Properties

Label 8664.2.a.bn.1.2
Level $8664$
Weight $2$
Character 8664.1
Self dual yes
Analytic conductor $69.182$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8664,2,Mod(1,8664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8664.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 18x^{7} + 45x^{6} + 117x^{5} - 207x^{4} - 315x^{3} + 288x^{2} + 288x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 456)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.755953\) of defining polynomial
Character \(\chi\) \(=\) 8664.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -4.05194 q^{5} -3.66740 q^{7} +1.00000 q^{9} +0.911449 q^{11} +2.23162 q^{13} +4.05194 q^{15} +8.01071 q^{17} +3.66740 q^{21} -6.79369 q^{23} +11.4182 q^{25} -1.00000 q^{27} -5.34666 q^{29} -0.820942 q^{31} -0.911449 q^{33} +14.8601 q^{35} -5.54834 q^{37} -2.23162 q^{39} +4.43635 q^{41} -7.46512 q^{43} -4.05194 q^{45} -8.70147 q^{47} +6.44984 q^{49} -8.01071 q^{51} -10.2713 q^{53} -3.69314 q^{55} -7.22752 q^{59} +8.09414 q^{61} -3.66740 q^{63} -9.04239 q^{65} -6.27143 q^{67} +6.79369 q^{69} +13.2757 q^{71} +1.49470 q^{73} -11.4182 q^{75} -3.34265 q^{77} -6.40819 q^{79} +1.00000 q^{81} +0.166370 q^{83} -32.4590 q^{85} +5.34666 q^{87} -9.65938 q^{89} -8.18424 q^{91} +0.820942 q^{93} +16.9755 q^{97} +0.911449 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} - 3 q^{5} - 6 q^{7} + 9 q^{9} - 9 q^{11} + 9 q^{13} + 3 q^{15} + 3 q^{17} + 6 q^{21} - 30 q^{23} + 30 q^{25} - 9 q^{27} + 3 q^{29} - 9 q^{31} + 9 q^{33} - 6 q^{35} + 15 q^{37} - 9 q^{39} + 3 q^{41}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −4.05194 −1.81208 −0.906042 0.423188i \(-0.860911\pi\)
−0.906042 + 0.423188i \(0.860911\pi\)
\(6\) 0 0
\(7\) −3.66740 −1.38615 −0.693074 0.720867i \(-0.743744\pi\)
−0.693074 + 0.720867i \(0.743744\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.911449 0.274812 0.137406 0.990515i \(-0.456123\pi\)
0.137406 + 0.990515i \(0.456123\pi\)
\(12\) 0 0
\(13\) 2.23162 0.618939 0.309470 0.950909i \(-0.399848\pi\)
0.309470 + 0.950909i \(0.399848\pi\)
\(14\) 0 0
\(15\) 4.05194 1.04621
\(16\) 0 0
\(17\) 8.01071 1.94288 0.971442 0.237278i \(-0.0762552\pi\)
0.971442 + 0.237278i \(0.0762552\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 3.66740 0.800293
\(22\) 0 0
\(23\) −6.79369 −1.41658 −0.708292 0.705920i \(-0.750534\pi\)
−0.708292 + 0.705920i \(0.750534\pi\)
\(24\) 0 0
\(25\) 11.4182 2.28365
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.34666 −0.992851 −0.496425 0.868079i \(-0.665354\pi\)
−0.496425 + 0.868079i \(0.665354\pi\)
\(30\) 0 0
\(31\) −0.820942 −0.147446 −0.0737228 0.997279i \(-0.523488\pi\)
−0.0737228 + 0.997279i \(0.523488\pi\)
\(32\) 0 0
\(33\) −0.911449 −0.158663
\(34\) 0 0
\(35\) 14.8601 2.51182
\(36\) 0 0
\(37\) −5.54834 −0.912142 −0.456071 0.889943i \(-0.650744\pi\)
−0.456071 + 0.889943i \(0.650744\pi\)
\(38\) 0 0
\(39\) −2.23162 −0.357345
\(40\) 0 0
\(41\) 4.43635 0.692841 0.346421 0.938079i \(-0.387397\pi\)
0.346421 + 0.938079i \(0.387397\pi\)
\(42\) 0 0
\(43\) −7.46512 −1.13842 −0.569210 0.822192i \(-0.692751\pi\)
−0.569210 + 0.822192i \(0.692751\pi\)
\(44\) 0 0
\(45\) −4.05194 −0.604028
\(46\) 0 0
\(47\) −8.70147 −1.26924 −0.634620 0.772824i \(-0.718843\pi\)
−0.634620 + 0.772824i \(0.718843\pi\)
\(48\) 0 0
\(49\) 6.44984 0.921406
\(50\) 0 0
\(51\) −8.01071 −1.12172
\(52\) 0 0
\(53\) −10.2713 −1.41087 −0.705437 0.708773i \(-0.749249\pi\)
−0.705437 + 0.708773i \(0.749249\pi\)
\(54\) 0 0
\(55\) −3.69314 −0.497983
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.22752 −0.940943 −0.470472 0.882415i \(-0.655916\pi\)
−0.470472 + 0.882415i \(0.655916\pi\)
\(60\) 0 0
\(61\) 8.09414 1.03635 0.518174 0.855275i \(-0.326612\pi\)
0.518174 + 0.855275i \(0.326612\pi\)
\(62\) 0 0
\(63\) −3.66740 −0.462049
\(64\) 0 0
\(65\) −9.04239 −1.12157
\(66\) 0 0
\(67\) −6.27143 −0.766177 −0.383088 0.923712i \(-0.625140\pi\)
−0.383088 + 0.923712i \(0.625140\pi\)
\(68\) 0 0
\(69\) 6.79369 0.817865
\(70\) 0 0
\(71\) 13.2757 1.57554 0.787769 0.615971i \(-0.211236\pi\)
0.787769 + 0.615971i \(0.211236\pi\)
\(72\) 0 0
\(73\) 1.49470 0.174942 0.0874708 0.996167i \(-0.472122\pi\)
0.0874708 + 0.996167i \(0.472122\pi\)
\(74\) 0 0
\(75\) −11.4182 −1.31846
\(76\) 0 0
\(77\) −3.34265 −0.380930
\(78\) 0 0
\(79\) −6.40819 −0.720978 −0.360489 0.932764i \(-0.617390\pi\)
−0.360489 + 0.932764i \(0.617390\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.166370 0.0182615 0.00913075 0.999958i \(-0.497094\pi\)
0.00913075 + 0.999958i \(0.497094\pi\)
\(84\) 0 0
\(85\) −32.4590 −3.52067
\(86\) 0 0
\(87\) 5.34666 0.573223
\(88\) 0 0
\(89\) −9.65938 −1.02389 −0.511946 0.859018i \(-0.671075\pi\)
−0.511946 + 0.859018i \(0.671075\pi\)
\(90\) 0 0
\(91\) −8.18424 −0.857941
\(92\) 0 0
\(93\) 0.820942 0.0851278
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 16.9755 1.72360 0.861800 0.507248i \(-0.169337\pi\)
0.861800 + 0.507248i \(0.169337\pi\)
\(98\) 0 0
\(99\) 0.911449 0.0916041
\(100\) 0 0
\(101\) −0.499841 −0.0497360 −0.0248680 0.999691i \(-0.507917\pi\)
−0.0248680 + 0.999691i \(0.507917\pi\)
\(102\) 0 0
\(103\) −8.12979 −0.801052 −0.400526 0.916285i \(-0.631173\pi\)
−0.400526 + 0.916285i \(0.631173\pi\)
\(104\) 0 0
\(105\) −14.8601 −1.45020
\(106\) 0 0
\(107\) 3.62051 0.350008 0.175004 0.984568i \(-0.444006\pi\)
0.175004 + 0.984568i \(0.444006\pi\)
\(108\) 0 0
\(109\) −4.76292 −0.456205 −0.228102 0.973637i \(-0.573252\pi\)
−0.228102 + 0.973637i \(0.573252\pi\)
\(110\) 0 0
\(111\) 5.54834 0.526625
\(112\) 0 0
\(113\) −10.3764 −0.976128 −0.488064 0.872808i \(-0.662297\pi\)
−0.488064 + 0.872808i \(0.662297\pi\)
\(114\) 0 0
\(115\) 27.5277 2.56697
\(116\) 0 0
\(117\) 2.23162 0.206313
\(118\) 0 0
\(119\) −29.3785 −2.69312
\(120\) 0 0
\(121\) −10.1693 −0.924478
\(122\) 0 0
\(123\) −4.43635 −0.400012
\(124\) 0 0
\(125\) −26.0063 −2.32608
\(126\) 0 0
\(127\) −1.05738 −0.0938271 −0.0469135 0.998899i \(-0.514939\pi\)
−0.0469135 + 0.998899i \(0.514939\pi\)
\(128\) 0 0
\(129\) 7.46512 0.657267
\(130\) 0 0
\(131\) −7.64460 −0.667912 −0.333956 0.942589i \(-0.608384\pi\)
−0.333956 + 0.942589i \(0.608384\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.05194 0.348736
\(136\) 0 0
\(137\) 2.82346 0.241225 0.120612 0.992700i \(-0.461514\pi\)
0.120612 + 0.992700i \(0.461514\pi\)
\(138\) 0 0
\(139\) −6.67368 −0.566054 −0.283027 0.959112i \(-0.591339\pi\)
−0.283027 + 0.959112i \(0.591339\pi\)
\(140\) 0 0
\(141\) 8.70147 0.732796
\(142\) 0 0
\(143\) 2.03401 0.170092
\(144\) 0 0
\(145\) 21.6644 1.79913
\(146\) 0 0
\(147\) −6.44984 −0.531974
\(148\) 0 0
\(149\) −5.38013 −0.440757 −0.220379 0.975414i \(-0.570729\pi\)
−0.220379 + 0.975414i \(0.570729\pi\)
\(150\) 0 0
\(151\) 8.36023 0.680346 0.340173 0.940363i \(-0.389514\pi\)
0.340173 + 0.940363i \(0.389514\pi\)
\(152\) 0 0
\(153\) 8.01071 0.647628
\(154\) 0 0
\(155\) 3.32641 0.267184
\(156\) 0 0
\(157\) 9.36507 0.747414 0.373707 0.927547i \(-0.378087\pi\)
0.373707 + 0.927547i \(0.378087\pi\)
\(158\) 0 0
\(159\) 10.2713 0.814568
\(160\) 0 0
\(161\) 24.9152 1.96359
\(162\) 0 0
\(163\) 0.503153 0.0394100 0.0197050 0.999806i \(-0.493727\pi\)
0.0197050 + 0.999806i \(0.493727\pi\)
\(164\) 0 0
\(165\) 3.69314 0.287511
\(166\) 0 0
\(167\) −8.69456 −0.672806 −0.336403 0.941718i \(-0.609210\pi\)
−0.336403 + 0.941718i \(0.609210\pi\)
\(168\) 0 0
\(169\) −8.01988 −0.616914
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.00363 0.228362 0.114181 0.993460i \(-0.463576\pi\)
0.114181 + 0.993460i \(0.463576\pi\)
\(174\) 0 0
\(175\) −41.8753 −3.16547
\(176\) 0 0
\(177\) 7.22752 0.543254
\(178\) 0 0
\(179\) 16.8305 1.25797 0.628986 0.777417i \(-0.283470\pi\)
0.628986 + 0.777417i \(0.283470\pi\)
\(180\) 0 0
\(181\) 4.92802 0.366297 0.183149 0.983085i \(-0.441371\pi\)
0.183149 + 0.983085i \(0.441371\pi\)
\(182\) 0 0
\(183\) −8.09414 −0.598336
\(184\) 0 0
\(185\) 22.4816 1.65288
\(186\) 0 0
\(187\) 7.30136 0.533928
\(188\) 0 0
\(189\) 3.66740 0.266764
\(190\) 0 0
\(191\) 4.08333 0.295459 0.147730 0.989028i \(-0.452803\pi\)
0.147730 + 0.989028i \(0.452803\pi\)
\(192\) 0 0
\(193\) 1.66621 0.119936 0.0599682 0.998200i \(-0.480900\pi\)
0.0599682 + 0.998200i \(0.480900\pi\)
\(194\) 0 0
\(195\) 9.04239 0.647539
\(196\) 0 0
\(197\) −18.4354 −1.31347 −0.656734 0.754122i \(-0.728063\pi\)
−0.656734 + 0.754122i \(0.728063\pi\)
\(198\) 0 0
\(199\) 0.270909 0.0192043 0.00960213 0.999954i \(-0.496943\pi\)
0.00960213 + 0.999954i \(0.496943\pi\)
\(200\) 0 0
\(201\) 6.27143 0.442352
\(202\) 0 0
\(203\) 19.6084 1.37624
\(204\) 0 0
\(205\) −17.9758 −1.25549
\(206\) 0 0
\(207\) −6.79369 −0.472194
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.5647 1.55341 0.776707 0.629862i \(-0.216888\pi\)
0.776707 + 0.629862i \(0.216888\pi\)
\(212\) 0 0
\(213\) −13.2757 −0.909637
\(214\) 0 0
\(215\) 30.2482 2.06291
\(216\) 0 0
\(217\) 3.01073 0.204381
\(218\) 0 0
\(219\) −1.49470 −0.101003
\(220\) 0 0
\(221\) 17.8769 1.20253
\(222\) 0 0
\(223\) −2.99897 −0.200826 −0.100413 0.994946i \(-0.532016\pi\)
−0.100413 + 0.994946i \(0.532016\pi\)
\(224\) 0 0
\(225\) 11.4182 0.761216
\(226\) 0 0
\(227\) 9.03122 0.599423 0.299712 0.954030i \(-0.403110\pi\)
0.299712 + 0.954030i \(0.403110\pi\)
\(228\) 0 0
\(229\) −28.4563 −1.88045 −0.940224 0.340556i \(-0.889385\pi\)
−0.940224 + 0.340556i \(0.889385\pi\)
\(230\) 0 0
\(231\) 3.34265 0.219930
\(232\) 0 0
\(233\) −14.0458 −0.920172 −0.460086 0.887874i \(-0.652181\pi\)
−0.460086 + 0.887874i \(0.652181\pi\)
\(234\) 0 0
\(235\) 35.2579 2.29997
\(236\) 0 0
\(237\) 6.40819 0.416257
\(238\) 0 0
\(239\) 6.80492 0.440174 0.220087 0.975480i \(-0.429366\pi\)
0.220087 + 0.975480i \(0.429366\pi\)
\(240\) 0 0
\(241\) 6.29139 0.405264 0.202632 0.979255i \(-0.435050\pi\)
0.202632 + 0.979255i \(0.435050\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −26.1344 −1.66966
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.166370 −0.0105433
\(250\) 0 0
\(251\) −14.1772 −0.894860 −0.447430 0.894319i \(-0.647661\pi\)
−0.447430 + 0.894319i \(0.647661\pi\)
\(252\) 0 0
\(253\) −6.19211 −0.389294
\(254\) 0 0
\(255\) 32.4590 2.03266
\(256\) 0 0
\(257\) −22.2464 −1.38769 −0.693846 0.720124i \(-0.744085\pi\)
−0.693846 + 0.720124i \(0.744085\pi\)
\(258\) 0 0
\(259\) 20.3480 1.26436
\(260\) 0 0
\(261\) −5.34666 −0.330950
\(262\) 0 0
\(263\) −2.20425 −0.135920 −0.0679600 0.997688i \(-0.521649\pi\)
−0.0679600 + 0.997688i \(0.521649\pi\)
\(264\) 0 0
\(265\) 41.6188 2.55662
\(266\) 0 0
\(267\) 9.65938 0.591145
\(268\) 0 0
\(269\) 26.0828 1.59029 0.795147 0.606416i \(-0.207394\pi\)
0.795147 + 0.606416i \(0.207394\pi\)
\(270\) 0 0
\(271\) 15.2423 0.925904 0.462952 0.886383i \(-0.346790\pi\)
0.462952 + 0.886383i \(0.346790\pi\)
\(272\) 0 0
\(273\) 8.18424 0.495333
\(274\) 0 0
\(275\) 10.4071 0.627574
\(276\) 0 0
\(277\) 0.444117 0.0266844 0.0133422 0.999911i \(-0.495753\pi\)
0.0133422 + 0.999911i \(0.495753\pi\)
\(278\) 0 0
\(279\) −0.820942 −0.0491485
\(280\) 0 0
\(281\) −13.7556 −0.820591 −0.410295 0.911953i \(-0.634574\pi\)
−0.410295 + 0.911953i \(0.634574\pi\)
\(282\) 0 0
\(283\) −2.08267 −0.123802 −0.0619010 0.998082i \(-0.519716\pi\)
−0.0619010 + 0.998082i \(0.519716\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −16.2699 −0.960381
\(288\) 0 0
\(289\) 47.1715 2.77480
\(290\) 0 0
\(291\) −16.9755 −0.995121
\(292\) 0 0
\(293\) 31.2678 1.82668 0.913341 0.407196i \(-0.133493\pi\)
0.913341 + 0.407196i \(0.133493\pi\)
\(294\) 0 0
\(295\) 29.2855 1.70507
\(296\) 0 0
\(297\) −0.911449 −0.0528876
\(298\) 0 0
\(299\) −15.1609 −0.876779
\(300\) 0 0
\(301\) 27.3776 1.57802
\(302\) 0 0
\(303\) 0.499841 0.0287151
\(304\) 0 0
\(305\) −32.7970 −1.87795
\(306\) 0 0
\(307\) −26.2126 −1.49603 −0.748016 0.663681i \(-0.768993\pi\)
−0.748016 + 0.663681i \(0.768993\pi\)
\(308\) 0 0
\(309\) 8.12979 0.462488
\(310\) 0 0
\(311\) −18.8902 −1.07117 −0.535583 0.844483i \(-0.679908\pi\)
−0.535583 + 0.844483i \(0.679908\pi\)
\(312\) 0 0
\(313\) 15.3430 0.867236 0.433618 0.901097i \(-0.357237\pi\)
0.433618 + 0.901097i \(0.357237\pi\)
\(314\) 0 0
\(315\) 14.8601 0.837272
\(316\) 0 0
\(317\) 20.0041 1.12354 0.561772 0.827292i \(-0.310120\pi\)
0.561772 + 0.827292i \(0.310120\pi\)
\(318\) 0 0
\(319\) −4.87321 −0.272848
\(320\) 0 0
\(321\) −3.62051 −0.202077
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 25.4811 1.41344
\(326\) 0 0
\(327\) 4.76292 0.263390
\(328\) 0 0
\(329\) 31.9118 1.75935
\(330\) 0 0
\(331\) 20.3645 1.11933 0.559667 0.828718i \(-0.310929\pi\)
0.559667 + 0.828718i \(0.310929\pi\)
\(332\) 0 0
\(333\) −5.54834 −0.304047
\(334\) 0 0
\(335\) 25.4115 1.38838
\(336\) 0 0
\(337\) 1.23503 0.0672762 0.0336381 0.999434i \(-0.489291\pi\)
0.0336381 + 0.999434i \(0.489291\pi\)
\(338\) 0 0
\(339\) 10.3764 0.563568
\(340\) 0 0
\(341\) −0.748247 −0.0405199
\(342\) 0 0
\(343\) 2.01766 0.108943
\(344\) 0 0
\(345\) −27.5277 −1.48204
\(346\) 0 0
\(347\) 8.57821 0.460502 0.230251 0.973131i \(-0.426045\pi\)
0.230251 + 0.973131i \(0.426045\pi\)
\(348\) 0 0
\(349\) 4.01831 0.215095 0.107548 0.994200i \(-0.465700\pi\)
0.107548 + 0.994200i \(0.465700\pi\)
\(350\) 0 0
\(351\) −2.23162 −0.119115
\(352\) 0 0
\(353\) −14.4922 −0.771342 −0.385671 0.922636i \(-0.626030\pi\)
−0.385671 + 0.922636i \(0.626030\pi\)
\(354\) 0 0
\(355\) −53.7924 −2.85501
\(356\) 0 0
\(357\) 29.3785 1.55488
\(358\) 0 0
\(359\) −15.2966 −0.807326 −0.403663 0.914908i \(-0.632263\pi\)
−0.403663 + 0.914908i \(0.632263\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 10.1693 0.533748
\(364\) 0 0
\(365\) −6.05645 −0.317009
\(366\) 0 0
\(367\) 35.7480 1.86603 0.933014 0.359840i \(-0.117169\pi\)
0.933014 + 0.359840i \(0.117169\pi\)
\(368\) 0 0
\(369\) 4.43635 0.230947
\(370\) 0 0
\(371\) 37.6690 1.95568
\(372\) 0 0
\(373\) 12.8935 0.667600 0.333800 0.942644i \(-0.391669\pi\)
0.333800 + 0.942644i \(0.391669\pi\)
\(374\) 0 0
\(375\) 26.0063 1.34296
\(376\) 0 0
\(377\) −11.9317 −0.614514
\(378\) 0 0
\(379\) 24.3960 1.25314 0.626570 0.779366i \(-0.284458\pi\)
0.626570 + 0.779366i \(0.284458\pi\)
\(380\) 0 0
\(381\) 1.05738 0.0541711
\(382\) 0 0
\(383\) 30.4375 1.55528 0.777641 0.628709i \(-0.216416\pi\)
0.777641 + 0.628709i \(0.216416\pi\)
\(384\) 0 0
\(385\) 13.5442 0.690278
\(386\) 0 0
\(387\) −7.46512 −0.379474
\(388\) 0 0
\(389\) −13.6339 −0.691264 −0.345632 0.938370i \(-0.612335\pi\)
−0.345632 + 0.938370i \(0.612335\pi\)
\(390\) 0 0
\(391\) −54.4223 −2.75226
\(392\) 0 0
\(393\) 7.64460 0.385619
\(394\) 0 0
\(395\) 25.9656 1.30647
\(396\) 0 0
\(397\) 3.54632 0.177985 0.0889924 0.996032i \(-0.471635\pi\)
0.0889924 + 0.996032i \(0.471635\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.3860 1.01803 0.509015 0.860758i \(-0.330010\pi\)
0.509015 + 0.860758i \(0.330010\pi\)
\(402\) 0 0
\(403\) −1.83203 −0.0912599
\(404\) 0 0
\(405\) −4.05194 −0.201343
\(406\) 0 0
\(407\) −5.05703 −0.250668
\(408\) 0 0
\(409\) 34.4883 1.70533 0.852667 0.522455i \(-0.174984\pi\)
0.852667 + 0.522455i \(0.174984\pi\)
\(410\) 0 0
\(411\) −2.82346 −0.139271
\(412\) 0 0
\(413\) 26.5062 1.30429
\(414\) 0 0
\(415\) −0.674123 −0.0330914
\(416\) 0 0
\(417\) 6.67368 0.326811
\(418\) 0 0
\(419\) −25.4521 −1.24342 −0.621709 0.783248i \(-0.713561\pi\)
−0.621709 + 0.783248i \(0.713561\pi\)
\(420\) 0 0
\(421\) 20.0702 0.978159 0.489080 0.872239i \(-0.337333\pi\)
0.489080 + 0.872239i \(0.337333\pi\)
\(422\) 0 0
\(423\) −8.70147 −0.423080
\(424\) 0 0
\(425\) 91.4682 4.43686
\(426\) 0 0
\(427\) −29.6845 −1.43653
\(428\) 0 0
\(429\) −2.03401 −0.0982028
\(430\) 0 0
\(431\) 19.6369 0.945875 0.472938 0.881096i \(-0.343194\pi\)
0.472938 + 0.881096i \(0.343194\pi\)
\(432\) 0 0
\(433\) −8.28909 −0.398348 −0.199174 0.979964i \(-0.563826\pi\)
−0.199174 + 0.979964i \(0.563826\pi\)
\(434\) 0 0
\(435\) −21.6644 −1.03873
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.47702 −0.213676 −0.106838 0.994276i \(-0.534073\pi\)
−0.106838 + 0.994276i \(0.534073\pi\)
\(440\) 0 0
\(441\) 6.44984 0.307135
\(442\) 0 0
\(443\) −33.6495 −1.59874 −0.799368 0.600842i \(-0.794832\pi\)
−0.799368 + 0.600842i \(0.794832\pi\)
\(444\) 0 0
\(445\) 39.1393 1.85538
\(446\) 0 0
\(447\) 5.38013 0.254471
\(448\) 0 0
\(449\) −0.190932 −0.00901066 −0.00450533 0.999990i \(-0.501434\pi\)
−0.00450533 + 0.999990i \(0.501434\pi\)
\(450\) 0 0
\(451\) 4.04351 0.190401
\(452\) 0 0
\(453\) −8.36023 −0.392798
\(454\) 0 0
\(455\) 33.1621 1.55466
\(456\) 0 0
\(457\) 41.3845 1.93589 0.967943 0.251168i \(-0.0808148\pi\)
0.967943 + 0.251168i \(0.0808148\pi\)
\(458\) 0 0
\(459\) −8.01071 −0.373908
\(460\) 0 0
\(461\) 8.21163 0.382454 0.191227 0.981546i \(-0.438753\pi\)
0.191227 + 0.981546i \(0.438753\pi\)
\(462\) 0 0
\(463\) 10.1174 0.470195 0.235097 0.971972i \(-0.424459\pi\)
0.235097 + 0.971972i \(0.424459\pi\)
\(464\) 0 0
\(465\) −3.32641 −0.154259
\(466\) 0 0
\(467\) −19.1242 −0.884963 −0.442482 0.896778i \(-0.645902\pi\)
−0.442482 + 0.896778i \(0.645902\pi\)
\(468\) 0 0
\(469\) 22.9998 1.06203
\(470\) 0 0
\(471\) −9.36507 −0.431520
\(472\) 0 0
\(473\) −6.80408 −0.312852
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.2713 −0.470291
\(478\) 0 0
\(479\) 3.46439 0.158292 0.0791459 0.996863i \(-0.474781\pi\)
0.0791459 + 0.996863i \(0.474781\pi\)
\(480\) 0 0
\(481\) −12.3818 −0.564560
\(482\) 0 0
\(483\) −24.9152 −1.13368
\(484\) 0 0
\(485\) −68.7837 −3.12331
\(486\) 0 0
\(487\) −37.2125 −1.68626 −0.843130 0.537709i \(-0.819290\pi\)
−0.843130 + 0.537709i \(0.819290\pi\)
\(488\) 0 0
\(489\) −0.503153 −0.0227534
\(490\) 0 0
\(491\) −27.5605 −1.24379 −0.621894 0.783101i \(-0.713637\pi\)
−0.621894 + 0.783101i \(0.713637\pi\)
\(492\) 0 0
\(493\) −42.8306 −1.92899
\(494\) 0 0
\(495\) −3.69314 −0.165994
\(496\) 0 0
\(497\) −48.6874 −2.18393
\(498\) 0 0
\(499\) −10.9219 −0.488932 −0.244466 0.969658i \(-0.578613\pi\)
−0.244466 + 0.969658i \(0.578613\pi\)
\(500\) 0 0
\(501\) 8.69456 0.388444
\(502\) 0 0
\(503\) 6.45328 0.287738 0.143869 0.989597i \(-0.454046\pi\)
0.143869 + 0.989597i \(0.454046\pi\)
\(504\) 0 0
\(505\) 2.02533 0.0901259
\(506\) 0 0
\(507\) 8.01988 0.356175
\(508\) 0 0
\(509\) −29.4907 −1.30715 −0.653575 0.756862i \(-0.726732\pi\)
−0.653575 + 0.756862i \(0.726732\pi\)
\(510\) 0 0
\(511\) −5.48167 −0.242495
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 32.9414 1.45157
\(516\) 0 0
\(517\) −7.93095 −0.348803
\(518\) 0 0
\(519\) −3.00363 −0.131845
\(520\) 0 0
\(521\) −2.63414 −0.115404 −0.0577019 0.998334i \(-0.518377\pi\)
−0.0577019 + 0.998334i \(0.518377\pi\)
\(522\) 0 0
\(523\) −39.9597 −1.74731 −0.873657 0.486543i \(-0.838258\pi\)
−0.873657 + 0.486543i \(0.838258\pi\)
\(524\) 0 0
\(525\) 41.8753 1.82759
\(526\) 0 0
\(527\) −6.57633 −0.286470
\(528\) 0 0
\(529\) 23.1543 1.00671
\(530\) 0 0
\(531\) −7.22752 −0.313648
\(532\) 0 0
\(533\) 9.90024 0.428827
\(534\) 0 0
\(535\) −14.6701 −0.634243
\(536\) 0 0
\(537\) −16.8305 −0.726290
\(538\) 0 0
\(539\) 5.87870 0.253214
\(540\) 0 0
\(541\) 21.9277 0.942745 0.471372 0.881934i \(-0.343759\pi\)
0.471372 + 0.881934i \(0.343759\pi\)
\(542\) 0 0
\(543\) −4.92802 −0.211482
\(544\) 0 0
\(545\) 19.2991 0.826681
\(546\) 0 0
\(547\) −1.64309 −0.0702535 −0.0351267 0.999383i \(-0.511183\pi\)
−0.0351267 + 0.999383i \(0.511183\pi\)
\(548\) 0 0
\(549\) 8.09414 0.345449
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 23.5014 0.999381
\(554\) 0 0
\(555\) −22.4816 −0.954289
\(556\) 0 0
\(557\) −22.7892 −0.965611 −0.482806 0.875728i \(-0.660382\pi\)
−0.482806 + 0.875728i \(0.660382\pi\)
\(558\) 0 0
\(559\) −16.6593 −0.704613
\(560\) 0 0
\(561\) −7.30136 −0.308264
\(562\) 0 0
\(563\) −37.5667 −1.58325 −0.791624 0.611009i \(-0.790764\pi\)
−0.791624 + 0.611009i \(0.790764\pi\)
\(564\) 0 0
\(565\) 42.0445 1.76882
\(566\) 0 0
\(567\) −3.66740 −0.154016
\(568\) 0 0
\(569\) 4.37557 0.183433 0.0917167 0.995785i \(-0.470765\pi\)
0.0917167 + 0.995785i \(0.470765\pi\)
\(570\) 0 0
\(571\) 10.3397 0.432703 0.216351 0.976316i \(-0.430584\pi\)
0.216351 + 0.976316i \(0.430584\pi\)
\(572\) 0 0
\(573\) −4.08333 −0.170583
\(574\) 0 0
\(575\) −77.5720 −3.23498
\(576\) 0 0
\(577\) 37.4709 1.55994 0.779968 0.625820i \(-0.215235\pi\)
0.779968 + 0.625820i \(0.215235\pi\)
\(578\) 0 0
\(579\) −1.66621 −0.0692453
\(580\) 0 0
\(581\) −0.610147 −0.0253131
\(582\) 0 0
\(583\) −9.36178 −0.387725
\(584\) 0 0
\(585\) −9.04239 −0.373857
\(586\) 0 0
\(587\) −12.2553 −0.505830 −0.252915 0.967489i \(-0.581389\pi\)
−0.252915 + 0.967489i \(0.581389\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 18.4354 0.758331
\(592\) 0 0
\(593\) −11.3024 −0.464132 −0.232066 0.972700i \(-0.574549\pi\)
−0.232066 + 0.972700i \(0.574549\pi\)
\(594\) 0 0
\(595\) 119.040 4.88017
\(596\) 0 0
\(597\) −0.270909 −0.0110876
\(598\) 0 0
\(599\) 22.0716 0.901822 0.450911 0.892569i \(-0.351099\pi\)
0.450911 + 0.892569i \(0.351099\pi\)
\(600\) 0 0
\(601\) −15.5406 −0.633915 −0.316958 0.948440i \(-0.602661\pi\)
−0.316958 + 0.948440i \(0.602661\pi\)
\(602\) 0 0
\(603\) −6.27143 −0.255392
\(604\) 0 0
\(605\) 41.2053 1.67523
\(606\) 0 0
\(607\) 1.74786 0.0709436 0.0354718 0.999371i \(-0.488707\pi\)
0.0354718 + 0.999371i \(0.488707\pi\)
\(608\) 0 0
\(609\) −19.6084 −0.794571
\(610\) 0 0
\(611\) −19.4184 −0.785583
\(612\) 0 0
\(613\) 10.1271 0.409029 0.204515 0.978864i \(-0.434438\pi\)
0.204515 + 0.978864i \(0.434438\pi\)
\(614\) 0 0
\(615\) 17.9758 0.724856
\(616\) 0 0
\(617\) −26.7840 −1.07828 −0.539142 0.842215i \(-0.681251\pi\)
−0.539142 + 0.842215i \(0.681251\pi\)
\(618\) 0 0
\(619\) 28.8062 1.15782 0.578910 0.815391i \(-0.303478\pi\)
0.578910 + 0.815391i \(0.303478\pi\)
\(620\) 0 0
\(621\) 6.79369 0.272622
\(622\) 0 0
\(623\) 35.4248 1.41927
\(624\) 0 0
\(625\) 48.2849 1.93140
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −44.4462 −1.77219
\(630\) 0 0
\(631\) 41.5922 1.65576 0.827881 0.560904i \(-0.189546\pi\)
0.827881 + 0.560904i \(0.189546\pi\)
\(632\) 0 0
\(633\) −22.5647 −0.896864
\(634\) 0 0
\(635\) 4.28443 0.170023
\(636\) 0 0
\(637\) 14.3936 0.570294
\(638\) 0 0
\(639\) 13.2757 0.525179
\(640\) 0 0
\(641\) 12.5914 0.497332 0.248666 0.968589i \(-0.420008\pi\)
0.248666 + 0.968589i \(0.420008\pi\)
\(642\) 0 0
\(643\) −4.74820 −0.187251 −0.0936253 0.995608i \(-0.529846\pi\)
−0.0936253 + 0.995608i \(0.529846\pi\)
\(644\) 0 0
\(645\) −30.2482 −1.19102
\(646\) 0 0
\(647\) −7.67738 −0.301829 −0.150914 0.988547i \(-0.548222\pi\)
−0.150914 + 0.988547i \(0.548222\pi\)
\(648\) 0 0
\(649\) −6.58752 −0.258583
\(650\) 0 0
\(651\) −3.01073 −0.118000
\(652\) 0 0
\(653\) −15.5384 −0.608064 −0.304032 0.952662i \(-0.598333\pi\)
−0.304032 + 0.952662i \(0.598333\pi\)
\(654\) 0 0
\(655\) 30.9755 1.21031
\(656\) 0 0
\(657\) 1.49470 0.0583139
\(658\) 0 0
\(659\) −23.1638 −0.902333 −0.451166 0.892440i \(-0.648992\pi\)
−0.451166 + 0.892440i \(0.648992\pi\)
\(660\) 0 0
\(661\) −1.06738 −0.0415164 −0.0207582 0.999785i \(-0.506608\pi\)
−0.0207582 + 0.999785i \(0.506608\pi\)
\(662\) 0 0
\(663\) −17.8769 −0.694279
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.3236 1.40646
\(668\) 0 0
\(669\) 2.99897 0.115947
\(670\) 0 0
\(671\) 7.37740 0.284801
\(672\) 0 0
\(673\) −26.0316 −1.00345 −0.501723 0.865029i \(-0.667300\pi\)
−0.501723 + 0.865029i \(0.667300\pi\)
\(674\) 0 0
\(675\) −11.4182 −0.439488
\(676\) 0 0
\(677\) 19.5757 0.752357 0.376178 0.926547i \(-0.377238\pi\)
0.376178 + 0.926547i \(0.377238\pi\)
\(678\) 0 0
\(679\) −62.2560 −2.38917
\(680\) 0 0
\(681\) −9.03122 −0.346077
\(682\) 0 0
\(683\) −30.0261 −1.14892 −0.574459 0.818533i \(-0.694787\pi\)
−0.574459 + 0.818533i \(0.694787\pi\)
\(684\) 0 0
\(685\) −11.4405 −0.437119
\(686\) 0 0
\(687\) 28.4563 1.08568
\(688\) 0 0
\(689\) −22.9216 −0.873245
\(690\) 0 0
\(691\) −27.9591 −1.06362 −0.531808 0.846865i \(-0.678487\pi\)
−0.531808 + 0.846865i \(0.678487\pi\)
\(692\) 0 0
\(693\) −3.34265 −0.126977
\(694\) 0 0
\(695\) 27.0414 1.02574
\(696\) 0 0
\(697\) 35.5383 1.34611
\(698\) 0 0
\(699\) 14.0458 0.531262
\(700\) 0 0
\(701\) −6.23189 −0.235375 −0.117688 0.993051i \(-0.537548\pi\)
−0.117688 + 0.993051i \(0.537548\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −35.2579 −1.32789
\(706\) 0 0
\(707\) 1.83312 0.0689415
\(708\) 0 0
\(709\) 46.1303 1.73246 0.866230 0.499646i \(-0.166537\pi\)
0.866230 + 0.499646i \(0.166537\pi\)
\(710\) 0 0
\(711\) −6.40819 −0.240326
\(712\) 0 0
\(713\) 5.57723 0.208869
\(714\) 0 0
\(715\) −8.24168 −0.308221
\(716\) 0 0
\(717\) −6.80492 −0.254135
\(718\) 0 0
\(719\) 35.3676 1.31899 0.659495 0.751709i \(-0.270770\pi\)
0.659495 + 0.751709i \(0.270770\pi\)
\(720\) 0 0
\(721\) 29.8152 1.11038
\(722\) 0 0
\(723\) −6.29139 −0.233979
\(724\) 0 0
\(725\) −61.0495 −2.26732
\(726\) 0 0
\(727\) −5.80007 −0.215113 −0.107556 0.994199i \(-0.534303\pi\)
−0.107556 + 0.994199i \(0.534303\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −59.8010 −2.21182
\(732\) 0 0
\(733\) −11.0708 −0.408908 −0.204454 0.978876i \(-0.565542\pi\)
−0.204454 + 0.978876i \(0.565542\pi\)
\(734\) 0 0
\(735\) 26.1344 0.963981
\(736\) 0 0
\(737\) −5.71609 −0.210555
\(738\) 0 0
\(739\) 29.9545 1.10189 0.550947 0.834540i \(-0.314267\pi\)
0.550947 + 0.834540i \(0.314267\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 52.8735 1.93974 0.969870 0.243621i \(-0.0783354\pi\)
0.969870 + 0.243621i \(0.0783354\pi\)
\(744\) 0 0
\(745\) 21.8000 0.798689
\(746\) 0 0
\(747\) 0.166370 0.00608717
\(748\) 0 0
\(749\) −13.2779 −0.485162
\(750\) 0 0
\(751\) −30.9624 −1.12983 −0.564917 0.825148i \(-0.691092\pi\)
−0.564917 + 0.825148i \(0.691092\pi\)
\(752\) 0 0
\(753\) 14.1772 0.516648
\(754\) 0 0
\(755\) −33.8752 −1.23284
\(756\) 0 0
\(757\) 39.9530 1.45212 0.726059 0.687633i \(-0.241350\pi\)
0.726059 + 0.687633i \(0.241350\pi\)
\(758\) 0 0
\(759\) 6.19211 0.224759
\(760\) 0 0
\(761\) 18.7341 0.679111 0.339555 0.940586i \(-0.389723\pi\)
0.339555 + 0.940586i \(0.389723\pi\)
\(762\) 0 0
\(763\) 17.4675 0.632367
\(764\) 0 0
\(765\) −32.4590 −1.17356
\(766\) 0 0
\(767\) −16.1291 −0.582387
\(768\) 0 0
\(769\) −25.1054 −0.905324 −0.452662 0.891682i \(-0.649526\pi\)
−0.452662 + 0.891682i \(0.649526\pi\)
\(770\) 0 0
\(771\) 22.2464 0.801184
\(772\) 0 0
\(773\) −27.5463 −0.990773 −0.495386 0.868673i \(-0.664973\pi\)
−0.495386 + 0.868673i \(0.664973\pi\)
\(774\) 0 0
\(775\) −9.37371 −0.336714
\(776\) 0 0
\(777\) −20.3480 −0.729980
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 12.1001 0.432977
\(782\) 0 0
\(783\) 5.34666 0.191074
\(784\) 0 0
\(785\) −37.9467 −1.35438
\(786\) 0 0
\(787\) 43.3134 1.54396 0.771978 0.635649i \(-0.219267\pi\)
0.771978 + 0.635649i \(0.219267\pi\)
\(788\) 0 0
\(789\) 2.20425 0.0784734
\(790\) 0 0
\(791\) 38.0544 1.35306
\(792\) 0 0
\(793\) 18.0630 0.641437
\(794\) 0 0
\(795\) −41.6188 −1.47607
\(796\) 0 0
\(797\) −28.2922 −1.00216 −0.501081 0.865401i \(-0.667064\pi\)
−0.501081 + 0.865401i \(0.667064\pi\)
\(798\) 0 0
\(799\) −69.7050 −2.46599
\(800\) 0 0
\(801\) −9.65938 −0.341297
\(802\) 0 0
\(803\) 1.36235 0.0480761
\(804\) 0 0
\(805\) −100.955 −3.55820
\(806\) 0 0
\(807\) −26.0828 −0.918157
\(808\) 0 0
\(809\) 48.3708 1.70063 0.850313 0.526278i \(-0.176413\pi\)
0.850313 + 0.526278i \(0.176413\pi\)
\(810\) 0 0
\(811\) −29.3861 −1.03189 −0.515943 0.856623i \(-0.672558\pi\)
−0.515943 + 0.856623i \(0.672558\pi\)
\(812\) 0 0
\(813\) −15.2423 −0.534571
\(814\) 0 0
\(815\) −2.03875 −0.0714142
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −8.18424 −0.285980
\(820\) 0 0
\(821\) 12.3501 0.431021 0.215511 0.976502i \(-0.430858\pi\)
0.215511 + 0.976502i \(0.430858\pi\)
\(822\) 0 0
\(823\) 0.930735 0.0324434 0.0162217 0.999868i \(-0.494836\pi\)
0.0162217 + 0.999868i \(0.494836\pi\)
\(824\) 0 0
\(825\) −10.4071 −0.362330
\(826\) 0 0
\(827\) 13.3750 0.465094 0.232547 0.972585i \(-0.425294\pi\)
0.232547 + 0.972585i \(0.425294\pi\)
\(828\) 0 0
\(829\) 15.1595 0.526511 0.263256 0.964726i \(-0.415204\pi\)
0.263256 + 0.964726i \(0.415204\pi\)
\(830\) 0 0
\(831\) −0.444117 −0.0154063
\(832\) 0 0
\(833\) 51.6678 1.79018
\(834\) 0 0
\(835\) 35.2299 1.21918
\(836\) 0 0
\(837\) 0.820942 0.0283759
\(838\) 0 0
\(839\) −8.49605 −0.293316 −0.146658 0.989187i \(-0.546852\pi\)
−0.146658 + 0.989187i \(0.546852\pi\)
\(840\) 0 0
\(841\) −0.413174 −0.0142474
\(842\) 0 0
\(843\) 13.7556 0.473768
\(844\) 0 0
\(845\) 32.4961 1.11790
\(846\) 0 0
\(847\) 37.2948 1.28146
\(848\) 0 0
\(849\) 2.08267 0.0714771
\(850\) 0 0
\(851\) 37.6937 1.29212
\(852\) 0 0
\(853\) 25.7442 0.881463 0.440732 0.897639i \(-0.354719\pi\)
0.440732 + 0.897639i \(0.354719\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.7988 0.505517 0.252759 0.967529i \(-0.418662\pi\)
0.252759 + 0.967529i \(0.418662\pi\)
\(858\) 0 0
\(859\) −47.2516 −1.61220 −0.806101 0.591778i \(-0.798426\pi\)
−0.806101 + 0.591778i \(0.798426\pi\)
\(860\) 0 0
\(861\) 16.2699 0.554476
\(862\) 0 0
\(863\) 10.7114 0.364619 0.182310 0.983241i \(-0.441643\pi\)
0.182310 + 0.983241i \(0.441643\pi\)
\(864\) 0 0
\(865\) −12.1705 −0.413811
\(866\) 0 0
\(867\) −47.1715 −1.60203
\(868\) 0 0
\(869\) −5.84074 −0.198133
\(870\) 0 0
\(871\) −13.9954 −0.474217
\(872\) 0 0
\(873\) 16.9755 0.574534
\(874\) 0 0
\(875\) 95.3757 3.22429
\(876\) 0 0
\(877\) 50.7594 1.71402 0.857012 0.515296i \(-0.172318\pi\)
0.857012 + 0.515296i \(0.172318\pi\)
\(878\) 0 0
\(879\) −31.2678 −1.05464
\(880\) 0 0
\(881\) 51.6623 1.74055 0.870274 0.492568i \(-0.163942\pi\)
0.870274 + 0.492568i \(0.163942\pi\)
\(882\) 0 0
\(883\) 8.63712 0.290662 0.145331 0.989383i \(-0.453575\pi\)
0.145331 + 0.989383i \(0.453575\pi\)
\(884\) 0 0
\(885\) −29.2855 −0.984421
\(886\) 0 0
\(887\) −11.8955 −0.399411 −0.199705 0.979856i \(-0.563999\pi\)
−0.199705 + 0.979856i \(0.563999\pi\)
\(888\) 0 0
\(889\) 3.87783 0.130058
\(890\) 0 0
\(891\) 0.911449 0.0305347
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −68.1962 −2.27955
\(896\) 0 0
\(897\) 15.1609 0.506209
\(898\) 0 0
\(899\) 4.38930 0.146391
\(900\) 0 0
\(901\) −82.2805 −2.74116
\(902\) 0 0
\(903\) −27.3776 −0.911070
\(904\) 0 0
\(905\) −19.9681 −0.663761
\(906\) 0 0
\(907\) 26.8976 0.893122 0.446561 0.894753i \(-0.352649\pi\)
0.446561 + 0.894753i \(0.352649\pi\)
\(908\) 0 0
\(909\) −0.499841 −0.0165787
\(910\) 0 0
\(911\) −26.1368 −0.865950 −0.432975 0.901406i \(-0.642536\pi\)
−0.432975 + 0.901406i \(0.642536\pi\)
\(912\) 0 0
\(913\) 0.151638 0.00501849
\(914\) 0 0
\(915\) 32.7970 1.08423
\(916\) 0 0
\(917\) 28.0358 0.925824
\(918\) 0 0
\(919\) −53.4724 −1.76389 −0.881945 0.471352i \(-0.843766\pi\)
−0.881945 + 0.471352i \(0.843766\pi\)
\(920\) 0 0
\(921\) 26.2126 0.863735
\(922\) 0 0
\(923\) 29.6263 0.975162
\(924\) 0 0
\(925\) −63.3523 −2.08301
\(926\) 0 0
\(927\) −8.12979 −0.267017
\(928\) 0 0
\(929\) −19.4330 −0.637577 −0.318788 0.947826i \(-0.603276\pi\)
−0.318788 + 0.947826i \(0.603276\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 18.8902 0.618438
\(934\) 0 0
\(935\) −29.5847 −0.967523
\(936\) 0 0
\(937\) 12.4554 0.406899 0.203449 0.979085i \(-0.434785\pi\)
0.203449 + 0.979085i \(0.434785\pi\)
\(938\) 0 0
\(939\) −15.3430 −0.500699
\(940\) 0 0
\(941\) −29.2509 −0.953551 −0.476775 0.879025i \(-0.658194\pi\)
−0.476775 + 0.879025i \(0.658194\pi\)
\(942\) 0 0
\(943\) −30.1392 −0.981467
\(944\) 0 0
\(945\) −14.8601 −0.483399
\(946\) 0 0
\(947\) −16.6902 −0.542359 −0.271180 0.962529i \(-0.587414\pi\)
−0.271180 + 0.962529i \(0.587414\pi\)
\(948\) 0 0
\(949\) 3.33560 0.108278
\(950\) 0 0
\(951\) −20.0041 −0.648678
\(952\) 0 0
\(953\) 39.6511 1.28443 0.642213 0.766527i \(-0.278017\pi\)
0.642213 + 0.766527i \(0.278017\pi\)
\(954\) 0 0
\(955\) −16.5454 −0.535397
\(956\) 0 0
\(957\) 4.87321 0.157529
\(958\) 0 0
\(959\) −10.3548 −0.334373
\(960\) 0 0
\(961\) −30.3261 −0.978260
\(962\) 0 0
\(963\) 3.62051 0.116669
\(964\) 0 0
\(965\) −6.75139 −0.217335
\(966\) 0 0
\(967\) 38.2767 1.23090 0.615448 0.788178i \(-0.288975\pi\)
0.615448 + 0.788178i \(0.288975\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.6125 0.404754 0.202377 0.979308i \(-0.435133\pi\)
0.202377 + 0.979308i \(0.435133\pi\)
\(972\) 0 0
\(973\) 24.4751 0.784634
\(974\) 0 0
\(975\) −25.4811 −0.816050
\(976\) 0 0
\(977\) −36.8021 −1.17740 −0.588702 0.808350i \(-0.700361\pi\)
−0.588702 + 0.808350i \(0.700361\pi\)
\(978\) 0 0
\(979\) −8.80404 −0.281378
\(980\) 0 0
\(981\) −4.76292 −0.152068
\(982\) 0 0
\(983\) 7.63548 0.243534 0.121767 0.992559i \(-0.461144\pi\)
0.121767 + 0.992559i \(0.461144\pi\)
\(984\) 0 0
\(985\) 74.6992 2.38011
\(986\) 0 0
\(987\) −31.9118 −1.01576
\(988\) 0 0
\(989\) 50.7158 1.61267
\(990\) 0 0
\(991\) 46.5262 1.47795 0.738977 0.673731i \(-0.235309\pi\)
0.738977 + 0.673731i \(0.235309\pi\)
\(992\) 0 0
\(993\) −20.3645 −0.646248
\(994\) 0 0
\(995\) −1.09771 −0.0347997
\(996\) 0 0
\(997\) 5.14778 0.163032 0.0815160 0.996672i \(-0.474024\pi\)
0.0815160 + 0.996672i \(0.474024\pi\)
\(998\) 0 0
\(999\) 5.54834 0.175542
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8664.2.a.bn.1.2 9
19.9 even 9 456.2.bg.d.385.1 yes 18
19.17 even 9 456.2.bg.d.289.1 18
19.18 odd 2 8664.2.a.bp.1.2 9
76.47 odd 18 912.2.bo.l.385.1 18
76.55 odd 18 912.2.bo.l.289.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bg.d.289.1 18 19.17 even 9
456.2.bg.d.385.1 yes 18 19.9 even 9
912.2.bo.l.289.1 18 76.55 odd 18
912.2.bo.l.385.1 18 76.47 odd 18
8664.2.a.bn.1.2 9 1.1 even 1 trivial
8664.2.a.bp.1.2 9 19.18 odd 2