Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [867,2,Mod(65,867)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(867, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([8, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("867.65");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 867 = 3 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 867.i (of order \(16\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.92302985525\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{16})\) |
Twist minimal: | no (minimal twist has level 51) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 | −0.762502 | − | 1.84084i | 0.275439 | + | 1.71001i | −1.39308 | + | 1.39308i | −0.240611 | − | 0.360100i | 2.93784 | − | 1.81093i | 2.28935 | + | 1.52969i | −0.0550167 | − | 0.0227887i | −2.84827 | + | 0.942008i | −0.479421 | + | 0.717504i |
65.2 | −0.295520 | − | 0.713449i | −1.72548 | − | 0.150682i | 0.992537 | − | 0.992537i | 1.44335 | + | 2.16012i | 0.402411 | + | 1.27557i | −3.21323 | − | 2.14701i | −2.42834 | − | 1.00585i | 2.95459 | + | 0.520000i | 1.11460 | − | 1.66811i |
65.3 | 0.295520 | + | 0.713449i | 1.65180 | + | 0.521102i | 0.992537 | − | 0.992537i | −1.44335 | − | 2.16012i | 0.116362 | + | 1.33247i | −3.21323 | − | 2.14701i | 2.42834 | + | 1.00585i | 2.45691 | + | 1.72151i | 1.11460 | − | 1.66811i |
65.4 | 0.762502 | + | 1.84084i | −0.908865 | + | 1.47444i | −1.39308 | + | 1.39308i | 0.240611 | + | 0.360100i | −3.40722 | − | 0.548817i | 2.28935 | + | 1.52969i | 0.0550167 | + | 0.0227887i | −1.34793 | − | 2.68013i | −0.479421 | + | 0.717504i |
131.1 | −1.88095 | + | 0.779115i | 0.508244 | + | 1.65580i | 1.51674 | − | 1.51674i | −0.405238 | + | 2.03727i | −2.24604 | − | 2.71850i | −1.95490 | + | 0.388855i | −0.112963 | + | 0.272718i | −2.48338 | + | 1.68311i | −0.825033 | − | 4.14772i |
131.2 | −0.419490 | + | 0.173759i | −0.0473558 | − | 1.73140i | −1.26843 | + | 1.26843i | −0.596910 | + | 3.00087i | 0.320711 | + | 0.718078i | 2.33759 | − | 0.464975i | 0.659211 | − | 1.59148i | −2.99551 | + | 0.163984i | −0.271029 | − | 1.36255i |
131.3 | 0.419490 | − | 0.173759i | 1.58149 | + | 0.706330i | −1.26843 | + | 1.26843i | 0.596910 | − | 3.00087i | 0.786149 | + | 0.0215020i | 2.33759 | − | 0.464975i | −0.659211 | + | 1.59148i | 2.00219 | + | 2.23410i | −0.271029 | − | 1.36255i |
131.4 | 1.88095 | − | 0.779115i | −1.33527 | − | 1.10321i | 1.51674 | − | 1.51674i | 0.405238 | − | 2.03727i | −3.37109 | − | 1.03475i | −1.95490 | + | 0.388855i | 0.112963 | − | 0.272718i | 0.565877 | + | 2.94615i | −0.825033 | − | 4.14772i |
158.1 | −1.34436 | + | 0.556851i | 1.44078 | + | 0.961322i | 0.0830021 | − | 0.0830021i | −2.99276 | − | 0.595296i | −2.47224 | − | 0.490059i | −0.420765 | − | 2.11533i | 1.04834 | − | 2.53091i | 1.15172 | + | 2.77012i | 4.35483 | − | 0.866229i |
158.2 | −0.774648 | + | 0.320870i | −1.73205 | − | 0.00133765i | −0.917091 | + | 0.917091i | 0.802626 | + | 0.159652i | 1.34216 | − | 0.554726i | 0.0380817 | + | 0.191449i | 1.05790 | − | 2.55399i | 3.00000 | + | 0.00463376i | −0.672980 | + | 0.133864i |
158.3 | 0.774648 | − | 0.320870i | 0.661591 | − | 1.60072i | −0.917091 | + | 0.917091i | −0.802626 | − | 0.159652i | −0.00112159 | − | 1.45228i | 0.0380817 | + | 0.191449i | −1.05790 | + | 2.55399i | −2.12459 | − | 2.11804i | −0.672980 | + | 0.133864i |
158.4 | 1.34436 | − | 0.556851i | 0.336782 | + | 1.69899i | 0.0830021 | − | 0.0830021i | 2.99276 | + | 0.595296i | 1.39884 | + | 2.09652i | −0.420765 | − | 2.11533i | −1.04834 | + | 2.53091i | −2.77316 | + | 1.14438i | 4.35483 | − | 0.866229i |
224.1 | −0.978223 | − | 2.36164i | −1.73097 | − | 0.0611151i | −3.20621 | + | 3.20621i | −1.92973 | + | 1.28940i | 1.54895 | + | 4.14772i | −0.0590250 | + | 0.0883372i | 5.98501 | + | 2.47907i | 2.99253 | + | 0.211577i | 4.93281 | + | 3.29600i |
224.2 | −0.503008 | − | 1.21437i | 1.11133 | + | 1.32851i | 0.192538 | − | 0.192538i | 0.116989 | − | 0.0781694i | 1.05430 | − | 2.01782i | 0.982905 | − | 1.47102i | −2.75940 | − | 1.14298i | −0.529896 | + | 2.95283i | −0.153773 | − | 0.102748i |
224.3 | 0.503008 | + | 1.21437i | 1.53513 | − | 0.802099i | 0.192538 | − | 0.192538i | −0.116989 | + | 0.0781694i | 1.74623 | + | 1.46076i | 0.982905 | − | 1.47102i | 2.75940 | + | 1.14298i | 1.71327 | − | 2.46266i | −0.153773 | − | 0.102748i |
224.4 | 0.978223 | + | 2.36164i | −1.62260 | − | 0.605951i | −3.20621 | + | 3.20621i | 1.92973 | − | 1.28940i | −0.156224 | − | 4.42475i | −0.0590250 | + | 0.0883372i | −5.98501 | − | 2.47907i | 2.26565 | + | 1.96643i | 4.93281 | + | 3.29600i |
329.1 | −0.978223 | + | 2.36164i | −1.73097 | + | 0.0611151i | −3.20621 | − | 3.20621i | −1.92973 | − | 1.28940i | 1.54895 | − | 4.14772i | −0.0590250 | − | 0.0883372i | 5.98501 | − | 2.47907i | 2.99253 | − | 0.211577i | 4.93281 | − | 3.29600i |
329.2 | −0.503008 | + | 1.21437i | 1.11133 | − | 1.32851i | 0.192538 | + | 0.192538i | 0.116989 | + | 0.0781694i | 1.05430 | + | 2.01782i | 0.982905 | + | 1.47102i | −2.75940 | + | 1.14298i | −0.529896 | − | 2.95283i | −0.153773 | + | 0.102748i |
329.3 | 0.503008 | − | 1.21437i | 1.53513 | + | 0.802099i | 0.192538 | + | 0.192538i | −0.116989 | − | 0.0781694i | 1.74623 | − | 1.46076i | 0.982905 | + | 1.47102i | 2.75940 | − | 1.14298i | 1.71327 | + | 2.46266i | −0.153773 | + | 0.102748i |
329.4 | 0.978223 | − | 2.36164i | −1.62260 | + | 0.605951i | −3.20621 | − | 3.20621i | 1.92973 | + | 1.28940i | −0.156224 | + | 4.42475i | −0.0590250 | − | 0.0883372i | −5.98501 | + | 2.47907i | 2.26565 | − | 1.96643i | 4.93281 | − | 3.29600i |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
17.e | odd | 16 | 1 | inner |
51.i | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 867.2.i.d | 32 | |
3.b | odd | 2 | 1 | inner | 867.2.i.d | 32 | |
17.b | even | 2 | 1 | 867.2.i.c | 32 | ||
17.c | even | 4 | 1 | 51.2.i.a | ✓ | 32 | |
17.c | even | 4 | 1 | 867.2.i.h | 32 | ||
17.d | even | 8 | 1 | 867.2.i.b | 32 | ||
17.d | even | 8 | 1 | 867.2.i.f | 32 | ||
17.d | even | 8 | 1 | 867.2.i.g | 32 | ||
17.d | even | 8 | 1 | 867.2.i.i | 32 | ||
17.e | odd | 16 | 1 | 51.2.i.a | ✓ | 32 | |
17.e | odd | 16 | 1 | 867.2.i.b | 32 | ||
17.e | odd | 16 | 1 | 867.2.i.c | 32 | ||
17.e | odd | 16 | 1 | inner | 867.2.i.d | 32 | |
17.e | odd | 16 | 1 | 867.2.i.f | 32 | ||
17.e | odd | 16 | 1 | 867.2.i.g | 32 | ||
17.e | odd | 16 | 1 | 867.2.i.h | 32 | ||
17.e | odd | 16 | 1 | 867.2.i.i | 32 | ||
51.c | odd | 2 | 1 | 867.2.i.c | 32 | ||
51.f | odd | 4 | 1 | 51.2.i.a | ✓ | 32 | |
51.f | odd | 4 | 1 | 867.2.i.h | 32 | ||
51.g | odd | 8 | 1 | 867.2.i.b | 32 | ||
51.g | odd | 8 | 1 | 867.2.i.f | 32 | ||
51.g | odd | 8 | 1 | 867.2.i.g | 32 | ||
51.g | odd | 8 | 1 | 867.2.i.i | 32 | ||
51.i | even | 16 | 1 | 51.2.i.a | ✓ | 32 | |
51.i | even | 16 | 1 | 867.2.i.b | 32 | ||
51.i | even | 16 | 1 | 867.2.i.c | 32 | ||
51.i | even | 16 | 1 | inner | 867.2.i.d | 32 | |
51.i | even | 16 | 1 | 867.2.i.f | 32 | ||
51.i | even | 16 | 1 | 867.2.i.g | 32 | ||
51.i | even | 16 | 1 | 867.2.i.h | 32 | ||
51.i | even | 16 | 1 | 867.2.i.i | 32 | ||
68.f | odd | 4 | 1 | 816.2.cj.c | 32 | ||
68.i | even | 16 | 1 | 816.2.cj.c | 32 | ||
204.l | even | 4 | 1 | 816.2.cj.c | 32 | ||
204.t | odd | 16 | 1 | 816.2.cj.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.2.i.a | ✓ | 32 | 17.c | even | 4 | 1 | |
51.2.i.a | ✓ | 32 | 17.e | odd | 16 | 1 | |
51.2.i.a | ✓ | 32 | 51.f | odd | 4 | 1 | |
51.2.i.a | ✓ | 32 | 51.i | even | 16 | 1 | |
816.2.cj.c | 32 | 68.f | odd | 4 | 1 | ||
816.2.cj.c | 32 | 68.i | even | 16 | 1 | ||
816.2.cj.c | 32 | 204.l | even | 4 | 1 | ||
816.2.cj.c | 32 | 204.t | odd | 16 | 1 | ||
867.2.i.b | 32 | 17.d | even | 8 | 1 | ||
867.2.i.b | 32 | 17.e | odd | 16 | 1 | ||
867.2.i.b | 32 | 51.g | odd | 8 | 1 | ||
867.2.i.b | 32 | 51.i | even | 16 | 1 | ||
867.2.i.c | 32 | 17.b | even | 2 | 1 | ||
867.2.i.c | 32 | 17.e | odd | 16 | 1 | ||
867.2.i.c | 32 | 51.c | odd | 2 | 1 | ||
867.2.i.c | 32 | 51.i | even | 16 | 1 | ||
867.2.i.d | 32 | 1.a | even | 1 | 1 | trivial | |
867.2.i.d | 32 | 3.b | odd | 2 | 1 | inner | |
867.2.i.d | 32 | 17.e | odd | 16 | 1 | inner | |
867.2.i.d | 32 | 51.i | even | 16 | 1 | inner | |
867.2.i.f | 32 | 17.d | even | 8 | 1 | ||
867.2.i.f | 32 | 17.e | odd | 16 | 1 | ||
867.2.i.f | 32 | 51.g | odd | 8 | 1 | ||
867.2.i.f | 32 | 51.i | even | 16 | 1 | ||
867.2.i.g | 32 | 17.d | even | 8 | 1 | ||
867.2.i.g | 32 | 17.e | odd | 16 | 1 | ||
867.2.i.g | 32 | 51.g | odd | 8 | 1 | ||
867.2.i.g | 32 | 51.i | even | 16 | 1 | ||
867.2.i.h | 32 | 17.c | even | 4 | 1 | ||
867.2.i.h | 32 | 17.e | odd | 16 | 1 | ||
867.2.i.h | 32 | 51.f | odd | 4 | 1 | ||
867.2.i.h | 32 | 51.i | even | 16 | 1 | ||
867.2.i.i | 32 | 17.d | even | 8 | 1 | ||
867.2.i.i | 32 | 17.e | odd | 16 | 1 | ||
867.2.i.i | 32 | 51.g | odd | 8 | 1 | ||
867.2.i.i | 32 | 51.i | even | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(867, [\chi])\):
\( T_{2}^{32} + 8 T_{2}^{30} + 32 T_{2}^{28} - 40 T_{2}^{26} + 366 T_{2}^{24} + 2552 T_{2}^{22} + \cdots + 1156 \)
|
\( T_{5}^{32} + 8 T_{5}^{30} - 52 T_{5}^{28} - 656 T_{5}^{26} + 456 T_{5}^{24} + 27912 T_{5}^{22} + \cdots + 1156 \)
|
\( T_{7}^{16} - 12 T_{7}^{14} - 8 T_{7}^{13} + 150 T_{7}^{12} - 176 T_{7}^{11} - 60 T_{7}^{10} + 120 T_{7}^{9} + \cdots + 16 \)
|