Properties

Label 8649.2.a.bj.1.8
Level 86498649
Weight 22
Character 8649.1
Self dual yes
Analytic conductor 69.06369.063
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8649=32312 8649 = 3^{2} \cdot 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 69.062612708269.0626127082
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.1697203125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x75x6+12x5+9x412x35x2+3x+1 x^{8} - 3x^{7} - 5x^{6} + 12x^{5} + 9x^{4} - 12x^{3} - 5x^{2} + 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 93)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.8
Root 1.49568-1.49568 of defining polynomial
Character χ\chi == 8649.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.49568q2+4.22843q4+2.30796q52.75147q7+5.56145q8+5.75994q10+2.94472q11+5.94342q136.86680q14+5.42276q16+7.07424q17+1.97555q19+9.75905q20+7.34909q220.381727q23+0.326688q25+14.8329q2611.6344q284.79100q29+2.41057q32+17.6550q346.35030q355.32646q37+4.93034q38+12.8356q409.41463q41+4.56431q43+12.4515q440.952670q46+3.63425q47+0.570605q49+0.815309q50+25.1313q52+1.69500q53+6.79631q5515.3022q5611.9568q589.36388q590.922702q614.82949q64+13.7172q65+13.8887q67+29.9129q6815.8483q70+0.982560q71+6.76740q7313.2932q74+8.35347q768.10232q77+2.86350q79+12.5155q8023.4959q827.39597q83+16.3271q85+11.3911q86+16.3769q882.13672q8916.3532q911.61411q92+9.06992q94+4.55949q9518.6324q97+1.42405q98+O(q100)q+2.49568 q^{2} +4.22843 q^{4} +2.30796 q^{5} -2.75147 q^{7} +5.56145 q^{8} +5.75994 q^{10} +2.94472 q^{11} +5.94342 q^{13} -6.86680 q^{14} +5.42276 q^{16} +7.07424 q^{17} +1.97555 q^{19} +9.75905 q^{20} +7.34909 q^{22} -0.381727 q^{23} +0.326688 q^{25} +14.8329 q^{26} -11.6344 q^{28} -4.79100 q^{29} +2.41057 q^{32} +17.6550 q^{34} -6.35030 q^{35} -5.32646 q^{37} +4.93034 q^{38} +12.8356 q^{40} -9.41463 q^{41} +4.56431 q^{43} +12.4515 q^{44} -0.952670 q^{46} +3.63425 q^{47} +0.570605 q^{49} +0.815309 q^{50} +25.1313 q^{52} +1.69500 q^{53} +6.79631 q^{55} -15.3022 q^{56} -11.9568 q^{58} -9.36388 q^{59} -0.922702 q^{61} -4.82949 q^{64} +13.7172 q^{65} +13.8887 q^{67} +29.9129 q^{68} -15.8483 q^{70} +0.982560 q^{71} +6.76740 q^{73} -13.2932 q^{74} +8.35347 q^{76} -8.10232 q^{77} +2.86350 q^{79} +12.5155 q^{80} -23.4959 q^{82} -7.39597 q^{83} +16.3271 q^{85} +11.3911 q^{86} +16.3769 q^{88} -2.13672 q^{89} -16.3532 q^{91} -1.61411 q^{92} +9.06992 q^{94} +4.55949 q^{95} -18.6324 q^{97} +1.42405 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+5q2+5q4+6q56q7+q10+12q13+3q14+3q162q178q19+5q20+4q224q2312q25+18q2615q28+6q29+17q34+32q98+O(q100) 8 q + 5 q^{2} + 5 q^{4} + 6 q^{5} - 6 q^{7} + q^{10} + 12 q^{13} + 3 q^{14} + 3 q^{16} - 2 q^{17} - 8 q^{19} + 5 q^{20} + 4 q^{22} - 4 q^{23} - 12 q^{25} + 18 q^{26} - 15 q^{28} + 6 q^{29} + 17 q^{34}+ \cdots - 32 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.49568 1.76471 0.882357 0.470581i 0.155956π-0.155956\pi
0.882357 + 0.470581i 0.155956π0.155956\pi
33 0 0
44 4.22843 2.11421
55 2.30796 1.03215 0.516076 0.856543i 0.327392π-0.327392\pi
0.516076 + 0.856543i 0.327392π0.327392\pi
66 0 0
77 −2.75147 −1.03996 −0.519980 0.854179i 0.674060π-0.674060\pi
−0.519980 + 0.854179i 0.674060π0.674060\pi
88 5.56145 1.96627
99 0 0
1010 5.75994 1.82145
1111 2.94472 0.887867 0.443934 0.896060i 0.353583π-0.353583\pi
0.443934 + 0.896060i 0.353583π0.353583\pi
1212 0 0
1313 5.94342 1.64841 0.824204 0.566293i 0.191623π-0.191623\pi
0.824204 + 0.566293i 0.191623π0.191623\pi
1414 −6.86680 −1.83523
1515 0 0
1616 5.42276 1.35569
1717 7.07424 1.71575 0.857877 0.513855i 0.171783π-0.171783\pi
0.857877 + 0.513855i 0.171783π0.171783\pi
1818 0 0
1919 1.97555 0.453222 0.226611 0.973985i 0.427235π-0.427235\pi
0.226611 + 0.973985i 0.427235π0.427235\pi
2020 9.75905 2.18219
2121 0 0
2222 7.34909 1.56683
2323 −0.381727 −0.0795957 −0.0397978 0.999208i 0.512671π-0.512671\pi
−0.0397978 + 0.999208i 0.512671π0.512671\pi
2424 0 0
2525 0.326688 0.0653376
2626 14.8329 2.90897
2727 0 0
2828 −11.6344 −2.19870
2929 −4.79100 −0.889667 −0.444834 0.895613i 0.646737π-0.646737\pi
−0.444834 + 0.895613i 0.646737π0.646737\pi
3030 0 0
3131 0 0
3232 2.41057 0.426133
3333 0 0
3434 17.6550 3.02781
3535 −6.35030 −1.07340
3636 0 0
3737 −5.32646 −0.875665 −0.437832 0.899057i 0.644254π-0.644254\pi
−0.437832 + 0.899057i 0.644254π0.644254\pi
3838 4.93034 0.799807
3939 0 0
4040 12.8356 2.02949
4141 −9.41463 −1.47032 −0.735159 0.677895i 0.762892π-0.762892\pi
−0.735159 + 0.677895i 0.762892π0.762892\pi
4242 0 0
4343 4.56431 0.696050 0.348025 0.937485i 0.386852π-0.386852\pi
0.348025 + 0.937485i 0.386852π0.386852\pi
4444 12.4515 1.87714
4545 0 0
4646 −0.952670 −0.140464
4747 3.63425 0.530109 0.265055 0.964233i 0.414610π-0.414610\pi
0.265055 + 0.964233i 0.414610π0.414610\pi
4848 0 0
4949 0.570605 0.0815151
5050 0.815309 0.115302
5151 0 0
5252 25.1313 3.48509
5353 1.69500 0.232827 0.116413 0.993201i 0.462860π-0.462860\pi
0.116413 + 0.993201i 0.462860π0.462860\pi
5454 0 0
5555 6.79631 0.916414
5656 −15.3022 −2.04484
5757 0 0
5858 −11.9568 −1.57001
5959 −9.36388 −1.21907 −0.609537 0.792758i 0.708645π-0.708645\pi
−0.609537 + 0.792758i 0.708645π0.708645\pi
6060 0 0
6161 −0.922702 −0.118140 −0.0590699 0.998254i 0.518813π-0.518813\pi
−0.0590699 + 0.998254i 0.518813π0.518813\pi
6262 0 0
6363 0 0
6464 −4.82949 −0.603686
6565 13.7172 1.70141
6666 0 0
6767 13.8887 1.69677 0.848385 0.529379i 0.177575π-0.177575\pi
0.848385 + 0.529379i 0.177575π0.177575\pi
6868 29.9129 3.62747
6969 0 0
7070 −15.8483 −1.89424
7171 0.982560 0.116608 0.0583042 0.998299i 0.481431π-0.481431\pi
0.0583042 + 0.998299i 0.481431π0.481431\pi
7272 0 0
7373 6.76740 0.792065 0.396032 0.918237i 0.370387π-0.370387\pi
0.396032 + 0.918237i 0.370387π0.370387\pi
7474 −13.2932 −1.54530
7575 0 0
7676 8.35347 0.958209
7777 −8.10232 −0.923345
7878 0 0
7979 2.86350 0.322169 0.161085 0.986941i 0.448501π-0.448501\pi
0.161085 + 0.986941i 0.448501π0.448501\pi
8080 12.5155 1.39928
8181 0 0
8282 −23.4959 −2.59469
8383 −7.39597 −0.811813 −0.405906 0.913915i 0.633044π-0.633044\pi
−0.405906 + 0.913915i 0.633044π0.633044\pi
8484 0 0
8585 16.3271 1.77092
8686 11.3911 1.22833
8787 0 0
8888 16.3769 1.74579
8989 −2.13672 −0.226491 −0.113246 0.993567i 0.536125π-0.536125\pi
−0.113246 + 0.993567i 0.536125π0.536125\pi
9090 0 0
9191 −16.3532 −1.71428
9292 −1.61411 −0.168282
9393 0 0
9494 9.06992 0.935491
9595 4.55949 0.467794
9696 0 0
9797 −18.6324 −1.89184 −0.945918 0.324406i 0.894836π-0.894836\pi
−0.945918 + 0.324406i 0.894836π0.894836\pi
9898 1.42405 0.143851
9999 0 0
100100 1.38138 0.138138
101101 5.27117 0.524501 0.262250 0.965000i 0.415535π-0.415535\pi
0.262250 + 0.965000i 0.415535π0.415535\pi
102102 0 0
103103 −1.31278 −0.129352 −0.0646761 0.997906i 0.520601π-0.520601\pi
−0.0646761 + 0.997906i 0.520601π0.520601\pi
104104 33.0540 3.24121
105105 0 0
106106 4.23019 0.410872
107107 11.1946 1.08222 0.541111 0.840951i 0.318004π-0.318004\pi
0.541111 + 0.840951i 0.318004π0.318004\pi
108108 0 0
109109 3.41557 0.327152 0.163576 0.986531i 0.447697π-0.447697\pi
0.163576 + 0.986531i 0.447697π0.447697\pi
110110 16.9614 1.61721
111111 0 0
112112 −14.9206 −1.40986
113113 6.33897 0.596320 0.298160 0.954516i 0.403627π-0.403627\pi
0.298160 + 0.954516i 0.403627π0.403627\pi
114114 0 0
115115 −0.881012 −0.0821548
116116 −20.2584 −1.88095
117117 0 0
118118 −23.3693 −2.15132
119119 −19.4646 −1.78431
120120 0 0
121121 −2.32861 −0.211692
122122 −2.30277 −0.208483
123123 0 0
124124 0 0
125125 −10.7858 −0.964714
126126 0 0
127127 5.92881 0.526097 0.263049 0.964783i 0.415272π-0.415272\pi
0.263049 + 0.964783i 0.415272π0.415272\pi
128128 −16.8740 −1.49147
129129 0 0
130130 34.2337 3.00250
131131 −7.78468 −0.680151 −0.340075 0.940398i 0.610453π-0.610453\pi
−0.340075 + 0.940398i 0.610453π0.610453\pi
132132 0 0
133133 −5.43567 −0.471332
134134 34.6617 2.99431
135135 0 0
136136 39.3430 3.37364
137137 2.39865 0.204930 0.102465 0.994737i 0.467327π-0.467327\pi
0.102465 + 0.994737i 0.467327π0.467327\pi
138138 0 0
139139 21.8103 1.84993 0.924963 0.380057i 0.124096π-0.124096\pi
0.924963 + 0.380057i 0.124096π0.124096\pi
140140 −26.8518 −2.26939
141141 0 0
142142 2.45216 0.205781
143143 17.5017 1.46357
144144 0 0
145145 −11.0575 −0.918272
146146 16.8893 1.39777
147147 0 0
148148 −22.5226 −1.85134
149149 −12.1446 −0.994921 −0.497461 0.867487i 0.665734π-0.665734\pi
−0.497461 + 0.867487i 0.665734π0.665734\pi
150150 0 0
151151 3.47475 0.282771 0.141386 0.989955i 0.454844π-0.454844\pi
0.141386 + 0.989955i 0.454844π0.454844\pi
152152 10.9869 0.891157
153153 0 0
154154 −20.2208 −1.62944
155155 0 0
156156 0 0
157157 −3.57916 −0.285648 −0.142824 0.989748i 0.545618π-0.545618\pi
−0.142824 + 0.989748i 0.545618π0.545618\pi
158158 7.14640 0.568537
159159 0 0
160160 5.56351 0.439834
161161 1.05031 0.0827762
162162 0 0
163163 3.05486 0.239275 0.119637 0.992818i 0.461827π-0.461827\pi
0.119637 + 0.992818i 0.461827π0.461827\pi
164164 −39.8091 −3.10857
165165 0 0
166166 −18.4580 −1.43262
167167 2.66114 0.205926 0.102963 0.994685i 0.467168π-0.467168\pi
0.102963 + 0.994685i 0.467168π0.467168\pi
168168 0 0
169169 22.3242 1.71725
170170 40.7472 3.12516
171171 0 0
172172 19.2998 1.47160
173173 0.677941 0.0515429 0.0257714 0.999668i 0.491796π-0.491796\pi
0.0257714 + 0.999668i 0.491796π0.491796\pi
174174 0 0
175175 −0.898873 −0.0679484
176176 15.9685 1.20367
177177 0 0
178178 −5.33256 −0.399693
179179 −7.29501 −0.545254 −0.272627 0.962120i 0.587893π-0.587893\pi
−0.272627 + 0.962120i 0.587893π0.587893\pi
180180 0 0
181181 6.21931 0.462278 0.231139 0.972921i 0.425755π-0.425755\pi
0.231139 + 0.972921i 0.425755π0.425755\pi
182182 −40.8123 −3.02521
183183 0 0
184184 −2.12296 −0.156507
185185 −12.2933 −0.903819
186186 0 0
187187 20.8317 1.52336
188188 15.3671 1.12076
189189 0 0
190190 11.3790 0.825523
191191 3.48813 0.252392 0.126196 0.992005i 0.459723π-0.459723\pi
0.126196 + 0.992005i 0.459723π0.459723\pi
192192 0 0
193193 −5.40685 −0.389193 −0.194597 0.980883i 0.562340π-0.562340\pi
−0.194597 + 0.980883i 0.562340π0.562340\pi
194194 −46.5006 −3.33855
195195 0 0
196196 2.41276 0.172340
197197 −5.08826 −0.362523 −0.181262 0.983435i 0.558018π-0.558018\pi
−0.181262 + 0.983435i 0.558018π0.558018\pi
198198 0 0
199199 7.25137 0.514036 0.257018 0.966407i 0.417260π-0.417260\pi
0.257018 + 0.966407i 0.417260π0.417260\pi
200200 1.81686 0.128471
201201 0 0
202202 13.1552 0.925594
203203 13.1823 0.925218
204204 0 0
205205 −21.7286 −1.51759
206206 −3.27628 −0.228269
207207 0 0
208208 32.2297 2.23473
209209 5.81744 0.402401
210210 0 0
211211 −8.79653 −0.605578 −0.302789 0.953058i 0.597918π-0.597918\pi
−0.302789 + 0.953058i 0.597918π0.597918\pi
212212 7.16720 0.492245
213213 0 0
214214 27.9382 1.90981
215215 10.5342 0.718429
216216 0 0
217217 0 0
218218 8.52418 0.577330
219219 0 0
220220 28.7377 1.93750
221221 42.0451 2.82826
222222 0 0
223223 6.40331 0.428797 0.214399 0.976746i 0.431221π-0.431221\pi
0.214399 + 0.976746i 0.431221π0.431221\pi
224224 −6.63263 −0.443161
225225 0 0
226226 15.8201 1.05233
227227 13.2247 0.877755 0.438878 0.898547i 0.355376π-0.355376\pi
0.438878 + 0.898547i 0.355376π0.355376\pi
228228 0 0
229229 −26.6674 −1.76223 −0.881117 0.472899i 0.843207π-0.843207\pi
−0.881117 + 0.472899i 0.843207π0.843207\pi
230230 −2.19873 −0.144980
231231 0 0
232232 −26.6449 −1.74933
233233 25.3765 1.66247 0.831235 0.555922i 0.187635π-0.187635\pi
0.831235 + 0.555922i 0.187635π0.187635\pi
234234 0 0
235235 8.38770 0.547153
236236 −39.5945 −2.57738
237237 0 0
238238 −48.5774 −3.14880
239239 9.74780 0.630533 0.315266 0.949003i 0.397906π-0.397906\pi
0.315266 + 0.949003i 0.397906π0.397906\pi
240240 0 0
241241 −28.0310 −1.80564 −0.902818 0.430024i 0.858505π-0.858505\pi
−0.902818 + 0.430024i 0.858505π0.858505\pi
242242 −5.81148 −0.373576
243243 0 0
244244 −3.90158 −0.249773
245245 1.31694 0.0841359
246246 0 0
247247 11.7415 0.747095
248248 0 0
249249 0 0
250250 −26.9180 −1.70244
251251 10.8984 0.687901 0.343950 0.938988i 0.388235π-0.388235\pi
0.343950 + 0.938988i 0.388235π0.388235\pi
252252 0 0
253253 −1.12408 −0.0706704
254254 14.7964 0.928411
255255 0 0
256256 −32.4532 −2.02832
257257 14.2707 0.890181 0.445090 0.895486i 0.353172π-0.353172\pi
0.445090 + 0.895486i 0.353172π0.353172\pi
258258 0 0
259259 14.6556 0.910655
260260 58.0021 3.59714
261261 0 0
262262 −19.4281 −1.20027
263263 −25.0617 −1.54537 −0.772686 0.634788i 0.781087π-0.781087\pi
−0.772686 + 0.634788i 0.781087π0.781087\pi
264264 0 0
265265 3.91200 0.240312
266266 −13.5657 −0.831767
267267 0 0
268268 58.7272 3.58734
269269 3.37486 0.205769 0.102884 0.994693i 0.467193π-0.467193\pi
0.102884 + 0.994693i 0.467193π0.467193\pi
270270 0 0
271271 −0.106962 −0.00649746 −0.00324873 0.999995i 0.501034π-0.501034\pi
−0.00324873 + 0.999995i 0.501034π0.501034\pi
272272 38.3619 2.32603
273273 0 0
274274 5.98626 0.361643
275275 0.962005 0.0580111
276276 0 0
277277 3.27048 0.196504 0.0982521 0.995162i 0.468675π-0.468675\pi
0.0982521 + 0.995162i 0.468675π0.468675\pi
278278 54.4316 3.26459
279279 0 0
280280 −35.3169 −2.11059
281281 1.11598 0.0665737 0.0332868 0.999446i 0.489403π-0.489403\pi
0.0332868 + 0.999446i 0.489403π0.489403\pi
282282 0 0
283283 −18.1331 −1.07790 −0.538951 0.842337i 0.681179π-0.681179\pi
−0.538951 + 0.842337i 0.681179π0.681179\pi
284284 4.15469 0.246535
285285 0 0
286286 43.6787 2.58278
287287 25.9041 1.52907
288288 0 0
289289 33.0448 1.94381
290290 −27.5959 −1.62049
291291 0 0
292292 28.6155 1.67459
293293 31.0121 1.81175 0.905874 0.423548i 0.139215π-0.139215\pi
0.905874 + 0.423548i 0.139215π0.139215\pi
294294 0 0
295295 −21.6115 −1.25827
296296 −29.6228 −1.72179
297297 0 0
298298 −30.3090 −1.75575
299299 −2.26876 −0.131206
300300 0 0
301301 −12.5586 −0.723864
302302 8.67188 0.499011
303303 0 0
304304 10.7129 0.614428
305305 −2.12956 −0.121938
306306 0 0
307307 −29.2654 −1.67026 −0.835131 0.550051i 0.814608π-0.814608\pi
−0.835131 + 0.550051i 0.814608π0.814608\pi
308308 −34.2601 −1.95215
309309 0 0
310310 0 0
311311 31.6759 1.79618 0.898088 0.439815i 0.144956π-0.144956\pi
0.898088 + 0.439815i 0.144956π0.144956\pi
312312 0 0
313313 −10.2334 −0.578427 −0.289214 0.957265i 0.593394π-0.593394\pi
−0.289214 + 0.957265i 0.593394π0.593394\pi
314314 −8.93246 −0.504088
315315 0 0
316316 12.1081 0.681135
317317 19.2692 1.08226 0.541132 0.840938i 0.317996π-0.317996\pi
0.541132 + 0.840938i 0.317996π0.317996\pi
318318 0 0
319319 −14.1082 −0.789906
320320 −11.1463 −0.623096
321321 0 0
322322 2.62125 0.146076
323323 13.9755 0.777618
324324 0 0
325325 1.94164 0.107703
326326 7.62395 0.422251
327327 0 0
328328 −52.3590 −2.89104
329329 −9.99953 −0.551292
330330 0 0
331331 14.8307 0.815171 0.407586 0.913167i 0.366371π-0.366371\pi
0.407586 + 0.913167i 0.366371π0.366371\pi
332332 −31.2733 −1.71635
333333 0 0
334334 6.64137 0.363400
335335 32.0545 1.75132
336336 0 0
337337 −10.6059 −0.577743 −0.288871 0.957368i 0.593280π-0.593280\pi
−0.288871 + 0.957368i 0.593280π0.593280\pi
338338 55.7141 3.03045
339339 0 0
340340 69.0378 3.74410
341341 0 0
342342 0 0
343343 17.6903 0.955187
344344 25.3842 1.36862
345345 0 0
346346 1.69192 0.0909584
347347 −10.1749 −0.546215 −0.273107 0.961984i 0.588051π-0.588051\pi
−0.273107 + 0.961984i 0.588051π0.588051\pi
348348 0 0
349349 −19.1169 −1.02330 −0.511652 0.859193i 0.670966π-0.670966\pi
−0.511652 + 0.859193i 0.670966π0.670966\pi
350350 −2.24330 −0.119909
351351 0 0
352352 7.09847 0.378350
353353 −5.88028 −0.312976 −0.156488 0.987680i 0.550017π-0.550017\pi
−0.156488 + 0.987680i 0.550017π0.550017\pi
354354 0 0
355355 2.26771 0.120358
356356 −9.03495 −0.478852
357357 0 0
358358 −18.2060 −0.962218
359359 −16.1855 −0.854237 −0.427118 0.904196i 0.640471π-0.640471\pi
−0.427118 + 0.904196i 0.640471π0.640471\pi
360360 0 0
361361 −15.0972 −0.794590
362362 15.5214 0.815788
363363 0 0
364364 −69.1482 −3.62435
365365 15.6189 0.817531
366366 0 0
367367 −25.2403 −1.31753 −0.658766 0.752348i 0.728921π-0.728921\pi
−0.658766 + 0.752348i 0.728921π0.728921\pi
368368 −2.07001 −0.107907
369369 0 0
370370 −30.6801 −1.59498
371371 −4.66375 −0.242130
372372 0 0
373373 −21.2632 −1.10096 −0.550482 0.834847i 0.685556π-0.685556\pi
−0.550482 + 0.834847i 0.685556π0.685556\pi
374374 51.9892 2.68830
375375 0 0
376376 20.2117 1.04234
377377 −28.4749 −1.46653
378378 0 0
379379 −26.4025 −1.35621 −0.678103 0.734967i 0.737198π-0.737198\pi
−0.678103 + 0.734967i 0.737198π0.737198\pi
380380 19.2795 0.989017
381381 0 0
382382 8.70526 0.445400
383383 1.96541 0.100428 0.0502139 0.998738i 0.484010π-0.484010\pi
0.0502139 + 0.998738i 0.484010π0.484010\pi
384384 0 0
385385 −18.6999 −0.953033
386386 −13.4938 −0.686815
387387 0 0
388388 −78.7859 −3.99975
389389 −27.7973 −1.40938 −0.704690 0.709515i 0.748914π-0.748914\pi
−0.704690 + 0.709515i 0.748914π0.748914\pi
390390 0 0
391391 −2.70043 −0.136567
392392 3.17339 0.160281
393393 0 0
394394 −12.6987 −0.639750
395395 6.60886 0.332528
396396 0 0
397397 −4.00908 −0.201210 −0.100605 0.994926i 0.532078π-0.532078\pi
−0.100605 + 0.994926i 0.532078π0.532078\pi
398398 18.0971 0.907127
399399 0 0
400400 1.77155 0.0885774
401401 −18.2338 −0.910551 −0.455275 0.890351i 0.650459π-0.650459\pi
−0.455275 + 0.890351i 0.650459π0.650459\pi
402402 0 0
403403 0 0
404404 22.2888 1.10891
405405 0 0
406406 32.8989 1.63274
407407 −15.6849 −0.777474
408408 0 0
409409 −28.4102 −1.40479 −0.702397 0.711785i 0.747887π-0.747887\pi
−0.702397 + 0.711785i 0.747887π0.747887\pi
410410 −54.2277 −2.67811
411411 0 0
412412 −5.55100 −0.273478
413413 25.7645 1.26779
414414 0 0
415415 −17.0696 −0.837914
416416 14.3270 0.702441
417417 0 0
418418 14.5185 0.710122
419419 −28.6598 −1.40012 −0.700060 0.714084i 0.746844π-0.746844\pi
−0.700060 + 0.714084i 0.746844π0.746844\pi
420420 0 0
421421 25.1273 1.22463 0.612315 0.790614i 0.290238π-0.290238\pi
0.612315 + 0.790614i 0.290238π0.290238\pi
422422 −21.9534 −1.06867
423423 0 0
424424 9.42667 0.457800
425425 2.31107 0.112103
426426 0 0
427427 2.53879 0.122861
428428 47.3356 2.28805
429429 0 0
430430 26.2901 1.26782
431431 0.373748 0.0180028 0.00900140 0.999959i 0.497135π-0.497135\pi
0.00900140 + 0.999959i 0.497135π0.497135\pi
432432 0 0
433433 1.00490 0.0482926 0.0241463 0.999708i 0.492313π-0.492313\pi
0.0241463 + 0.999708i 0.492313π0.492313\pi
434434 0 0
435435 0 0
436436 14.4425 0.691671
437437 −0.754121 −0.0360745
438438 0 0
439439 −5.41147 −0.258275 −0.129138 0.991627i 0.541221π-0.541221\pi
−0.129138 + 0.991627i 0.541221π0.541221\pi
440440 37.7973 1.80192
441441 0 0
442442 104.931 4.99107
443443 15.1374 0.719201 0.359600 0.933106i 0.382913π-0.382913\pi
0.359600 + 0.933106i 0.382913π0.382913\pi
444444 0 0
445445 −4.93146 −0.233774
446446 15.9806 0.756704
447447 0 0
448448 13.2882 0.627809
449449 −10.3025 −0.486206 −0.243103 0.970001i 0.578165π-0.578165\pi
−0.243103 + 0.970001i 0.578165π0.578165\pi
450450 0 0
451451 −27.7235 −1.30545
452452 26.8039 1.26075
453453 0 0
454454 33.0047 1.54899
455455 −37.7425 −1.76939
456456 0 0
457457 22.9697 1.07448 0.537238 0.843431i 0.319468π-0.319468\pi
0.537238 + 0.843431i 0.319468π0.319468\pi
458458 −66.5534 −3.10984
459459 0 0
460460 −3.72530 −0.173693
461461 −18.6097 −0.866740 −0.433370 0.901216i 0.642676π-0.642676\pi
−0.433370 + 0.901216i 0.642676π0.642676\pi
462462 0 0
463463 −11.5651 −0.537478 −0.268739 0.963213i 0.586607π-0.586607\pi
−0.268739 + 0.963213i 0.586607π0.586607\pi
464464 −25.9805 −1.20611
465465 0 0
466466 63.3317 2.93378
467467 8.74826 0.404821 0.202411 0.979301i 0.435122π-0.435122\pi
0.202411 + 0.979301i 0.435122π0.435122\pi
468468 0 0
469469 −38.2143 −1.76457
470470 20.9330 0.965569
471471 0 0
472472 −52.0768 −2.39703
473473 13.4406 0.618000
474474 0 0
475475 0.645388 0.0296124
476476 −82.3046 −3.77242
477477 0 0
478478 24.3274 1.11271
479479 −10.4647 −0.478145 −0.239072 0.971002i 0.576843π-0.576843\pi
−0.239072 + 0.971002i 0.576843π0.576843\pi
480480 0 0
481481 −31.6574 −1.44345
482482 −69.9565 −3.18643
483483 0 0
484484 −9.84638 −0.447563
485485 −43.0029 −1.95266
486486 0 0
487487 37.3362 1.69186 0.845932 0.533291i 0.179045π-0.179045\pi
0.845932 + 0.533291i 0.179045π0.179045\pi
488488 −5.13156 −0.232295
489489 0 0
490490 3.28665 0.148476
491491 26.7746 1.20832 0.604160 0.796863i 0.293509π-0.293509\pi
0.604160 + 0.796863i 0.293509π0.293509\pi
492492 0 0
493493 −33.8927 −1.52645
494494 29.3031 1.31841
495495 0 0
496496 0 0
497497 −2.70349 −0.121268
498498 0 0
499499 −27.9698 −1.25210 −0.626049 0.779783i 0.715329π-0.715329\pi
−0.626049 + 0.779783i 0.715329π0.715329\pi
500500 −45.6071 −2.03961
501501 0 0
502502 27.1989 1.21395
503503 −9.76347 −0.435332 −0.217666 0.976023i 0.569844π-0.569844\pi
−0.217666 + 0.976023i 0.569844π0.569844\pi
504504 0 0
505505 12.1657 0.541365
506506 −2.80535 −0.124713
507507 0 0
508508 25.0696 1.11228
509509 −35.3335 −1.56613 −0.783064 0.621941i 0.786344π-0.786344\pi
−0.783064 + 0.621941i 0.786344π0.786344\pi
510510 0 0
511511 −18.6203 −0.823715
512512 −47.2448 −2.08795
513513 0 0
514514 35.6151 1.57091
515515 −3.02985 −0.133511
516516 0 0
517517 10.7018 0.470666
518518 36.5758 1.60705
519519 0 0
520520 76.2874 3.34543
521521 2.53654 0.111128 0.0555638 0.998455i 0.482304π-0.482304\pi
0.0555638 + 0.998455i 0.482304π0.482304\pi
522522 0 0
523523 16.3163 0.713463 0.356732 0.934207i 0.383891π-0.383891\pi
0.356732 + 0.934207i 0.383891π0.383891\pi
524524 −32.9170 −1.43798
525525 0 0
526526 −62.5461 −2.72714
527527 0 0
528528 0 0
529529 −22.8543 −0.993665
530530 9.76311 0.424082
531531 0 0
532532 −22.9843 −0.996498
533533 −55.9551 −2.42368
534534 0 0
535535 25.8367 1.11702
536536 77.2411 3.33631
537537 0 0
538538 8.42258 0.363123
539539 1.68027 0.0723745
540540 0 0
541541 −31.2262 −1.34252 −0.671260 0.741222i 0.734247π-0.734247\pi
−0.671260 + 0.741222i 0.734247π0.734247\pi
542542 −0.266942 −0.0114662
543543 0 0
544544 17.0530 0.731140
545545 7.88301 0.337671
546546 0 0
547547 −26.7801 −1.14503 −0.572517 0.819893i 0.694033π-0.694033\pi
−0.572517 + 0.819893i 0.694033π0.694033\pi
548548 10.1425 0.433266
549549 0 0
550550 2.40086 0.102373
551551 −9.46486 −0.403217
552552 0 0
553553 −7.87886 −0.335043
554554 8.16208 0.346774
555555 0 0
556556 92.2234 3.91114
557557 43.0564 1.82436 0.912178 0.409794i 0.134399π-0.134399\pi
0.912178 + 0.409794i 0.134399π0.134399\pi
558558 0 0
559559 27.1276 1.14737
560560 −34.4361 −1.45519
561561 0 0
562562 2.78513 0.117483
563563 −37.6900 −1.58844 −0.794222 0.607628i 0.792121π-0.792121\pi
−0.794222 + 0.607628i 0.792121π0.792121\pi
564564 0 0
565565 14.6301 0.615493
566566 −45.2545 −1.90219
567567 0 0
568568 5.46446 0.229284
569569 20.2946 0.850794 0.425397 0.905007i 0.360134π-0.360134\pi
0.425397 + 0.905007i 0.360134π0.360134\pi
570570 0 0
571571 −28.8149 −1.20586 −0.602932 0.797792i 0.706001π-0.706001\pi
−0.602932 + 0.797792i 0.706001π0.706001\pi
572572 74.0048 3.09429
573573 0 0
574574 64.6484 2.69837
575575 −0.124706 −0.00520059
576576 0 0
577577 31.3490 1.30507 0.652537 0.757757i 0.273705π-0.273705\pi
0.652537 + 0.757757i 0.273705π0.273705\pi
578578 82.4693 3.43027
579579 0 0
580580 −46.7557 −1.94142
581581 20.3498 0.844252
582582 0 0
583583 4.99131 0.206719
584584 37.6366 1.55741
585585 0 0
586586 77.3964 3.19722
587587 16.5500 0.683092 0.341546 0.939865i 0.389050π-0.389050\pi
0.341546 + 0.939865i 0.389050π0.389050\pi
588588 0 0
589589 0 0
590590 −53.9354 −2.22048
591591 0 0
592592 −28.8841 −1.18713
593593 −22.0312 −0.904712 −0.452356 0.891837i 0.649416π-0.649416\pi
−0.452356 + 0.891837i 0.649416π0.649416\pi
594594 0 0
595595 −44.9235 −1.84168
596596 −51.3524 −2.10348
597597 0 0
598598 −5.66212 −0.231541
599599 −7.11684 −0.290786 −0.145393 0.989374i 0.546445π-0.546445\pi
−0.145393 + 0.989374i 0.546445π0.546445\pi
600600 0 0
601601 29.1376 1.18855 0.594274 0.804262i 0.297439π-0.297439\pi
0.594274 + 0.804262i 0.297439π0.297439\pi
602602 −31.3422 −1.27741
603603 0 0
604604 14.6927 0.597839
605605 −5.37435 −0.218498
606606 0 0
607607 −26.9747 −1.09487 −0.547435 0.836848i 0.684396π-0.684396\pi
−0.547435 + 0.836848i 0.684396π0.684396\pi
608608 4.76221 0.193133
609609 0 0
610610 −5.31471 −0.215186
611611 21.5998 0.873836
612612 0 0
613613 8.62862 0.348507 0.174253 0.984701i 0.444249π-0.444249\pi
0.174253 + 0.984701i 0.444249π0.444249\pi
614614 −73.0371 −2.94754
615615 0 0
616616 −45.0607 −1.81555
617617 −42.8673 −1.72577 −0.862886 0.505399i 0.831345π-0.831345\pi
−0.862886 + 0.505399i 0.831345π0.831345\pi
618618 0 0
619619 38.0726 1.53027 0.765134 0.643871i 0.222673π-0.222673\pi
0.765134 + 0.643871i 0.222673π0.222673\pi
620620 0 0
621621 0 0
622622 79.0530 3.16974
623623 5.87912 0.235542
624624 0 0
625625 −26.5267 −1.06107
626626 −25.5394 −1.02076
627627 0 0
628628 −15.1342 −0.603922
629629 −37.6806 −1.50243
630630 0 0
631631 12.5530 0.499729 0.249864 0.968281i 0.419614π-0.419614\pi
0.249864 + 0.968281i 0.419614π0.419614\pi
632632 15.9252 0.633472
633633 0 0
634634 48.0897 1.90989
635635 13.6835 0.543012
636636 0 0
637637 3.39135 0.134370
638638 −35.2095 −1.39396
639639 0 0
640640 −38.9446 −1.53942
641641 41.5549 1.64132 0.820659 0.571418i 0.193606π-0.193606\pi
0.820659 + 0.571418i 0.193606π0.193606\pi
642642 0 0
643643 36.2977 1.43144 0.715721 0.698386i 0.246098π-0.246098\pi
0.715721 + 0.698386i 0.246098π0.246098\pi
644644 4.44117 0.175007
645645 0 0
646646 34.8784 1.37227
647647 50.0421 1.96736 0.983678 0.179936i 0.0575889π-0.0575889\pi
0.983678 + 0.179936i 0.0575889π0.0575889\pi
648648 0 0
649649 −27.5740 −1.08238
650650 4.84572 0.190065
651651 0 0
652652 12.9172 0.505878
653653 −29.1570 −1.14100 −0.570501 0.821297i 0.693251π-0.693251\pi
−0.570501 + 0.821297i 0.693251π0.693251\pi
654654 0 0
655655 −17.9667 −0.702019
656656 −51.0532 −1.99329
657657 0 0
658658 −24.9556 −0.972872
659659 16.3913 0.638515 0.319258 0.947668i 0.396566π-0.396566\pi
0.319258 + 0.947668i 0.396566π0.396566\pi
660660 0 0
661661 0.750582 0.0291943 0.0145971 0.999893i 0.495353π-0.495353\pi
0.0145971 + 0.999893i 0.495353π0.495353\pi
662662 37.0128 1.43854
663663 0 0
664664 −41.1323 −1.59624
665665 −12.5453 −0.486487
666666 0 0
667667 1.82886 0.0708136
668668 11.2525 0.435371
669669 0 0
670670 79.9979 3.09059
671671 −2.71710 −0.104893
672672 0 0
673673 −16.4315 −0.633388 −0.316694 0.948528i 0.602573π-0.602573\pi
−0.316694 + 0.948528i 0.602573π0.602573\pi
674674 −26.4691 −1.01955
675675 0 0
676676 94.3964 3.63063
677677 3.47627 0.133604 0.0668020 0.997766i 0.478720π-0.478720\pi
0.0668020 + 0.997766i 0.478720π0.478720\pi
678678 0 0
679679 51.2666 1.96743
680680 90.8022 3.48210
681681 0 0
682682 0 0
683683 −2.33721 −0.0894308 −0.0447154 0.999000i 0.514238π-0.514238\pi
−0.0447154 + 0.999000i 0.514238π0.514238\pi
684684 0 0
685685 5.53598 0.211519
686686 44.1494 1.68563
687687 0 0
688688 24.7511 0.943628
689689 10.0741 0.383793
690690 0 0
691691 −45.8502 −1.74422 −0.872111 0.489308i 0.837249π-0.837249\pi
−0.872111 + 0.489308i 0.837249π0.837249\pi
692692 2.86662 0.108973
693693 0 0
694694 −25.3932 −0.963913
695695 50.3374 1.90941
696696 0 0
697697 −66.6013 −2.52270
698698 −47.7097 −1.80584
699699 0 0
700700 −3.80082 −0.143658
701701 23.0395 0.870191 0.435095 0.900384i 0.356715π-0.356715\pi
0.435095 + 0.900384i 0.356715π0.356715\pi
702702 0 0
703703 −10.5227 −0.396871
704704 −14.2215 −0.535993
705705 0 0
706706 −14.6753 −0.552313
707707 −14.5035 −0.545460
708708 0 0
709709 −23.5750 −0.885379 −0.442689 0.896675i 0.645976π-0.645976\pi
−0.442689 + 0.896675i 0.645976π0.645976\pi
710710 5.65949 0.212397
711711 0 0
712712 −11.8832 −0.445343
713713 0 0
714714 0 0
715715 40.3933 1.51062
716716 −30.8464 −1.15278
717717 0 0
718718 −40.3938 −1.50748
719719 21.1285 0.787961 0.393980 0.919119i 0.371098π-0.371098\pi
0.393980 + 0.919119i 0.371098π0.371098\pi
720720 0 0
721721 3.61208 0.134521
722722 −37.6778 −1.40222
723723 0 0
724724 26.2979 0.977354
725725 −1.56516 −0.0581287
726726 0 0
727727 46.4512 1.72278 0.861391 0.507943i 0.169594π-0.169594\pi
0.861391 + 0.507943i 0.169594π0.169594\pi
728728 −90.9473 −3.37073
729729 0 0
730730 38.9798 1.44271
731731 32.2890 1.19425
732732 0 0
733733 −16.9886 −0.627488 −0.313744 0.949508i 0.601583π-0.601583\pi
−0.313744 + 0.949508i 0.601583π0.601583\pi
734734 −62.9917 −2.32507
735735 0 0
736736 −0.920182 −0.0339184
737737 40.8983 1.50651
738738 0 0
739739 39.3088 1.44600 0.723000 0.690849i 0.242763π-0.242763\pi
0.723000 + 0.690849i 0.242763π0.242763\pi
740740 −51.9812 −1.91087
741741 0 0
742742 −11.6392 −0.427290
743743 −45.3657 −1.66430 −0.832152 0.554547i 0.812891π-0.812891\pi
−0.832152 + 0.554547i 0.812891π0.812891\pi
744744 0 0
745745 −28.0292 −1.02691
746746 −53.0661 −1.94289
747747 0 0
748748 88.0852 3.22071
749749 −30.8016 −1.12547
750750 0 0
751751 25.3877 0.926410 0.463205 0.886251i 0.346699π-0.346699\pi
0.463205 + 0.886251i 0.346699π0.346699\pi
752752 19.7076 0.718663
753753 0 0
754754 −71.0644 −2.58801
755755 8.01960 0.291863
756756 0 0
757757 −35.6806 −1.29683 −0.648417 0.761285i 0.724569π-0.724569\pi
−0.648417 + 0.761285i 0.724569π0.724569\pi
758758 −65.8923 −2.39332
759759 0 0
760760 25.3574 0.919809
761761 −34.1139 −1.23663 −0.618314 0.785931i 0.712184π-0.712184\pi
−0.618314 + 0.785931i 0.712184π0.712184\pi
762762 0 0
763763 −9.39786 −0.340225
764764 14.7493 0.533611
765765 0 0
766766 4.90504 0.177226
767767 −55.6535 −2.00953
768768 0 0
769769 −37.6212 −1.35665 −0.678327 0.734760i 0.737295π-0.737295\pi
−0.678327 + 0.734760i 0.737295π0.737295\pi
770770 −46.6689 −1.68183
771771 0 0
772772 −22.8625 −0.822838
773773 32.0230 1.15179 0.575893 0.817525i 0.304655π-0.304655\pi
0.575893 + 0.817525i 0.304655π0.304655\pi
774774 0 0
775775 0 0
776776 −103.623 −3.71986
777777 0 0
778778 −69.3733 −2.48715
779779 −18.5991 −0.666380
780780 0 0
781781 2.89337 0.103533
782782 −6.73941 −0.241001
783783 0 0
784784 3.09425 0.110509
785785 −8.26057 −0.294833
786786 0 0
787787 3.51289 0.125221 0.0626106 0.998038i 0.480057π-0.480057\pi
0.0626106 + 0.998038i 0.480057π0.480057\pi
788788 −21.5153 −0.766452
789789 0 0
790790 16.4936 0.586816
791791 −17.4415 −0.620149
792792 0 0
793793 −5.48400 −0.194743
794794 −10.0054 −0.355078
795795 0 0
796796 30.6619 1.08678
797797 −16.0363 −0.568035 −0.284017 0.958819i 0.591667π-0.591667\pi
−0.284017 + 0.958819i 0.591667π0.591667\pi
798798 0 0
799799 25.7095 0.909537
800800 0.787505 0.0278425
801801 0 0
802802 −45.5057 −1.60686
803803 19.9281 0.703248
804804 0 0
805805 2.42408 0.0854376
806806 0 0
807807 0 0
808808 29.3154 1.03131
809809 3.19038 0.112168 0.0560839 0.998426i 0.482139π-0.482139\pi
0.0560839 + 0.998426i 0.482139π0.482139\pi
810810 0 0
811811 17.1263 0.601384 0.300692 0.953721i 0.402782π-0.402782\pi
0.300692 + 0.953721i 0.402782π0.402782\pi
812812 55.7405 1.95611
813813 0 0
814814 −39.1446 −1.37202
815815 7.05049 0.246968
816816 0 0
817817 9.01701 0.315465
818818 −70.9028 −2.47906
819819 0 0
820820 −91.8779 −3.20851
821821 −28.8055 −1.00532 −0.502659 0.864485i 0.667645π-0.667645\pi
−0.502659 + 0.864485i 0.667645π0.667645\pi
822822 0 0
823823 −43.8981 −1.53019 −0.765096 0.643916i 0.777308π-0.777308\pi
−0.765096 + 0.643916i 0.777308π0.777308\pi
824824 −7.30097 −0.254341
825825 0 0
826826 64.2999 2.23728
827827 21.7448 0.756142 0.378071 0.925777i 0.376587π-0.376587\pi
0.378071 + 0.925777i 0.376587π0.376587\pi
828828 0 0
829829 −11.1449 −0.387079 −0.193539 0.981093i 0.561997π-0.561997\pi
−0.193539 + 0.981093i 0.561997π0.561997\pi
830830 −42.6003 −1.47868
831831 0 0
832832 −28.7037 −0.995120
833833 4.03660 0.139860
834834 0 0
835835 6.14182 0.212546
836836 24.5986 0.850762
837837 0 0
838838 −71.5256 −2.47081
839839 −22.7431 −0.785180 −0.392590 0.919714i 0.628421π-0.628421\pi
−0.392590 + 0.919714i 0.628421π0.628421\pi
840840 0 0
841841 −6.04628 −0.208492
842842 62.7098 2.16112
843843 0 0
844844 −37.1955 −1.28032
845845 51.5234 1.77246
846846 0 0
847847 6.40712 0.220151
848848 9.19159 0.315640
849849 0 0
850850 5.76769 0.197830
851851 2.03326 0.0696991
852852 0 0
853853 33.9052 1.16089 0.580446 0.814299i 0.302878π-0.302878\pi
0.580446 + 0.814299i 0.302878π0.302878\pi
854854 6.33601 0.216814
855855 0 0
856856 62.2582 2.12794
857857 −24.5096 −0.837233 −0.418617 0.908163i 0.637485π-0.637485\pi
−0.418617 + 0.908163i 0.637485π0.637485\pi
858858 0 0
859859 15.1535 0.517031 0.258516 0.966007i 0.416767π-0.416767\pi
0.258516 + 0.966007i 0.416767π0.416767\pi
860860 44.5433 1.51891
861861 0 0
862862 0.932756 0.0317698
863863 −4.68932 −0.159626 −0.0798131 0.996810i 0.525432π-0.525432\pi
−0.0798131 + 0.996810i 0.525432π0.525432\pi
864864 0 0
865865 1.56466 0.0532001
866866 2.50792 0.0852226
867867 0 0
868868 0 0
869869 8.43222 0.286044
870870 0 0
871871 82.5461 2.79697
872872 18.9955 0.643270
873873 0 0
874874 −1.88205 −0.0636612
875875 29.6769 1.00326
876876 0 0
877877 −18.9112 −0.638585 −0.319292 0.947656i 0.603445π-0.603445\pi
−0.319292 + 0.947656i 0.603445π0.603445\pi
878878 −13.5053 −0.455782
879879 0 0
880880 36.8547 1.24237
881881 −7.21014 −0.242916 −0.121458 0.992597i 0.538757π-0.538757\pi
−0.121458 + 0.992597i 0.538757π0.538757\pi
882882 0 0
883883 53.2347 1.79149 0.895746 0.444566i 0.146642π-0.146642\pi
0.895746 + 0.444566i 0.146642π0.146642\pi
884884 177.785 5.97955
885885 0 0
886886 37.7782 1.26918
887887 26.1035 0.876470 0.438235 0.898860i 0.355604π-0.355604\pi
0.438235 + 0.898860i 0.355604π0.355604\pi
888888 0 0
889889 −16.3130 −0.547120
890890 −12.3074 −0.412543
891891 0 0
892892 27.0759 0.906569
893893 7.17963 0.240257
894894 0 0
895895 −16.8366 −0.562785
896896 46.4284 1.55106
897897 0 0
898898 −25.7118 −0.858014
899899 0 0
900900 0 0
901901 11.9908 0.399473
902902 −69.1889 −2.30374
903903 0 0
904904 35.2539 1.17253
905905 14.3539 0.477141
906906 0 0
907907 −7.74580 −0.257195 −0.128598 0.991697i 0.541048π-0.541048\pi
−0.128598 + 0.991697i 0.541048π0.541048\pi
908908 55.9198 1.85576
909909 0 0
910910 −94.1932 −3.12247
911911 0.765193 0.0253520 0.0126760 0.999920i 0.495965π-0.495965\pi
0.0126760 + 0.999920i 0.495965π0.495965\pi
912912 0 0
913913 −21.7791 −0.720782
914914 57.3250 1.89614
915915 0 0
916916 −112.761 −3.72574
917917 21.4193 0.707329
918918 0 0
919919 −40.3869 −1.33224 −0.666121 0.745844i 0.732046π-0.732046\pi
−0.666121 + 0.745844i 0.732046π0.732046\pi
920920 −4.89971 −0.161539
921921 0 0
922922 −46.4439 −1.52955
923923 5.83977 0.192218
924924 0 0
925925 −1.74009 −0.0572138
926926 −28.8629 −0.948495
927927 0 0
928928 −11.5491 −0.379117
929929 −26.6328 −0.873795 −0.436898 0.899511i 0.643923π-0.643923\pi
−0.436898 + 0.899511i 0.643923π0.643923\pi
930930 0 0
931931 1.12726 0.0369444
932932 107.303 3.51482
933933 0 0
934934 21.8329 0.714394
935935 48.0787 1.57234
936936 0 0
937937 27.8372 0.909403 0.454701 0.890644i 0.349746π-0.349746\pi
0.454701 + 0.890644i 0.349746π0.349746\pi
938938 −95.3707 −3.11396
939939 0 0
940940 35.4668 1.15680
941941 −48.4866 −1.58062 −0.790310 0.612708i 0.790080π-0.790080\pi
−0.790310 + 0.612708i 0.790080π0.790080\pi
942942 0 0
943943 3.59382 0.117031
944944 −50.7780 −1.65268
945945 0 0
946946 33.5435 1.09059
947947 17.5569 0.570523 0.285262 0.958450i 0.407920π-0.407920\pi
0.285262 + 0.958450i 0.407920π0.407920\pi
948948 0 0
949949 40.2215 1.30565
950950 1.61068 0.0522575
951951 0 0
952952 −108.251 −3.50844
953953 19.0395 0.616748 0.308374 0.951265i 0.400215π-0.400215\pi
0.308374 + 0.951265i 0.400215π0.400215\pi
954954 0 0
955955 8.05047 0.260507
956956 41.2179 1.33308
957957 0 0
958958 −26.1166 −0.843789
959959 −6.59981 −0.213119
960960 0 0
961961 0 0
962962 −79.0068 −2.54728
963963 0 0
964964 −118.527 −3.81750
965965 −12.4788 −0.401707
966966 0 0
967967 −28.6941 −0.922738 −0.461369 0.887208i 0.652642π-0.652642\pi
−0.461369 + 0.887208i 0.652642π0.652642\pi
968968 −12.9505 −0.416244
969969 0 0
970970 −107.322 −3.44589
971971 −13.4537 −0.431750 −0.215875 0.976421i 0.569260π-0.569260\pi
−0.215875 + 0.976421i 0.569260π0.569260\pi
972972 0 0
973973 −60.0105 −1.92385
974974 93.1792 2.98566
975975 0 0
976976 −5.00359 −0.160161
977977 8.40056 0.268758 0.134379 0.990930i 0.457096π-0.457096\pi
0.134379 + 0.990930i 0.457096π0.457096\pi
978978 0 0
979979 −6.29203 −0.201094
980980 5.56857 0.177881
981981 0 0
982982 66.8209 2.13234
983983 −24.0579 −0.767327 −0.383663 0.923473i 0.625338π-0.625338\pi
−0.383663 + 0.923473i 0.625338π0.625338\pi
984984 0 0
985985 −11.7435 −0.374179
986986 −84.5854 −2.69375
987987 0 0
988988 49.6482 1.57952
989989 −1.74232 −0.0554026
990990 0 0
991991 −36.7862 −1.16855 −0.584276 0.811555i 0.698621π-0.698621\pi
−0.584276 + 0.811555i 0.698621π0.698621\pi
992992 0 0
993993 0 0
994994 −6.74705 −0.214003
995995 16.7359 0.530563
996996 0 0
997997 9.68136 0.306612 0.153306 0.988179i 0.451008π-0.451008\pi
0.153306 + 0.988179i 0.451008π0.451008\pi
998998 −69.8037 −2.20960
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bj.1.8 8
3.2 odd 2 2883.2.a.m.1.1 8
31.10 even 15 279.2.y.b.100.2 16
31.28 even 15 279.2.y.b.226.2 16
31.30 odd 2 8649.2.a.bi.1.8 8
93.41 odd 30 93.2.m.a.7.1 16
93.59 odd 30 93.2.m.a.40.1 yes 16
93.92 even 2 2883.2.a.n.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.m.a.7.1 16 93.41 odd 30
93.2.m.a.40.1 yes 16 93.59 odd 30
279.2.y.b.100.2 16 31.10 even 15
279.2.y.b.226.2 16 31.28 even 15
2883.2.a.m.1.1 8 3.2 odd 2
2883.2.a.n.1.1 8 93.92 even 2
8649.2.a.bi.1.8 8 31.30 odd 2
8649.2.a.bj.1.8 8 1.1 even 1 trivial