Properties

Label 456.2.bg.d.385.1
Level $456$
Weight $2$
Character 456.385
Analytic conductor $3.641$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [456,2,Mod(25,456)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(456, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("456.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bg (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.64117833217\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 42 x^{16} + 621 x^{14} + 4302 x^{12} + 15174 x^{10} + 27540 x^{8} + 25929 x^{6} + 12204 x^{4} + \cdots + 192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 385.1
Root \(-2.26471i\) of defining polynomial
Character \(\chi\) \(=\) 456.385
Dual form 456.2.bg.d.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 + 0.984808i) q^{3} +(-3.10397 - 2.60454i) q^{5} +(1.83370 + 3.17606i) q^{7} +(-0.939693 - 0.342020i) q^{9} +(-0.455725 + 0.789338i) q^{11} +(0.387516 + 2.19771i) q^{13} +(3.10397 - 2.60454i) q^{15} +(-7.52761 + 2.73983i) q^{17} +(-3.91733 - 1.91168i) q^{19} +(-3.44623 + 1.25433i) q^{21} +(-5.20427 + 4.36690i) q^{23} +(1.98276 + 11.2448i) q^{25} +(0.500000 - 0.866025i) q^{27} +(5.02422 + 1.82867i) q^{29} +(0.410471 + 0.710957i) q^{31} +(-0.698211 - 0.585868i) q^{33} +(2.58043 - 14.6343i) q^{35} -5.54834 q^{37} -2.23162 q^{39} +(0.770364 - 4.36895i) q^{41} +(-5.71862 - 4.79849i) q^{43} +(2.02597 + 3.50909i) q^{45} +(8.17671 + 2.97608i) q^{47} +(-3.22492 + 5.58572i) q^{49} +(-1.39105 - 7.88901i) q^{51} +(-7.86828 + 6.60227i) q^{53} +(3.47042 - 1.26313i) q^{55} +(2.56287 - 3.52586i) q^{57} +(6.79165 - 2.47196i) q^{59} +(6.20047 - 5.20281i) q^{61} +(-0.636838 - 3.61169i) q^{63} +(4.52119 - 7.83094i) q^{65} +(5.89321 + 2.14495i) q^{67} +(-3.39685 - 5.88351i) q^{69} +(10.1698 + 8.53346i) q^{71} +(0.259552 - 1.47199i) q^{73} -11.4182 q^{75} -3.34265 q^{77} +(-1.11277 + 6.31083i) q^{79} +(0.766044 + 0.642788i) q^{81} +(-0.0831851 - 0.144081i) q^{83} +(30.5014 + 11.1016i) q^{85} +(-2.67333 + 4.63035i) q^{87} +(-1.67733 - 9.51263i) q^{89} +(-6.26949 + 5.26073i) q^{91} +(-0.771433 + 0.280779i) q^{93} +(7.18024 + 16.1366i) q^{95} +(-15.9518 + 5.80596i) q^{97} +(0.698211 - 0.585868i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 3 q^{5} + 6 q^{7} + 9 q^{11} - 18 q^{13} - 3 q^{15} - 3 q^{17} + 3 q^{19} + 3 q^{21} - 24 q^{23} - 3 q^{25} + 9 q^{27} + 15 q^{29} + 9 q^{31} + 6 q^{35} + 30 q^{37} - 18 q^{39} - 3 q^{41} + 30 q^{43}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/456\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(343\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.173648 + 0.984808i −0.100256 + 0.568579i
\(4\) 0 0
\(5\) −3.10397 2.60454i −1.38814 1.16478i −0.966088 0.258212i \(-0.916867\pi\)
−0.422048 0.906573i \(-0.638689\pi\)
\(6\) 0 0
\(7\) 1.83370 + 3.17606i 0.693074 + 1.20044i 0.970826 + 0.239786i \(0.0770774\pi\)
−0.277752 + 0.960653i \(0.589589\pi\)
\(8\) 0 0
\(9\) −0.939693 0.342020i −0.313231 0.114007i
\(10\) 0 0
\(11\) −0.455725 + 0.789338i −0.137406 + 0.237994i −0.926514 0.376260i \(-0.877210\pi\)
0.789108 + 0.614255i \(0.210543\pi\)
\(12\) 0 0
\(13\) 0.387516 + 2.19771i 0.107478 + 0.609536i 0.990202 + 0.139645i \(0.0445960\pi\)
−0.882724 + 0.469892i \(0.844293\pi\)
\(14\) 0 0
\(15\) 3.10397 2.60454i 0.801441 0.672489i
\(16\) 0 0
\(17\) −7.52761 + 2.73983i −1.82571 + 0.664505i −0.831703 + 0.555221i \(0.812634\pi\)
−0.994011 + 0.109284i \(0.965144\pi\)
\(18\) 0 0
\(19\) −3.91733 1.91168i −0.898698 0.438569i
\(20\) 0 0
\(21\) −3.44623 + 1.25433i −0.752029 + 0.273716i
\(22\) 0 0
\(23\) −5.20427 + 4.36690i −1.08517 + 0.910562i −0.996339 0.0854851i \(-0.972756\pi\)
−0.0888262 + 0.996047i \(0.528312\pi\)
\(24\) 0 0
\(25\) 1.98276 + 11.2448i 0.396551 + 2.24895i
\(26\) 0 0
\(27\) 0.500000 0.866025i 0.0962250 0.166667i
\(28\) 0 0
\(29\) 5.02422 + 1.82867i 0.932975 + 0.339575i 0.763388 0.645940i \(-0.223535\pi\)
0.169587 + 0.985515i \(0.445757\pi\)
\(30\) 0 0
\(31\) 0.410471 + 0.710957i 0.0737228 + 0.127692i 0.900530 0.434794i \(-0.143179\pi\)
−0.826807 + 0.562485i \(0.809845\pi\)
\(32\) 0 0
\(33\) −0.698211 0.585868i −0.121543 0.101987i
\(34\) 0 0
\(35\) 2.58043 14.6343i 0.436172 2.47366i
\(36\) 0 0
\(37\) −5.54834 −0.912142 −0.456071 0.889943i \(-0.650744\pi\)
−0.456071 + 0.889943i \(0.650744\pi\)
\(38\) 0 0
\(39\) −2.23162 −0.357345
\(40\) 0 0
\(41\) 0.770364 4.36895i 0.120311 0.682316i −0.863672 0.504054i \(-0.831841\pi\)
0.983983 0.178262i \(-0.0570475\pi\)
\(42\) 0 0
\(43\) −5.71862 4.79849i −0.872081 0.731763i 0.0924544 0.995717i \(-0.470529\pi\)
−0.964535 + 0.263954i \(0.914973\pi\)
\(44\) 0 0
\(45\) 2.02597 + 3.50909i 0.302014 + 0.523104i
\(46\) 0 0
\(47\) 8.17671 + 2.97608i 1.19270 + 0.434106i 0.860669 0.509165i \(-0.170046\pi\)
0.332026 + 0.943270i \(0.392268\pi\)
\(48\) 0 0
\(49\) −3.22492 + 5.58572i −0.460703 + 0.797961i
\(50\) 0 0
\(51\) −1.39105 7.88901i −0.194785 1.10468i
\(52\) 0 0
\(53\) −7.86828 + 6.60227i −1.08079 + 0.906892i −0.995986 0.0895057i \(-0.971471\pi\)
−0.0848053 + 0.996398i \(0.527027\pi\)
\(54\) 0 0
\(55\) 3.47042 1.26313i 0.467951 0.170320i
\(56\) 0 0
\(57\) 2.56287 3.52586i 0.339461 0.467012i
\(58\) 0 0
\(59\) 6.79165 2.47196i 0.884197 0.321822i 0.140295 0.990110i \(-0.455195\pi\)
0.743902 + 0.668288i \(0.232973\pi\)
\(60\) 0 0
\(61\) 6.20047 5.20281i 0.793889 0.666152i −0.152816 0.988255i \(-0.548834\pi\)
0.946705 + 0.322103i \(0.104390\pi\)
\(62\) 0 0
\(63\) −0.636838 3.61169i −0.0802340 0.455030i
\(64\) 0 0
\(65\) 4.52119 7.83094i 0.560785 0.971308i
\(66\) 0 0
\(67\) 5.89321 + 2.14495i 0.719971 + 0.262048i 0.675913 0.736981i \(-0.263749\pi\)
0.0440573 + 0.999029i \(0.485972\pi\)
\(68\) 0 0
\(69\) −3.39685 5.88351i −0.408932 0.708292i
\(70\) 0 0
\(71\) 10.1698 + 8.53346i 1.20693 + 1.01274i 0.999404 + 0.0345066i \(0.0109860\pi\)
0.207527 + 0.978229i \(0.433458\pi\)
\(72\) 0 0
\(73\) 0.259552 1.47199i 0.0303783 0.172284i −0.965844 0.259125i \(-0.916566\pi\)
0.996222 + 0.0868407i \(0.0276771\pi\)
\(74\) 0 0
\(75\) −11.4182 −1.31846
\(76\) 0 0
\(77\) −3.34265 −0.380930
\(78\) 0 0
\(79\) −1.11277 + 6.31083i −0.125196 + 0.710024i 0.855995 + 0.516985i \(0.172946\pi\)
−0.981191 + 0.193039i \(0.938165\pi\)
\(80\) 0 0
\(81\) 0.766044 + 0.642788i 0.0851160 + 0.0714208i
\(82\) 0 0
\(83\) −0.0831851 0.144081i −0.00913075 0.0158149i 0.861424 0.507887i \(-0.169573\pi\)
−0.870555 + 0.492072i \(0.836240\pi\)
\(84\) 0 0
\(85\) 30.5014 + 11.1016i 3.30835 + 1.20414i
\(86\) 0 0
\(87\) −2.67333 + 4.63035i −0.286611 + 0.496425i
\(88\) 0 0
\(89\) −1.67733 9.51263i −0.177797 1.00834i −0.934866 0.355002i \(-0.884480\pi\)
0.757069 0.653335i \(-0.226631\pi\)
\(90\) 0 0
\(91\) −6.26949 + 5.26073i −0.657221 + 0.551474i
\(92\) 0 0
\(93\) −0.771433 + 0.280779i −0.0799939 + 0.0291154i
\(94\) 0 0
\(95\) 7.18024 + 16.1366i 0.736677 + 1.65558i
\(96\) 0 0
\(97\) −15.9518 + 5.80596i −1.61965 + 0.589506i −0.983316 0.181904i \(-0.941774\pi\)
−0.636339 + 0.771410i \(0.719552\pi\)
\(98\) 0 0
\(99\) 0.698211 0.585868i 0.0701728 0.0588820i
\(100\) 0 0
\(101\) −0.0867965 0.492247i −0.00863657 0.0489804i 0.980185 0.198085i \(-0.0634721\pi\)
−0.988821 + 0.149104i \(0.952361\pi\)
\(102\) 0 0
\(103\) 4.06490 7.04061i 0.400526 0.693731i −0.593263 0.805008i \(-0.702161\pi\)
0.993789 + 0.111277i \(0.0354941\pi\)
\(104\) 0 0
\(105\) 13.9639 + 5.08245i 1.36274 + 0.495997i
\(106\) 0 0
\(107\) −1.81025 3.13545i −0.175004 0.303116i 0.765159 0.643842i \(-0.222660\pi\)
−0.940163 + 0.340726i \(0.889327\pi\)
\(108\) 0 0
\(109\) −3.64861 3.06155i −0.349473 0.293243i 0.451105 0.892471i \(-0.351030\pi\)
−0.800578 + 0.599228i \(0.795474\pi\)
\(110\) 0 0
\(111\) 0.963459 5.46405i 0.0914475 0.518625i
\(112\) 0 0
\(113\) −10.3764 −0.976128 −0.488064 0.872808i \(-0.662297\pi\)
−0.488064 + 0.872808i \(0.662297\pi\)
\(114\) 0 0
\(115\) 27.5277 2.56697
\(116\) 0 0
\(117\) 0.387516 2.19771i 0.0358259 0.203179i
\(118\) 0 0
\(119\) −22.5052 18.8841i −2.06305 1.73111i
\(120\) 0 0
\(121\) 5.08463 + 8.80684i 0.462239 + 0.800622i
\(122\) 0 0
\(123\) 4.16881 + 1.51732i 0.375888 + 0.136812i
\(124\) 0 0
\(125\) 13.0032 22.5221i 1.16304 2.01444i
\(126\) 0 0
\(127\) −0.183612 1.04131i −0.0162929 0.0924016i 0.975577 0.219658i \(-0.0704941\pi\)
−0.991870 + 0.127256i \(0.959383\pi\)
\(128\) 0 0
\(129\) 5.71862 4.79849i 0.503496 0.422483i
\(130\) 0 0
\(131\) 7.18357 2.61461i 0.627632 0.228439i −0.00856848 0.999963i \(-0.502727\pi\)
0.636200 + 0.771524i \(0.280505\pi\)
\(132\) 0 0
\(133\) −1.11161 15.9471i −0.0963887 1.38279i
\(134\) 0 0
\(135\) −3.80758 + 1.38585i −0.327704 + 0.119275i
\(136\) 0 0
\(137\) 2.16290 1.81489i 0.184789 0.155056i −0.545701 0.837980i \(-0.683736\pi\)
0.730489 + 0.682924i \(0.239292\pi\)
\(138\) 0 0
\(139\) −1.15887 6.57229i −0.0982942 0.557454i −0.993688 0.112179i \(-0.964217\pi\)
0.895394 0.445275i \(-0.146894\pi\)
\(140\) 0 0
\(141\) −4.35074 + 7.53569i −0.366398 + 0.634620i
\(142\) 0 0
\(143\) −1.91134 0.695671i −0.159834 0.0581749i
\(144\) 0 0
\(145\) −10.8322 18.7619i −0.899564 1.55809i
\(146\) 0 0
\(147\) −4.94086 4.14588i −0.407516 0.341946i
\(148\) 0 0
\(149\) −0.934249 + 5.29839i −0.0765367 + 0.434061i 0.922327 + 0.386409i \(0.126285\pi\)
−0.998864 + 0.0476516i \(0.984826\pi\)
\(150\) 0 0
\(151\) 8.36023 0.680346 0.340173 0.940363i \(-0.389514\pi\)
0.340173 + 0.940363i \(0.389514\pi\)
\(152\) 0 0
\(153\) 8.01071 0.647628
\(154\) 0 0
\(155\) 0.577625 3.27588i 0.0463960 0.263125i
\(156\) 0 0
\(157\) 7.17406 + 6.01975i 0.572552 + 0.480428i 0.882492 0.470328i \(-0.155864\pi\)
−0.309940 + 0.950756i \(0.600309\pi\)
\(158\) 0 0
\(159\) −5.13566 8.89522i −0.407284 0.705437i
\(160\) 0 0
\(161\) −23.4126 8.52150i −1.84517 0.671589i
\(162\) 0 0
\(163\) −0.251577 + 0.435743i −0.0197050 + 0.0341301i −0.875710 0.482838i \(-0.839606\pi\)
0.856005 + 0.516968i \(0.172939\pi\)
\(164\) 0 0
\(165\) 0.641307 + 3.63703i 0.0499257 + 0.283143i
\(166\) 0 0
\(167\) −6.66042 + 5.58876i −0.515399 + 0.432471i −0.863024 0.505162i \(-0.831433\pi\)
0.347625 + 0.937634i \(0.386988\pi\)
\(168\) 0 0
\(169\) 7.53622 2.74296i 0.579710 0.210997i
\(170\) 0 0
\(171\) 3.02726 + 3.13620i 0.231500 + 0.239831i
\(172\) 0 0
\(173\) −2.82249 + 1.02730i −0.214590 + 0.0781044i −0.447078 0.894495i \(-0.647535\pi\)
0.232488 + 0.972599i \(0.425313\pi\)
\(174\) 0 0
\(175\) −32.0783 + 26.9169i −2.42489 + 2.03473i
\(176\) 0 0
\(177\) 1.25505 + 7.11772i 0.0943350 + 0.535001i
\(178\) 0 0
\(179\) −8.41525 + 14.5756i −0.628986 + 1.08943i 0.358770 + 0.933426i \(0.383196\pi\)
−0.987756 + 0.156009i \(0.950137\pi\)
\(180\) 0 0
\(181\) −4.63083 1.68548i −0.344207 0.125281i 0.164132 0.986438i \(-0.447518\pi\)
−0.508338 + 0.861157i \(0.669740\pi\)
\(182\) 0 0
\(183\) 4.04707 + 7.00973i 0.299168 + 0.518174i
\(184\) 0 0
\(185\) 17.2219 + 14.4509i 1.26618 + 1.06245i
\(186\) 0 0
\(187\) 1.26787 7.19044i 0.0927157 0.525817i
\(188\) 0 0
\(189\) 3.66740 0.266764
\(190\) 0 0
\(191\) 4.08333 0.295459 0.147730 0.989028i \(-0.452803\pi\)
0.147730 + 0.989028i \(0.452803\pi\)
\(192\) 0 0
\(193\) 0.289334 1.64090i 0.0208267 0.118114i −0.972622 0.232393i \(-0.925345\pi\)
0.993449 + 0.114278i \(0.0364556\pi\)
\(194\) 0 0
\(195\) 6.92687 + 5.81233i 0.496043 + 0.416230i
\(196\) 0 0
\(197\) 9.21770 + 15.9655i 0.656734 + 1.13750i 0.981456 + 0.191687i \(0.0613960\pi\)
−0.324722 + 0.945810i \(0.605271\pi\)
\(198\) 0 0
\(199\) −0.254572 0.0926565i −0.0180461 0.00656825i 0.332981 0.942933i \(-0.391945\pi\)
−0.351027 + 0.936365i \(0.614168\pi\)
\(200\) 0 0
\(201\) −3.13571 + 5.43122i −0.221176 + 0.383088i
\(202\) 0 0
\(203\) 3.40496 + 19.3105i 0.238981 + 1.35533i
\(204\) 0 0
\(205\) −13.7703 + 11.5546i −0.961759 + 0.807011i
\(206\) 0 0
\(207\) 6.38398 2.32358i 0.443718 0.161500i
\(208\) 0 0
\(209\) 3.29418 2.22090i 0.227863 0.153623i
\(210\) 0 0
\(211\) −21.2038 + 7.71757i −1.45973 + 0.531299i −0.945292 0.326227i \(-0.894223\pi\)
−0.514441 + 0.857526i \(0.672000\pi\)
\(212\) 0 0
\(213\) −10.1698 + 8.53346i −0.696822 + 0.584703i
\(214\) 0 0
\(215\) 5.25255 + 29.7887i 0.358221 + 2.03157i
\(216\) 0 0
\(217\) −1.50536 + 2.60737i −0.102191 + 0.176999i
\(218\) 0 0
\(219\) 1.40456 + 0.511218i 0.0949114 + 0.0345449i
\(220\) 0 0
\(221\) −8.93843 15.4818i −0.601264 1.04142i
\(222\) 0 0
\(223\) −2.29734 1.92770i −0.153841 0.129088i 0.562618 0.826717i \(-0.309794\pi\)
−0.716460 + 0.697629i \(0.754239\pi\)
\(224\) 0 0
\(225\) 1.98276 11.2448i 0.132184 0.749651i
\(226\) 0 0
\(227\) 9.03122 0.599423 0.299712 0.954030i \(-0.403110\pi\)
0.299712 + 0.954030i \(0.403110\pi\)
\(228\) 0 0
\(229\) −28.4563 −1.88045 −0.940224 0.340556i \(-0.889385\pi\)
−0.940224 + 0.340556i \(0.889385\pi\)
\(230\) 0 0
\(231\) 0.580445 3.29187i 0.0381905 0.216589i
\(232\) 0 0
\(233\) −10.7597 9.02848i −0.704893 0.591475i 0.218268 0.975889i \(-0.429959\pi\)
−0.923161 + 0.384414i \(0.874404\pi\)
\(234\) 0 0
\(235\) −17.6289 30.5342i −1.14998 1.99183i
\(236\) 0 0
\(237\) −6.02173 2.19173i −0.391153 0.142368i
\(238\) 0 0
\(239\) −3.40246 + 5.89324i −0.220087 + 0.381202i −0.954834 0.297139i \(-0.903967\pi\)
0.734747 + 0.678341i \(0.237301\pi\)
\(240\) 0 0
\(241\) 1.09249 + 6.19581i 0.0703734 + 0.399107i 0.999565 + 0.0295078i \(0.00939398\pi\)
−0.929191 + 0.369599i \(0.879495\pi\)
\(242\) 0 0
\(243\) −0.766044 + 0.642788i −0.0491418 + 0.0412348i
\(244\) 0 0
\(245\) 24.5583 8.93848i 1.56897 0.571059i
\(246\) 0 0
\(247\) 2.68329 9.34998i 0.170734 0.594925i
\(248\) 0 0
\(249\) 0.156337 0.0569020i 0.00990745 0.00360602i
\(250\) 0 0
\(251\) −10.8604 + 9.11296i −0.685503 + 0.575205i −0.917608 0.397486i \(-0.869883\pi\)
0.232106 + 0.972691i \(0.425438\pi\)
\(252\) 0 0
\(253\) −1.07525 6.09804i −0.0676003 0.383380i
\(254\) 0 0
\(255\) −16.2295 + 28.1103i −1.01633 + 1.76033i
\(256\) 0 0
\(257\) 20.9048 + 7.60871i 1.30400 + 0.474618i 0.898298 0.439386i \(-0.144804\pi\)
0.405705 + 0.914004i \(0.367026\pi\)
\(258\) 0 0
\(259\) −10.1740 17.6219i −0.632182 1.09497i
\(260\) 0 0
\(261\) −4.09578 3.43677i −0.253523 0.212731i
\(262\) 0 0
\(263\) −0.382764 + 2.17076i −0.0236023 + 0.133855i −0.994332 0.106319i \(-0.966093\pi\)
0.970730 + 0.240174i \(0.0772046\pi\)
\(264\) 0 0
\(265\) 41.6188 2.55662
\(266\) 0 0
\(267\) 9.65938 0.591145
\(268\) 0 0
\(269\) 4.52922 25.6865i 0.276152 1.56613i −0.459128 0.888370i \(-0.651838\pi\)
0.735280 0.677764i \(-0.237051\pi\)
\(270\) 0 0
\(271\) 11.6763 + 9.79756i 0.709283 + 0.595159i 0.924398 0.381429i \(-0.124568\pi\)
−0.215115 + 0.976589i \(0.569013\pi\)
\(272\) 0 0
\(273\) −4.09212 7.08776i −0.247666 0.428971i
\(274\) 0 0
\(275\) −9.77952 3.55945i −0.589727 0.214643i
\(276\) 0 0
\(277\) −0.222059 + 0.384617i −0.0133422 + 0.0231094i −0.872619 0.488401i \(-0.837580\pi\)
0.859277 + 0.511510i \(0.170914\pi\)
\(278\) 0 0
\(279\) −0.142555 0.808470i −0.00853455 0.0484019i
\(280\) 0 0
\(281\) −10.5374 + 8.84193i −0.628609 + 0.527465i −0.900496 0.434864i \(-0.856797\pi\)
0.271887 + 0.962329i \(0.412352\pi\)
\(282\) 0 0
\(283\) 1.95707 0.712316i 0.116336 0.0423428i −0.283196 0.959062i \(-0.591395\pi\)
0.399532 + 0.916719i \(0.369173\pi\)
\(284\) 0 0
\(285\) −17.1383 + 4.26906i −1.01519 + 0.252877i
\(286\) 0 0
\(287\) 15.2887 5.56463i 0.902463 0.328470i
\(288\) 0 0
\(289\) 36.1355 30.3213i 2.12562 1.78360i
\(290\) 0 0
\(291\) −2.94776 16.7176i −0.172801 0.980003i
\(292\) 0 0
\(293\) −15.6339 + 27.0787i −0.913341 + 1.58195i −0.104029 + 0.994574i \(0.533173\pi\)
−0.809312 + 0.587379i \(0.800160\pi\)
\(294\) 0 0
\(295\) −27.5194 10.0162i −1.60224 0.583168i
\(296\) 0 0
\(297\) 0.455725 + 0.789338i 0.0264438 + 0.0458020i
\(298\) 0 0
\(299\) −11.6139 9.74526i −0.671652 0.563583i
\(300\) 0 0
\(301\) 4.75407 26.9617i 0.274020 1.55405i
\(302\) 0 0
\(303\) 0.499841 0.0287151
\(304\) 0 0
\(305\) −32.7970 −1.87795
\(306\) 0 0
\(307\) −4.55177 + 25.8144i −0.259783 + 1.47330i 0.523706 + 0.851899i \(0.324549\pi\)
−0.783489 + 0.621405i \(0.786562\pi\)
\(308\) 0 0
\(309\) 6.22778 + 5.22573i 0.354286 + 0.297281i
\(310\) 0 0
\(311\) 9.44510 + 16.3594i 0.535583 + 0.927656i 0.999135 + 0.0415867i \(0.0132413\pi\)
−0.463552 + 0.886070i \(0.653425\pi\)
\(312\) 0 0
\(313\) −14.4177 5.24761i −0.814936 0.296612i −0.0992746 0.995060i \(-0.531652\pi\)
−0.715661 + 0.698448i \(0.753874\pi\)
\(314\) 0 0
\(315\) −7.43005 + 12.8692i −0.418636 + 0.725099i
\(316\) 0 0
\(317\) 3.47368 + 19.7002i 0.195101 + 1.10647i 0.912274 + 0.409580i \(0.134325\pi\)
−0.717173 + 0.696895i \(0.754564\pi\)
\(318\) 0 0
\(319\) −3.73310 + 3.13244i −0.209013 + 0.175383i
\(320\) 0 0
\(321\) 3.40216 1.23829i 0.189890 0.0691144i
\(322\) 0 0
\(323\) 34.7258 + 3.65755i 1.93220 + 0.203512i
\(324\) 0 0
\(325\) −23.9444 + 8.71506i −1.32820 + 0.483425i
\(326\) 0 0
\(327\) 3.64861 3.06155i 0.201768 0.169304i
\(328\) 0 0
\(329\) 5.54142 + 31.4270i 0.305509 + 1.73263i
\(330\) 0 0
\(331\) −10.1822 + 17.6362i −0.559667 + 0.969372i 0.437857 + 0.899045i \(0.355738\pi\)
−0.997524 + 0.0703270i \(0.977596\pi\)
\(332\) 0 0
\(333\) 5.21374 + 1.89764i 0.285711 + 0.103990i
\(334\) 0 0
\(335\) −12.7057 22.0070i −0.694188 1.20237i
\(336\) 0 0
\(337\) 0.946086 + 0.793860i 0.0515366 + 0.0432443i 0.668192 0.743989i \(-0.267068\pi\)
−0.616656 + 0.787233i \(0.711513\pi\)
\(338\) 0 0
\(339\) 1.80184 10.2187i 0.0978625 0.555006i
\(340\) 0 0
\(341\) −0.748247 −0.0405199
\(342\) 0 0
\(343\) 2.01766 0.108943
\(344\) 0 0
\(345\) −4.78013 + 27.1094i −0.257353 + 1.45952i
\(346\) 0 0
\(347\) 6.57129 + 5.51397i 0.352765 + 0.296005i 0.801899 0.597459i \(-0.203823\pi\)
−0.449134 + 0.893464i \(0.648267\pi\)
\(348\) 0 0
\(349\) −2.00915 3.47996i −0.107548 0.186278i 0.807229 0.590239i \(-0.200966\pi\)
−0.914776 + 0.403961i \(0.867633\pi\)
\(350\) 0 0
\(351\) 2.09703 + 0.763258i 0.111931 + 0.0407397i
\(352\) 0 0
\(353\) 7.24610 12.5506i 0.385671 0.668001i −0.606191 0.795319i \(-0.707303\pi\)
0.991862 + 0.127317i \(0.0406367\pi\)
\(354\) 0 0
\(355\) −9.34096 52.9752i −0.495766 2.81163i
\(356\) 0 0
\(357\) 22.5052 18.8841i 1.19110 0.999455i
\(358\) 0 0
\(359\) 14.3741 5.23176i 0.758638 0.276122i 0.0664023 0.997793i \(-0.478848\pi\)
0.692236 + 0.721671i \(0.256626\pi\)
\(360\) 0 0
\(361\) 11.6910 + 14.9773i 0.615315 + 0.788281i
\(362\) 0 0
\(363\) −9.55598 + 3.47809i −0.501559 + 0.182552i
\(364\) 0 0
\(365\) −4.63951 + 3.89301i −0.242843 + 0.203769i
\(366\) 0 0
\(367\) 6.20757 + 35.2049i 0.324032 + 1.83768i 0.516389 + 0.856354i \(0.327276\pi\)
−0.192357 + 0.981325i \(0.561613\pi\)
\(368\) 0 0
\(369\) −2.21817 + 3.84199i −0.115474 + 0.200006i
\(370\) 0 0
\(371\) −35.3973 12.8836i −1.83774 0.668882i
\(372\) 0 0
\(373\) −6.44674 11.1661i −0.333800 0.578158i 0.649454 0.760401i \(-0.274998\pi\)
−0.983254 + 0.182243i \(0.941664\pi\)
\(374\) 0 0
\(375\) 19.9220 + 16.7165i 1.02877 + 0.863239i
\(376\) 0 0
\(377\) −2.07192 + 11.7504i −0.106709 + 0.605179i
\(378\) 0 0
\(379\) 24.3960 1.25314 0.626570 0.779366i \(-0.284458\pi\)
0.626570 + 0.779366i \(0.284458\pi\)
\(380\) 0 0
\(381\) 1.05738 0.0541711
\(382\) 0 0
\(383\) 5.28541 29.9750i 0.270072 1.53165i −0.484121 0.875001i \(-0.660861\pi\)
0.754193 0.656653i \(-0.228028\pi\)
\(384\) 0 0
\(385\) 10.3755 + 8.70606i 0.528784 + 0.443702i
\(386\) 0 0
\(387\) 3.73256 + 6.46499i 0.189737 + 0.328634i
\(388\) 0 0
\(389\) 12.8116 + 4.66305i 0.649576 + 0.236426i 0.645729 0.763566i \(-0.276553\pi\)
0.00384641 + 0.999993i \(0.498776\pi\)
\(390\) 0 0
\(391\) 27.2112 47.1311i 1.37613 2.38352i
\(392\) 0 0
\(393\) 1.32747 + 7.52846i 0.0669620 + 0.379761i
\(394\) 0 0
\(395\) 19.8908 16.6904i 1.00082 0.839784i
\(396\) 0 0
\(397\) −3.33245 + 1.21291i −0.167251 + 0.0608744i −0.424289 0.905527i \(-0.639476\pi\)
0.257038 + 0.966401i \(0.417254\pi\)
\(398\) 0 0
\(399\) 15.8979 + 1.67447i 0.795890 + 0.0838284i
\(400\) 0 0
\(401\) −19.1566 + 6.97243i −0.956635 + 0.348186i −0.772714 0.634755i \(-0.781101\pi\)
−0.183921 + 0.982941i \(0.558879\pi\)
\(402\) 0 0
\(403\) −1.40342 + 1.17761i −0.0699091 + 0.0586607i
\(404\) 0 0
\(405\) −0.703612 3.99038i −0.0349628 0.198284i
\(406\) 0 0
\(407\) 2.52852 4.37952i 0.125334 0.217085i
\(408\) 0 0
\(409\) −32.4084 11.7957i −1.60249 0.583259i −0.622555 0.782576i \(-0.713905\pi\)
−0.979935 + 0.199317i \(0.936128\pi\)
\(410\) 0 0
\(411\) 1.41173 + 2.44519i 0.0696356 + 0.120612i
\(412\) 0 0
\(413\) 20.3050 + 17.0379i 0.999141 + 0.838379i
\(414\) 0 0
\(415\) −0.117060 + 0.663881i −0.00574626 + 0.0325887i
\(416\) 0 0
\(417\) 6.67368 0.326811
\(418\) 0 0
\(419\) −25.4521 −1.24342 −0.621709 0.783248i \(-0.713561\pi\)
−0.621709 + 0.783248i \(0.713561\pi\)
\(420\) 0 0
\(421\) 3.48515 19.7652i 0.169856 0.963299i −0.774060 0.633112i \(-0.781777\pi\)
0.943916 0.330187i \(-0.107112\pi\)
\(422\) 0 0
\(423\) −6.66571 5.59320i −0.324098 0.271951i
\(424\) 0 0
\(425\) −45.7341 79.2138i −2.21843 3.84243i
\(426\) 0 0
\(427\) 27.8943 + 10.1527i 1.34990 + 0.491323i
\(428\) 0 0
\(429\) 1.01700 1.76150i 0.0491014 0.0850461i
\(430\) 0 0
\(431\) 3.40991 + 19.3385i 0.164249 + 0.931505i 0.949835 + 0.312752i \(0.101251\pi\)
−0.785585 + 0.618753i \(0.787638\pi\)
\(432\) 0 0
\(433\) −6.34981 + 5.32813i −0.305153 + 0.256053i −0.782485 0.622669i \(-0.786048\pi\)
0.477333 + 0.878723i \(0.341604\pi\)
\(434\) 0 0
\(435\) 20.3579 7.40965i 0.976085 0.355266i
\(436\) 0 0
\(437\) 28.7350 7.15772i 1.37458 0.342400i
\(438\) 0 0
\(439\) 4.20702 1.53123i 0.200790 0.0730816i −0.239667 0.970855i \(-0.577038\pi\)
0.440458 + 0.897773i \(0.354816\pi\)
\(440\) 0 0
\(441\) 4.94086 4.14588i 0.235279 0.197423i
\(442\) 0 0
\(443\) −5.84317 33.1383i −0.277617 1.57445i −0.730523 0.682888i \(-0.760724\pi\)
0.452905 0.891559i \(-0.350388\pi\)
\(444\) 0 0
\(445\) −19.5696 + 33.8956i −0.927689 + 1.60681i
\(446\) 0 0
\(447\) −5.05567 1.84011i −0.239125 0.0870343i
\(448\) 0 0
\(449\) 0.0954662 + 0.165352i 0.00450533 + 0.00780346i 0.868269 0.496093i \(-0.165233\pi\)
−0.863764 + 0.503897i \(0.831899\pi\)
\(450\) 0 0
\(451\) 3.09751 + 2.59912i 0.145856 + 0.122388i
\(452\) 0 0
\(453\) −1.45174 + 8.23322i −0.0682086 + 0.386830i
\(454\) 0 0
\(455\) 33.1621 1.55466
\(456\) 0 0
\(457\) 41.3845 1.93589 0.967943 0.251168i \(-0.0808148\pi\)
0.967943 + 0.251168i \(0.0808148\pi\)
\(458\) 0 0
\(459\) −1.39105 + 7.88901i −0.0649285 + 0.368228i
\(460\) 0 0
\(461\) 6.29047 + 5.27833i 0.292977 + 0.245837i 0.777414 0.628989i \(-0.216531\pi\)
−0.484437 + 0.874826i \(0.660976\pi\)
\(462\) 0 0
\(463\) −5.05869 8.76191i −0.235097 0.407201i 0.724204 0.689586i \(-0.242208\pi\)
−0.959301 + 0.282386i \(0.908874\pi\)
\(464\) 0 0
\(465\) 3.12580 + 1.13770i 0.144956 + 0.0527596i
\(466\) 0 0
\(467\) 9.56211 16.5621i 0.442482 0.766401i −0.555391 0.831589i \(-0.687432\pi\)
0.997873 + 0.0651884i \(0.0207649\pi\)
\(468\) 0 0
\(469\) 3.99388 + 22.6504i 0.184420 + 1.04590i
\(470\) 0 0
\(471\) −7.17406 + 6.01975i −0.330563 + 0.277375i
\(472\) 0 0
\(473\) 6.39374 2.32713i 0.293985 0.107002i
\(474\) 0 0
\(475\) 13.7293 47.8399i 0.629941 2.19504i
\(476\) 0 0
\(477\) 9.65188 3.51300i 0.441929 0.160849i
\(478\) 0 0
\(479\) 2.65387 2.22686i 0.121259 0.101748i −0.580142 0.814515i \(-0.697003\pi\)
0.701401 + 0.712767i \(0.252558\pi\)
\(480\) 0 0
\(481\) −2.15007 12.1937i −0.0980349 0.555984i
\(482\) 0 0
\(483\) 12.4576 21.5772i 0.566841 0.981797i
\(484\) 0 0
\(485\) 64.6356 + 23.5254i 2.93495 + 1.06823i
\(486\) 0 0
\(487\) 18.6063 + 32.2270i 0.843130 + 1.46034i 0.887235 + 0.461318i \(0.152623\pi\)
−0.0441047 + 0.999027i \(0.514044\pi\)
\(488\) 0 0
\(489\) −0.385438 0.323421i −0.0174301 0.0146256i
\(490\) 0 0
\(491\) −4.78583 + 27.1418i −0.215982 + 1.22489i 0.663213 + 0.748430i \(0.269192\pi\)
−0.879195 + 0.476462i \(0.841919\pi\)
\(492\) 0 0
\(493\) −42.8306 −1.92899
\(494\) 0 0
\(495\) −3.69314 −0.165994
\(496\) 0 0
\(497\) −8.45447 + 47.9477i −0.379235 + 2.15075i
\(498\) 0 0
\(499\) −8.36668 7.02047i −0.374544 0.314280i 0.436012 0.899941i \(-0.356390\pi\)
−0.810556 + 0.585661i \(0.800835\pi\)
\(500\) 0 0
\(501\) −4.34728 7.52971i −0.194222 0.336403i
\(502\) 0 0
\(503\) −6.06410 2.20715i −0.270385 0.0984121i 0.203270 0.979123i \(-0.434843\pi\)
−0.473655 + 0.880711i \(0.657065\pi\)
\(504\) 0 0
\(505\) −1.01266 + 1.75398i −0.0450629 + 0.0780513i
\(506\) 0 0
\(507\) 1.39264 + 7.89804i 0.0618492 + 0.350764i
\(508\) 0 0
\(509\) −22.5912 + 18.9562i −1.00134 + 0.840220i −0.987169 0.159680i \(-0.948954\pi\)
−0.0141662 + 0.999900i \(0.504509\pi\)
\(510\) 0 0
\(511\) 5.15109 1.87484i 0.227871 0.0829382i
\(512\) 0 0
\(513\) −3.61423 + 2.43667i −0.159572 + 0.107582i
\(514\) 0 0
\(515\) −30.9548 + 11.2666i −1.36403 + 0.496467i
\(516\) 0 0
\(517\) −6.07546 + 5.09792i −0.267198 + 0.224206i
\(518\) 0 0
\(519\) −0.521575 2.95800i −0.0228946 0.129842i
\(520\) 0 0
\(521\) 1.31707 2.28123i 0.0577019 0.0999426i −0.835732 0.549138i \(-0.814956\pi\)
0.893433 + 0.449196i \(0.148289\pi\)
\(522\) 0 0
\(523\) 37.5498 + 13.6670i 1.64194 + 0.597616i 0.987376 0.158392i \(-0.0506310\pi\)
0.654562 + 0.756009i \(0.272853\pi\)
\(524\) 0 0
\(525\) −20.9376 36.2650i −0.913793 1.58274i
\(526\) 0 0
\(527\) −5.03776 4.22719i −0.219448 0.184139i
\(528\) 0 0
\(529\) 4.02070 22.8025i 0.174813 0.991414i
\(530\) 0 0
\(531\) −7.22752 −0.313648
\(532\) 0 0
\(533\) 9.90024 0.428827
\(534\) 0 0
\(535\) −2.54743 + 14.4472i −0.110135 + 0.624608i
\(536\) 0 0
\(537\) −12.8929 10.8184i −0.556370 0.466850i
\(538\) 0 0
\(539\) −2.93935 5.09110i −0.126607 0.219289i
\(540\) 0 0
\(541\) −20.6053 7.49971i −0.885890 0.322438i −0.141306 0.989966i \(-0.545130\pi\)
−0.744584 + 0.667528i \(0.767352\pi\)
\(542\) 0 0
\(543\) 2.46401 4.26779i 0.105741 0.183149i
\(544\) 0 0
\(545\) 3.35125 + 19.0059i 0.143552 + 0.814122i
\(546\) 0 0
\(547\) −1.25868 + 1.05616i −0.0538173 + 0.0451581i −0.669300 0.742993i \(-0.733406\pi\)
0.615482 + 0.788151i \(0.288961\pi\)
\(548\) 0 0
\(549\) −7.60600 + 2.76836i −0.324616 + 0.118151i
\(550\) 0 0
\(551\) −16.1857 16.7682i −0.689535 0.714349i
\(552\) 0 0
\(553\) −22.0841 + 8.03795i −0.939111 + 0.341809i
\(554\) 0 0
\(555\) −17.2219 + 14.4509i −0.731028 + 0.613405i
\(556\) 0 0
\(557\) −3.95731 22.4430i −0.167677 0.950941i −0.946262 0.323402i \(-0.895173\pi\)
0.778585 0.627539i \(-0.215938\pi\)
\(558\) 0 0
\(559\) 8.32965 14.4274i 0.352307 0.610213i
\(560\) 0 0
\(561\) 6.86103 + 2.49721i 0.289673 + 0.105432i
\(562\) 0 0
\(563\) 18.7833 + 32.5337i 0.791624 + 1.37113i 0.924961 + 0.380062i \(0.124097\pi\)
−0.133337 + 0.991071i \(0.542569\pi\)
\(564\) 0 0
\(565\) 32.2079 + 27.0257i 1.35500 + 1.13698i
\(566\) 0 0
\(567\) −0.636838 + 3.61169i −0.0267447 + 0.151677i
\(568\) 0 0
\(569\) 4.37557 0.183433 0.0917167 0.995785i \(-0.470765\pi\)
0.0917167 + 0.995785i \(0.470765\pi\)
\(570\) 0 0
\(571\) 10.3397 0.432703 0.216351 0.976316i \(-0.430584\pi\)
0.216351 + 0.976316i \(0.430584\pi\)
\(572\) 0 0
\(573\) −0.709062 + 4.02129i −0.0296215 + 0.167992i
\(574\) 0 0
\(575\) −59.4236 49.8623i −2.47814 2.07940i
\(576\) 0 0
\(577\) −18.7355 32.4508i −0.779968 1.35094i −0.931960 0.362562i \(-0.881902\pi\)
0.151992 0.988382i \(-0.451431\pi\)
\(578\) 0 0
\(579\) 1.56573 + 0.569878i 0.0650693 + 0.0236833i
\(580\) 0 0
\(581\) 0.305073 0.528403i 0.0126566 0.0219218i
\(582\) 0 0
\(583\) −1.62566 9.21955i −0.0673278 0.381835i
\(584\) 0 0
\(585\) −6.92687 + 5.81233i −0.286391 + 0.240310i
\(586\) 0 0
\(587\) 11.5162 4.19155i 0.475325 0.173004i −0.0932383 0.995644i \(-0.529722\pi\)
0.568563 + 0.822640i \(0.307500\pi\)
\(588\) 0 0
\(589\) −0.248832 3.56974i −0.0102529 0.147089i
\(590\) 0 0
\(591\) −17.3236 + 6.30528i −0.712598 + 0.259365i
\(592\) 0 0
\(593\) −8.65810 + 7.26501i −0.355546 + 0.298338i −0.803012 0.595962i \(-0.796771\pi\)
0.447467 + 0.894301i \(0.352326\pi\)
\(594\) 0 0
\(595\) 20.6711 + 117.232i 0.847432 + 4.80602i
\(596\) 0 0
\(597\) 0.135455 0.234614i 0.00554379 0.00960213i
\(598\) 0 0
\(599\) −20.7405 7.54894i −0.847435 0.308441i −0.118441 0.992961i \(-0.537790\pi\)
−0.728994 + 0.684520i \(0.760012\pi\)
\(600\) 0 0
\(601\) 7.77031 + 13.4586i 0.316958 + 0.548987i 0.979852 0.199726i \(-0.0640053\pi\)
−0.662894 + 0.748713i \(0.730672\pi\)
\(602\) 0 0
\(603\) −4.80419 4.03120i −0.195642 0.164163i
\(604\) 0 0
\(605\) 7.15522 40.5793i 0.290901 1.64978i
\(606\) 0 0
\(607\) 1.74786 0.0709436 0.0354718 0.999371i \(-0.488707\pi\)
0.0354718 + 0.999371i \(0.488707\pi\)
\(608\) 0 0
\(609\) −19.6084 −0.794571
\(610\) 0 0
\(611\) −3.37196 + 19.1233i −0.136415 + 0.773648i
\(612\) 0 0
\(613\) 7.75780 + 6.50957i 0.313335 + 0.262919i 0.785869 0.618394i \(-0.212216\pi\)
−0.472534 + 0.881312i \(0.656661\pi\)
\(614\) 0 0
\(615\) −8.98792 15.5675i −0.362428 0.627743i
\(616\) 0 0
\(617\) 25.1687 + 9.16067i 1.01325 + 0.368795i 0.794682 0.607026i \(-0.207638\pi\)
0.218573 + 0.975821i \(0.429860\pi\)
\(618\) 0 0
\(619\) −14.4031 + 24.9469i −0.578910 + 1.00270i 0.416694 + 0.909047i \(0.363189\pi\)
−0.995605 + 0.0936554i \(0.970145\pi\)
\(620\) 0 0
\(621\) 1.17971 + 6.69048i 0.0473402 + 0.268480i
\(622\) 0 0
\(623\) 27.1370 22.7706i 1.08722 0.912287i
\(624\) 0 0
\(625\) −45.3730 + 16.5144i −1.81492 + 0.660577i
\(626\) 0 0
\(627\) 1.61513 + 3.62979i 0.0645022 + 0.144960i
\(628\) 0 0
\(629\) 41.7657 15.2015i 1.66531 0.606123i
\(630\) 0 0
\(631\) 31.8615 26.7350i 1.26839 1.06430i 0.273651 0.961829i \(-0.411769\pi\)
0.994736 0.102474i \(-0.0326757\pi\)
\(632\) 0 0
\(633\) −3.91831 22.2218i −0.155739 0.883239i
\(634\) 0 0
\(635\) −2.14222 + 3.71043i −0.0850113 + 0.147244i
\(636\) 0 0
\(637\) −13.5255 4.92289i −0.535901 0.195052i
\(638\) 0 0
\(639\) −6.63786 11.4971i −0.262590 0.454818i
\(640\) 0 0
\(641\) 9.64560 + 8.09362i 0.380978 + 0.319679i 0.813086 0.582143i \(-0.197786\pi\)
−0.432108 + 0.901822i \(0.642230\pi\)
\(642\) 0 0
\(643\) −0.824516 + 4.67606i −0.0325157 + 0.184406i −0.996740 0.0806825i \(-0.974290\pi\)
0.964224 + 0.265088i \(0.0854011\pi\)
\(644\) 0 0
\(645\) −30.2482 −1.19102
\(646\) 0 0
\(647\) −7.67738 −0.301829 −0.150914 0.988547i \(-0.548222\pi\)
−0.150914 + 0.988547i \(0.548222\pi\)
\(648\) 0 0
\(649\) −1.14391 + 6.48744i −0.0449024 + 0.254654i
\(650\) 0 0
\(651\) −2.30635 1.93526i −0.0903930 0.0758487i
\(652\) 0 0
\(653\) 7.76920 + 13.4566i 0.304032 + 0.526599i 0.977045 0.213031i \(-0.0683336\pi\)
−0.673013 + 0.739630i \(0.735000\pi\)
\(654\) 0 0
\(655\) −29.1074 10.5942i −1.13732 0.413951i
\(656\) 0 0
\(657\) −0.747351 + 1.29445i −0.0291569 + 0.0505013i
\(658\) 0 0
\(659\) −4.02235 22.8119i −0.156688 0.888624i −0.957226 0.289342i \(-0.906564\pi\)
0.800537 0.599283i \(-0.204547\pi\)
\(660\) 0 0
\(661\) −0.817662 + 0.686100i −0.0318034 + 0.0266862i −0.658551 0.752536i \(-0.728830\pi\)
0.626747 + 0.779222i \(0.284386\pi\)
\(662\) 0 0
\(663\) 16.7987 6.11424i 0.652409 0.237458i
\(664\) 0 0
\(665\) −38.0845 + 52.3946i −1.47686 + 2.03178i
\(666\) 0 0
\(667\) −34.1330 + 12.4234i −1.32164 + 0.481036i
\(668\) 0 0
\(669\) 2.29734 1.92770i 0.0888204 0.0745292i
\(670\) 0 0
\(671\) 1.28107 + 7.26532i 0.0494552 + 0.280474i
\(672\) 0 0
\(673\) 13.0158 22.5440i 0.501723 0.869009i −0.498275 0.867019i \(-0.666033\pi\)
0.999998 0.00199028i \(-0.000633527\pi\)
\(674\) 0 0
\(675\) 10.7296 + 3.90527i 0.412984 + 0.150314i
\(676\) 0 0
\(677\) −9.78787 16.9531i −0.376178 0.651560i 0.614324 0.789054i \(-0.289429\pi\)
−0.990503 + 0.137494i \(0.956095\pi\)
\(678\) 0 0
\(679\) −47.6908 40.0174i −1.83021 1.53573i
\(680\) 0 0
\(681\) −1.56826 + 8.89402i −0.0600957 + 0.340819i
\(682\) 0 0
\(683\) −30.0261 −1.14892 −0.574459 0.818533i \(-0.694787\pi\)
−0.574459 + 0.818533i \(0.694787\pi\)
\(684\) 0 0
\(685\) −11.4405 −0.437119
\(686\) 0 0
\(687\) 4.94139 28.0240i 0.188526 1.06918i
\(688\) 0 0
\(689\) −17.5590 14.7337i −0.668945 0.561311i
\(690\) 0 0
\(691\) 13.9796 + 24.2133i 0.531808 + 0.921118i 0.999311 + 0.0371267i \(0.0118205\pi\)
−0.467503 + 0.883992i \(0.654846\pi\)
\(692\) 0 0
\(693\) 3.14106 + 1.14325i 0.119319 + 0.0434286i
\(694\) 0 0
\(695\) −13.5207 + 23.4185i −0.512869 + 0.888314i
\(696\) 0 0
\(697\) 6.17117 + 34.9984i 0.233750 + 1.32566i
\(698\) 0 0
\(699\) 10.7597 9.02848i 0.406970 0.341488i
\(700\) 0 0
\(701\) 5.85606 2.13143i 0.221180 0.0805031i −0.229053 0.973414i \(-0.573563\pi\)
0.450234 + 0.892911i \(0.351341\pi\)
\(702\) 0 0
\(703\) 21.7347 + 10.6066i 0.819740 + 0.400037i
\(704\) 0 0
\(705\) 33.1315 12.0589i 1.24781 0.454164i
\(706\) 0 0
\(707\) 1.40425 1.17831i 0.0528122 0.0443147i
\(708\) 0 0
\(709\) 8.01044 + 45.4295i 0.300838 + 1.70614i 0.642475 + 0.766307i \(0.277908\pi\)
−0.341636 + 0.939832i \(0.610981\pi\)
\(710\) 0 0
\(711\) 3.20409 5.54965i 0.120163 0.208128i
\(712\) 0 0
\(713\) −5.24088 1.90753i −0.196273 0.0714374i
\(714\) 0 0
\(715\) 4.12084 + 7.13750i 0.154111 + 0.266927i
\(716\) 0 0
\(717\) −5.21287 4.37412i −0.194678 0.163355i
\(718\) 0 0
\(719\) 6.14153 34.8303i 0.229040 1.29895i −0.625768 0.780009i \(-0.715214\pi\)
0.854809 0.518943i \(-0.173674\pi\)
\(720\) 0 0
\(721\) 29.8152 1.11038
\(722\) 0 0
\(723\) −6.29139 −0.233979
\(724\) 0 0
\(725\) −10.6011 + 60.1220i −0.393716 + 2.23288i
\(726\) 0 0
\(727\) −4.44311 3.72822i −0.164786 0.138272i 0.556666 0.830737i \(-0.312080\pi\)
−0.721452 + 0.692465i \(0.756525\pi\)
\(728\) 0 0
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) 0 0
\(731\) 56.1945 + 20.4531i 2.07843 + 0.756487i
\(732\) 0 0
\(733\) 5.53539 9.58757i 0.204454 0.354125i −0.745504 0.666501i \(-0.767791\pi\)
0.949959 + 0.312376i \(0.101125\pi\)
\(734\) 0 0
\(735\) 4.53819 + 25.7373i 0.167394 + 0.949336i
\(736\) 0 0
\(737\) −4.37878 + 3.67423i −0.161294 + 0.135342i
\(738\) 0 0
\(739\) −28.1480 + 10.2450i −1.03544 + 0.376870i −0.803151 0.595776i \(-0.796845\pi\)
−0.232292 + 0.972646i \(0.574622\pi\)
\(740\) 0 0
\(741\) 8.74199 + 4.26613i 0.321145 + 0.156720i
\(742\) 0 0
\(743\) −49.6848 + 18.0838i −1.82276 + 0.663430i −0.828057 + 0.560644i \(0.810553\pi\)
−0.994703 + 0.102786i \(0.967224\pi\)
\(744\) 0 0
\(745\) 16.6997 14.0127i 0.611831 0.513387i
\(746\) 0 0
\(747\) 0.0288899 + 0.163843i 0.00105703 + 0.00599469i
\(748\) 0 0
\(749\) 6.63893 11.4990i 0.242581 0.420163i
\(750\) 0 0
\(751\) 29.0951 + 10.5898i 1.06170 + 0.386426i 0.813065 0.582172i \(-0.197797\pi\)
0.248631 + 0.968598i \(0.420019\pi\)
\(752\) 0 0
\(753\) −7.08862 12.2779i −0.258324 0.447430i
\(754\) 0 0
\(755\) −25.9499 21.7745i −0.944413 0.792456i
\(756\) 0 0
\(757\) 6.93777 39.3460i 0.252157 1.43006i −0.551107 0.834434i \(-0.685795\pi\)
0.803265 0.595622i \(-0.203094\pi\)
\(758\) 0 0
\(759\) 6.19211 0.224759
\(760\) 0 0
\(761\) 18.7341 0.679111 0.339555 0.940586i \(-0.389723\pi\)
0.339555 + 0.940586i \(0.389723\pi\)
\(762\) 0 0
\(763\) 3.03321 17.2022i 0.109809 0.622760i
\(764\) 0 0
\(765\) −24.8650 20.8642i −0.898996 0.754347i
\(766\) 0 0
\(767\) 8.06453 + 13.9682i 0.291193 + 0.504362i
\(768\) 0 0
\(769\) 23.5914 + 8.58655i 0.850726 + 0.309639i 0.730336 0.683088i \(-0.239363\pi\)
0.120390 + 0.992727i \(0.461586\pi\)
\(770\) 0 0
\(771\) −11.1232 + 19.2659i −0.400592 + 0.693846i
\(772\) 0 0
\(773\) −4.78337 27.1278i −0.172046 0.975721i −0.941499 0.337017i \(-0.890582\pi\)
0.769453 0.638704i \(-0.220529\pi\)
\(774\) 0 0
\(775\) −7.18068 + 6.02531i −0.257938 + 0.216435i
\(776\) 0 0
\(777\) 19.1209 6.95943i 0.685957 0.249668i
\(778\) 0 0
\(779\) −11.3698 + 15.6419i −0.407365 + 0.560431i
\(780\) 0 0
\(781\) −11.3704 + 4.13849i −0.406865 + 0.148087i
\(782\) 0 0
\(783\) 4.09578 3.43677i 0.146371 0.122820i
\(784\) 0 0
\(785\) −6.58938 37.3702i −0.235185 1.33380i
\(786\) 0 0
\(787\) −21.6567 + 37.5105i −0.771978 + 1.33711i 0.164499 + 0.986377i \(0.447399\pi\)
−0.936477 + 0.350728i \(0.885934\pi\)
\(788\) 0 0
\(789\) −2.07132 0.753898i −0.0737409 0.0268395i
\(790\) 0 0
\(791\) −19.0272 32.9560i −0.676529 1.17178i
\(792\) 0 0
\(793\) 13.8371 + 11.6107i 0.491369 + 0.412308i
\(794\) 0 0
\(795\) −7.22702 + 40.9865i −0.256316 + 1.45364i
\(796\) 0 0
\(797\) −28.2922 −1.00216 −0.501081 0.865401i \(-0.667064\pi\)
−0.501081 + 0.865401i \(0.667064\pi\)
\(798\) 0 0
\(799\) −69.7050 −2.46599
\(800\) 0 0
\(801\) −1.67733 + 9.51263i −0.0592657 + 0.336112i
\(802\) 0 0
\(803\) 1.04362 + 0.875699i 0.0368284 + 0.0309027i
\(804\) 0 0
\(805\) 50.4775 + 87.4296i 1.77910 + 3.08149i
\(806\) 0 0
\(807\) 24.5098 + 8.92083i 0.862785 + 0.314028i
\(808\) 0 0
\(809\) −24.1854 + 41.8903i −0.850313 + 1.47278i 0.0306136 + 0.999531i \(0.490254\pi\)
−0.880926 + 0.473253i \(0.843079\pi\)
\(810\) 0 0
\(811\) −5.10284 28.9397i −0.179185 1.01621i −0.933202 0.359353i \(-0.882997\pi\)
0.754016 0.656856i \(-0.228114\pi\)
\(812\) 0 0
\(813\) −11.6763 + 9.79756i −0.409505 + 0.343615i
\(814\) 0 0
\(815\) 1.91580 0.697293i 0.0671074 0.0244251i
\(816\) 0 0
\(817\) 13.2286 + 29.7294i 0.462809 + 1.04010i
\(818\) 0 0
\(819\) 7.69067 2.79918i 0.268734 0.0978111i
\(820\) 0 0
\(821\) 9.46072 7.93849i 0.330181 0.277055i −0.462592 0.886571i \(-0.653081\pi\)
0.792774 + 0.609516i \(0.208636\pi\)
\(822\) 0 0
\(823\) 0.161621 + 0.916595i 0.00563374 + 0.0319505i 0.987495 0.157650i \(-0.0503918\pi\)
−0.981861 + 0.189601i \(0.939281\pi\)
\(824\) 0 0
\(825\) 5.20357 9.01285i 0.181165 0.313787i
\(826\) 0 0
\(827\) −12.5684 4.57452i −0.437045 0.159072i 0.114121 0.993467i \(-0.463595\pi\)
−0.551166 + 0.834395i \(0.685817\pi\)
\(828\) 0 0
\(829\) −7.57975 13.1285i −0.263256 0.455972i 0.703850 0.710349i \(-0.251463\pi\)
−0.967105 + 0.254377i \(0.918130\pi\)
\(830\) 0 0
\(831\) −0.340214 0.285473i −0.0118019 0.00990295i
\(832\) 0 0
\(833\) 8.97202 50.8829i 0.310862 1.76299i
\(834\) 0 0
\(835\) 35.2299 1.21918
\(836\) 0 0
\(837\) 0.820942 0.0283759
\(838\) 0 0
\(839\) −1.47532 + 8.36698i −0.0509338 + 0.288860i −0.999626 0.0273405i \(-0.991296\pi\)
0.948692 + 0.316201i \(0.102407\pi\)
\(840\) 0 0
\(841\) −0.316509 0.265583i −0.0109141 0.00915803i
\(842\) 0 0
\(843\) −6.87780 11.9127i −0.236884 0.410295i
\(844\) 0 0
\(845\) −30.5363 11.1143i −1.05048 0.382344i
\(846\) 0 0
\(847\) −18.6474 + 32.2982i −0.640732 + 1.10978i
\(848\) 0 0
\(849\) 0.361652 + 2.05103i 0.0124119 + 0.0703912i
\(850\) 0 0
\(851\) 28.8751 24.2291i 0.989825 0.830562i
\(852\) 0 0
\(853\) −24.1916 + 8.80502i −0.828304 + 0.301478i −0.721163 0.692766i \(-0.756392\pi\)
−0.107142 + 0.994244i \(0.534170\pi\)
\(854\) 0 0
\(855\) −1.22817 17.6193i −0.0420024 0.602566i
\(856\) 0 0
\(857\) −13.9063 + 5.06149i −0.475031 + 0.172897i −0.568430 0.822732i \(-0.692449\pi\)
0.0933991 + 0.995629i \(0.470227\pi\)
\(858\) 0 0
\(859\) −36.1968 + 30.3727i −1.23502 + 1.03630i −0.237122 + 0.971480i \(0.576204\pi\)
−0.997897 + 0.0648237i \(0.979351\pi\)
\(860\) 0 0
\(861\) 2.82523 + 16.0227i 0.0962837 + 0.546052i
\(862\) 0 0
\(863\) −5.35569 + 9.27632i −0.182310 + 0.315770i −0.942667 0.333736i \(-0.891691\pi\)
0.760357 + 0.649505i \(0.225024\pi\)
\(864\) 0 0
\(865\) 11.4366 + 4.16257i 0.388855 + 0.141532i
\(866\) 0 0
\(867\) 23.5858 + 40.8518i 0.801015 + 1.38740i
\(868\) 0 0
\(869\) −4.47427 3.75435i −0.151779 0.127358i
\(870\) 0 0
\(871\) −2.43028 + 13.7828i −0.0823469 + 0.467013i
\(872\) 0 0
\(873\) 16.9755 0.574534
\(874\) 0 0
\(875\) 95.3757 3.22429
\(876\) 0 0
\(877\) 8.81428 49.9883i 0.297637 1.68798i −0.358649 0.933472i \(-0.616763\pi\)
0.656286 0.754512i \(-0.272126\pi\)
\(878\) 0 0
\(879\) −23.9525 20.0985i −0.807898 0.677907i
\(880\) 0 0
\(881\) −25.8312 44.7409i −0.870274 1.50736i −0.861713 0.507395i \(-0.830608\pi\)
−0.00856044 0.999963i \(-0.502725\pi\)
\(882\) 0 0
\(883\) −8.11623 2.95407i −0.273133 0.0994123i 0.201822 0.979422i \(-0.435314\pi\)
−0.474955 + 0.880010i \(0.657536\pi\)
\(884\) 0 0
\(885\) 14.6428 25.3620i 0.492211 0.852534i
\(886\) 0 0
\(887\) −2.06563 11.7148i −0.0693570 0.393343i −0.999648 0.0265212i \(-0.991557\pi\)
0.930291 0.366822i \(-0.119554\pi\)
\(888\) 0 0
\(889\) 2.97059 2.49262i 0.0996304 0.0835998i
\(890\) 0 0
\(891\) −0.856482 + 0.311734i −0.0286932 + 0.0104435i
\(892\) 0 0
\(893\) −26.3416 27.2895i −0.881487 0.913209i
\(894\) 0 0
\(895\) 64.0835 23.3245i 2.14208 0.779652i
\(896\) 0 0
\(897\) 11.6139 9.74526i 0.387778 0.325385i
\(898\) 0 0
\(899\) 0.762195 + 4.32262i 0.0254206 + 0.144167i
\(900\) 0 0
\(901\) 41.1403 71.2570i 1.37058 2.37392i
\(902\) 0 0
\(903\) 25.7265 + 9.36369i 0.856126 + 0.311604i
\(904\) 0 0
\(905\) 9.98403 + 17.2928i 0.331880 + 0.574834i
\(906\) 0 0
\(907\) 20.6048 + 17.2895i 0.684171 + 0.574087i 0.917222 0.398377i \(-0.130426\pi\)
−0.233051 + 0.972465i \(0.574871\pi\)
\(908\) 0 0
\(909\) −0.0867965 + 0.492247i −0.00287886 + 0.0163268i
\(910\) 0 0
\(911\) −26.1368 −0.865950 −0.432975 0.901406i \(-0.642536\pi\)
−0.432975 + 0.901406i \(0.642536\pi\)
\(912\) 0 0
\(913\) 0.151638 0.00501849
\(914\) 0 0
\(915\) 5.69514 32.2987i 0.188275 1.06776i
\(916\) 0 0
\(917\) 21.4767 + 18.0211i 0.709223 + 0.595108i
\(918\) 0 0
\(919\) 26.7362 + 46.3084i 0.881945 + 1.52757i 0.849175 + 0.528111i \(0.177100\pi\)
0.0327702 + 0.999463i \(0.489567\pi\)
\(920\) 0 0
\(921\) −24.6318 8.96524i −0.811645 0.295415i
\(922\) 0 0
\(923\) −14.8132 + 25.6571i −0.487581 + 0.844515i
\(924\) 0 0
\(925\) −11.0010 62.3898i −0.361711 2.05136i
\(926\) 0 0
\(927\) −6.22778 + 5.22573i −0.204547 + 0.171635i
\(928\) 0 0
\(929\) 18.2611 6.64648i 0.599126 0.218064i −0.0246126 0.999697i \(-0.507835\pi\)
0.623739 + 0.781633i \(0.285613\pi\)
\(930\) 0 0
\(931\) 23.3112 15.7161i 0.763993 0.515076i
\(932\) 0 0
\(933\) −17.7510 + 6.46083i −0.581141 + 0.211518i
\(934\) 0 0
\(935\) −22.6632 + 19.0167i −0.741165 + 0.621912i
\(936\) 0 0
\(937\) 2.16285 + 12.2661i 0.0706572 + 0.400717i 0.999540 + 0.0303421i \(0.00965968\pi\)
−0.928882 + 0.370375i \(0.879229\pi\)
\(938\) 0 0
\(939\) 7.67149 13.2874i 0.250350 0.433618i
\(940\) 0 0
\(941\) 27.4868 + 10.0044i 0.896045 + 0.326134i 0.748667 0.662947i \(-0.230694\pi\)
0.147378 + 0.989080i \(0.452917\pi\)
\(942\) 0 0
\(943\) 15.0696 + 26.1013i 0.490734 + 0.849976i
\(944\) 0 0
\(945\) −11.3835 9.55189i −0.370305 0.310723i
\(946\) 0 0
\(947\) −2.89823 + 16.4367i −0.0941797 + 0.534120i 0.900816 + 0.434201i \(0.142969\pi\)
−0.994996 + 0.0999184i \(0.968142\pi\)
\(948\) 0 0
\(949\) 3.33560 0.108278
\(950\) 0 0
\(951\) −20.0041 −0.648678
\(952\) 0 0
\(953\) 6.88534 39.0487i 0.223038 1.26491i −0.643362 0.765562i \(-0.722461\pi\)
0.866400 0.499350i \(-0.166428\pi\)
\(954\) 0 0
\(955\) −12.6745 10.6352i −0.410138 0.344146i
\(956\) 0 0
\(957\) −2.43661 4.22033i −0.0787643 0.136424i
\(958\) 0 0
\(959\) 9.73031 + 3.54154i 0.314208 + 0.114362i
\(960\) 0 0
\(961\) 15.1630 26.2631i 0.489130 0.847198i
\(962\) 0 0
\(963\) 0.628695 + 3.56550i 0.0202594 + 0.114897i
\(964\) 0 0
\(965\) −5.17186 + 4.33971i −0.166488 + 0.139700i
\(966\) 0 0
\(967\) −35.9683 + 13.0914i −1.15666 + 0.420991i −0.847904 0.530149i \(-0.822136\pi\)
−0.308759 + 0.951140i \(0.599914\pi\)
\(968\) 0 0
\(969\) −9.63206 + 33.5631i −0.309426 + 1.07820i
\(970\) 0 0
\(971\) −11.8519 + 4.31373i −0.380345 + 0.138434i −0.525115 0.851031i \(-0.675978\pi\)
0.144771 + 0.989465i \(0.453756\pi\)
\(972\) 0 0
\(973\) 18.7490 15.7323i 0.601065 0.504353i
\(974\) 0 0
\(975\) −4.42475 25.0940i −0.141706 0.803652i
\(976\) 0 0
\(977\) 18.4011 31.8716i 0.588702 1.01966i −0.405701 0.914006i \(-0.632972\pi\)
0.994403 0.105656i \(-0.0336942\pi\)
\(978\) 0 0
\(979\) 8.27309 + 3.01116i 0.264409 + 0.0962370i
\(980\) 0 0
\(981\) 2.38146 + 4.12481i 0.0760341 + 0.131695i
\(982\) 0 0
\(983\) 5.84912 + 4.90799i 0.186558 + 0.156541i 0.731283 0.682074i \(-0.238922\pi\)
−0.544725 + 0.838614i \(0.683366\pi\)
\(984\) 0 0
\(985\) 12.9714 73.5644i 0.413303 2.34396i
\(986\) 0 0
\(987\) −31.9118 −1.01576
\(988\) 0 0
\(989\) 50.7158 1.61267
\(990\) 0 0
\(991\) 8.07919 45.8194i 0.256644 1.45550i −0.535174 0.844742i \(-0.679754\pi\)
0.791818 0.610758i \(-0.209135\pi\)
\(992\) 0 0
\(993\) −15.6001 13.0900i −0.495054 0.415400i
\(994\) 0 0
\(995\) 0.548855 + 0.950644i 0.0173999 + 0.0301375i
\(996\) 0 0
\(997\) −4.83733 1.76065i −0.153200 0.0557602i 0.264282 0.964445i \(-0.414865\pi\)
−0.417482 + 0.908685i \(0.637087\pi\)
\(998\) 0 0
\(999\) −2.77417 + 4.80500i −0.0877709 + 0.152024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 456.2.bg.d.385.1 yes 18
4.3 odd 2 912.2.bo.l.385.1 18
19.2 odd 18 8664.2.a.bp.1.2 9
19.4 even 9 inner 456.2.bg.d.289.1 18
19.17 even 9 8664.2.a.bn.1.2 9
76.23 odd 18 912.2.bo.l.289.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bg.d.289.1 18 19.4 even 9 inner
456.2.bg.d.385.1 yes 18 1.1 even 1 trivial
912.2.bo.l.289.1 18 76.23 odd 18
912.2.bo.l.385.1 18 4.3 odd 2
8664.2.a.bn.1.2 9 19.17 even 9
8664.2.a.bp.1.2 9 19.2 odd 18