Properties

Label 8649.2.a.bu
Level 86498649
Weight 22
Character orbit 8649.a
Self dual yes
Analytic conductor 69.06369.063
Analytic rank 00
Dimension 2424
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8649=32312 8649 = 3^{2} \cdot 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 69.062612708269.0626127082
Analytic rank: 00
Dimension: 2424
Twist minimal: no (minimal twist has level 2883)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 24q+32q4+16q7+24q88q1016q11+32q13+24q14+48q1632q17+32q19+24q20+32q2232q23+40q2516q26+8q2848q29++24q98+O(q100) 24 q + 32 q^{4} + 16 q^{7} + 24 q^{8} - 8 q^{10} - 16 q^{11} + 32 q^{13} + 24 q^{14} + 48 q^{16} - 32 q^{17} + 32 q^{19} + 24 q^{20} + 32 q^{22} - 32 q^{23} + 40 q^{25} - 16 q^{26} + 8 q^{28} - 48 q^{29}+ \cdots + 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.64601 0 5.00135 0.929477 0 −4.25556 −7.94161 0 −2.45940
1.2 −2.46988 0 4.10029 0.240205 0 −1.25177 −5.18746 0 −0.593276
1.3 −2.39335 0 3.72812 3.81642 0 3.08197 −4.13599 0 −9.13404
1.4 −2.22192 0 2.93691 −1.02426 0 0.246895 −2.08174 0 2.27581
1.5 −1.86657 0 1.48408 3.06179 0 3.20321 0.963008 0 −5.71504
1.6 −1.73783 0 1.02004 −3.85240 0 −2.44804 1.70300 0 6.69480
1.7 −1.62315 0 0.634610 −1.02432 0 1.99793 2.21623 0 1.66262
1.8 −1.21162 0 −0.531985 −1.58010 0 4.11574 3.06780 0 1.91448
1.9 −1.14647 0 −0.685607 −2.53076 0 −1.30842 3.07897 0 2.90144
1.10 −0.959557 0 −1.07925 4.21749 0 −1.12111 2.95472 0 −4.04692
1.11 −0.583104 0 −1.65999 −2.31932 0 −3.54758 2.13416 0 1.35240
1.12 −0.294138 0 −1.91348 1.97505 0 −3.94391 1.15111 0 −0.580938
1.13 −0.286378 0 −1.91799 3.36659 0 5.00540 1.12203 0 −0.964118
1.14 0.256648 0 −1.93413 −2.52738 0 4.03776 −1.00969 0 −0.648646
1.15 0.544587 0 −1.70342 −0.493609 0 −0.226241 −2.01684 0 −0.268813
1.16 0.849623 0 −1.27814 −0.881731 0 3.72139 −2.78518 0 −0.749139
1.17 1.14050 0 −0.699260 −2.66755 0 0.198186 −3.07851 0 −3.04235
1.18 1.75069 0 1.06491 1.92100 0 4.93164 −1.63706 0 3.36307
1.19 2.00987 0 2.03956 −3.19190 0 0.292061 0.0795053 0 −6.41528
1.20 2.33041 0 3.43080 4.15417 0 1.65165 3.33434 0 9.68090
See all 24 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.24
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
3131 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8649.2.a.bu 24
3.b odd 2 1 2883.2.a.v yes 24
31.b odd 2 1 8649.2.a.bv 24
93.c even 2 1 2883.2.a.u 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2883.2.a.u 24 93.c even 2 1
2883.2.a.v yes 24 3.b odd 2 1
8649.2.a.bu 24 1.a even 1 1 trivial
8649.2.a.bv 24 31.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8649))S_{2}^{\mathrm{new}}(\Gamma_0(8649)):

T22440T2228T221+692T220+272T2196756T218+641 T_{2}^{24} - 40 T_{2}^{22} - 8 T_{2}^{21} + 692 T_{2}^{20} + 272 T_{2}^{19} - 6756 T_{2}^{18} + \cdots - 641 Copy content Toggle raw display
T52480T52232T521+2764T520+2112T51953768T518+7106564 T_{5}^{24} - 80 T_{5}^{22} - 32 T_{5}^{21} + 2764 T_{5}^{20} + 2112 T_{5}^{19} - 53768 T_{5}^{18} + \cdots - 7106564 Copy content Toggle raw display
T72416T723+16T722+1008T7214640T72020672T719++1052672 T_{7}^{24} - 16 T_{7}^{23} + 16 T_{7}^{22} + 1008 T_{7}^{21} - 4640 T_{7}^{20} - 20672 T_{7}^{19} + \cdots + 1052672 Copy content Toggle raw display
T1124+16T112332T11221792T11215212T1120++206235170816 T_{11}^{24} + 16 T_{11}^{23} - 32 T_{11}^{22} - 1792 T_{11}^{21} - 5212 T_{11}^{20} + \cdots + 206235170816 Copy content Toggle raw display
T132432T1323+336T1322192T132121728T1320+45247233016 T_{13}^{24} - 32 T_{13}^{23} + 336 T_{13}^{22} - 192 T_{13}^{21} - 21728 T_{13}^{20} + \cdots - 45247233016 Copy content Toggle raw display