\pi\)
−0.779014 + 0.627006i \(0.784280\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 189422. + 328089.i 0.497577 + 0.861828i 0.999996 0.00279589i \(-0.000889962\pi\)
−0.502419 + 0.864624i \(0.667557\pi\)
\(618\) 0 0
\(619\) −90319.8 + 156439.i −0.235723 + 0.408284i −0.959483 0.281768i \(-0.909079\pi\)
0.723760 + 0.690052i \(0.242412\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −97568.6 56331.3i −0.251382 0.145135i
\(624\) 0 0
\(625\) 220490. + 381899.i 0.564454 + 0.977663i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 82717.9i 0.209073i
\(630\) 0 0
\(631\) 115341.i 0.289685i −0.989455 0.144842i \(-0.953733\pi\)
0.989455 0.144842i \(-0.0462675\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20022.3 34679.7i −0.0496555 0.0860058i
\(636\) 0 0
\(637\) −204945. 118325.i −0.505078 0.291607i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −71144.9 + 123227.i −0.173152 + 0.299908i −0.939520 0.342493i \(-0.888729\pi\)
0.766368 + 0.642402i \(0.222062\pi\)
\(642\) 0 0
\(643\) 150535. + 260734.i 0.364095 + 0.630631i 0.988630 0.150365i \(-0.0480450\pi\)
−0.624535 + 0.780996i \(0.714712\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 562947.i 1.34480i 0.740186 + 0.672402i \(0.234737\pi\)
−0.740186 + 0.672402i \(0.765263\pi\)
\(648\) 0 0
\(649\) −657103. −1.56007
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 658714. 380308.i 1.54479 0.891887i 0.546267 0.837611i \(-0.316048\pi\)
0.998526 0.0542753i \(-0.0172848\pi\)
\(654\) 0 0
\(655\) −149368. 86237.4i −0.348156 0.201008i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −207982. + 360235.i −0.478911 + 0.829497i −0.999708 0.0241831i \(-0.992302\pi\)
0.520797 + 0.853681i \(0.325635\pi\)
\(660\) 0 0
\(661\) 317798. 183481.i 0.727358 0.419940i −0.0900969 0.995933i \(-0.528718\pi\)
0.817455 + 0.575993i \(0.195384\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −184766. −0.417810
\(666\) 0 0
\(667\) 241629. 0.543123
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −333813. + 192727.i −0.741409 + 0.428053i
\(672\) 0 0
\(673\) 208572. 361257.i 0.460496 0.797602i −0.538490 0.842632i \(-0.681005\pi\)
0.998986 + 0.0450300i \(0.0143383\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −270633. 156250.i −0.590477 0.340912i 0.174809 0.984602i \(-0.444069\pi\)
−0.765286 + 0.643690i \(0.777403\pi\)
\(678\) 0 0
\(679\) −131160. + 75725.3i −0.284487 + 0.164249i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −140348. −0.300860 −0.150430 0.988621i \(-0.548066\pi\)
−0.150430 + 0.988621i \(0.548066\pi\)
\(684\) 0 0
\(685\) 573088.i 1.22135i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −446953. 774145.i −0.941506 1.63074i
\(690\) 0 0
\(691\) −6583.82 + 11403.5i −0.0137887 + 0.0238827i −0.872837 0.488011i \(-0.837723\pi\)
0.859049 + 0.511894i \(0.171056\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 480033. + 277147.i 0.993805 + 0.573773i
\(696\) 0 0
\(697\) −603892. 1.04597e6i −1.24306 2.15305i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 143500.i 0.292022i −0.989283 0.146011i \(-0.953357\pi\)
0.989283 0.146011i \(-0.0466434\pi\)
\(702\) 0 0
\(703\) 22218.0i 0.0449567i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 164632. + 285151.i 0.329363 + 0.570474i
\(708\) 0 0
\(709\) −386361. 223066.i −0.768602 0.443752i 0.0637739 0.997964i \(-0.479686\pi\)
−0.832376 + 0.554212i \(0.813020\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 145164. 251432.i 0.285549 0.494585i
\(714\) 0 0
\(715\) 477623. + 827267.i 0.934271 + 1.61820i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 316954.i 0.613110i −0.951853 0.306555i \(-0.900824\pi\)
0.951853 0.306555i \(-0.0991763\pi\)
\(720\) 0 0
\(721\) 679667. 1.30745
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 72017.6 41579.4i 0.137013 0.0791047i
\(726\) 0 0
\(727\) −429578. 248017.i −0.812779 0.469258i 0.0351407 0.999382i \(-0.488812\pi\)
−0.847920 + 0.530124i \(0.822145\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 190938. 330714.i 0.357320 0.618896i
\(732\) 0 0
\(733\) 607822. 350926.i 1.13128 0.653143i 0.187021 0.982356i \(-0.440117\pi\)
0.944256 + 0.329213i \(0.106783\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −544283. −1.00205
\(738\) 0 0
\(739\) −591401. −1.08291 −0.541456 0.840729i \(-0.682127\pi\)
−0.541456 + 0.840729i \(0.682127\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 76816.9 44350.2i 0.139149 0.0803375i −0.428810 0.903395i \(-0.641067\pi\)
0.567958 + 0.823057i \(0.307734\pi\)
\(744\) 0 0
\(745\) 69713.8 120748.i 0.125605 0.217554i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −253267. 146224.i −0.451456 0.260648i
\(750\) 0 0
\(751\) 692048. 399554.i 1.22703 0.708428i 0.260626 0.965440i \(-0.416071\pi\)
0.966408 + 0.257011i \(0.0827378\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −546805. −0.959264
\(756\) 0 0
\(757\) 1.07119e6i 1.86927i −0.355603 0.934637i \(-0.615725\pi\)
0.355603 0.934637i \(-0.384275\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −173781. 300998.i −0.300078 0.519750i 0.676075 0.736832i \(-0.263679\pi\)
−0.976153 + 0.217082i \(0.930346\pi\)
\(762\) 0 0
\(763\) 523483. 906699.i 0.899194 1.55745i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 587502. + 339195.i 0.998662 + 0.576578i
\(768\) 0 0
\(769\) 307338. + 532324.i 0.519712 + 0.900168i 0.999737 + 0.0229135i \(0.00729422\pi\)
−0.480025 + 0.877255i \(0.659372\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 558543.i 0.934755i 0.884058 + 0.467378i \(0.154801\pi\)
−0.884058 + 0.467378i \(0.845199\pi\)
\(774\) 0 0
\(775\) 99919.0i 0.166358i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −162205. 280947.i −0.267294 0.462967i
\(780\) 0 0
\(781\) −488195. 281860.i −0.800371 0.462095i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −119871. + 207622.i −0.194524 + 0.336925i
\(786\) 0 0
\(787\) −171055. 296276.i −0.276176 0.478351i 0.694255 0.719729i \(-0.255734\pi\)
−0.970431 + 0.241378i \(0.922401\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 804358.i 1.28557i
\(792\) 0 0
\(793\) 397940. 0.632807
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 639205. 369045.i 1.00629 0.580982i 0.0961872 0.995363i \(-0.469335\pi\)
0.910103 + 0.414381i \(0.136002\pi\)
\(798\) 0 0
\(799\) −148124. 85519.6i −0.232024 0.133959i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 517233. 895874.i 0.802149 1.38936i
\(804\) 0 0
\(805\) −386802. + 223320.i −0.596894 + 0.344617i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 869283. 1.32820 0.664101 0.747643i \(-0.268815\pi\)
0.664101 + 0.747643i \(0.268815\pi\)
\(810\) 0 0
\(811\) 524099. 0.796841 0.398420 0.917203i \(-0.369559\pi\)
0.398420 + 0.917203i \(0.369559\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −883065. + 509838.i −1.32947 + 0.767568i
\(816\) 0 0
\(817\) 51285.8 88829.7i 0.0768340 0.133080i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −176424. 101858.i −0.261741 0.151116i 0.363388 0.931638i \(-0.381620\pi\)
−0.625128 + 0.780522i \(0.714953\pi\)
\(822\) 0 0
\(823\) −840341. + 485171.i −1.24067 + 0.716300i −0.969230 0.246156i \(-0.920832\pi\)
−0.271438 + 0.962456i \(0.587499\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −876265. −1.28122 −0.640611 0.767865i \(-0.721319\pi\)
−0.640611 + 0.767865i \(0.721319\pi\)
\(828\) 0 0
\(829\) 728747.i 1.06040i 0.847874 + 0.530198i \(0.177882\pi\)
−0.847874 + 0.530198i \(0.822118\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 262423. + 454530.i 0.378192 + 0.655047i
\(834\) 0 0
\(835\) 185013. 320451.i 0.265356 0.459610i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −261880. 151197.i −0.372031 0.214792i 0.302314 0.953208i \(-0.402241\pi\)
−0.674345 + 0.738416i \(0.735574\pi\)
\(840\) 0 0
\(841\) 29400.8 + 50923.6i 0.0415687 + 0.0719991i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 219812.i 0.307849i
\(846\) 0 0
\(847\) 1.19634e6i 1.66758i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −26854.1 46512.7i −0.0370810 0.0642262i
\(852\) 0 0
\(853\) −613667. 354301.i −0.843402 0.486938i 0.0150171 0.999887i \(-0.495220\pi\)
−0.858419 + 0.512949i \(0.828553\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 506749. 877715.i 0.689972 1.19507i −0.281875 0.959451i \(-0.590956\pi\)
0.971847 0.235615i \(-0.0757103\pi\)
\(858\) 0 0
\(859\) −187918. 325483.i −0.254672 0.441105i 0.710134 0.704066i \(-0.248634\pi\)
−0.964806 + 0.262961i \(0.915301\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 771077.i 1.03532i −0.855585 0.517662i \(-0.826802\pi\)
0.855585 0.517662i \(-0.173198\pi\)
\(864\) 0 0
\(865\) −300146. −0.401144
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.73138e6 + 999610.i −2.29272 + 1.32371i
\(870\) 0 0
\(871\) 486632. + 280957.i 0.641453 + 0.370343i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 428730. 742582.i 0.559974 0.969903i
\(876\) 0 0
\(877\) 121036. 69880.4i 0.157368 0.0908566i −0.419248 0.907872i \(-0.637706\pi\)
0.576616 + 0.817015i \(0.304373\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −764399. −0.984846 −0.492423 0.870356i \(-0.663889\pi\)
−0.492423 + 0.870356i \(0.663889\pi\)
\(882\) 0 0
\(883\) 276974. 0.355237 0.177618 0.984099i \(-0.443161\pi\)
0.177618 + 0.984099i \(0.443161\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −284311. + 164147.i −0.361365 + 0.208634i −0.669679 0.742650i \(-0.733568\pi\)
0.308314 + 0.951285i \(0.400235\pi\)
\(888\) 0 0
\(889\) −44990.7 + 77926.1i −0.0569271 + 0.0986006i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −39786.1 22970.5i −0.0498917 0.0288050i
\(894\) 0 0
\(895\) 165765. 95704.5i 0.206941 0.119478i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 920482. 1.13893
\(900\) 0 0
\(901\) 1.98252e6i 2.44212i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −350234. 606623.i −0.427623 0.740664i
\(906\) 0 0
\(907\) −2523.63 + 4371.06i −0.00306769 + 0.00531339i −0.867555 0.497341i \(-0.834310\pi\)
0.864487 + 0.502654i \(0.167643\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 124609. + 71943.0i 0.150145 + 0.0866865i 0.573191 0.819422i \(-0.305705\pi\)
−0.423045 + 0.906109i \(0.639039\pi\)
\(912\) 0 0
\(913\) 261339. + 452653.i 0.313518 + 0.543030i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 387555.i 0.460887i
\(918\) 0 0
\(919\) 1.50889e6i 1.78660i −0.449466 0.893298i \(-0.648386\pi\)
0.449466 0.893298i \(-0.351614\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 290990. + 504010.i 0.341566 + 0.591610i
\(924\) 0 0
\(925\) −16007.7 9242.07i −0.0187088 0.0108015i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −489589. + 847994.i −0.567284 + 0.982565i 0.429549 + 0.903043i \(0.358672\pi\)
−0.996833 + 0.0795211i \(0.974661\pi\)
\(930\) 0 0
\(931\) 70486.7 + 122087.i 0.0813220 + 0.140854i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.11856e6i 2.42335i
\(936\) 0 0
\(937\) 75553.9 0.0860553 0.0430276 0.999074i \(-0.486300\pi\)
0.0430276 + 0.999074i \(0.486300\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 33992.9 19625.8i 0.0383892 0.0221640i −0.480683 0.876895i \(-0.659611\pi\)
0.519072 + 0.854731i \(0.326278\pi\)
\(942\) 0 0
\(943\) −679142. 392103.i −0.763726 0.440937i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −313680. + 543310.i −0.349773 + 0.605825i −0.986209 0.165504i \(-0.947075\pi\)
0.636436 + 0.771330i \(0.280408\pi\)
\(948\) 0 0
\(949\) −924894. + 533988.i −1.02697 + 0.592924i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 884152. 0.973512 0.486756 0.873538i \(-0.338180\pi\)
0.486756 + 0.873538i \(0.338180\pi\)
\(954\) 0 0
\(955\) −1.22489e6 −1.34304
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.11522e6 + 643871.i −1.21261 + 0.700103i
\(960\) 0 0
\(961\) 91239.2 158031.i 0.0987949 0.171118i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −280693. 162058.i −0.301423 0.174027i
\(966\) 0 0
\(967\) 415020. 239612.i 0.443829 0.256245i −0.261391 0.965233i \(-0.584181\pi\)
0.705220 + 0.708988i \(0.250848\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 37374.6 0.0396404 0.0198202 0.999804i \(-0.493691\pi\)
0.0198202 + 0.999804i \(0.493691\pi\)
\(972\) 0 0
\(973\) 1.24551e6i 1.31559i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 380919. + 659770.i 0.399064 + 0.691200i 0.993611 0.112861i \(-0.0360016\pi\)
−0.594546 + 0.804061i \(0.702668\pi\)
\(978\) 0 0
\(979\) 173489. 300492.i 0.181012 0.313522i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −958351. 553304.i −0.991785 0.572607i −0.0859774 0.996297i \(-0.527401\pi\)
−0.905807 + 0.423690i \(0.860735\pi\)
\(984\) 0 0
\(985\) −940809. 1.62953e6i −0.969681 1.67954i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 247949.i 0.253496i
\(990\) 0 0
\(991\) 306890.i 0.312489i 0.987718 + 0.156245i \(0.0499388\pi\)
−0.987718 + 0.156245i \(0.950061\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −717475. 1.24270e6i −0.724704 1.25522i
\(996\) 0 0
\(997\) 13764.4 + 7946.86i 0.0138473 + 0.00799476i 0.506908 0.862000i \(-0.330788\pi\)
−0.493060 + 0.869995i \(0.664122\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.5.t.b.559.36 88
3.2 odd 2 288.5.t.b.79.3 88
4.3 odd 2 216.5.p.b.19.5 88
8.3 odd 2 inner 864.5.t.b.559.9 88
8.5 even 2 216.5.p.b.19.27 88
9.4 even 3 inner 864.5.t.b.847.9 88
9.5 odd 6 288.5.t.b.175.4 88
12.11 even 2 72.5.p.b.43.40 yes 88
24.5 odd 2 72.5.p.b.43.18 88
24.11 even 2 288.5.t.b.79.4 88
36.23 even 6 72.5.p.b.67.18 yes 88
36.31 odd 6 216.5.p.b.91.27 88
72.5 odd 6 72.5.p.b.67.40 yes 88
72.13 even 6 216.5.p.b.91.5 88
72.59 even 6 288.5.t.b.175.3 88
72.67 odd 6 inner 864.5.t.b.847.36 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.5.p.b.43.18 88 24.5 odd 2
72.5.p.b.43.40 yes 88 12.11 even 2
72.5.p.b.67.18 yes 88 36.23 even 6
72.5.p.b.67.40 yes 88 72.5 odd 6
216.5.p.b.19.5 88 4.3 odd 2
216.5.p.b.19.27 88 8.5 even 2
216.5.p.b.91.5 88 72.13 even 6
216.5.p.b.91.27 88 36.31 odd 6
288.5.t.b.79.3 88 3.2 odd 2
288.5.t.b.79.4 88 24.11 even 2
288.5.t.b.175.3 88 72.59 even 6
288.5.t.b.175.4 88 9.5 odd 6
864.5.t.b.559.9 88 8.3 odd 2 inner
864.5.t.b.559.36 88 1.1 even 1 trivial
864.5.t.b.847.9 88 9.4 even 3 inner
864.5.t.b.847.36 88 72.67 odd 6 inner