Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8649,2,Mod(1,8649)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8649.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8649 = 3^{2} \cdot 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8649.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(69.0626127082\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 2883) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.64601 | 0 | 5.00135 | 0.929477 | 0 | −4.25556 | −7.94161 | 0 | −2.45940 | ||||||||||||||||||
1.2 | −2.46988 | 0 | 4.10029 | 0.240205 | 0 | −1.25177 | −5.18746 | 0 | −0.593276 | ||||||||||||||||||
1.3 | −2.39335 | 0 | 3.72812 | 3.81642 | 0 | 3.08197 | −4.13599 | 0 | −9.13404 | ||||||||||||||||||
1.4 | −2.22192 | 0 | 2.93691 | −1.02426 | 0 | 0.246895 | −2.08174 | 0 | 2.27581 | ||||||||||||||||||
1.5 | −1.86657 | 0 | 1.48408 | 3.06179 | 0 | 3.20321 | 0.963008 | 0 | −5.71504 | ||||||||||||||||||
1.6 | −1.73783 | 0 | 1.02004 | −3.85240 | 0 | −2.44804 | 1.70300 | 0 | 6.69480 | ||||||||||||||||||
1.7 | −1.62315 | 0 | 0.634610 | −1.02432 | 0 | 1.99793 | 2.21623 | 0 | 1.66262 | ||||||||||||||||||
1.8 | −1.21162 | 0 | −0.531985 | −1.58010 | 0 | 4.11574 | 3.06780 | 0 | 1.91448 | ||||||||||||||||||
1.9 | −1.14647 | 0 | −0.685607 | −2.53076 | 0 | −1.30842 | 3.07897 | 0 | 2.90144 | ||||||||||||||||||
1.10 | −0.959557 | 0 | −1.07925 | 4.21749 | 0 | −1.12111 | 2.95472 | 0 | −4.04692 | ||||||||||||||||||
1.11 | −0.583104 | 0 | −1.65999 | −2.31932 | 0 | −3.54758 | 2.13416 | 0 | 1.35240 | ||||||||||||||||||
1.12 | −0.294138 | 0 | −1.91348 | 1.97505 | 0 | −3.94391 | 1.15111 | 0 | −0.580938 | ||||||||||||||||||
1.13 | −0.286378 | 0 | −1.91799 | 3.36659 | 0 | 5.00540 | 1.12203 | 0 | −0.964118 | ||||||||||||||||||
1.14 | 0.256648 | 0 | −1.93413 | −2.52738 | 0 | 4.03776 | −1.00969 | 0 | −0.648646 | ||||||||||||||||||
1.15 | 0.544587 | 0 | −1.70342 | −0.493609 | 0 | −0.226241 | −2.01684 | 0 | −0.268813 | ||||||||||||||||||
1.16 | 0.849623 | 0 | −1.27814 | −0.881731 | 0 | 3.72139 | −2.78518 | 0 | −0.749139 | ||||||||||||||||||
1.17 | 1.14050 | 0 | −0.699260 | −2.66755 | 0 | 0.198186 | −3.07851 | 0 | −3.04235 | ||||||||||||||||||
1.18 | 1.75069 | 0 | 1.06491 | 1.92100 | 0 | 4.93164 | −1.63706 | 0 | 3.36307 | ||||||||||||||||||
1.19 | 2.00987 | 0 | 2.03956 | −3.19190 | 0 | 0.292061 | 0.0795053 | 0 | −6.41528 | ||||||||||||||||||
1.20 | 2.33041 | 0 | 3.43080 | 4.15417 | 0 | 1.65165 | 3.33434 | 0 | 9.68090 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \( -1 \) |
\(31\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 8649.2.a.bu | 24 | |
3.b | odd | 2 | 1 | 2883.2.a.v | yes | 24 | |
31.b | odd | 2 | 1 | 8649.2.a.bv | 24 | ||
93.c | even | 2 | 1 | 2883.2.a.u | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2883.2.a.u | ✓ | 24 | 93.c | even | 2 | 1 | |
2883.2.a.v | yes | 24 | 3.b | odd | 2 | 1 | |
8649.2.a.bu | 24 | 1.a | even | 1 | 1 | trivial | |
8649.2.a.bv | 24 | 31.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8649))\):
\( T_{2}^{24} - 40 T_{2}^{22} - 8 T_{2}^{21} + 692 T_{2}^{20} + 272 T_{2}^{19} - 6756 T_{2}^{18} + \cdots - 641 \) |
\( T_{5}^{24} - 80 T_{5}^{22} - 32 T_{5}^{21} + 2764 T_{5}^{20} + 2112 T_{5}^{19} - 53768 T_{5}^{18} + \cdots - 7106564 \) |
\( T_{7}^{24} - 16 T_{7}^{23} + 16 T_{7}^{22} + 1008 T_{7}^{21} - 4640 T_{7}^{20} - 20672 T_{7}^{19} + \cdots + 1052672 \) |
\( T_{11}^{24} + 16 T_{11}^{23} - 32 T_{11}^{22} - 1792 T_{11}^{21} - 5212 T_{11}^{20} + \cdots + 206235170816 \) |
\( T_{13}^{24} - 32 T_{13}^{23} + 336 T_{13}^{22} - 192 T_{13}^{21} - 21728 T_{13}^{20} + \cdots - 45247233016 \) |