Properties

Label 8649.2.a.bj.1.8
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.1697203125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 5x^{6} + 12x^{5} + 9x^{4} - 12x^{3} - 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.49568\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49568 q^{2} +4.22843 q^{4} +2.30796 q^{5} -2.75147 q^{7} +5.56145 q^{8} +5.75994 q^{10} +2.94472 q^{11} +5.94342 q^{13} -6.86680 q^{14} +5.42276 q^{16} +7.07424 q^{17} +1.97555 q^{19} +9.75905 q^{20} +7.34909 q^{22} -0.381727 q^{23} +0.326688 q^{25} +14.8329 q^{26} -11.6344 q^{28} -4.79100 q^{29} +2.41057 q^{32} +17.6550 q^{34} -6.35030 q^{35} -5.32646 q^{37} +4.93034 q^{38} +12.8356 q^{40} -9.41463 q^{41} +4.56431 q^{43} +12.4515 q^{44} -0.952670 q^{46} +3.63425 q^{47} +0.570605 q^{49} +0.815309 q^{50} +25.1313 q^{52} +1.69500 q^{53} +6.79631 q^{55} -15.3022 q^{56} -11.9568 q^{58} -9.36388 q^{59} -0.922702 q^{61} -4.82949 q^{64} +13.7172 q^{65} +13.8887 q^{67} +29.9129 q^{68} -15.8483 q^{70} +0.982560 q^{71} +6.76740 q^{73} -13.2932 q^{74} +8.35347 q^{76} -8.10232 q^{77} +2.86350 q^{79} +12.5155 q^{80} -23.4959 q^{82} -7.39597 q^{83} +16.3271 q^{85} +11.3911 q^{86} +16.3769 q^{88} -2.13672 q^{89} -16.3532 q^{91} -1.61411 q^{92} +9.06992 q^{94} +4.55949 q^{95} -18.6324 q^{97} +1.42405 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{2} + 5 q^{4} + 6 q^{5} - 6 q^{7} + q^{10} + 12 q^{13} + 3 q^{14} + 3 q^{16} - 2 q^{17} - 8 q^{19} + 5 q^{20} + 4 q^{22} - 4 q^{23} - 12 q^{25} + 18 q^{26} - 15 q^{28} + 6 q^{29} + 17 q^{34}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49568 1.76471 0.882357 0.470581i \(-0.155956\pi\)
0.882357 + 0.470581i \(0.155956\pi\)
\(3\) 0 0
\(4\) 4.22843 2.11421
\(5\) 2.30796 1.03215 0.516076 0.856543i \(-0.327392\pi\)
0.516076 + 0.856543i \(0.327392\pi\)
\(6\) 0 0
\(7\) −2.75147 −1.03996 −0.519980 0.854179i \(-0.674060\pi\)
−0.519980 + 0.854179i \(0.674060\pi\)
\(8\) 5.56145 1.96627
\(9\) 0 0
\(10\) 5.75994 1.82145
\(11\) 2.94472 0.887867 0.443934 0.896060i \(-0.353583\pi\)
0.443934 + 0.896060i \(0.353583\pi\)
\(12\) 0 0
\(13\) 5.94342 1.64841 0.824204 0.566293i \(-0.191623\pi\)
0.824204 + 0.566293i \(0.191623\pi\)
\(14\) −6.86680 −1.83523
\(15\) 0 0
\(16\) 5.42276 1.35569
\(17\) 7.07424 1.71575 0.857877 0.513855i \(-0.171783\pi\)
0.857877 + 0.513855i \(0.171783\pi\)
\(18\) 0 0
\(19\) 1.97555 0.453222 0.226611 0.973985i \(-0.427235\pi\)
0.226611 + 0.973985i \(0.427235\pi\)
\(20\) 9.75905 2.18219
\(21\) 0 0
\(22\) 7.34909 1.56683
\(23\) −0.381727 −0.0795957 −0.0397978 0.999208i \(-0.512671\pi\)
−0.0397978 + 0.999208i \(0.512671\pi\)
\(24\) 0 0
\(25\) 0.326688 0.0653376
\(26\) 14.8329 2.90897
\(27\) 0 0
\(28\) −11.6344 −2.19870
\(29\) −4.79100 −0.889667 −0.444834 0.895613i \(-0.646737\pi\)
−0.444834 + 0.895613i \(0.646737\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 2.41057 0.426133
\(33\) 0 0
\(34\) 17.6550 3.02781
\(35\) −6.35030 −1.07340
\(36\) 0 0
\(37\) −5.32646 −0.875665 −0.437832 0.899057i \(-0.644254\pi\)
−0.437832 + 0.899057i \(0.644254\pi\)
\(38\) 4.93034 0.799807
\(39\) 0 0
\(40\) 12.8356 2.02949
\(41\) −9.41463 −1.47032 −0.735159 0.677895i \(-0.762892\pi\)
−0.735159 + 0.677895i \(0.762892\pi\)
\(42\) 0 0
\(43\) 4.56431 0.696050 0.348025 0.937485i \(-0.386852\pi\)
0.348025 + 0.937485i \(0.386852\pi\)
\(44\) 12.4515 1.87714
\(45\) 0 0
\(46\) −0.952670 −0.140464
\(47\) 3.63425 0.530109 0.265055 0.964233i \(-0.414610\pi\)
0.265055 + 0.964233i \(0.414610\pi\)
\(48\) 0 0
\(49\) 0.570605 0.0815151
\(50\) 0.815309 0.115302
\(51\) 0 0
\(52\) 25.1313 3.48509
\(53\) 1.69500 0.232827 0.116413 0.993201i \(-0.462860\pi\)
0.116413 + 0.993201i \(0.462860\pi\)
\(54\) 0 0
\(55\) 6.79631 0.916414
\(56\) −15.3022 −2.04484
\(57\) 0 0
\(58\) −11.9568 −1.57001
\(59\) −9.36388 −1.21907 −0.609537 0.792758i \(-0.708645\pi\)
−0.609537 + 0.792758i \(0.708645\pi\)
\(60\) 0 0
\(61\) −0.922702 −0.118140 −0.0590699 0.998254i \(-0.518813\pi\)
−0.0590699 + 0.998254i \(0.518813\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −4.82949 −0.603686
\(65\) 13.7172 1.70141
\(66\) 0 0
\(67\) 13.8887 1.69677 0.848385 0.529379i \(-0.177575\pi\)
0.848385 + 0.529379i \(0.177575\pi\)
\(68\) 29.9129 3.62747
\(69\) 0 0
\(70\) −15.8483 −1.89424
\(71\) 0.982560 0.116608 0.0583042 0.998299i \(-0.481431\pi\)
0.0583042 + 0.998299i \(0.481431\pi\)
\(72\) 0 0
\(73\) 6.76740 0.792065 0.396032 0.918237i \(-0.370387\pi\)
0.396032 + 0.918237i \(0.370387\pi\)
\(74\) −13.2932 −1.54530
\(75\) 0 0
\(76\) 8.35347 0.958209
\(77\) −8.10232 −0.923345
\(78\) 0 0
\(79\) 2.86350 0.322169 0.161085 0.986941i \(-0.448501\pi\)
0.161085 + 0.986941i \(0.448501\pi\)
\(80\) 12.5155 1.39928
\(81\) 0 0
\(82\) −23.4959 −2.59469
\(83\) −7.39597 −0.811813 −0.405906 0.913915i \(-0.633044\pi\)
−0.405906 + 0.913915i \(0.633044\pi\)
\(84\) 0 0
\(85\) 16.3271 1.77092
\(86\) 11.3911 1.22833
\(87\) 0 0
\(88\) 16.3769 1.74579
\(89\) −2.13672 −0.226491 −0.113246 0.993567i \(-0.536125\pi\)
−0.113246 + 0.993567i \(0.536125\pi\)
\(90\) 0 0
\(91\) −16.3532 −1.71428
\(92\) −1.61411 −0.168282
\(93\) 0 0
\(94\) 9.06992 0.935491
\(95\) 4.55949 0.467794
\(96\) 0 0
\(97\) −18.6324 −1.89184 −0.945918 0.324406i \(-0.894836\pi\)
−0.945918 + 0.324406i \(0.894836\pi\)
\(98\) 1.42405 0.143851
\(99\) 0 0
\(100\) 1.38138 0.138138
\(101\) 5.27117 0.524501 0.262250 0.965000i \(-0.415535\pi\)
0.262250 + 0.965000i \(0.415535\pi\)
\(102\) 0 0
\(103\) −1.31278 −0.129352 −0.0646761 0.997906i \(-0.520601\pi\)
−0.0646761 + 0.997906i \(0.520601\pi\)
\(104\) 33.0540 3.24121
\(105\) 0 0
\(106\) 4.23019 0.410872
\(107\) 11.1946 1.08222 0.541111 0.840951i \(-0.318004\pi\)
0.541111 + 0.840951i \(0.318004\pi\)
\(108\) 0 0
\(109\) 3.41557 0.327152 0.163576 0.986531i \(-0.447697\pi\)
0.163576 + 0.986531i \(0.447697\pi\)
\(110\) 16.9614 1.61721
\(111\) 0 0
\(112\) −14.9206 −1.40986
\(113\) 6.33897 0.596320 0.298160 0.954516i \(-0.403627\pi\)
0.298160 + 0.954516i \(0.403627\pi\)
\(114\) 0 0
\(115\) −0.881012 −0.0821548
\(116\) −20.2584 −1.88095
\(117\) 0 0
\(118\) −23.3693 −2.15132
\(119\) −19.4646 −1.78431
\(120\) 0 0
\(121\) −2.32861 −0.211692
\(122\) −2.30277 −0.208483
\(123\) 0 0
\(124\) 0 0
\(125\) −10.7858 −0.964714
\(126\) 0 0
\(127\) 5.92881 0.526097 0.263049 0.964783i \(-0.415272\pi\)
0.263049 + 0.964783i \(0.415272\pi\)
\(128\) −16.8740 −1.49147
\(129\) 0 0
\(130\) 34.2337 3.00250
\(131\) −7.78468 −0.680151 −0.340075 0.940398i \(-0.610453\pi\)
−0.340075 + 0.940398i \(0.610453\pi\)
\(132\) 0 0
\(133\) −5.43567 −0.471332
\(134\) 34.6617 2.99431
\(135\) 0 0
\(136\) 39.3430 3.37364
\(137\) 2.39865 0.204930 0.102465 0.994737i \(-0.467327\pi\)
0.102465 + 0.994737i \(0.467327\pi\)
\(138\) 0 0
\(139\) 21.8103 1.84993 0.924963 0.380057i \(-0.124096\pi\)
0.924963 + 0.380057i \(0.124096\pi\)
\(140\) −26.8518 −2.26939
\(141\) 0 0
\(142\) 2.45216 0.205781
\(143\) 17.5017 1.46357
\(144\) 0 0
\(145\) −11.0575 −0.918272
\(146\) 16.8893 1.39777
\(147\) 0 0
\(148\) −22.5226 −1.85134
\(149\) −12.1446 −0.994921 −0.497461 0.867487i \(-0.665734\pi\)
−0.497461 + 0.867487i \(0.665734\pi\)
\(150\) 0 0
\(151\) 3.47475 0.282771 0.141386 0.989955i \(-0.454844\pi\)
0.141386 + 0.989955i \(0.454844\pi\)
\(152\) 10.9869 0.891157
\(153\) 0 0
\(154\) −20.2208 −1.62944
\(155\) 0 0
\(156\) 0 0
\(157\) −3.57916 −0.285648 −0.142824 0.989748i \(-0.545618\pi\)
−0.142824 + 0.989748i \(0.545618\pi\)
\(158\) 7.14640 0.568537
\(159\) 0 0
\(160\) 5.56351 0.439834
\(161\) 1.05031 0.0827762
\(162\) 0 0
\(163\) 3.05486 0.239275 0.119637 0.992818i \(-0.461827\pi\)
0.119637 + 0.992818i \(0.461827\pi\)
\(164\) −39.8091 −3.10857
\(165\) 0 0
\(166\) −18.4580 −1.43262
\(167\) 2.66114 0.205926 0.102963 0.994685i \(-0.467168\pi\)
0.102963 + 0.994685i \(0.467168\pi\)
\(168\) 0 0
\(169\) 22.3242 1.71725
\(170\) 40.7472 3.12516
\(171\) 0 0
\(172\) 19.2998 1.47160
\(173\) 0.677941 0.0515429 0.0257714 0.999668i \(-0.491796\pi\)
0.0257714 + 0.999668i \(0.491796\pi\)
\(174\) 0 0
\(175\) −0.898873 −0.0679484
\(176\) 15.9685 1.20367
\(177\) 0 0
\(178\) −5.33256 −0.399693
\(179\) −7.29501 −0.545254 −0.272627 0.962120i \(-0.587893\pi\)
−0.272627 + 0.962120i \(0.587893\pi\)
\(180\) 0 0
\(181\) 6.21931 0.462278 0.231139 0.972921i \(-0.425755\pi\)
0.231139 + 0.972921i \(0.425755\pi\)
\(182\) −40.8123 −3.02521
\(183\) 0 0
\(184\) −2.12296 −0.156507
\(185\) −12.2933 −0.903819
\(186\) 0 0
\(187\) 20.8317 1.52336
\(188\) 15.3671 1.12076
\(189\) 0 0
\(190\) 11.3790 0.825523
\(191\) 3.48813 0.252392 0.126196 0.992005i \(-0.459723\pi\)
0.126196 + 0.992005i \(0.459723\pi\)
\(192\) 0 0
\(193\) −5.40685 −0.389193 −0.194597 0.980883i \(-0.562340\pi\)
−0.194597 + 0.980883i \(0.562340\pi\)
\(194\) −46.5006 −3.33855
\(195\) 0 0
\(196\) 2.41276 0.172340
\(197\) −5.08826 −0.362523 −0.181262 0.983435i \(-0.558018\pi\)
−0.181262 + 0.983435i \(0.558018\pi\)
\(198\) 0 0
\(199\) 7.25137 0.514036 0.257018 0.966407i \(-0.417260\pi\)
0.257018 + 0.966407i \(0.417260\pi\)
\(200\) 1.81686 0.128471
\(201\) 0 0
\(202\) 13.1552 0.925594
\(203\) 13.1823 0.925218
\(204\) 0 0
\(205\) −21.7286 −1.51759
\(206\) −3.27628 −0.228269
\(207\) 0 0
\(208\) 32.2297 2.23473
\(209\) 5.81744 0.402401
\(210\) 0 0
\(211\) −8.79653 −0.605578 −0.302789 0.953058i \(-0.597918\pi\)
−0.302789 + 0.953058i \(0.597918\pi\)
\(212\) 7.16720 0.492245
\(213\) 0 0
\(214\) 27.9382 1.90981
\(215\) 10.5342 0.718429
\(216\) 0 0
\(217\) 0 0
\(218\) 8.52418 0.577330
\(219\) 0 0
\(220\) 28.7377 1.93750
\(221\) 42.0451 2.82826
\(222\) 0 0
\(223\) 6.40331 0.428797 0.214399 0.976746i \(-0.431221\pi\)
0.214399 + 0.976746i \(0.431221\pi\)
\(224\) −6.63263 −0.443161
\(225\) 0 0
\(226\) 15.8201 1.05233
\(227\) 13.2247 0.877755 0.438878 0.898547i \(-0.355376\pi\)
0.438878 + 0.898547i \(0.355376\pi\)
\(228\) 0 0
\(229\) −26.6674 −1.76223 −0.881117 0.472899i \(-0.843207\pi\)
−0.881117 + 0.472899i \(0.843207\pi\)
\(230\) −2.19873 −0.144980
\(231\) 0 0
\(232\) −26.6449 −1.74933
\(233\) 25.3765 1.66247 0.831235 0.555922i \(-0.187635\pi\)
0.831235 + 0.555922i \(0.187635\pi\)
\(234\) 0 0
\(235\) 8.38770 0.547153
\(236\) −39.5945 −2.57738
\(237\) 0 0
\(238\) −48.5774 −3.14880
\(239\) 9.74780 0.630533 0.315266 0.949003i \(-0.397906\pi\)
0.315266 + 0.949003i \(0.397906\pi\)
\(240\) 0 0
\(241\) −28.0310 −1.80564 −0.902818 0.430024i \(-0.858505\pi\)
−0.902818 + 0.430024i \(0.858505\pi\)
\(242\) −5.81148 −0.373576
\(243\) 0 0
\(244\) −3.90158 −0.249773
\(245\) 1.31694 0.0841359
\(246\) 0 0
\(247\) 11.7415 0.747095
\(248\) 0 0
\(249\) 0 0
\(250\) −26.9180 −1.70244
\(251\) 10.8984 0.687901 0.343950 0.938988i \(-0.388235\pi\)
0.343950 + 0.938988i \(0.388235\pi\)
\(252\) 0 0
\(253\) −1.12408 −0.0706704
\(254\) 14.7964 0.928411
\(255\) 0 0
\(256\) −32.4532 −2.02832
\(257\) 14.2707 0.890181 0.445090 0.895486i \(-0.353172\pi\)
0.445090 + 0.895486i \(0.353172\pi\)
\(258\) 0 0
\(259\) 14.6556 0.910655
\(260\) 58.0021 3.59714
\(261\) 0 0
\(262\) −19.4281 −1.20027
\(263\) −25.0617 −1.54537 −0.772686 0.634788i \(-0.781087\pi\)
−0.772686 + 0.634788i \(0.781087\pi\)
\(264\) 0 0
\(265\) 3.91200 0.240312
\(266\) −13.5657 −0.831767
\(267\) 0 0
\(268\) 58.7272 3.58734
\(269\) 3.37486 0.205769 0.102884 0.994693i \(-0.467193\pi\)
0.102884 + 0.994693i \(0.467193\pi\)
\(270\) 0 0
\(271\) −0.106962 −0.00649746 −0.00324873 0.999995i \(-0.501034\pi\)
−0.00324873 + 0.999995i \(0.501034\pi\)
\(272\) 38.3619 2.32603
\(273\) 0 0
\(274\) 5.98626 0.361643
\(275\) 0.962005 0.0580111
\(276\) 0 0
\(277\) 3.27048 0.196504 0.0982521 0.995162i \(-0.468675\pi\)
0.0982521 + 0.995162i \(0.468675\pi\)
\(278\) 54.4316 3.26459
\(279\) 0 0
\(280\) −35.3169 −2.11059
\(281\) 1.11598 0.0665737 0.0332868 0.999446i \(-0.489403\pi\)
0.0332868 + 0.999446i \(0.489403\pi\)
\(282\) 0 0
\(283\) −18.1331 −1.07790 −0.538951 0.842337i \(-0.681179\pi\)
−0.538951 + 0.842337i \(0.681179\pi\)
\(284\) 4.15469 0.246535
\(285\) 0 0
\(286\) 43.6787 2.58278
\(287\) 25.9041 1.52907
\(288\) 0 0
\(289\) 33.0448 1.94381
\(290\) −27.5959 −1.62049
\(291\) 0 0
\(292\) 28.6155 1.67459
\(293\) 31.0121 1.81175 0.905874 0.423548i \(-0.139215\pi\)
0.905874 + 0.423548i \(0.139215\pi\)
\(294\) 0 0
\(295\) −21.6115 −1.25827
\(296\) −29.6228 −1.72179
\(297\) 0 0
\(298\) −30.3090 −1.75575
\(299\) −2.26876 −0.131206
\(300\) 0 0
\(301\) −12.5586 −0.723864
\(302\) 8.67188 0.499011
\(303\) 0 0
\(304\) 10.7129 0.614428
\(305\) −2.12956 −0.121938
\(306\) 0 0
\(307\) −29.2654 −1.67026 −0.835131 0.550051i \(-0.814608\pi\)
−0.835131 + 0.550051i \(0.814608\pi\)
\(308\) −34.2601 −1.95215
\(309\) 0 0
\(310\) 0 0
\(311\) 31.6759 1.79618 0.898088 0.439815i \(-0.144956\pi\)
0.898088 + 0.439815i \(0.144956\pi\)
\(312\) 0 0
\(313\) −10.2334 −0.578427 −0.289214 0.957265i \(-0.593394\pi\)
−0.289214 + 0.957265i \(0.593394\pi\)
\(314\) −8.93246 −0.504088
\(315\) 0 0
\(316\) 12.1081 0.681135
\(317\) 19.2692 1.08226 0.541132 0.840938i \(-0.317996\pi\)
0.541132 + 0.840938i \(0.317996\pi\)
\(318\) 0 0
\(319\) −14.1082 −0.789906
\(320\) −11.1463 −0.623096
\(321\) 0 0
\(322\) 2.62125 0.146076
\(323\) 13.9755 0.777618
\(324\) 0 0
\(325\) 1.94164 0.107703
\(326\) 7.62395 0.422251
\(327\) 0 0
\(328\) −52.3590 −2.89104
\(329\) −9.99953 −0.551292
\(330\) 0 0
\(331\) 14.8307 0.815171 0.407586 0.913167i \(-0.366371\pi\)
0.407586 + 0.913167i \(0.366371\pi\)
\(332\) −31.2733 −1.71635
\(333\) 0 0
\(334\) 6.64137 0.363400
\(335\) 32.0545 1.75132
\(336\) 0 0
\(337\) −10.6059 −0.577743 −0.288871 0.957368i \(-0.593280\pi\)
−0.288871 + 0.957368i \(0.593280\pi\)
\(338\) 55.7141 3.03045
\(339\) 0 0
\(340\) 69.0378 3.74410
\(341\) 0 0
\(342\) 0 0
\(343\) 17.6903 0.955187
\(344\) 25.3842 1.36862
\(345\) 0 0
\(346\) 1.69192 0.0909584
\(347\) −10.1749 −0.546215 −0.273107 0.961984i \(-0.588051\pi\)
−0.273107 + 0.961984i \(0.588051\pi\)
\(348\) 0 0
\(349\) −19.1169 −1.02330 −0.511652 0.859193i \(-0.670966\pi\)
−0.511652 + 0.859193i \(0.670966\pi\)
\(350\) −2.24330 −0.119909
\(351\) 0 0
\(352\) 7.09847 0.378350
\(353\) −5.88028 −0.312976 −0.156488 0.987680i \(-0.550017\pi\)
−0.156488 + 0.987680i \(0.550017\pi\)
\(354\) 0 0
\(355\) 2.26771 0.120358
\(356\) −9.03495 −0.478852
\(357\) 0 0
\(358\) −18.2060 −0.962218
\(359\) −16.1855 −0.854237 −0.427118 0.904196i \(-0.640471\pi\)
−0.427118 + 0.904196i \(0.640471\pi\)
\(360\) 0 0
\(361\) −15.0972 −0.794590
\(362\) 15.5214 0.815788
\(363\) 0 0
\(364\) −69.1482 −3.62435
\(365\) 15.6189 0.817531
\(366\) 0 0
\(367\) −25.2403 −1.31753 −0.658766 0.752348i \(-0.728921\pi\)
−0.658766 + 0.752348i \(0.728921\pi\)
\(368\) −2.07001 −0.107907
\(369\) 0 0
\(370\) −30.6801 −1.59498
\(371\) −4.66375 −0.242130
\(372\) 0 0
\(373\) −21.2632 −1.10096 −0.550482 0.834847i \(-0.685556\pi\)
−0.550482 + 0.834847i \(0.685556\pi\)
\(374\) 51.9892 2.68830
\(375\) 0 0
\(376\) 20.2117 1.04234
\(377\) −28.4749 −1.46653
\(378\) 0 0
\(379\) −26.4025 −1.35621 −0.678103 0.734967i \(-0.737198\pi\)
−0.678103 + 0.734967i \(0.737198\pi\)
\(380\) 19.2795 0.989017
\(381\) 0 0
\(382\) 8.70526 0.445400
\(383\) 1.96541 0.100428 0.0502139 0.998738i \(-0.484010\pi\)
0.0502139 + 0.998738i \(0.484010\pi\)
\(384\) 0 0
\(385\) −18.6999 −0.953033
\(386\) −13.4938 −0.686815
\(387\) 0 0
\(388\) −78.7859 −3.99975
\(389\) −27.7973 −1.40938 −0.704690 0.709515i \(-0.748914\pi\)
−0.704690 + 0.709515i \(0.748914\pi\)
\(390\) 0 0
\(391\) −2.70043 −0.136567
\(392\) 3.17339 0.160281
\(393\) 0 0
\(394\) −12.6987 −0.639750
\(395\) 6.60886 0.332528
\(396\) 0 0
\(397\) −4.00908 −0.201210 −0.100605 0.994926i \(-0.532078\pi\)
−0.100605 + 0.994926i \(0.532078\pi\)
\(398\) 18.0971 0.907127
\(399\) 0 0
\(400\) 1.77155 0.0885774
\(401\) −18.2338 −0.910551 −0.455275 0.890351i \(-0.650459\pi\)
−0.455275 + 0.890351i \(0.650459\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 22.2888 1.10891
\(405\) 0 0
\(406\) 32.8989 1.63274
\(407\) −15.6849 −0.777474
\(408\) 0 0
\(409\) −28.4102 −1.40479 −0.702397 0.711785i \(-0.747887\pi\)
−0.702397 + 0.711785i \(0.747887\pi\)
\(410\) −54.2277 −2.67811
\(411\) 0 0
\(412\) −5.55100 −0.273478
\(413\) 25.7645 1.26779
\(414\) 0 0
\(415\) −17.0696 −0.837914
\(416\) 14.3270 0.702441
\(417\) 0 0
\(418\) 14.5185 0.710122
\(419\) −28.6598 −1.40012 −0.700060 0.714084i \(-0.746844\pi\)
−0.700060 + 0.714084i \(0.746844\pi\)
\(420\) 0 0
\(421\) 25.1273 1.22463 0.612315 0.790614i \(-0.290238\pi\)
0.612315 + 0.790614i \(0.290238\pi\)
\(422\) −21.9534 −1.06867
\(423\) 0 0
\(424\) 9.42667 0.457800
\(425\) 2.31107 0.112103
\(426\) 0 0
\(427\) 2.53879 0.122861
\(428\) 47.3356 2.28805
\(429\) 0 0
\(430\) 26.2901 1.26782
\(431\) 0.373748 0.0180028 0.00900140 0.999959i \(-0.497135\pi\)
0.00900140 + 0.999959i \(0.497135\pi\)
\(432\) 0 0
\(433\) 1.00490 0.0482926 0.0241463 0.999708i \(-0.492313\pi\)
0.0241463 + 0.999708i \(0.492313\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.4425 0.691671
\(437\) −0.754121 −0.0360745
\(438\) 0 0
\(439\) −5.41147 −0.258275 −0.129138 0.991627i \(-0.541221\pi\)
−0.129138 + 0.991627i \(0.541221\pi\)
\(440\) 37.7973 1.80192
\(441\) 0 0
\(442\) 104.931 4.99107
\(443\) 15.1374 0.719201 0.359600 0.933106i \(-0.382913\pi\)
0.359600 + 0.933106i \(0.382913\pi\)
\(444\) 0 0
\(445\) −4.93146 −0.233774
\(446\) 15.9806 0.756704
\(447\) 0 0
\(448\) 13.2882 0.627809
\(449\) −10.3025 −0.486206 −0.243103 0.970001i \(-0.578165\pi\)
−0.243103 + 0.970001i \(0.578165\pi\)
\(450\) 0 0
\(451\) −27.7235 −1.30545
\(452\) 26.8039 1.26075
\(453\) 0 0
\(454\) 33.0047 1.54899
\(455\) −37.7425 −1.76939
\(456\) 0 0
\(457\) 22.9697 1.07448 0.537238 0.843431i \(-0.319468\pi\)
0.537238 + 0.843431i \(0.319468\pi\)
\(458\) −66.5534 −3.10984
\(459\) 0 0
\(460\) −3.72530 −0.173693
\(461\) −18.6097 −0.866740 −0.433370 0.901216i \(-0.642676\pi\)
−0.433370 + 0.901216i \(0.642676\pi\)
\(462\) 0 0
\(463\) −11.5651 −0.537478 −0.268739 0.963213i \(-0.586607\pi\)
−0.268739 + 0.963213i \(0.586607\pi\)
\(464\) −25.9805 −1.20611
\(465\) 0 0
\(466\) 63.3317 2.93378
\(467\) 8.74826 0.404821 0.202411 0.979301i \(-0.435122\pi\)
0.202411 + 0.979301i \(0.435122\pi\)
\(468\) 0 0
\(469\) −38.2143 −1.76457
\(470\) 20.9330 0.965569
\(471\) 0 0
\(472\) −52.0768 −2.39703
\(473\) 13.4406 0.618000
\(474\) 0 0
\(475\) 0.645388 0.0296124
\(476\) −82.3046 −3.77242
\(477\) 0 0
\(478\) 24.3274 1.11271
\(479\) −10.4647 −0.478145 −0.239072 0.971002i \(-0.576843\pi\)
−0.239072 + 0.971002i \(0.576843\pi\)
\(480\) 0 0
\(481\) −31.6574 −1.44345
\(482\) −69.9565 −3.18643
\(483\) 0 0
\(484\) −9.84638 −0.447563
\(485\) −43.0029 −1.95266
\(486\) 0 0
\(487\) 37.3362 1.69186 0.845932 0.533291i \(-0.179045\pi\)
0.845932 + 0.533291i \(0.179045\pi\)
\(488\) −5.13156 −0.232295
\(489\) 0 0
\(490\) 3.28665 0.148476
\(491\) 26.7746 1.20832 0.604160 0.796863i \(-0.293509\pi\)
0.604160 + 0.796863i \(0.293509\pi\)
\(492\) 0 0
\(493\) −33.8927 −1.52645
\(494\) 29.3031 1.31841
\(495\) 0 0
\(496\) 0 0
\(497\) −2.70349 −0.121268
\(498\) 0 0
\(499\) −27.9698 −1.25210 −0.626049 0.779783i \(-0.715329\pi\)
−0.626049 + 0.779783i \(0.715329\pi\)
\(500\) −45.6071 −2.03961
\(501\) 0 0
\(502\) 27.1989 1.21395
\(503\) −9.76347 −0.435332 −0.217666 0.976023i \(-0.569844\pi\)
−0.217666 + 0.976023i \(0.569844\pi\)
\(504\) 0 0
\(505\) 12.1657 0.541365
\(506\) −2.80535 −0.124713
\(507\) 0 0
\(508\) 25.0696 1.11228
\(509\) −35.3335 −1.56613 −0.783064 0.621941i \(-0.786344\pi\)
−0.783064 + 0.621941i \(0.786344\pi\)
\(510\) 0 0
\(511\) −18.6203 −0.823715
\(512\) −47.2448 −2.08795
\(513\) 0 0
\(514\) 35.6151 1.57091
\(515\) −3.02985 −0.133511
\(516\) 0 0
\(517\) 10.7018 0.470666
\(518\) 36.5758 1.60705
\(519\) 0 0
\(520\) 76.2874 3.34543
\(521\) 2.53654 0.111128 0.0555638 0.998455i \(-0.482304\pi\)
0.0555638 + 0.998455i \(0.482304\pi\)
\(522\) 0 0
\(523\) 16.3163 0.713463 0.356732 0.934207i \(-0.383891\pi\)
0.356732 + 0.934207i \(0.383891\pi\)
\(524\) −32.9170 −1.43798
\(525\) 0 0
\(526\) −62.5461 −2.72714
\(527\) 0 0
\(528\) 0 0
\(529\) −22.8543 −0.993665
\(530\) 9.76311 0.424082
\(531\) 0 0
\(532\) −22.9843 −0.996498
\(533\) −55.9551 −2.42368
\(534\) 0 0
\(535\) 25.8367 1.11702
\(536\) 77.2411 3.33631
\(537\) 0 0
\(538\) 8.42258 0.363123
\(539\) 1.68027 0.0723745
\(540\) 0 0
\(541\) −31.2262 −1.34252 −0.671260 0.741222i \(-0.734247\pi\)
−0.671260 + 0.741222i \(0.734247\pi\)
\(542\) −0.266942 −0.0114662
\(543\) 0 0
\(544\) 17.0530 0.731140
\(545\) 7.88301 0.337671
\(546\) 0 0
\(547\) −26.7801 −1.14503 −0.572517 0.819893i \(-0.694033\pi\)
−0.572517 + 0.819893i \(0.694033\pi\)
\(548\) 10.1425 0.433266
\(549\) 0 0
\(550\) 2.40086 0.102373
\(551\) −9.46486 −0.403217
\(552\) 0 0
\(553\) −7.87886 −0.335043
\(554\) 8.16208 0.346774
\(555\) 0 0
\(556\) 92.2234 3.91114
\(557\) 43.0564 1.82436 0.912178 0.409794i \(-0.134399\pi\)
0.912178 + 0.409794i \(0.134399\pi\)
\(558\) 0 0
\(559\) 27.1276 1.14737
\(560\) −34.4361 −1.45519
\(561\) 0 0
\(562\) 2.78513 0.117483
\(563\) −37.6900 −1.58844 −0.794222 0.607628i \(-0.792121\pi\)
−0.794222 + 0.607628i \(0.792121\pi\)
\(564\) 0 0
\(565\) 14.6301 0.615493
\(566\) −45.2545 −1.90219
\(567\) 0 0
\(568\) 5.46446 0.229284
\(569\) 20.2946 0.850794 0.425397 0.905007i \(-0.360134\pi\)
0.425397 + 0.905007i \(0.360134\pi\)
\(570\) 0 0
\(571\) −28.8149 −1.20586 −0.602932 0.797792i \(-0.706001\pi\)
−0.602932 + 0.797792i \(0.706001\pi\)
\(572\) 74.0048 3.09429
\(573\) 0 0
\(574\) 64.6484 2.69837
\(575\) −0.124706 −0.00520059
\(576\) 0 0
\(577\) 31.3490 1.30507 0.652537 0.757757i \(-0.273705\pi\)
0.652537 + 0.757757i \(0.273705\pi\)
\(578\) 82.4693 3.43027
\(579\) 0 0
\(580\) −46.7557 −1.94142
\(581\) 20.3498 0.844252
\(582\) 0 0
\(583\) 4.99131 0.206719
\(584\) 37.6366 1.55741
\(585\) 0 0
\(586\) 77.3964 3.19722
\(587\) 16.5500 0.683092 0.341546 0.939865i \(-0.389050\pi\)
0.341546 + 0.939865i \(0.389050\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −53.9354 −2.22048
\(591\) 0 0
\(592\) −28.8841 −1.18713
\(593\) −22.0312 −0.904712 −0.452356 0.891837i \(-0.649416\pi\)
−0.452356 + 0.891837i \(0.649416\pi\)
\(594\) 0 0
\(595\) −44.9235 −1.84168
\(596\) −51.3524 −2.10348
\(597\) 0 0
\(598\) −5.66212 −0.231541
\(599\) −7.11684 −0.290786 −0.145393 0.989374i \(-0.546445\pi\)
−0.145393 + 0.989374i \(0.546445\pi\)
\(600\) 0 0
\(601\) 29.1376 1.18855 0.594274 0.804262i \(-0.297439\pi\)
0.594274 + 0.804262i \(0.297439\pi\)
\(602\) −31.3422 −1.27741
\(603\) 0 0
\(604\) 14.6927 0.597839
\(605\) −5.37435 −0.218498
\(606\) 0 0
\(607\) −26.9747 −1.09487 −0.547435 0.836848i \(-0.684396\pi\)
−0.547435 + 0.836848i \(0.684396\pi\)
\(608\) 4.76221 0.193133
\(609\) 0 0
\(610\) −5.31471 −0.215186
\(611\) 21.5998 0.873836
\(612\) 0 0
\(613\) 8.62862 0.348507 0.174253 0.984701i \(-0.444249\pi\)
0.174253 + 0.984701i \(0.444249\pi\)
\(614\) −73.0371 −2.94754
\(615\) 0 0
\(616\) −45.0607 −1.81555
\(617\) −42.8673 −1.72577 −0.862886 0.505399i \(-0.831345\pi\)
−0.862886 + 0.505399i \(0.831345\pi\)
\(618\) 0 0
\(619\) 38.0726 1.53027 0.765134 0.643871i \(-0.222673\pi\)
0.765134 + 0.643871i \(0.222673\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 79.0530 3.16974
\(623\) 5.87912 0.235542
\(624\) 0 0
\(625\) −26.5267 −1.06107
\(626\) −25.5394 −1.02076
\(627\) 0 0
\(628\) −15.1342 −0.603922
\(629\) −37.6806 −1.50243
\(630\) 0 0
\(631\) 12.5530 0.499729 0.249864 0.968281i \(-0.419614\pi\)
0.249864 + 0.968281i \(0.419614\pi\)
\(632\) 15.9252 0.633472
\(633\) 0 0
\(634\) 48.0897 1.90989
\(635\) 13.6835 0.543012
\(636\) 0 0
\(637\) 3.39135 0.134370
\(638\) −35.2095 −1.39396
\(639\) 0 0
\(640\) −38.9446 −1.53942
\(641\) 41.5549 1.64132 0.820659 0.571418i \(-0.193606\pi\)
0.820659 + 0.571418i \(0.193606\pi\)
\(642\) 0 0
\(643\) 36.2977 1.43144 0.715721 0.698386i \(-0.246098\pi\)
0.715721 + 0.698386i \(0.246098\pi\)
\(644\) 4.44117 0.175007
\(645\) 0 0
\(646\) 34.8784 1.37227
\(647\) 50.0421 1.96736 0.983678 0.179936i \(-0.0575889\pi\)
0.983678 + 0.179936i \(0.0575889\pi\)
\(648\) 0 0
\(649\) −27.5740 −1.08238
\(650\) 4.84572 0.190065
\(651\) 0 0
\(652\) 12.9172 0.505878
\(653\) −29.1570 −1.14100 −0.570501 0.821297i \(-0.693251\pi\)
−0.570501 + 0.821297i \(0.693251\pi\)
\(654\) 0 0
\(655\) −17.9667 −0.702019
\(656\) −51.0532 −1.99329
\(657\) 0 0
\(658\) −24.9556 −0.972872
\(659\) 16.3913 0.638515 0.319258 0.947668i \(-0.396566\pi\)
0.319258 + 0.947668i \(0.396566\pi\)
\(660\) 0 0
\(661\) 0.750582 0.0291943 0.0145971 0.999893i \(-0.495353\pi\)
0.0145971 + 0.999893i \(0.495353\pi\)
\(662\) 37.0128 1.43854
\(663\) 0 0
\(664\) −41.1323 −1.59624
\(665\) −12.5453 −0.486487
\(666\) 0 0
\(667\) 1.82886 0.0708136
\(668\) 11.2525 0.435371
\(669\) 0 0
\(670\) 79.9979 3.09059
\(671\) −2.71710 −0.104893
\(672\) 0 0
\(673\) −16.4315 −0.633388 −0.316694 0.948528i \(-0.602573\pi\)
−0.316694 + 0.948528i \(0.602573\pi\)
\(674\) −26.4691 −1.01955
\(675\) 0 0
\(676\) 94.3964 3.63063
\(677\) 3.47627 0.133604 0.0668020 0.997766i \(-0.478720\pi\)
0.0668020 + 0.997766i \(0.478720\pi\)
\(678\) 0 0
\(679\) 51.2666 1.96743
\(680\) 90.8022 3.48210
\(681\) 0 0
\(682\) 0 0
\(683\) −2.33721 −0.0894308 −0.0447154 0.999000i \(-0.514238\pi\)
−0.0447154 + 0.999000i \(0.514238\pi\)
\(684\) 0 0
\(685\) 5.53598 0.211519
\(686\) 44.1494 1.68563
\(687\) 0 0
\(688\) 24.7511 0.943628
\(689\) 10.0741 0.383793
\(690\) 0 0
\(691\) −45.8502 −1.74422 −0.872111 0.489308i \(-0.837249\pi\)
−0.872111 + 0.489308i \(0.837249\pi\)
\(692\) 2.86662 0.108973
\(693\) 0 0
\(694\) −25.3932 −0.963913
\(695\) 50.3374 1.90941
\(696\) 0 0
\(697\) −66.6013 −2.52270
\(698\) −47.7097 −1.80584
\(699\) 0 0
\(700\) −3.80082 −0.143658
\(701\) 23.0395 0.870191 0.435095 0.900384i \(-0.356715\pi\)
0.435095 + 0.900384i \(0.356715\pi\)
\(702\) 0 0
\(703\) −10.5227 −0.396871
\(704\) −14.2215 −0.535993
\(705\) 0 0
\(706\) −14.6753 −0.552313
\(707\) −14.5035 −0.545460
\(708\) 0 0
\(709\) −23.5750 −0.885379 −0.442689 0.896675i \(-0.645976\pi\)
−0.442689 + 0.896675i \(0.645976\pi\)
\(710\) 5.65949 0.212397
\(711\) 0 0
\(712\) −11.8832 −0.445343
\(713\) 0 0
\(714\) 0 0
\(715\) 40.3933 1.51062
\(716\) −30.8464 −1.15278
\(717\) 0 0
\(718\) −40.3938 −1.50748
\(719\) 21.1285 0.787961 0.393980 0.919119i \(-0.371098\pi\)
0.393980 + 0.919119i \(0.371098\pi\)
\(720\) 0 0
\(721\) 3.61208 0.134521
\(722\) −37.6778 −1.40222
\(723\) 0 0
\(724\) 26.2979 0.977354
\(725\) −1.56516 −0.0581287
\(726\) 0 0
\(727\) 46.4512 1.72278 0.861391 0.507943i \(-0.169594\pi\)
0.861391 + 0.507943i \(0.169594\pi\)
\(728\) −90.9473 −3.37073
\(729\) 0 0
\(730\) 38.9798 1.44271
\(731\) 32.2890 1.19425
\(732\) 0 0
\(733\) −16.9886 −0.627488 −0.313744 0.949508i \(-0.601583\pi\)
−0.313744 + 0.949508i \(0.601583\pi\)
\(734\) −62.9917 −2.32507
\(735\) 0 0
\(736\) −0.920182 −0.0339184
\(737\) 40.8983 1.50651
\(738\) 0 0
\(739\) 39.3088 1.44600 0.723000 0.690849i \(-0.242763\pi\)
0.723000 + 0.690849i \(0.242763\pi\)
\(740\) −51.9812 −1.91087
\(741\) 0 0
\(742\) −11.6392 −0.427290
\(743\) −45.3657 −1.66430 −0.832152 0.554547i \(-0.812891\pi\)
−0.832152 + 0.554547i \(0.812891\pi\)
\(744\) 0 0
\(745\) −28.0292 −1.02691
\(746\) −53.0661 −1.94289
\(747\) 0 0
\(748\) 88.0852 3.22071
\(749\) −30.8016 −1.12547
\(750\) 0 0
\(751\) 25.3877 0.926410 0.463205 0.886251i \(-0.346699\pi\)
0.463205 + 0.886251i \(0.346699\pi\)
\(752\) 19.7076 0.718663
\(753\) 0 0
\(754\) −71.0644 −2.58801
\(755\) 8.01960 0.291863
\(756\) 0 0
\(757\) −35.6806 −1.29683 −0.648417 0.761285i \(-0.724569\pi\)
−0.648417 + 0.761285i \(0.724569\pi\)
\(758\) −65.8923 −2.39332
\(759\) 0 0
\(760\) 25.3574 0.919809
\(761\) −34.1139 −1.23663 −0.618314 0.785931i \(-0.712184\pi\)
−0.618314 + 0.785931i \(0.712184\pi\)
\(762\) 0 0
\(763\) −9.39786 −0.340225
\(764\) 14.7493 0.533611
\(765\) 0 0
\(766\) 4.90504 0.177226
\(767\) −55.6535 −2.00953
\(768\) 0 0
\(769\) −37.6212 −1.35665 −0.678327 0.734760i \(-0.737295\pi\)
−0.678327 + 0.734760i \(0.737295\pi\)
\(770\) −46.6689 −1.68183
\(771\) 0 0
\(772\) −22.8625 −0.822838
\(773\) 32.0230 1.15179 0.575893 0.817525i \(-0.304655\pi\)
0.575893 + 0.817525i \(0.304655\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −103.623 −3.71986
\(777\) 0 0
\(778\) −69.3733 −2.48715
\(779\) −18.5991 −0.666380
\(780\) 0 0
\(781\) 2.89337 0.103533
\(782\) −6.73941 −0.241001
\(783\) 0 0
\(784\) 3.09425 0.110509
\(785\) −8.26057 −0.294833
\(786\) 0 0
\(787\) 3.51289 0.125221 0.0626106 0.998038i \(-0.480057\pi\)
0.0626106 + 0.998038i \(0.480057\pi\)
\(788\) −21.5153 −0.766452
\(789\) 0 0
\(790\) 16.4936 0.586816
\(791\) −17.4415 −0.620149
\(792\) 0 0
\(793\) −5.48400 −0.194743
\(794\) −10.0054 −0.355078
\(795\) 0 0
\(796\) 30.6619 1.08678
\(797\) −16.0363 −0.568035 −0.284017 0.958819i \(-0.591667\pi\)
−0.284017 + 0.958819i \(0.591667\pi\)
\(798\) 0 0
\(799\) 25.7095 0.909537
\(800\) 0.787505 0.0278425
\(801\) 0 0
\(802\) −45.5057 −1.60686
\(803\) 19.9281 0.703248
\(804\) 0 0
\(805\) 2.42408 0.0854376
\(806\) 0 0
\(807\) 0 0
\(808\) 29.3154 1.03131
\(809\) 3.19038 0.112168 0.0560839 0.998426i \(-0.482139\pi\)
0.0560839 + 0.998426i \(0.482139\pi\)
\(810\) 0 0
\(811\) 17.1263 0.601384 0.300692 0.953721i \(-0.402782\pi\)
0.300692 + 0.953721i \(0.402782\pi\)
\(812\) 55.7405 1.95611
\(813\) 0 0
\(814\) −39.1446 −1.37202
\(815\) 7.05049 0.246968
\(816\) 0 0
\(817\) 9.01701 0.315465
\(818\) −70.9028 −2.47906
\(819\) 0 0
\(820\) −91.8779 −3.20851
\(821\) −28.8055 −1.00532 −0.502659 0.864485i \(-0.667645\pi\)
−0.502659 + 0.864485i \(0.667645\pi\)
\(822\) 0 0
\(823\) −43.8981 −1.53019 −0.765096 0.643916i \(-0.777308\pi\)
−0.765096 + 0.643916i \(0.777308\pi\)
\(824\) −7.30097 −0.254341
\(825\) 0 0
\(826\) 64.2999 2.23728
\(827\) 21.7448 0.756142 0.378071 0.925777i \(-0.376587\pi\)
0.378071 + 0.925777i \(0.376587\pi\)
\(828\) 0 0
\(829\) −11.1449 −0.387079 −0.193539 0.981093i \(-0.561997\pi\)
−0.193539 + 0.981093i \(0.561997\pi\)
\(830\) −42.6003 −1.47868
\(831\) 0 0
\(832\) −28.7037 −0.995120
\(833\) 4.03660 0.139860
\(834\) 0 0
\(835\) 6.14182 0.212546
\(836\) 24.5986 0.850762
\(837\) 0 0
\(838\) −71.5256 −2.47081
\(839\) −22.7431 −0.785180 −0.392590 0.919714i \(-0.628421\pi\)
−0.392590 + 0.919714i \(0.628421\pi\)
\(840\) 0 0
\(841\) −6.04628 −0.208492
\(842\) 62.7098 2.16112
\(843\) 0 0
\(844\) −37.1955 −1.28032
\(845\) 51.5234 1.77246
\(846\) 0 0
\(847\) 6.40712 0.220151
\(848\) 9.19159 0.315640
\(849\) 0 0
\(850\) 5.76769 0.197830
\(851\) 2.03326 0.0696991
\(852\) 0 0
\(853\) 33.9052 1.16089 0.580446 0.814299i \(-0.302878\pi\)
0.580446 + 0.814299i \(0.302878\pi\)
\(854\) 6.33601 0.216814
\(855\) 0 0
\(856\) 62.2582 2.12794
\(857\) −24.5096 −0.837233 −0.418617 0.908163i \(-0.637485\pi\)
−0.418617 + 0.908163i \(0.637485\pi\)
\(858\) 0 0
\(859\) 15.1535 0.517031 0.258516 0.966007i \(-0.416767\pi\)
0.258516 + 0.966007i \(0.416767\pi\)
\(860\) 44.5433 1.51891
\(861\) 0 0
\(862\) 0.932756 0.0317698
\(863\) −4.68932 −0.159626 −0.0798131 0.996810i \(-0.525432\pi\)
−0.0798131 + 0.996810i \(0.525432\pi\)
\(864\) 0 0
\(865\) 1.56466 0.0532001
\(866\) 2.50792 0.0852226
\(867\) 0 0
\(868\) 0 0
\(869\) 8.43222 0.286044
\(870\) 0 0
\(871\) 82.5461 2.79697
\(872\) 18.9955 0.643270
\(873\) 0 0
\(874\) −1.88205 −0.0636612
\(875\) 29.6769 1.00326
\(876\) 0 0
\(877\) −18.9112 −0.638585 −0.319292 0.947656i \(-0.603445\pi\)
−0.319292 + 0.947656i \(0.603445\pi\)
\(878\) −13.5053 −0.455782
\(879\) 0 0
\(880\) 36.8547 1.24237
\(881\) −7.21014 −0.242916 −0.121458 0.992597i \(-0.538757\pi\)
−0.121458 + 0.992597i \(0.538757\pi\)
\(882\) 0 0
\(883\) 53.2347 1.79149 0.895746 0.444566i \(-0.146642\pi\)
0.895746 + 0.444566i \(0.146642\pi\)
\(884\) 177.785 5.97955
\(885\) 0 0
\(886\) 37.7782 1.26918
\(887\) 26.1035 0.876470 0.438235 0.898860i \(-0.355604\pi\)
0.438235 + 0.898860i \(0.355604\pi\)
\(888\) 0 0
\(889\) −16.3130 −0.547120
\(890\) −12.3074 −0.412543
\(891\) 0 0
\(892\) 27.0759 0.906569
\(893\) 7.17963 0.240257
\(894\) 0 0
\(895\) −16.8366 −0.562785
\(896\) 46.4284 1.55106
\(897\) 0 0
\(898\) −25.7118 −0.858014
\(899\) 0 0
\(900\) 0 0
\(901\) 11.9908 0.399473
\(902\) −69.1889 −2.30374
\(903\) 0 0
\(904\) 35.2539 1.17253
\(905\) 14.3539 0.477141
\(906\) 0 0
\(907\) −7.74580 −0.257195 −0.128598 0.991697i \(-0.541048\pi\)
−0.128598 + 0.991697i \(0.541048\pi\)
\(908\) 55.9198 1.85576
\(909\) 0 0
\(910\) −94.1932 −3.12247
\(911\) 0.765193 0.0253520 0.0126760 0.999920i \(-0.495965\pi\)
0.0126760 + 0.999920i \(0.495965\pi\)
\(912\) 0 0
\(913\) −21.7791 −0.720782
\(914\) 57.3250 1.89614
\(915\) 0 0
\(916\) −112.761 −3.72574
\(917\) 21.4193 0.707329
\(918\) 0 0
\(919\) −40.3869 −1.33224 −0.666121 0.745844i \(-0.732046\pi\)
−0.666121 + 0.745844i \(0.732046\pi\)
\(920\) −4.89971 −0.161539
\(921\) 0 0
\(922\) −46.4439 −1.52955
\(923\) 5.83977 0.192218
\(924\) 0 0
\(925\) −1.74009 −0.0572138
\(926\) −28.8629 −0.948495
\(927\) 0 0
\(928\) −11.5491 −0.379117
\(929\) −26.6328 −0.873795 −0.436898 0.899511i \(-0.643923\pi\)
−0.436898 + 0.899511i \(0.643923\pi\)
\(930\) 0 0
\(931\) 1.12726 0.0369444
\(932\) 107.303 3.51482
\(933\) 0 0
\(934\) 21.8329 0.714394
\(935\) 48.0787 1.57234
\(936\) 0 0
\(937\) 27.8372 0.909403 0.454701 0.890644i \(-0.349746\pi\)
0.454701 + 0.890644i \(0.349746\pi\)
\(938\) −95.3707 −3.11396
\(939\) 0 0
\(940\) 35.4668 1.15680
\(941\) −48.4866 −1.58062 −0.790310 0.612708i \(-0.790080\pi\)
−0.790310 + 0.612708i \(0.790080\pi\)
\(942\) 0 0
\(943\) 3.59382 0.117031
\(944\) −50.7780 −1.65268
\(945\) 0 0
\(946\) 33.5435 1.09059
\(947\) 17.5569 0.570523 0.285262 0.958450i \(-0.407920\pi\)
0.285262 + 0.958450i \(0.407920\pi\)
\(948\) 0 0
\(949\) 40.2215 1.30565
\(950\) 1.61068 0.0522575
\(951\) 0 0
\(952\) −108.251 −3.50844
\(953\) 19.0395 0.616748 0.308374 0.951265i \(-0.400215\pi\)
0.308374 + 0.951265i \(0.400215\pi\)
\(954\) 0 0
\(955\) 8.05047 0.260507
\(956\) 41.2179 1.33308
\(957\) 0 0
\(958\) −26.1166 −0.843789
\(959\) −6.59981 −0.213119
\(960\) 0 0
\(961\) 0 0
\(962\) −79.0068 −2.54728
\(963\) 0 0
\(964\) −118.527 −3.81750
\(965\) −12.4788 −0.401707
\(966\) 0 0
\(967\) −28.6941 −0.922738 −0.461369 0.887208i \(-0.652642\pi\)
−0.461369 + 0.887208i \(0.652642\pi\)
\(968\) −12.9505 −0.416244
\(969\) 0 0
\(970\) −107.322 −3.44589
\(971\) −13.4537 −0.431750 −0.215875 0.976421i \(-0.569260\pi\)
−0.215875 + 0.976421i \(0.569260\pi\)
\(972\) 0 0
\(973\) −60.0105 −1.92385
\(974\) 93.1792 2.98566
\(975\) 0 0
\(976\) −5.00359 −0.160161
\(977\) 8.40056 0.268758 0.134379 0.990930i \(-0.457096\pi\)
0.134379 + 0.990930i \(0.457096\pi\)
\(978\) 0 0
\(979\) −6.29203 −0.201094
\(980\) 5.56857 0.177881
\(981\) 0 0
\(982\) 66.8209 2.13234
\(983\) −24.0579 −0.767327 −0.383663 0.923473i \(-0.625338\pi\)
−0.383663 + 0.923473i \(0.625338\pi\)
\(984\) 0 0
\(985\) −11.7435 −0.374179
\(986\) −84.5854 −2.69375
\(987\) 0 0
\(988\) 49.6482 1.57952
\(989\) −1.74232 −0.0554026
\(990\) 0 0
\(991\) −36.7862 −1.16855 −0.584276 0.811555i \(-0.698621\pi\)
−0.584276 + 0.811555i \(0.698621\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −6.74705 −0.214003
\(995\) 16.7359 0.530563
\(996\) 0 0
\(997\) 9.68136 0.306612 0.153306 0.988179i \(-0.451008\pi\)
0.153306 + 0.988179i \(0.451008\pi\)
\(998\) −69.8037 −2.20960
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bj.1.8 8
3.2 odd 2 2883.2.a.m.1.1 8
31.10 even 15 279.2.y.b.100.2 16
31.28 even 15 279.2.y.b.226.2 16
31.30 odd 2 8649.2.a.bi.1.8 8
93.41 odd 30 93.2.m.a.7.1 16
93.59 odd 30 93.2.m.a.40.1 yes 16
93.92 even 2 2883.2.a.n.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.m.a.7.1 16 93.41 odd 30
93.2.m.a.40.1 yes 16 93.59 odd 30
279.2.y.b.100.2 16 31.10 even 15
279.2.y.b.226.2 16 31.28 even 15
2883.2.a.m.1.1 8 3.2 odd 2
2883.2.a.n.1.1 8 93.92 even 2
8649.2.a.bi.1.8 8 31.30 odd 2
8649.2.a.bj.1.8 8 1.1 even 1 trivial