Properties

Label 867.2.i.d.158.2
Level $867$
Weight $2$
Character 867.158
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 158.2
Character \(\chi\) \(=\) 867.158
Dual form 867.2.i.d.653.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.774648 + 0.320870i) q^{2} +(-1.73205 - 0.00133765i) q^{3} +(-0.917091 + 0.917091i) q^{4} +(0.802626 + 0.159652i) q^{5} +(1.34216 - 0.554726i) q^{6} +(0.0380817 + 0.191449i) q^{7} +(1.05790 - 2.55399i) q^{8} +(3.00000 + 0.00463376i) q^{9} +(-0.672980 + 0.133864i) q^{10} +(-2.45341 + 3.67179i) q^{11} +(1.58968 - 1.58722i) q^{12} +(-3.75023 - 3.75023i) q^{13} +(-0.0909302 - 0.136087i) q^{14} +(-1.38998 - 0.277599i) q^{15} -0.276039i q^{16} +(-2.32543 + 0.959018i) q^{18} +(-0.210831 - 0.508991i) q^{19} +(-0.882497 + 0.589666i) q^{20} +(-0.0657033 - 0.331651i) q^{21} +(0.722364 - 3.63157i) q^{22} +(3.43849 + 2.29752i) q^{23} +(-1.83574 + 4.42222i) q^{24} +(-4.00068 - 1.65713i) q^{25} +(4.10844 + 1.70177i) q^{26} +(-5.19614 - 0.0120389i) q^{27} +(-0.210501 - 0.140652i) q^{28} +(0.120733 - 0.606965i) q^{29} +(1.16581 - 0.230959i) q^{30} +(0.553739 - 0.369997i) q^{31} +(2.20436 + 5.32181i) q^{32} +(4.25434 - 6.35644i) q^{33} +0.159742i q^{35} +(-2.75552 + 2.74702i) q^{36} +(-1.09126 - 1.63319i) q^{37} +(0.326640 + 0.326640i) q^{38} +(6.49057 + 6.50060i) q^{39} +(1.25684 - 1.88100i) q^{40} +(-7.84141 + 1.55975i) q^{41} +(0.157314 + 0.235831i) q^{42} +(2.95422 - 7.13212i) q^{43} +(-1.11736 - 5.61737i) q^{44} +(2.40714 + 0.482675i) q^{45} +(-3.40082 - 0.676466i) q^{46} +(7.05884 - 7.05884i) q^{47} +(-0.000369245 + 0.478114i) q^{48} +(6.43195 - 2.66420i) q^{49} +3.63084 q^{50} +6.87860 q^{52} +(10.7049 - 4.43410i) q^{53} +(4.02904 - 1.65796i) q^{54} +(-2.55538 + 2.55538i) q^{55} +(0.529246 + 0.105274i) q^{56} +(0.364489 + 0.881880i) q^{57} +(0.101231 + 0.508924i) q^{58} +(0.0995233 - 0.240270i) q^{59} +(1.52932 - 1.02015i) q^{60} +(10.3478 - 2.05830i) q^{61} +(-0.310232 + 0.464295i) q^{62} +(0.113358 + 0.574524i) q^{63} +(-3.02483 - 3.02483i) q^{64} +(-2.41130 - 3.60876i) q^{65} +(-1.25603 + 6.28910i) q^{66} +5.40994i q^{67} +(-5.95256 - 3.98403i) q^{69} +(-0.0512564 - 0.123744i) q^{70} +(5.41686 - 3.61943i) q^{71} +(3.18552 - 7.65705i) q^{72} +(2.26406 - 11.3822i) q^{73} +(1.36939 + 0.914994i) q^{74} +(6.92716 + 2.87559i) q^{75} +(0.660143 + 0.273440i) q^{76} +(-0.796392 - 0.329876i) q^{77} +(-7.11375 - 2.95305i) q^{78} +(8.98758 + 6.00531i) q^{79} +(0.0440703 - 0.221556i) q^{80} +(8.99996 + 0.0278025i) q^{81} +(5.57385 - 3.72433i) q^{82} +(-1.05744 - 2.55289i) q^{83} +(0.364410 + 0.243898i) q^{84} +6.47280i q^{86} +(-0.209927 + 1.05113i) q^{87} +(6.78225 + 10.1503i) q^{88} +(-3.69661 - 3.69661i) q^{89} +(-2.01956 + 0.398473i) q^{90} +(0.575164 - 0.860794i) q^{91} +(-5.26045 + 1.04637i) q^{92} +(-0.959599 + 0.640112i) q^{93} +(-3.20315 + 7.73308i) q^{94} +(-0.0879569 - 0.442189i) q^{95} +(-3.81095 - 9.22058i) q^{96} +(-2.42163 - 0.481692i) q^{97} +(-4.12764 + 4.12764i) q^{98} +(-7.37724 + 11.0040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{4} + 8 q^{9} + 32 q^{10} + 24 q^{12} - 16 q^{13} - 16 q^{15} + 16 q^{18} + 16 q^{19} + 16 q^{21} - 48 q^{22} + 8 q^{24} - 16 q^{25} - 48 q^{27} - 64 q^{28} - 8 q^{30} + 16 q^{31} - 8 q^{36}+ \cdots + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.774648 + 0.320870i −0.547759 + 0.226889i −0.639361 0.768907i \(-0.720801\pi\)
0.0916024 + 0.995796i \(0.470801\pi\)
\(3\) −1.73205 0.00133765i −1.00000 0.000772294i
\(4\) −0.917091 + 0.917091i −0.458546 + 0.458546i
\(5\) 0.802626 + 0.159652i 0.358945 + 0.0713987i 0.371269 0.928525i \(-0.378923\pi\)
−0.0123235 + 0.999924i \(0.503923\pi\)
\(6\) 1.34216 0.554726i 0.547934 0.226466i
\(7\) 0.0380817 + 0.191449i 0.0143935 + 0.0723611i 0.987314 0.158777i \(-0.0507551\pi\)
−0.972921 + 0.231138i \(0.925755\pi\)
\(8\) 1.05790 2.55399i 0.374023 0.902970i
\(9\) 3.00000 + 0.00463376i 0.999999 + 0.00154459i
\(10\) −0.672980 + 0.133864i −0.212815 + 0.0423316i
\(11\) −2.45341 + 3.67179i −0.739731 + 1.10709i 0.250563 + 0.968100i \(0.419384\pi\)
−0.990294 + 0.138986i \(0.955616\pi\)
\(12\) 1.58968 1.58722i 0.458900 0.458191i
\(13\) −3.75023 3.75023i −1.04013 1.04013i −0.999161 0.0409655i \(-0.986957\pi\)
−0.0409655 0.999161i \(-0.513043\pi\)
\(14\) −0.0909302 0.136087i −0.0243021 0.0363707i
\(15\) −1.38998 0.277599i −0.358890 0.0716759i
\(16\) 0.276039i 0.0690098i
\(17\) 0 0
\(18\) −2.32543 + 0.959018i −0.548109 + 0.226043i
\(19\) −0.210831 0.508991i −0.0483680 0.116771i 0.897849 0.440304i \(-0.145129\pi\)
−0.946217 + 0.323533i \(0.895129\pi\)
\(20\) −0.882497 + 0.589666i −0.197332 + 0.131853i
\(21\) −0.0657033 0.331651i −0.0143376 0.0723722i
\(22\) 0.722364 3.63157i 0.154009 0.774253i
\(23\) 3.43849 + 2.29752i 0.716974 + 0.479067i 0.859768 0.510686i \(-0.170608\pi\)
−0.142793 + 0.989753i \(0.545608\pi\)
\(24\) −1.83574 + 4.42222i −0.374720 + 0.902681i
\(25\) −4.00068 1.65713i −0.800136 0.331427i
\(26\) 4.10844 + 1.70177i 0.805732 + 0.333745i
\(27\) −5.19614 0.0120389i −0.999997 0.00231688i
\(28\) −0.210501 0.140652i −0.0397810 0.0265808i
\(29\) 0.120733 0.606965i 0.0224195 0.112711i −0.967955 0.251123i \(-0.919200\pi\)
0.990375 + 0.138413i \(0.0442000\pi\)
\(30\) 1.16581 0.230959i 0.212848 0.0421672i
\(31\) 0.553739 0.369997i 0.0994545 0.0664533i −0.504849 0.863208i \(-0.668452\pi\)
0.604303 + 0.796755i \(0.293452\pi\)
\(32\) 2.20436 + 5.32181i 0.389680 + 0.940771i
\(33\) 4.25434 6.35644i 0.740586 1.10651i
\(34\) 0 0
\(35\) 0.159742i 0.0270014i
\(36\) −2.75552 + 2.74702i −0.459253 + 0.457837i
\(37\) −1.09126 1.63319i −0.179402 0.268495i 0.730859 0.682528i \(-0.239120\pi\)
−0.910262 + 0.414034i \(0.864120\pi\)
\(38\) 0.326640 + 0.326640i 0.0529880 + 0.0529880i
\(39\) 6.49057 + 6.50060i 1.03932 + 1.04093i
\(40\) 1.25684 1.88100i 0.198725 0.297412i
\(41\) −7.84141 + 1.55975i −1.22462 + 0.243592i −0.764712 0.644373i \(-0.777119\pi\)
−0.459911 + 0.887965i \(0.652119\pi\)
\(42\) 0.157314 + 0.235831i 0.0242740 + 0.0363895i
\(43\) 2.95422 7.13212i 0.450514 1.08764i −0.521613 0.853182i \(-0.674669\pi\)
0.972127 0.234455i \(-0.0753307\pi\)
\(44\) −1.11736 5.61737i −0.168449 0.846850i
\(45\) 2.40714 + 0.482675i 0.358835 + 0.0719530i
\(46\) −3.40082 0.676466i −0.501424 0.0997395i
\(47\) 7.05884 7.05884i 1.02964 1.02964i 0.0300900 0.999547i \(-0.490421\pi\)
0.999547 0.0300900i \(-0.00957939\pi\)
\(48\) −0.000369245 0.478114i −5.32959e−5 0.0690098i
\(49\) 6.43195 2.66420i 0.918851 0.380600i
\(50\) 3.63084 0.513479
\(51\) 0 0
\(52\) 6.87860 0.953891
\(53\) 10.7049 4.43410i 1.47043 0.609071i 0.503471 0.864012i \(-0.332056\pi\)
0.966957 + 0.254941i \(0.0820561\pi\)
\(54\) 4.02904 1.65796i 0.548283 0.225619i
\(55\) −2.55538 + 2.55538i −0.344568 + 0.344568i
\(56\) 0.529246 + 0.105274i 0.0707234 + 0.0140678i
\(57\) 0.364489 + 0.881880i 0.0482778 + 0.116808i
\(58\) 0.101231 + 0.508924i 0.0132923 + 0.0668249i
\(59\) 0.0995233 0.240270i 0.0129568 0.0312805i −0.917269 0.398269i \(-0.869611\pi\)
0.930226 + 0.366988i \(0.119611\pi\)
\(60\) 1.52932 1.02015i 0.197434 0.131701i
\(61\) 10.3478 2.05830i 1.32490 0.263539i 0.518584 0.855026i \(-0.326459\pi\)
0.806314 + 0.591488i \(0.201459\pi\)
\(62\) −0.310232 + 0.464295i −0.0393995 + 0.0589655i
\(63\) 0.113358 + 0.574524i 0.0142817 + 0.0723832i
\(64\) −3.02483 3.02483i −0.378104 0.378104i
\(65\) −2.41130 3.60876i −0.299085 0.447612i
\(66\) −1.25603 + 6.28910i −0.154606 + 0.774134i
\(67\) 5.40994i 0.660929i 0.943818 + 0.330465i \(0.107205\pi\)
−0.943818 + 0.330465i \(0.892795\pi\)
\(68\) 0 0
\(69\) −5.95256 3.98403i −0.716604 0.479621i
\(70\) −0.0512564 0.123744i −0.00612632 0.0147902i
\(71\) 5.41686 3.61943i 0.642864 0.429548i −0.190945 0.981601i \(-0.561155\pi\)
0.833809 + 0.552053i \(0.186155\pi\)
\(72\) 3.18552 7.65705i 0.375417 0.902392i
\(73\) 2.26406 11.3822i 0.264988 1.33218i −0.587409 0.809290i \(-0.699852\pi\)
0.852397 0.522895i \(-0.175148\pi\)
\(74\) 1.36939 + 0.914994i 0.159188 + 0.106366i
\(75\) 6.92716 + 2.87559i 0.799879 + 0.332045i
\(76\) 0.660143 + 0.273440i 0.0757236 + 0.0313657i
\(77\) −0.796392 0.329876i −0.0907573 0.0375929i
\(78\) −7.11375 2.95305i −0.805474 0.334367i
\(79\) 8.98758 + 6.00531i 1.01118 + 0.675650i 0.946649 0.322266i \(-0.104444\pi\)
0.0645322 + 0.997916i \(0.479444\pi\)
\(80\) 0.0440703 0.221556i 0.00492721 0.0247708i
\(81\) 8.99996 + 0.0278025i 0.999995 + 0.00308917i
\(82\) 5.57385 3.72433i 0.615529 0.411283i
\(83\) −1.05744 2.55289i −0.116069 0.280216i 0.855159 0.518365i \(-0.173459\pi\)
−0.971229 + 0.238149i \(0.923459\pi\)
\(84\) 0.364410 + 0.243898i 0.0397604 + 0.0266115i
\(85\) 0 0
\(86\) 6.47280i 0.697980i
\(87\) −0.209927 + 1.05113i −0.0225066 + 0.112693i
\(88\) 6.78225 + 10.1503i 0.722990 + 1.08203i
\(89\) −3.69661 3.69661i −0.391839 0.391839i 0.483503 0.875343i \(-0.339364\pi\)
−0.875343 + 0.483503i \(0.839364\pi\)
\(90\) −2.01956 + 0.398473i −0.212880 + 0.0420028i
\(91\) 0.575164 0.860794i 0.0602936 0.0902357i
\(92\) −5.26045 + 1.04637i −0.548440 + 0.109091i
\(93\) −0.959599 + 0.640112i −0.0995057 + 0.0663765i
\(94\) −3.20315 + 7.73308i −0.330379 + 0.797606i
\(95\) −0.0879569 0.442189i −0.00902419 0.0453677i
\(96\) −3.81095 9.22058i −0.388953 0.941072i
\(97\) −2.42163 0.481692i −0.245879 0.0489084i 0.0706120 0.997504i \(-0.477505\pi\)
−0.316491 + 0.948595i \(0.602505\pi\)
\(98\) −4.12764 + 4.12764i −0.416954 + 0.416954i
\(99\) −7.37724 + 11.0040i −0.741441 + 1.10594i
\(100\) 5.18873 2.14924i 0.518873 0.214924i
\(101\) −6.79257 −0.675886 −0.337943 0.941167i \(-0.609731\pi\)
−0.337943 + 0.941167i \(0.609731\pi\)
\(102\) 0 0
\(103\) 2.47763 0.244128 0.122064 0.992522i \(-0.461049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(104\) −13.5454 + 5.61068i −1.32823 + 0.550172i
\(105\) 0.000213679 0.276681i 2.08530e−5 0.0270013i
\(106\) −6.86974 + 6.86974i −0.667248 + 0.667248i
\(107\) −4.03497 0.802606i −0.390076 0.0775909i −0.00384387 0.999993i \(-0.501224\pi\)
−0.386232 + 0.922402i \(0.626224\pi\)
\(108\) 4.77637 4.75429i 0.459607 0.457482i
\(109\) −2.46757 12.4053i −0.236350 1.18821i −0.898545 0.438881i \(-0.855375\pi\)
0.662195 0.749332i \(-0.269625\pi\)
\(110\) 1.15958 2.79947i 0.110561 0.266919i
\(111\) 1.88794 + 2.83023i 0.179195 + 0.268633i
\(112\) 0.0528476 0.0105120i 0.00499363 0.000993294i
\(113\) −0.686845 + 1.02794i −0.0646130 + 0.0967001i −0.862369 0.506280i \(-0.831020\pi\)
0.797756 + 0.602980i \(0.206020\pi\)
\(114\) −0.565320 0.566193i −0.0529470 0.0530289i
\(115\) 2.39302 + 2.39302i 0.223150 + 0.223150i
\(116\) 0.445919 + 0.667365i 0.0414026 + 0.0619633i
\(117\) −11.2333 11.2680i −1.03852 1.04173i
\(118\) 0.218059i 0.0200740i
\(119\) 0 0
\(120\) −2.17943 + 3.25631i −0.198954 + 0.297259i
\(121\) −3.25330 7.85415i −0.295754 0.714014i
\(122\) −7.35545 + 4.91475i −0.665931 + 0.444961i
\(123\) 13.5838 2.69108i 1.22481 0.242647i
\(124\) −0.168509 + 0.847150i −0.0151325 + 0.0760763i
\(125\) −6.34865 4.24203i −0.567841 0.379419i
\(126\) −0.272160 0.408681i −0.0242459 0.0364082i
\(127\) 8.17992 + 3.38823i 0.725850 + 0.300657i 0.714845 0.699282i \(-0.246497\pi\)
0.0110047 + 0.999939i \(0.496497\pi\)
\(128\) −7.32985 3.03612i −0.647873 0.268358i
\(129\) −5.12640 + 12.3492i −0.451354 + 1.08729i
\(130\) 3.02585 + 2.02181i 0.265385 + 0.177324i
\(131\) −1.91820 + 9.64343i −0.167594 + 0.842551i 0.801904 + 0.597452i \(0.203820\pi\)
−0.969498 + 0.245098i \(0.921180\pi\)
\(132\) 1.92782 + 9.73106i 0.167795 + 0.846980i
\(133\) 0.0894173 0.0597467i 0.00775346 0.00518070i
\(134\) −1.73589 4.19080i −0.149958 0.362030i
\(135\) −4.16863 0.839238i −0.358779 0.0722301i
\(136\) 0 0
\(137\) 12.6644i 1.08200i −0.841024 0.540998i \(-0.818047\pi\)
0.841024 0.540998i \(-0.181953\pi\)
\(138\) 5.88949 + 1.17622i 0.501347 + 0.100127i
\(139\) −6.61453 9.89935i −0.561038 0.839652i 0.437177 0.899375i \(-0.355978\pi\)
−0.998215 + 0.0597233i \(0.980978\pi\)
\(140\) −0.146498 0.146498i −0.0123814 0.0123814i
\(141\) −12.2357 + 12.2168i −1.03043 + 1.02884i
\(142\) −3.03480 + 4.54189i −0.254675 + 0.381147i
\(143\) 22.9709 4.56920i 1.92092 0.382095i
\(144\) 0.00127910 0.828117i 0.000106592 0.0690097i
\(145\) 0.193807 0.467891i 0.0160948 0.0388562i
\(146\) 1.89835 + 9.54366i 0.157109 + 0.789839i
\(147\) −11.1440 + 4.60593i −0.919144 + 0.379891i
\(148\) 2.49857 + 0.496997i 0.205381 + 0.0408529i
\(149\) −8.98104 + 8.98104i −0.735756 + 0.735756i −0.971754 0.235998i \(-0.924164\pi\)
0.235998 + 0.971754i \(0.424164\pi\)
\(150\) −6.28880 0.00485680i −0.513478 0.000396556i
\(151\) −0.732249 + 0.303307i −0.0595895 + 0.0246828i −0.412279 0.911058i \(-0.635267\pi\)
0.352690 + 0.935740i \(0.385267\pi\)
\(152\) −1.52299 −0.123531
\(153\) 0 0
\(154\) 0.722771 0.0582426
\(155\) 0.503516 0.208563i 0.0404434 0.0167522i
\(156\) −11.9141 0.00920118i −0.953890 0.000736684i
\(157\) −1.66767 + 1.66767i −0.133095 + 0.133095i −0.770516 0.637421i \(-0.780001\pi\)
0.637421 + 0.770516i \(0.280001\pi\)
\(158\) −8.88913 1.76816i −0.707181 0.140667i
\(159\) −18.5473 + 7.66577i −1.47090 + 0.607935i
\(160\) 0.919642 + 4.62335i 0.0727041 + 0.365508i
\(161\) −0.308916 + 0.745790i −0.0243460 + 0.0587765i
\(162\) −6.98072 + 2.86628i −0.548457 + 0.225196i
\(163\) 15.8218 3.14715i 1.23926 0.246504i 0.468403 0.883515i \(-0.344830\pi\)
0.770854 + 0.637012i \(0.219830\pi\)
\(164\) 5.76085 8.62172i 0.449847 0.673243i
\(165\) 4.42947 4.42263i 0.344834 0.344301i
\(166\) 1.63829 + 1.63829i 0.127156 + 0.127156i
\(167\) 5.09317 + 7.62247i 0.394121 + 0.589844i 0.974468 0.224525i \(-0.0720831\pi\)
−0.580347 + 0.814369i \(0.697083\pi\)
\(168\) −0.916539 0.183047i −0.0707125 0.0141224i
\(169\) 15.1284i 1.16372i
\(170\) 0 0
\(171\) −0.630134 1.52795i −0.0481875 0.116845i
\(172\) 3.83151 + 9.25009i 0.292150 + 0.705313i
\(173\) −0.969247 + 0.647630i −0.0736905 + 0.0492384i −0.591870 0.806034i \(-0.701610\pi\)
0.518179 + 0.855272i \(0.326610\pi\)
\(174\) −0.174657 0.881617i −0.0132407 0.0668352i
\(175\) 0.164905 0.829034i 0.0124657 0.0626691i
\(176\) 1.01356 + 0.677238i 0.0763998 + 0.0510487i
\(177\) −0.172701 + 0.416027i −0.0129810 + 0.0312705i
\(178\) 4.04970 + 1.67744i 0.303538 + 0.125729i
\(179\) −9.50468 3.93697i −0.710413 0.294263i −0.00193768 0.999998i \(-0.500617\pi\)
−0.708476 + 0.705735i \(0.750617\pi\)
\(180\) −2.65022 + 1.76491i −0.197536 + 0.131548i
\(181\) −10.7102 7.15635i −0.796086 0.531928i 0.0897290 0.995966i \(-0.471400\pi\)
−0.885815 + 0.464039i \(0.846400\pi\)
\(182\) −0.169347 + 0.851365i −0.0125528 + 0.0631074i
\(183\) −17.9256 + 3.55124i −1.32510 + 0.262515i
\(184\) 9.50541 6.35131i 0.700748 0.468225i
\(185\) −0.615133 1.48506i −0.0452255 0.109184i
\(186\) 0.537959 0.803768i 0.0394450 0.0589351i
\(187\) 0 0
\(188\) 12.9472i 0.944271i
\(189\) −0.195573 0.995256i −0.0142258 0.0723942i
\(190\) 0.210021 + 0.314318i 0.0152365 + 0.0228031i
\(191\) 11.7655 + 11.7655i 0.851319 + 0.851319i 0.990296 0.138977i \(-0.0443814\pi\)
−0.138977 + 0.990296i \(0.544381\pi\)
\(192\) 5.23512 + 5.24321i 0.377812 + 0.378396i
\(193\) 1.65294 2.47380i 0.118981 0.178068i −0.767198 0.641410i \(-0.778350\pi\)
0.886180 + 0.463342i \(0.153350\pi\)
\(194\) 2.03047 0.403886i 0.145779 0.0289973i
\(195\) 4.17166 + 6.25379i 0.298739 + 0.447843i
\(196\) −3.45537 + 8.34201i −0.246812 + 0.595858i
\(197\) 2.64722 + 13.3085i 0.188607 + 0.948190i 0.952892 + 0.303311i \(0.0980922\pi\)
−0.764285 + 0.644879i \(0.776908\pi\)
\(198\) 2.18392 10.8914i 0.155204 0.774015i
\(199\) 4.21912 + 0.839234i 0.299085 + 0.0594917i 0.342352 0.939572i \(-0.388777\pi\)
−0.0432667 + 0.999064i \(0.513777\pi\)
\(200\) −8.46460 + 8.46460i −0.598538 + 0.598538i
\(201\) 0.00723662 9.37029i 0.000510432 0.660929i
\(202\) 5.26185 2.17953i 0.370223 0.153351i
\(203\) 0.120801 0.00847855
\(204\) 0 0
\(205\) −6.54274 −0.456965
\(206\) −1.91929 + 0.794996i −0.133723 + 0.0553900i
\(207\) 10.3048 + 6.90850i 0.716234 + 0.480174i
\(208\) −1.03521 + 1.03521i −0.0717789 + 0.0717789i
\(209\) 2.38616 + 0.474638i 0.165054 + 0.0328314i
\(210\) 0.0886132 + 0.214399i 0.00611489 + 0.0147950i
\(211\) −3.02923 15.2290i −0.208541 1.04840i −0.933217 0.359314i \(-0.883011\pi\)
0.724676 0.689090i \(-0.241989\pi\)
\(212\) −5.75087 + 13.8838i −0.394971 + 0.953545i
\(213\) −9.38712 + 6.26179i −0.643195 + 0.429051i
\(214\) 3.38322 0.672964i 0.231272 0.0460029i
\(215\) 3.50979 5.25278i 0.239366 0.358236i
\(216\) −5.52772 + 13.2581i −0.376114 + 0.902101i
\(217\) 0.0919229 + 0.0919229i 0.00624014 + 0.00624014i
\(218\) 5.89198 + 8.81798i 0.399056 + 0.597229i
\(219\) −3.93669 + 19.7115i −0.266017 + 1.33198i
\(220\) 4.68704i 0.316000i
\(221\) 0 0
\(222\) −2.37062 1.58665i −0.159106 0.106489i
\(223\) −6.37645 15.3941i −0.426999 1.03087i −0.980234 0.197841i \(-0.936607\pi\)
0.553235 0.833025i \(-0.313393\pi\)
\(224\) −0.934911 + 0.624687i −0.0624664 + 0.0417387i
\(225\) −11.9943 4.98994i −0.799623 0.332662i
\(226\) 0.202230 1.01668i 0.0134521 0.0676283i
\(227\) −16.0046 10.6940i −1.06227 0.709783i −0.103687 0.994610i \(-0.533064\pi\)
−0.958579 + 0.284827i \(0.908064\pi\)
\(228\) −1.14303 0.474495i −0.0756993 0.0314242i
\(229\) −10.1448 4.20213i −0.670391 0.277685i 0.0214129 0.999771i \(-0.493184\pi\)
−0.691803 + 0.722086i \(0.743184\pi\)
\(230\) −2.62159 1.08590i −0.172863 0.0716020i
\(231\) 1.37895 + 0.572428i 0.0907283 + 0.0376630i
\(232\) −1.42246 0.950455i −0.0933889 0.0624004i
\(233\) 4.58203 23.0354i 0.300179 1.50910i −0.476484 0.879183i \(-0.658089\pi\)
0.776662 0.629917i \(-0.216911\pi\)
\(234\) 12.3174 + 5.12435i 0.805215 + 0.334989i
\(235\) 6.79257 4.53865i 0.443098 0.296069i
\(236\) 0.129078 + 0.311622i 0.00840226 + 0.0202849i
\(237\) −15.5589 10.4135i −1.01066 0.676431i
\(238\) 0 0
\(239\) 13.7217i 0.887582i −0.896130 0.443791i \(-0.853633\pi\)
0.896130 0.443791i \(-0.146367\pi\)
\(240\) −0.0766283 + 0.383688i −0.00494634 + 0.0247669i
\(241\) −2.37570 3.55549i −0.153032 0.229029i 0.747030 0.664790i \(-0.231479\pi\)
−0.900062 + 0.435761i \(0.856479\pi\)
\(242\) 5.04032 + 5.04032i 0.324004 + 0.324004i
\(243\) −15.5883 0.0601942i −0.999993 0.00386146i
\(244\) −7.60221 + 11.3775i −0.486682 + 0.728371i
\(245\) 5.58780 1.11148i 0.356992 0.0710100i
\(246\) −9.65918 + 6.44327i −0.615847 + 0.410808i
\(247\) −1.11817 + 2.69950i −0.0711474 + 0.171765i
\(248\) −0.359168 1.80566i −0.0228072 0.114659i
\(249\) 1.82813 + 4.42314i 0.115853 + 0.280305i
\(250\) 6.27911 + 1.24899i 0.397126 + 0.0789932i
\(251\) 6.57161 6.57161i 0.414796 0.414796i −0.468609 0.883406i \(-0.655245\pi\)
0.883406 + 0.468609i \(0.155245\pi\)
\(252\) −0.630851 0.422932i −0.0397398 0.0266422i
\(253\) −16.8721 + 6.98863i −1.06074 + 0.439372i
\(254\) −7.42374 −0.465807
\(255\) 0 0
\(256\) 15.2078 0.950486
\(257\) 14.5315 6.01912i 0.906447 0.375463i 0.119752 0.992804i \(-0.461790\pi\)
0.786696 + 0.617341i \(0.211790\pi\)
\(258\) 0.00865836 11.2112i 0.000539046 0.697980i
\(259\) 0.271116 0.271116i 0.0168463 0.0168463i
\(260\) 5.52095 + 1.09818i 0.342395 + 0.0681065i
\(261\) 0.365010 1.82033i 0.0225936 0.112676i
\(262\) −1.60836 8.08576i −0.0993647 0.499540i
\(263\) −5.90932 + 14.2664i −0.364384 + 0.879701i 0.630264 + 0.776381i \(0.282947\pi\)
−0.994648 + 0.103320i \(0.967053\pi\)
\(264\) −11.7336 17.5900i −0.722154 1.08259i
\(265\) 9.29993 1.84987i 0.571290 0.113637i
\(266\) −0.0500960 + 0.0749740i −0.00307158 + 0.00459695i
\(267\) 6.39776 + 6.40765i 0.391537 + 0.392142i
\(268\) −4.96141 4.96141i −0.303066 0.303066i
\(269\) −13.5216 20.2365i −0.824426 1.23384i −0.969663 0.244444i \(-0.921395\pi\)
0.145237 0.989397i \(-0.453605\pi\)
\(270\) 3.49851 0.687475i 0.212913 0.0418384i
\(271\) 5.62528i 0.341711i −0.985296 0.170856i \(-0.945347\pi\)
0.985296 0.170856i \(-0.0546532\pi\)
\(272\) 0 0
\(273\) −0.997365 + 1.49017i −0.0603633 + 0.0901891i
\(274\) 4.06363 + 9.81047i 0.245493 + 0.592672i
\(275\) 15.9000 10.6240i 0.958804 0.640652i
\(276\) 9.11276 1.80533i 0.548524 0.108668i
\(277\) −1.72935 + 8.69401i −0.103906 + 0.522373i 0.893415 + 0.449232i \(0.148302\pi\)
−0.997322 + 0.0731408i \(0.976698\pi\)
\(278\) 8.30034 + 5.54611i 0.497821 + 0.332633i
\(279\) 1.66293 1.10742i 0.0995570 0.0662996i
\(280\) 0.407979 + 0.168991i 0.0243814 + 0.0100991i
\(281\) 6.66883 + 2.76232i 0.397829 + 0.164786i 0.572623 0.819819i \(-0.305926\pi\)
−0.174794 + 0.984605i \(0.555926\pi\)
\(282\) 5.55836 13.3898i 0.330995 0.797351i
\(283\) 4.10889 + 2.74547i 0.244248 + 0.163201i 0.671669 0.740851i \(-0.265578\pi\)
−0.427421 + 0.904053i \(0.640578\pi\)
\(284\) −1.64841 + 8.28711i −0.0978151 + 0.491750i
\(285\) 0.151754 + 0.766012i 0.00898915 + 0.0453746i
\(286\) −16.3282 + 10.9102i −0.965509 + 0.645133i
\(287\) −0.597228 1.44184i −0.0352532 0.0851088i
\(288\) 6.58842 + 15.9756i 0.388227 + 0.941372i
\(289\) 0 0
\(290\) 0.424637i 0.0249356i
\(291\) 4.19374 + 0.837554i 0.245841 + 0.0490983i
\(292\) 8.36216 + 12.5149i 0.489359 + 0.732377i
\(293\) −13.5083 13.5083i −0.789165 0.789165i 0.192192 0.981357i \(-0.438440\pi\)
−0.981357 + 0.192192i \(0.938440\pi\)
\(294\) 7.15480 7.14376i 0.417276 0.416632i
\(295\) 0.118240 0.176958i 0.00688418 0.0103029i
\(296\) −5.32559 + 1.05932i −0.309543 + 0.0615720i
\(297\) 12.7925 19.0496i 0.742294 1.10537i
\(298\) 4.07540 9.83889i 0.236082 0.569952i
\(299\) −4.27887 21.5114i −0.247454 1.24403i
\(300\) −8.99002 + 3.71566i −0.519039 + 0.214523i
\(301\) 1.47794 + 0.293981i 0.0851872 + 0.0169448i
\(302\) 0.469913 0.469913i 0.0270404 0.0270404i
\(303\) 11.7651 + 0.00908610i 0.675886 + 0.000521983i
\(304\) −0.140502 + 0.0581977i −0.00805832 + 0.00333786i
\(305\) 8.63402 0.494382
\(306\) 0 0
\(307\) −4.98811 −0.284687 −0.142343 0.989817i \(-0.545464\pi\)
−0.142343 + 0.989817i \(0.545464\pi\)
\(308\) 1.03289 0.427838i 0.0588544 0.0243783i
\(309\) −4.29138 0.00331421i −0.244128 0.000188539i
\(310\) −0.323126 + 0.323126i −0.0183523 + 0.0183523i
\(311\) 10.2651 + 2.04185i 0.582080 + 0.115783i 0.477343 0.878717i \(-0.341600\pi\)
0.104737 + 0.994500i \(0.466600\pi\)
\(312\) 23.4688 9.69986i 1.32866 0.549146i
\(313\) 4.68503 + 23.5532i 0.264814 + 1.33131i 0.852716 + 0.522375i \(0.174954\pi\)
−0.587902 + 0.808932i \(0.700046\pi\)
\(314\) 0.756754 1.82697i 0.0427061 0.103102i
\(315\) −0.000740207 0.479226i −4.17060e−5 0.0270013i
\(316\) −13.7498 + 2.73501i −0.773489 + 0.153857i
\(317\) 5.46458 8.17832i 0.306921 0.459340i −0.645660 0.763625i \(-0.723418\pi\)
0.952581 + 0.304285i \(0.0984175\pi\)
\(318\) 11.9079 11.8895i 0.667763 0.666733i
\(319\) 1.93244 + 1.93244i 0.108196 + 0.108196i
\(320\) −1.94489 2.91073i −0.108723 0.162715i
\(321\) 6.98771 + 1.39555i 0.390016 + 0.0778921i
\(322\) 0.676847i 0.0377192i
\(323\) 0 0
\(324\) −8.27928 + 8.22829i −0.459960 + 0.457127i
\(325\) 8.78882 + 21.2181i 0.487516 + 1.17697i
\(326\) −11.2465 + 7.51466i −0.622885 + 0.416198i
\(327\) 4.25736 + 21.4899i 0.235432 + 1.18839i
\(328\) −4.31180 + 21.6769i −0.238080 + 1.19691i
\(329\) 1.62022 + 1.08260i 0.0893258 + 0.0596856i
\(330\) −2.01219 + 4.84727i −0.110767 + 0.266833i
\(331\) 3.87936 + 1.60689i 0.213229 + 0.0883224i 0.486741 0.873546i \(-0.338185\pi\)
−0.273512 + 0.961869i \(0.588185\pi\)
\(332\) 3.31100 + 1.37146i 0.181715 + 0.0752687i
\(333\) −3.26622 4.90462i −0.178988 0.268772i
\(334\) −6.39123 4.27048i −0.349713 0.233671i
\(335\) −0.863709 + 4.34216i −0.0471895 + 0.237238i
\(336\) −0.0915487 + 0.0181367i −0.00499439 + 0.000989437i
\(337\) −4.81060 + 3.21434i −0.262050 + 0.175096i −0.679654 0.733533i \(-0.737870\pi\)
0.417604 + 0.908629i \(0.362870\pi\)
\(338\) −4.85425 11.7192i −0.264036 0.637440i
\(339\) 1.19103 1.77952i 0.0646876 0.0966502i
\(340\) 0 0
\(341\) 2.94097i 0.159262i
\(342\) 0.978404 + 0.981432i 0.0529061 + 0.0530697i
\(343\) 1.51413 + 2.26606i 0.0817554 + 0.122356i
\(344\) −15.0901 15.0901i −0.813602 0.813602i
\(345\) −4.14162 4.14802i −0.222977 0.223322i
\(346\) 0.543020 0.812687i 0.0291930 0.0436903i
\(347\) −0.0185728 + 0.00369437i −0.000997042 + 0.000198324i −0.195589 0.980686i \(-0.562662\pi\)
0.194592 + 0.980884i \(0.437662\pi\)
\(348\) −0.771462 1.15651i −0.0413547 0.0619953i
\(349\) −2.37825 + 5.74159i −0.127305 + 0.307340i −0.974662 0.223682i \(-0.928192\pi\)
0.847358 + 0.531023i \(0.178192\pi\)
\(350\) 0.138268 + 0.695123i 0.00739076 + 0.0371559i
\(351\) 19.4416 + 19.5319i 1.03771 + 1.04253i
\(352\) −24.9488 4.96262i −1.32977 0.264508i
\(353\) 8.61113 8.61113i 0.458324 0.458324i −0.439781 0.898105i \(-0.644944\pi\)
0.898105 + 0.439781i \(0.144944\pi\)
\(354\) 0.000291687 0.377689i 1.55030e−5 0.0200740i
\(355\) 4.92557 2.04024i 0.261422 0.108285i
\(356\) 6.78025 0.359352
\(357\) 0 0
\(358\) 8.62604 0.455900
\(359\) −29.4053 + 12.1801i −1.55195 + 0.642840i −0.983668 0.179992i \(-0.942393\pi\)
−0.568284 + 0.822832i \(0.692393\pi\)
\(360\) 3.77924 5.63717i 0.199184 0.297105i
\(361\) 13.2204 13.2204i 0.695811 0.695811i
\(362\) 10.5929 + 2.10706i 0.556752 + 0.110745i
\(363\) 5.62437 + 13.6081i 0.295203 + 0.714242i
\(364\) 0.261949 + 1.31690i 0.0137298 + 0.0690246i
\(365\) 3.63439 8.77418i 0.190232 0.459262i
\(366\) 12.7466 8.50276i 0.666274 0.444446i
\(367\) −32.9795 + 6.56004i −1.72152 + 0.342431i −0.954276 0.298928i \(-0.903371\pi\)
−0.767241 + 0.641359i \(0.778371\pi\)
\(368\) 0.634207 0.949158i 0.0330603 0.0494783i
\(369\) −23.5314 + 4.64292i −1.22500 + 0.241701i
\(370\) 0.953024 + 0.953024i 0.0495453 + 0.0495453i
\(371\) 1.25657 + 1.88058i 0.0652377 + 0.0976351i
\(372\) 0.292999 1.46708i 0.0151913 0.0760646i
\(373\) 15.2764i 0.790981i 0.918470 + 0.395490i \(0.129425\pi\)
−0.918470 + 0.395490i \(0.870575\pi\)
\(374\) 0 0
\(375\) 10.9905 + 7.35591i 0.567547 + 0.379857i
\(376\) −10.5607 25.4957i −0.544624 1.31484i
\(377\) −2.72903 + 1.82348i −0.140552 + 0.0939140i
\(378\) 0.470848 + 0.708220i 0.0242178 + 0.0364269i
\(379\) 7.41655 37.2855i 0.380963 1.91523i −0.0214486 0.999770i \(-0.506828\pi\)
0.402411 0.915459i \(-0.368172\pi\)
\(380\) 0.486193 + 0.324864i 0.0249412 + 0.0166651i
\(381\) −14.1635 5.87953i −0.725618 0.301217i
\(382\) −12.8893 5.33891i −0.659472 0.273162i
\(383\) 31.8268 + 13.1831i 1.62627 + 0.673624i 0.994807 0.101781i \(-0.0324540\pi\)
0.631465 + 0.775404i \(0.282454\pi\)
\(384\) 12.6916 + 5.26852i 0.647666 + 0.268858i
\(385\) −0.586540 0.391913i −0.0298928 0.0199738i
\(386\) −0.486680 + 2.44670i −0.0247714 + 0.124534i
\(387\) 8.89570 21.3826i 0.452194 1.08694i
\(388\) 2.66261 1.77910i 0.135174 0.0903201i
\(389\) 0.288821 + 0.697275i 0.0146438 + 0.0353532i 0.931032 0.364937i \(-0.118909\pi\)
−0.916389 + 0.400290i \(0.868909\pi\)
\(390\) −5.23822 3.50592i −0.265248 0.177529i
\(391\) 0 0
\(392\) 19.2456i 0.972048i
\(393\) 3.33532 16.7003i 0.168244 0.842421i
\(394\) −6.32096 9.45998i −0.318445 0.476587i
\(395\) 6.25490 + 6.25490i 0.314718 + 0.314718i
\(396\) −3.32606 16.8573i −0.167141 0.847110i
\(397\) 11.1930 16.7515i 0.561761 0.840734i −0.436499 0.899705i \(-0.643782\pi\)
0.998260 + 0.0589706i \(0.0187818\pi\)
\(398\) −3.53761 + 0.703675i −0.177325 + 0.0352720i
\(399\) −0.154955 + 0.103365i −0.00775746 + 0.00517471i
\(400\) −0.457434 + 1.10434i −0.0228717 + 0.0552172i
\(401\) 3.07630 + 15.4656i 0.153623 + 0.772315i 0.978378 + 0.206825i \(0.0663130\pi\)
−0.824755 + 0.565490i \(0.808687\pi\)
\(402\) 3.00104 + 7.26100i 0.149678 + 0.362146i
\(403\) −3.46422 0.689076i −0.172565 0.0343253i
\(404\) 6.22941 6.22941i 0.309925 0.309925i
\(405\) 7.21916 + 1.45918i 0.358723 + 0.0725072i
\(406\) −0.0935781 + 0.0387613i −0.00464420 + 0.00192369i
\(407\) 8.67405 0.429957
\(408\) 0 0
\(409\) −28.3555 −1.40209 −0.701045 0.713117i \(-0.747283\pi\)
−0.701045 + 0.713117i \(0.747283\pi\)
\(410\) 5.06832 2.09937i 0.250306 0.103680i
\(411\) −0.0169406 + 21.9354i −0.000835618 + 1.08199i
\(412\) −2.27221 + 2.27221i −0.111944 + 0.111944i
\(413\) 0.0497897 + 0.00990378i 0.00244999 + 0.000487333i
\(414\) −10.1993 2.04515i −0.501270 0.100514i
\(415\) −0.441155 2.21784i −0.0216555 0.108869i
\(416\) 11.6911 28.2248i 0.573204 1.38384i
\(417\) 11.4435 + 17.1550i 0.560389 + 0.840085i
\(418\) −2.00073 + 0.397971i −0.0978591 + 0.0194654i
\(419\) −19.5736 + 29.2939i −0.956231 + 1.43110i −0.0546430 + 0.998506i \(0.517402\pi\)
−0.901588 + 0.432595i \(0.857598\pi\)
\(420\) 0.253546 + 0.253938i 0.0123718 + 0.0123909i
\(421\) −0.00892902 0.00892902i −0.000435174 0.000435174i 0.706889 0.707324i \(-0.250098\pi\)
−0.707324 + 0.706889i \(0.750098\pi\)
\(422\) 7.23309 + 10.8251i 0.352102 + 0.526957i
\(423\) 21.2092 21.1438i 1.03123 1.02805i
\(424\) 32.0309i 1.55556i
\(425\) 0 0
\(426\) 5.26250 7.86273i 0.254969 0.380951i
\(427\) 0.788122 + 1.90269i 0.0381399 + 0.0920779i
\(428\) 4.43650 2.96438i 0.214447 0.143289i
\(429\) −39.7929 + 7.88335i −1.92122 + 0.380612i
\(430\) −1.03340 + 5.19524i −0.0498349 + 0.250537i
\(431\) 9.85875 + 6.58741i 0.474879 + 0.317304i 0.769875 0.638194i \(-0.220318\pi\)
−0.294996 + 0.955499i \(0.595318\pi\)
\(432\) −0.00332320 + 1.43434i −0.000159887 + 0.0690096i
\(433\) 0.501414 + 0.207692i 0.0240964 + 0.00998106i 0.394699 0.918810i \(-0.370849\pi\)
−0.370603 + 0.928791i \(0.620849\pi\)
\(434\) −0.100703 0.0417126i −0.00483391 0.00200227i
\(435\) −0.336309 + 0.810151i −0.0161248 + 0.0388438i
\(436\) 13.6398 + 9.11381i 0.653227 + 0.436472i
\(437\) 0.444480 2.23455i 0.0212623 0.106893i
\(438\) −3.27528 16.5326i −0.156499 0.789960i
\(439\) −25.3191 + 16.9177i −1.20841 + 0.807436i −0.985874 0.167487i \(-0.946435\pi\)
−0.222540 + 0.974924i \(0.571435\pi\)
\(440\) 3.82308 + 9.22974i 0.182258 + 0.440010i
\(441\) 19.3082 7.96279i 0.919437 0.379181i
\(442\) 0 0
\(443\) 40.2451i 1.91210i 0.293203 + 0.956050i \(0.405279\pi\)
−0.293203 + 0.956050i \(0.594721\pi\)
\(444\) −4.32699 0.864166i −0.205350 0.0410115i
\(445\) −2.37682 3.55716i −0.112672 0.168626i
\(446\) 9.87902 + 9.87902i 0.467785 + 0.467785i
\(447\) 15.5676 15.5436i 0.736324 0.735187i
\(448\) 0.463912 0.694294i 0.0219178 0.0328023i
\(449\) −35.7362 + 7.10838i −1.68650 + 0.335465i −0.942878 0.333139i \(-0.891892\pi\)
−0.743619 + 0.668604i \(0.766892\pi\)
\(450\) 10.8925 + 0.0168245i 0.513478 + 0.000793112i
\(451\) 13.5111 32.6187i 0.636214 1.53596i
\(452\) −0.312812 1.57261i −0.0147134 0.0739694i
\(453\) 1.26870 0.524364i 0.0596086 0.0246368i
\(454\) 15.8293 + 3.14865i 0.742908 + 0.147774i
\(455\) 0.599070 0.599070i 0.0280848 0.0280848i
\(456\) 2.63790 + 0.00203724i 0.123531 + 9.54023e-5i
\(457\) 19.6921 8.15675i 0.921160 0.381557i 0.128842 0.991665i \(-0.458874\pi\)
0.792318 + 0.610108i \(0.208874\pi\)
\(458\) 9.20703 0.430216
\(459\) 0 0
\(460\) −4.38923 −0.204649
\(461\) −5.67952 + 2.35253i −0.264521 + 0.109568i −0.511002 0.859579i \(-0.670726\pi\)
0.246481 + 0.969148i \(0.420726\pi\)
\(462\) −1.25188 0.000966816i −0.0582425 4.49804e-5i
\(463\) 25.6637 25.6637i 1.19270 1.19270i 0.216388 0.976307i \(-0.430572\pi\)
0.976307 0.216388i \(-0.0694277\pi\)
\(464\) −0.167546 0.0333270i −0.00777813 0.00154717i
\(465\) −0.872394 + 0.360569i −0.0404563 + 0.0167210i
\(466\) 3.84191 + 19.3146i 0.177973 + 0.894730i
\(467\) 2.94293 7.10485i 0.136182 0.328773i −0.841046 0.540964i \(-0.818060\pi\)
0.977228 + 0.212190i \(0.0680597\pi\)
\(468\) 20.6358 + 0.0318738i 0.953889 + 0.00147337i
\(469\) −1.03573 + 0.206020i −0.0478256 + 0.00951310i
\(470\) −3.80553 + 5.69538i −0.175536 + 0.262708i
\(471\) 2.89073 2.88626i 0.133198 0.132992i
\(472\) −0.508362 0.508362i −0.0233993 0.0233993i
\(473\) 18.9397 + 28.3453i 0.870849 + 1.30332i
\(474\) 15.3941 + 3.07443i 0.707072 + 0.141213i
\(475\) 2.38569i 0.109463i
\(476\) 0 0
\(477\) 32.1351 13.2527i 1.47137 0.606799i
\(478\) 4.40287 + 10.6295i 0.201383 + 0.486181i
\(479\) −1.90904 + 1.27558i −0.0872260 + 0.0582826i −0.598418 0.801184i \(-0.704204\pi\)
0.511192 + 0.859466i \(0.329204\pi\)
\(480\) −1.58668 8.00911i −0.0724218 0.365564i
\(481\) −2.03235 + 10.2173i −0.0926672 + 0.465870i
\(482\) 2.98118 + 1.99196i 0.135789 + 0.0907313i
\(483\) 0.536056 1.29133i 0.0243914 0.0587577i
\(484\) 10.1865 + 4.21940i 0.463025 + 0.191791i
\(485\) −1.86676 0.773237i −0.0847652 0.0351109i
\(486\) 12.0948 4.95520i 0.548631 0.224772i
\(487\) −23.3450 15.5987i −1.05786 0.706842i −0.100269 0.994960i \(-0.531970\pi\)
−0.957595 + 0.288118i \(0.906970\pi\)
\(488\) 5.69000 28.6056i 0.257574 1.29491i
\(489\) −27.4083 + 5.42985i −1.23945 + 0.245546i
\(490\) −3.97194 + 2.65396i −0.179434 + 0.119894i
\(491\) 5.17526 + 12.4942i 0.233556 + 0.563854i 0.996591 0.0825033i \(-0.0262915\pi\)
−0.763035 + 0.646357i \(0.776291\pi\)
\(492\) −9.98962 + 14.9256i −0.450367 + 0.672896i
\(493\) 0 0
\(494\) 2.44995i 0.110228i
\(495\) −7.67798 + 7.65430i −0.345099 + 0.344035i
\(496\) −0.102134 0.152854i −0.00458593 0.00686333i
\(497\) 0.899222 + 0.899222i 0.0403356 + 0.0403356i
\(498\) −2.83541 2.83979i −0.127058 0.127254i
\(499\) 8.46309 12.6659i 0.378860 0.567004i −0.592215 0.805780i \(-0.701746\pi\)
0.971075 + 0.238776i \(0.0767462\pi\)
\(500\) 9.71263 1.93196i 0.434362 0.0863999i
\(501\) −8.81143 13.2093i −0.393666 0.590148i
\(502\) −2.98205 + 7.19931i −0.133096 + 0.321321i
\(503\) −4.75924 23.9263i −0.212204 1.06682i −0.929153 0.369696i \(-0.879462\pi\)
0.716949 0.697126i \(-0.245538\pi\)
\(504\) 1.58725 + 0.318273i 0.0707016 + 0.0141770i
\(505\) −5.45190 1.08445i −0.242606 0.0482574i
\(506\) 10.8275 10.8275i 0.481339 0.481339i
\(507\) 0.0202366 26.2032i 0.000898737 1.16372i
\(508\) −10.6090 + 4.39441i −0.470700 + 0.194971i
\(509\) 18.8631 0.836090 0.418045 0.908426i \(-0.362715\pi\)
0.418045 + 0.908426i \(0.362715\pi\)
\(510\) 0 0
\(511\) 2.26533 0.100212
\(512\) 2.87903 1.19253i 0.127236 0.0527030i
\(513\) 1.08938 + 2.64733i 0.0480973 + 0.116882i
\(514\) −9.32541 + 9.32541i −0.411326 + 0.411326i
\(515\) 1.98861 + 0.395559i 0.0876286 + 0.0174304i
\(516\) −6.62400 16.0268i −0.291605 0.705538i
\(517\) 8.60033 + 43.2368i 0.378242 + 1.90155i
\(518\) −0.123027 + 0.297013i −0.00540548 + 0.0130500i
\(519\) 1.67965 1.12043i 0.0737285 0.0491815i
\(520\) −11.7676 + 2.34073i −0.516045 + 0.102648i
\(521\) 18.3207 27.4188i 0.802643 1.20124i −0.173655 0.984807i \(-0.555558\pi\)
0.976298 0.216433i \(-0.0694422\pi\)
\(522\) 0.301335 + 1.52724i 0.0131891 + 0.0668454i
\(523\) 9.24397 + 9.24397i 0.404211 + 0.404211i 0.879714 0.475503i \(-0.157734\pi\)
−0.475503 + 0.879714i \(0.657734\pi\)
\(524\) −7.08475 10.6031i −0.309499 0.463197i
\(525\) −0.286733 + 1.43571i −0.0125141 + 0.0626594i
\(526\) 12.9475i 0.564539i
\(527\) 0 0
\(528\) −1.75463 1.17437i −0.0763604 0.0511077i
\(529\) −2.25714 5.44921i −0.0981363 0.236922i
\(530\) −6.61060 + 4.41706i −0.287146 + 0.191865i
\(531\) 0.299683 0.720349i 0.0130051 0.0312605i
\(532\) −0.0272106 + 0.136797i −0.00117973 + 0.00593090i
\(533\) 35.2565 + 23.5576i 1.52713 + 1.02039i
\(534\) −7.01203 2.91083i −0.303440 0.125964i
\(535\) −3.11044 1.28839i −0.134476 0.0557018i
\(536\) 13.8169 + 5.72315i 0.596800 + 0.247202i
\(537\) 16.4573 + 6.83174i 0.710186 + 0.294811i
\(538\) 16.9678 + 11.3375i 0.731532 + 0.488794i
\(539\) −5.99784 + 30.1532i −0.258345 + 1.29879i
\(540\) 4.59268 3.05336i 0.197637 0.131396i
\(541\) 13.8721 9.26903i 0.596408 0.398507i −0.220406 0.975408i \(-0.570738\pi\)
0.816814 + 0.576901i \(0.195738\pi\)
\(542\) 1.80498 + 4.35761i 0.0775306 + 0.187176i
\(543\) 18.5411 + 12.4095i 0.795675 + 0.532542i
\(544\) 0 0
\(545\) 10.3508i 0.443379i
\(546\) 0.294456 1.47438i 0.0126016 0.0630977i
\(547\) −6.02406 9.01564i −0.257570 0.385481i 0.680037 0.733178i \(-0.261964\pi\)
−0.937607 + 0.347697i \(0.886964\pi\)
\(548\) 11.6144 + 11.6144i 0.496144 + 0.496144i
\(549\) 31.0529 6.12695i 1.32530 0.261492i
\(550\) −8.90795 + 13.3317i −0.379836 + 0.568465i
\(551\) −0.334394 + 0.0665151i −0.0142457 + 0.00283364i
\(552\) −16.4723 + 10.9881i −0.701109 + 0.467683i
\(553\) −0.807451 + 1.94936i −0.0343363 + 0.0828952i
\(554\) −1.45001 7.28969i −0.0616050 0.309709i
\(555\) 1.06346 + 2.57303i 0.0451412 + 0.109219i
\(556\) 15.1447 + 3.01248i 0.642280 + 0.127757i
\(557\) 8.63556 8.63556i 0.365900 0.365900i −0.500079 0.865980i \(-0.666696\pi\)
0.865980 + 0.500079i \(0.166696\pi\)
\(558\) −0.932847 + 1.39145i −0.0394905 + 0.0589046i
\(559\) −37.8261 + 15.6681i −1.59987 + 0.662689i
\(560\) 0.0440951 0.00186336
\(561\) 0 0
\(562\) −6.05234 −0.255302
\(563\) 21.7414 9.00559i 0.916292 0.379541i 0.125830 0.992052i \(-0.459841\pi\)
0.790462 + 0.612511i \(0.209841\pi\)
\(564\) 0.0173188 22.4252i 0.000729255 0.944271i
\(565\) −0.715392 + 0.715392i −0.0300968 + 0.0300968i
\(566\) −4.06388 0.808357i −0.170818 0.0339778i
\(567\) 0.337411 + 1.72410i 0.0141699 + 0.0724052i
\(568\) −3.51350 17.6636i −0.147423 0.741147i
\(569\) 0.717701 1.73268i 0.0300876 0.0726379i −0.908122 0.418707i \(-0.862484\pi\)
0.938209 + 0.346069i \(0.112484\pi\)
\(570\) −0.363346 0.544696i −0.0152189 0.0228148i
\(571\) −39.2847 + 7.81421i −1.64401 + 0.327014i −0.928428 0.371512i \(-0.878839\pi\)
−0.715584 + 0.698526i \(0.753839\pi\)
\(572\) −16.8760 + 25.2568i −0.705623 + 1.05604i
\(573\) −20.3626 20.3941i −0.850661 0.851976i
\(574\) 0.925283 + 0.925283i 0.0386205 + 0.0386205i
\(575\) −9.94898 14.8897i −0.414901 0.620943i
\(576\) −9.06047 9.08851i −0.377520 0.378688i
\(577\) 31.8433i 1.32565i −0.748773 0.662826i \(-0.769357\pi\)
0.748773 0.662826i \(-0.230643\pi\)
\(578\) 0 0
\(579\) −2.86629 + 4.28254i −0.119119 + 0.177976i
\(580\) 0.251360 + 0.606837i 0.0104372 + 0.0251975i
\(581\) 0.448480 0.299665i 0.0186061 0.0124322i
\(582\) −3.51742 + 0.696834i −0.145802 + 0.0288847i
\(583\) −9.98236 + 50.1847i −0.413427 + 2.07844i
\(584\) −26.6748 17.8235i −1.10381 0.737544i
\(585\) −7.21717 10.8375i −0.298393 0.448073i
\(586\) 14.7986 + 6.12978i 0.611325 + 0.253219i
\(587\) −11.6364 4.81996i −0.480286 0.198941i 0.129387 0.991594i \(-0.458699\pi\)
−0.609673 + 0.792653i \(0.708699\pi\)
\(588\) 5.99604 14.4442i 0.247272 0.595667i
\(589\) −0.305070 0.203842i −0.0125702 0.00839914i
\(590\) −0.0348136 + 0.175020i −0.00143325 + 0.00720546i
\(591\) −4.56732 23.0545i −0.187874 0.948336i
\(592\) −0.450825 + 0.301231i −0.0185288 + 0.0123805i
\(593\) 7.05301 + 17.0275i 0.289632 + 0.699234i 0.999989 0.00460731i \(-0.00146656\pi\)
−0.710357 + 0.703841i \(0.751467\pi\)
\(594\) −3.79722 + 18.8614i −0.155802 + 0.773895i
\(595\) 0 0
\(596\) 16.4729i 0.674755i
\(597\) −7.30660 1.45924i −0.299039 0.0597227i
\(598\) 10.2170 + 15.2908i 0.417803 + 0.625286i
\(599\) −12.3968 12.3968i −0.506519 0.506519i 0.406937 0.913456i \(-0.366597\pi\)
−0.913456 + 0.406937i \(0.866597\pi\)
\(600\) 14.6724 14.6498i 0.599000 0.598075i
\(601\) 7.54195 11.2873i 0.307642 0.460419i −0.645144 0.764061i \(-0.723203\pi\)
0.952786 + 0.303642i \(0.0982026\pi\)
\(602\) −1.23921 + 0.246495i −0.0505066 + 0.0100464i
\(603\) −0.0250684 + 16.2298i −0.00102086 + 0.660929i
\(604\) 0.393378 0.949699i 0.0160063 0.0386427i
\(605\) −1.35725 6.82334i −0.0551800 0.277408i
\(606\) −9.11671 + 3.76802i −0.370341 + 0.153065i
\(607\) 4.05708 + 0.807003i 0.164672 + 0.0327552i 0.276737 0.960946i \(-0.410747\pi\)
−0.112066 + 0.993701i \(0.535747\pi\)
\(608\) 2.24400 2.24400i 0.0910064 0.0910064i
\(609\) −0.209233 0.000161589i −0.00847855 6.54793e-6i
\(610\) −6.68833 + 2.77040i −0.270802 + 0.112170i
\(611\) −52.9445 −2.14190
\(612\) 0 0
\(613\) −27.1330 −1.09589 −0.547947 0.836513i \(-0.684590\pi\)
−0.547947 + 0.836513i \(0.684590\pi\)
\(614\) 3.86403 1.60053i 0.155940 0.0645923i
\(615\) 11.3323 + 0.00875191i 0.456964 + 0.000352911i
\(616\) −1.68500 + 1.68500i −0.0678906 + 0.0678906i
\(617\) −12.5128 2.48894i −0.503745 0.100201i −0.0633250 0.997993i \(-0.520170\pi\)
−0.440420 + 0.897792i \(0.645170\pi\)
\(618\) 3.32537 1.37441i 0.133766 0.0552867i
\(619\) −0.758379 3.81263i −0.0304818 0.153243i 0.962547 0.271115i \(-0.0873925\pi\)
−0.993029 + 0.117873i \(0.962392\pi\)
\(620\) −0.270499 + 0.653042i −0.0108635 + 0.0262268i
\(621\) −17.8392 11.9797i −0.715863 0.480727i
\(622\) −8.60700 + 1.71204i −0.345109 + 0.0686465i
\(623\) 0.566940 0.848486i 0.0227140 0.0339939i
\(624\) 1.79442 1.79165i 0.0718343 0.0717235i
\(625\) 10.8916 + 10.8916i 0.435663 + 0.435663i
\(626\) −11.1868 16.7422i −0.447113 0.669152i
\(627\) −4.13232 0.825288i −0.165029 0.0329588i
\(628\) 3.05882i 0.122060i
\(629\) 0 0
\(630\) −0.153196 0.371469i −0.00610346 0.0147997i
\(631\) 13.4198 + 32.3983i 0.534234 + 1.28976i 0.928696 + 0.370843i \(0.120931\pi\)
−0.394461 + 0.918913i \(0.629069\pi\)
\(632\) 24.8454 16.6012i 0.988296 0.660359i
\(633\) 5.22640 + 26.3814i 0.207731 + 1.04857i
\(634\) −1.60895 + 8.08874i −0.0638996 + 0.321245i
\(635\) 6.02448 + 4.02543i 0.239074 + 0.159744i
\(636\) 9.97937 24.0398i 0.395708 0.953240i
\(637\) −34.1127 14.1299i −1.35159 0.559848i
\(638\) −2.11702 0.876899i −0.0838137 0.0347168i
\(639\) 16.2673 10.8332i 0.643526 0.428554i
\(640\) −5.39841 3.60710i −0.213391 0.142583i
\(641\) 0.436325 2.19355i 0.0172338 0.0866402i −0.971211 0.238220i \(-0.923436\pi\)
0.988445 + 0.151580i \(0.0484361\pi\)
\(642\) −5.86080 + 1.16108i −0.231307 + 0.0458242i
\(643\) 3.04323 2.03342i 0.120013 0.0801904i −0.494115 0.869397i \(-0.664508\pi\)
0.614128 + 0.789206i \(0.289508\pi\)
\(644\) −0.400653 0.967262i −0.0157879 0.0381155i
\(645\) −6.08617 + 9.09338i −0.239643 + 0.358051i
\(646\) 0 0
\(647\) 28.3391i 1.11413i 0.830470 + 0.557063i \(0.188072\pi\)
−0.830470 + 0.557063i \(0.811928\pi\)
\(648\) 9.59202 22.9564i 0.376810 0.901811i
\(649\) 0.638051 + 0.954911i 0.0250457 + 0.0374835i
\(650\) −13.6165 13.6165i −0.534082 0.534082i
\(651\) −0.159092 0.159338i −0.00623532 0.00624495i
\(652\) −11.6238 + 17.3962i −0.455223 + 0.681289i
\(653\) −9.99878 + 1.98888i −0.391282 + 0.0778309i −0.386811 0.922159i \(-0.626423\pi\)
−0.00447157 + 0.999990i \(0.501423\pi\)
\(654\) −10.1934 15.2811i −0.398594 0.597537i
\(655\) −3.07919 + 7.43383i −0.120314 + 0.290464i
\(656\) 0.430553 + 2.16454i 0.0168103 + 0.0845109i
\(657\) 6.84491 34.1360i 0.267045 1.33177i
\(658\) −1.60248 0.318752i −0.0624710 0.0124263i
\(659\) −27.6176 + 27.6176i −1.07583 + 1.07583i −0.0789501 + 0.996879i \(0.525157\pi\)
−0.996879 + 0.0789501i \(0.974843\pi\)
\(660\) −0.00626963 + 8.11819i −0.000244045 + 0.316000i
\(661\) −1.89254 + 0.783917i −0.0736114 + 0.0304909i −0.419185 0.907901i \(-0.637684\pi\)
0.345574 + 0.938392i \(0.387684\pi\)
\(662\) −3.52074 −0.136838
\(663\) 0 0
\(664\) −7.63870 −0.296439
\(665\) 0.0813074 0.0336786i 0.00315296 0.00130600i
\(666\) 4.10391 + 2.75132i 0.159023 + 0.106612i
\(667\) 1.80965 1.80965i 0.0700701 0.0700701i
\(668\) −11.6614 2.31960i −0.451193 0.0897479i
\(669\) 11.0237 + 26.6719i 0.426203 + 1.03120i
\(670\) −0.724197 3.64078i −0.0279782 0.140656i
\(671\) −17.8297 + 43.0448i −0.688309 + 1.66172i
\(672\) 1.62015 1.08074i 0.0624986 0.0416904i
\(673\) 16.6779 3.31745i 0.642887 0.127878i 0.137129 0.990553i \(-0.456213\pi\)
0.505759 + 0.862675i \(0.331213\pi\)
\(674\) 2.69514 4.03356i 0.103813 0.155367i
\(675\) 20.7681 + 8.65887i 0.799366 + 0.333280i
\(676\) −13.8741 13.8741i −0.533621 0.533621i
\(677\) −12.1741 18.2198i −0.467889 0.700245i 0.520215 0.854035i \(-0.325852\pi\)
−0.988103 + 0.153791i \(0.950852\pi\)
\(678\) −0.351632 + 1.76066i −0.0135043 + 0.0676179i
\(679\) 0.481963i 0.0184960i
\(680\) 0 0
\(681\) 27.7066 + 18.5439i 1.06172 + 0.710603i
\(682\) −0.943667 2.27821i −0.0361349 0.0872373i
\(683\) −30.1890 + 20.1716i −1.15515 + 0.771847i −0.977227 0.212198i \(-0.931938\pi\)
−0.177923 + 0.984044i \(0.556938\pi\)
\(684\) 1.97916 + 0.823378i 0.0756750 + 0.0314827i
\(685\) 2.02190 10.1648i 0.0772530 0.388377i
\(686\) −1.90003 1.26956i −0.0725434 0.0484720i
\(687\) 17.5658 + 7.29188i 0.670176 + 0.278202i
\(688\) −1.96874 0.815481i −0.0750577 0.0310899i
\(689\) −56.7746 23.5168i −2.16294 0.895919i
\(690\) 4.53928 + 1.88434i 0.172807 + 0.0717355i
\(691\) 2.38987 + 1.59686i 0.0909151 + 0.0607475i 0.600197 0.799852i \(-0.295089\pi\)
−0.509282 + 0.860600i \(0.670089\pi\)
\(692\) 0.294952 1.48282i 0.0112124 0.0563685i
\(693\) −2.38765 0.993319i −0.0906991 0.0377331i
\(694\) 0.0132020 0.00882130i 0.000501141 0.000334852i
\(695\) −3.72855 9.00150i −0.141432 0.341447i
\(696\) 2.46250 + 1.64814i 0.0933406 + 0.0624725i
\(697\) 0 0
\(698\) 5.21082i 0.197232i
\(699\) −7.96712 + 39.8924i −0.301344 + 1.50887i
\(700\) 0.609067 + 0.911533i 0.0230206 + 0.0344527i
\(701\) −3.87452 3.87452i −0.146339 0.146339i 0.630142 0.776480i \(-0.282997\pi\)
−0.776480 + 0.630142i \(0.782997\pi\)
\(702\) −21.3275 8.89210i −0.804956 0.335611i
\(703\) −0.601207 + 0.899770i −0.0226750 + 0.0339355i
\(704\) 18.5277 3.68539i 0.698290 0.138898i
\(705\) −11.7711 + 7.85208i −0.443327 + 0.295726i
\(706\) −3.90754 + 9.43364i −0.147062 + 0.355040i
\(707\) −0.258672 1.30043i −0.00972838 0.0489079i
\(708\) −0.223153 0.539917i −0.00838659 0.0202913i
\(709\) 36.8486 + 7.32963i 1.38388 + 0.275270i 0.830202 0.557463i \(-0.188225\pi\)
0.553675 + 0.832733i \(0.313225\pi\)
\(710\) −3.16093 + 3.16093i −0.118628 + 0.118628i
\(711\) 26.9349 + 18.0575i 1.01014 + 0.677211i
\(712\) −13.3517 + 5.53046i −0.500376 + 0.207263i
\(713\) 2.75410 0.103142
\(714\) 0 0
\(715\) 19.1665 0.716788
\(716\) 12.3272 5.10610i 0.460690 0.190824i
\(717\) −0.0183548 + 23.7667i −0.000685474 + 0.887582i
\(718\) 18.8705 18.8705i 0.704242 0.704242i
\(719\) 24.1120 + 4.79617i 0.899225 + 0.178867i 0.622996 0.782225i \(-0.285915\pi\)
0.276229 + 0.961092i \(0.410915\pi\)
\(720\) 0.133237 0.664464i 0.00496546 0.0247631i
\(721\) 0.0943522 + 0.474341i 0.00351386 + 0.0176654i
\(722\) −5.99913 + 14.4832i −0.223265 + 0.539009i
\(723\) 4.11008 + 6.16146i 0.152855 + 0.229147i
\(724\) 16.3853 3.25924i 0.608955 0.121129i
\(725\) −1.48884 + 2.22820i −0.0552940 + 0.0827533i
\(726\) −8.72334 8.73683i −0.323754 0.324254i
\(727\) 26.6720 + 26.6720i 0.989211 + 0.989211i 0.999942 0.0107310i \(-0.00341584\pi\)
−0.0107310 + 0.999942i \(0.503416\pi\)
\(728\) −1.58999 2.37959i −0.0589290 0.0881935i
\(729\) 26.9997 + 0.125111i 0.999989 + 0.00463375i
\(730\) 7.96307i 0.294726i
\(731\) 0 0
\(732\) 13.1826 19.6963i 0.487244 0.727995i
\(733\) −7.27415 17.5613i −0.268677 0.648643i 0.730745 0.682651i \(-0.239173\pi\)
−0.999422 + 0.0340076i \(0.989173\pi\)
\(734\) 23.4426 15.6638i 0.865282 0.578163i
\(735\) −9.67984 + 1.91767i −0.357046 + 0.0707343i
\(736\) −4.64730 + 23.3635i −0.171302 + 0.861192i
\(737\) −19.8642 13.2728i −0.731706 0.488910i
\(738\) 16.7388 11.1471i 0.616164 0.410332i
\(739\) 33.5289 + 13.8881i 1.23338 + 0.510884i 0.901640 0.432487i \(-0.142364\pi\)
0.331742 + 0.943370i \(0.392364\pi\)
\(740\) 1.92607 + 0.797805i 0.0708038 + 0.0293279i
\(741\) 1.94034 4.67417i 0.0712800 0.171710i
\(742\) −1.57682 1.05360i −0.0578868 0.0386788i
\(743\) −0.0347832 + 0.174867i −0.00127607 + 0.00641525i −0.981418 0.191882i \(-0.938541\pi\)
0.980142 + 0.198297i \(0.0635410\pi\)
\(744\) 0.619682 + 3.12797i 0.0227186 + 0.114677i
\(745\) −8.64227 + 5.77458i −0.316628 + 0.211564i
\(746\) −4.90173 11.8338i −0.179465 0.433267i
\(747\) −3.16049 7.66355i −0.115636 0.280395i
\(748\) 0 0
\(749\) 0.803058i 0.0293431i
\(750\) −10.8741 2.17172i −0.397065 0.0792999i
\(751\) −21.1032 31.5832i −0.770067 1.15249i −0.984438 0.175734i \(-0.943770\pi\)
0.214371 0.976752i \(-0.431230\pi\)
\(752\) −1.94852 1.94852i −0.0710551 0.0710551i
\(753\) −11.3911 + 11.3736i −0.415116 + 0.414476i
\(754\) 1.52894 2.28822i 0.0556807 0.0833320i
\(755\) −0.636146 + 0.126537i −0.0231517 + 0.00460516i
\(756\) 1.09210 + 0.733383i 0.0397193 + 0.0266729i
\(757\) 7.33808 17.7157i 0.266707 0.643888i −0.732617 0.680641i \(-0.761701\pi\)
0.999324 + 0.0367531i \(0.0117015\pi\)
\(758\) 6.21858 + 31.2629i 0.225869 + 1.13552i
\(759\) 29.2326 12.0821i 1.06108 0.438552i
\(760\) −1.22239 0.243149i −0.0443409 0.00881996i
\(761\) −21.9157 + 21.9157i −0.794443 + 0.794443i −0.982213 0.187770i \(-0.939874\pi\)
0.187770 + 0.982213i \(0.439874\pi\)
\(762\) 12.8583 + 0.00993038i 0.465807 + 0.000359740i
\(763\) 2.28102 0.944829i 0.0825785 0.0342051i
\(764\) −21.5800 −0.780737
\(765\) 0 0
\(766\) −28.8846 −1.04364
\(767\) −1.27430 + 0.527834i −0.0460124 + 0.0190590i
\(768\) −26.3406 0.0203427i −0.950486 0.000734055i
\(769\) −13.1164 + 13.1164i −0.472990 + 0.472990i −0.902881 0.429891i \(-0.858552\pi\)
0.429891 + 0.902881i \(0.358552\pi\)
\(770\) 0.580115 + 0.115392i 0.0209059 + 0.00415844i
\(771\) −25.1773 + 10.4060i −0.906737 + 0.374763i
\(772\) 0.752804 + 3.78460i 0.0270940 + 0.136211i
\(773\) 15.6889 37.8763i 0.564289 1.36232i −0.342017 0.939694i \(-0.611110\pi\)
0.906306 0.422621i \(-0.138890\pi\)
\(774\) −0.0299934 + 19.4184i −0.00107809 + 0.697979i
\(775\) −2.82847 + 0.562617i −0.101601 + 0.0202098i
\(776\) −3.79206 + 5.67523i −0.136127 + 0.203729i
\(777\) −0.469950 + 0.469224i −0.0168593 + 0.0168333i
\(778\) −0.447469 0.447469i −0.0160425 0.0160425i
\(779\) 2.44711 + 3.66236i 0.0876769 + 0.131218i
\(780\) −9.56109 1.90950i −0.342342 0.0683709i
\(781\) 28.7696i 1.02946i
\(782\) 0 0
\(783\) −0.634651 + 3.15242i −0.0226806 + 0.112658i
\(784\) −0.735425 1.77547i −0.0262652 0.0634097i
\(785\) −1.60477 + 1.07227i −0.0572766 + 0.0382710i
\(786\) 2.77494 + 14.0071i 0.0989788 + 0.499616i
\(787\) −2.93350 + 14.7477i −0.104568 + 0.525700i 0.892623 + 0.450804i \(0.148862\pi\)
−0.997191 + 0.0748960i \(0.976138\pi\)
\(788\) −14.6328 9.77735i −0.521273 0.348304i
\(789\) 10.2543 24.7021i 0.365063 0.879419i
\(790\) −6.85236 2.83834i −0.243796 0.100984i
\(791\) −0.222954 0.0923506i −0.00792734 0.00328361i
\(792\) 20.2997 + 30.4824i 0.721318 + 1.08315i
\(793\) −46.5257 31.0875i −1.65217 1.10395i
\(794\) −3.29558 + 16.5680i −0.116956 + 0.587977i
\(795\) −16.1104 + 3.19163i −0.571378 + 0.113195i
\(796\) −4.63897 + 3.09966i −0.164424 + 0.109865i
\(797\) −6.21185 14.9967i −0.220035 0.531211i 0.774859 0.632134i \(-0.217821\pi\)
−0.994894 + 0.100922i \(0.967821\pi\)
\(798\) 0.0868691 0.129792i 0.00307513 0.00459458i
\(799\) 0 0
\(800\) 24.9438i 0.881895i
\(801\) −11.0727 11.1069i −0.391234 0.392444i
\(802\) −7.34549 10.9933i −0.259378 0.388187i
\(803\) 36.2384 + 36.2384i 1.27882 + 1.27882i
\(804\) 8.58677 + 8.60005i 0.302832 + 0.303300i
\(805\) −0.367012 + 0.549272i −0.0129355 + 0.0193593i
\(806\) 2.90465 0.577772i 0.102312 0.0203511i
\(807\) 23.3930 + 35.0687i 0.823473 + 1.23448i
\(808\) −7.18583 + 17.3481i −0.252797 + 0.610305i
\(809\) 7.37905 + 37.0970i 0.259434 + 1.30426i 0.862292 + 0.506412i \(0.169028\pi\)
−0.602858 + 0.797848i \(0.705972\pi\)
\(810\) −6.06052 + 1.18606i −0.212945 + 0.0416739i
\(811\) −33.9217 6.74744i −1.19115 0.236935i −0.440573 0.897717i \(-0.645225\pi\)
−0.750578 + 0.660782i \(0.770225\pi\)
\(812\) −0.110785 + 0.110785i −0.00388780 + 0.00388780i
\(813\) −0.00752467 + 9.74327i −0.000263902 + 0.341711i
\(814\) −6.71933 + 2.78324i −0.235513 + 0.0975525i
\(815\) 13.2014 0.462426
\(816\) 0 0
\(817\) −4.25303 −0.148795
\(818\) 21.9656 9.09843i 0.768007 0.318119i
\(819\) 1.72948 2.57971i 0.0604329 0.0901425i
\(820\) 6.00029 6.00029i 0.209539 0.209539i
\(821\) −49.3864 9.82356i −1.72360 0.342845i −0.768660 0.639657i \(-0.779076\pi\)
−0.954936 + 0.296813i \(0.904076\pi\)
\(822\) −7.02529 16.9977i −0.245035 0.592862i
\(823\) −4.66026 23.4287i −0.162447 0.816674i −0.972963 0.230959i \(-0.925814\pi\)
0.810517 0.585715i \(-0.199186\pi\)
\(824\) 2.62107 6.32783i 0.0913094 0.220440i
\(825\) −27.5537 + 18.3801i −0.959298 + 0.639912i
\(826\) −0.0417473 + 0.00830405i −0.00145257 + 0.000288935i
\(827\) −3.73122 + 5.58417i −0.129747 + 0.194181i −0.890655 0.454679i \(-0.849754\pi\)
0.760908 + 0.648860i \(0.224754\pi\)
\(828\) −15.7862 + 3.11472i −0.548607 + 0.108244i
\(829\) 17.6880 + 17.6880i 0.614331 + 0.614331i 0.944072 0.329741i \(-0.106961\pi\)
−0.329741 + 0.944072i \(0.606961\pi\)
\(830\) 1.05338 + 1.57649i 0.0365632 + 0.0547208i
\(831\) 3.00694 15.0562i 0.104310 0.522292i
\(832\) 22.6876i 0.786552i
\(833\) 0 0
\(834\) −14.3692 9.61724i −0.497564 0.333018i
\(835\) 2.87097 + 6.93113i 0.0993539 + 0.239862i
\(836\) −2.62362 + 1.75304i −0.0907397 + 0.0606303i
\(837\) −2.88176 + 1.91589i −0.0996082 + 0.0662227i
\(838\) 5.76309 28.9730i 0.199083 1.00086i
\(839\) −36.6159 24.4659i −1.26412 0.844658i −0.271094 0.962553i \(-0.587385\pi\)
−0.993026 + 0.117895i \(0.962385\pi\)
\(840\) −0.706415 0.293246i −0.0243736 0.0101179i
\(841\) 26.4387 + 10.9513i 0.911679 + 0.377630i
\(842\) 0.00978190 + 0.00405180i 0.000337107 + 0.000139634i
\(843\) −11.5470 4.79339i −0.397701 0.165093i
\(844\) 16.7444 + 11.1883i 0.576367 + 0.385116i
\(845\) −2.41529 + 12.1425i −0.0830884 + 0.417713i
\(846\) −9.64526 + 23.1844i −0.331611 + 0.797095i
\(847\) 1.37978 0.921941i 0.0474099 0.0316783i
\(848\) −1.22399 2.95497i −0.0420319 0.101474i
\(849\) −7.11313 4.76079i −0.244122 0.163390i
\(850\) 0 0
\(851\) 8.12291i 0.278450i
\(852\) 2.86621 14.3515i 0.0981948 0.491674i
\(853\) 17.9800 + 26.9089i 0.615623 + 0.921344i 0.999998 0.00183231i \(-0.000583244\pi\)
−0.384376 + 0.923177i \(0.625583\pi\)
\(854\) −1.22103 1.22103i −0.0417829 0.0417829i
\(855\) −0.261821 1.32697i −0.00895411 0.0453816i
\(856\) −6.31843 + 9.45620i −0.215959 + 0.323206i
\(857\) 24.3224 4.83803i 0.830838 0.165264i 0.238693 0.971095i \(-0.423281\pi\)
0.592145 + 0.805831i \(0.298281\pi\)
\(858\) 28.2959 18.8751i 0.966007 0.644387i
\(859\) −16.0644 + 38.7830i −0.548112 + 1.32326i 0.370770 + 0.928725i \(0.379094\pi\)
−0.918881 + 0.394534i \(0.870906\pi\)
\(860\) 1.59848 + 8.03608i 0.0545076 + 0.274028i
\(861\) 1.03250 + 2.49813i 0.0351875 + 0.0851360i
\(862\) −9.75076 1.93955i −0.332112 0.0660613i
\(863\) −0.148288 + 0.148288i −0.00504779 + 0.00504779i −0.709626 0.704578i \(-0.751136\pi\)
0.704578 + 0.709626i \(0.251136\pi\)
\(864\) −11.3901 27.6794i −0.387499 0.941671i
\(865\) −0.881339 + 0.365062i −0.0299664 + 0.0124125i
\(866\) −0.455061 −0.0154636
\(867\) 0 0
\(868\) −0.168603 −0.00572278
\(869\) −44.1005 + 18.2670i −1.49601 + 0.619666i
\(870\) 0.000568017 0.735493i 1.92576e−5 0.0249355i
\(871\) 20.2885 20.2885i 0.687450 0.687450i
\(872\) −34.2934 6.82138i −1.16132 0.231001i
\(873\) −7.26265 1.45630i −0.245803 0.0492881i
\(874\) 0.372684 + 1.87361i 0.0126062 + 0.0633758i
\(875\) 0.570368 1.37699i 0.0192820 0.0465507i
\(876\) −14.4669 21.6876i −0.488793 0.732755i
\(877\) −7.25275 + 1.44266i −0.244908 + 0.0487152i −0.316018 0.948753i \(-0.602346\pi\)
0.0711099 + 0.997468i \(0.477346\pi\)
\(878\) 14.1850 21.2294i 0.478721 0.716456i
\(879\) 23.3790 + 23.4152i 0.788555 + 0.789774i
\(880\) 0.705386 + 0.705386i 0.0237786 + 0.0237786i
\(881\) 27.6606 + 41.3971i 0.931911 + 1.39470i 0.918772 + 0.394790i \(0.129183\pi\)
0.0131394 + 0.999914i \(0.495817\pi\)
\(882\) −12.4020 + 12.3638i −0.417598 + 0.416310i
\(883\) 28.6327i 0.963566i −0.876291 0.481783i \(-0.839989\pi\)
0.876291 0.481783i \(-0.160011\pi\)
\(884\) 0 0
\(885\) −0.205034 + 0.306342i −0.00689214 + 0.0102976i
\(886\) −12.9134 31.1758i −0.433835 1.04737i
\(887\) −35.5608 + 23.7610i −1.19402 + 0.797816i −0.983700 0.179818i \(-0.942449\pi\)
−0.210315 + 0.977634i \(0.567449\pi\)
\(888\) 9.22560 1.82768i 0.309591 0.0613329i
\(889\) −0.337170 + 1.69507i −0.0113083 + 0.0568508i
\(890\) 2.98259 + 1.99290i 0.0999765 + 0.0668022i
\(891\) −22.1827 + 32.9777i −0.743148 + 1.10480i
\(892\) 19.9656 + 8.27003i 0.668498 + 0.276901i
\(893\) −5.08111 2.10466i −0.170033 0.0704299i
\(894\) −7.07196 + 17.0360i −0.236522 + 0.569769i
\(895\) −7.00016 4.67736i −0.233990 0.156347i
\(896\) 0.302131 1.51892i 0.0100935 0.0507434i
\(897\) 7.38245 + 37.2645i 0.246493 + 1.24422i
\(898\) 25.4021 16.9732i 0.847680 0.566402i
\(899\) −0.157720 0.380771i −0.00526027 0.0126994i
\(900\) 15.5761 6.42368i 0.519204 0.214123i
\(901\) 0 0
\(902\) 29.6033i 0.985683i
\(903\) −2.55948 0.511167i −0.0851740 0.0170106i
\(904\) 1.89872 + 2.84164i 0.0631506 + 0.0945116i
\(905\) −7.45379 7.45379i −0.247772 0.247772i
\(906\) −0.814541 + 0.813284i −0.0270613 + 0.0270196i
\(907\) −4.51990 + 6.76450i −0.150081 + 0.224612i −0.898891 0.438173i \(-0.855626\pi\)
0.748810 + 0.662785i \(0.230626\pi\)
\(908\) 24.4851 4.87038i 0.812565 0.161629i
\(909\) −20.3777 0.0314752i −0.675885 0.00104396i
\(910\) −0.271845 + 0.656291i −0.00901157 + 0.0217558i
\(911\) 0.578423 + 2.90793i 0.0191640 + 0.0963440i 0.989184 0.146683i \(-0.0468597\pi\)
−0.970020 + 0.243027i \(0.921860\pi\)
\(912\) 0.243434 0.100613i 0.00806089 0.00333164i
\(913\) 11.9680 + 2.38058i 0.396083 + 0.0787858i
\(914\) −12.6372 + 12.6372i −0.418002 + 0.418002i
\(915\) −14.9546 0.0115493i −0.494382 0.000381809i
\(916\) 13.1575 5.45001i 0.434736 0.180073i
\(917\) −1.91928 −0.0633802
\(918\) 0 0
\(919\) 36.7672 1.21284 0.606418 0.795146i \(-0.292606\pi\)
0.606418 + 0.795146i \(0.292606\pi\)
\(920\) 8.64329 3.58017i 0.284961 0.118035i
\(921\) 8.63966 + 0.00667236i 0.284687 + 0.000219862i
\(922\) 3.64477 3.64477i 0.120034 0.120034i
\(923\) −33.8882 6.74078i −1.11544 0.221875i
\(924\) −1.78959 + 0.739655i −0.0588733 + 0.0243328i
\(925\) 1.65937 + 8.34224i 0.0545599 + 0.274291i
\(926\) −11.6457 + 28.1151i −0.382700 + 0.923919i
\(927\) 7.43288 + 0.0114807i 0.244128 + 0.000377077i
\(928\) 3.49629 0.695455i 0.114771 0.0228294i
\(929\) 15.6397 23.4065i 0.513122 0.767941i −0.480940 0.876753i \(-0.659705\pi\)
0.994062 + 0.108812i \(0.0347046\pi\)
\(930\) 0.560103 0.559239i 0.0183665 0.0183382i
\(931\) −2.71211 2.71211i −0.0888859 0.0888859i
\(932\) 16.9234 + 25.3277i 0.554346 + 0.829637i
\(933\) −17.7769 3.55032i −0.581990 0.116232i
\(934\) 6.44805i 0.210987i
\(935\) 0 0
\(936\) −40.6621 + 16.7693i −1.32908 + 0.548120i
\(937\) 14.2493 + 34.4010i 0.465506 + 1.12383i 0.966105 + 0.258151i \(0.0831132\pi\)
−0.500599 + 0.865679i \(0.666887\pi\)
\(938\) 0.736221 0.491927i 0.0240385 0.0160620i
\(939\) −8.08320 40.8017i −0.263785 1.33151i
\(940\) −2.06705 + 10.3918i −0.0674197 + 0.338942i
\(941\) 37.8140 + 25.2665i 1.23270 + 0.823664i 0.989248 0.146249i \(-0.0467202\pi\)
0.243452 + 0.969913i \(0.421720\pi\)
\(942\) −1.31318 + 3.16339i −0.0427857 + 0.103069i
\(943\) −30.5462 12.6526i −0.994720 0.412026i
\(944\) −0.0663241 0.0274723i −0.00215867 0.000894148i
\(945\) 0.00192311 0.830043i 6.25589e−5 0.0270013i
\(946\) −23.7668 15.8804i −0.772724 0.516318i
\(947\) 3.20866 16.1310i 0.104267 0.524188i −0.892983 0.450089i \(-0.851392\pi\)
0.997251 0.0740985i \(-0.0236079\pi\)
\(948\) 23.8191 4.71879i 0.773608 0.153259i
\(949\) −51.1766 + 34.1951i −1.66126 + 1.11002i
\(950\) −0.765494 1.84807i −0.0248359 0.0599592i
\(951\) −9.47587 + 14.1580i −0.307276 + 0.459103i
\(952\) 0 0
\(953\) 15.3092i 0.495915i −0.968771 0.247958i \(-0.920241\pi\)
0.968771 0.247958i \(-0.0797593\pi\)
\(954\) −20.6410 + 20.5774i −0.668278 + 0.666217i
\(955\) 7.56488 + 11.3216i 0.244794 + 0.366360i
\(956\) 12.5840 + 12.5840i 0.406997 + 0.406997i
\(957\) −3.34450 3.34967i −0.108112 0.108279i
\(958\) 1.06954 1.60067i 0.0345552 0.0517154i
\(959\) 2.42460 0.482282i 0.0782943 0.0155737i
\(960\) 3.36475 + 5.04414i 0.108597 + 0.162799i
\(961\) −11.6935 + 28.2305i −0.377208 + 0.910661i
\(962\) −1.70407 8.56694i −0.0549415 0.276209i
\(963\) −12.1012 2.42651i −0.389955 0.0781933i
\(964\) 5.43944 + 1.08197i 0.175193 + 0.0348480i
\(965\) 1.72164 1.72164i 0.0554216 0.0554216i
\(966\) −0.000905386 1.17233i −2.91303e−5 0.0377192i
\(967\) 44.6169 18.4809i 1.43478 0.594306i 0.476255 0.879307i \(-0.341994\pi\)
0.958527 + 0.285001i \(0.0919939\pi\)
\(968\) −23.5010 −0.755352
\(969\) 0 0
\(970\) 1.69419 0.0543972
\(971\) 3.06636 1.27013i 0.0984041 0.0407603i −0.332938 0.942949i \(-0.608040\pi\)
0.431342 + 0.902188i \(0.358040\pi\)
\(972\) 14.3511 14.2407i 0.460313 0.456772i
\(973\) 1.64333 1.64333i 0.0526828 0.0526828i
\(974\) 23.0893 + 4.59275i 0.739829 + 0.147161i
\(975\) −15.1943 36.7625i −0.486607 1.17734i
\(976\) −0.568172 2.85640i −0.0181868 0.0914310i
\(977\) 11.3473 27.3947i 0.363031 0.876434i −0.631823 0.775113i \(-0.717693\pi\)
0.994854 0.101321i \(-0.0323070\pi\)
\(978\) 19.4895 13.0007i 0.623206 0.415717i
\(979\) 22.6425 4.50386i 0.723656 0.143944i
\(980\) −4.10519 + 6.14386i −0.131136 + 0.196258i
\(981\) −7.34521 37.2273i −0.234515 1.18858i
\(982\) −8.01800 8.01800i −0.255865 0.255865i
\(983\) −1.38926 2.07918i −0.0443106 0.0663155i 0.808653 0.588286i \(-0.200197\pi\)
−0.852964 + 0.521971i \(0.825197\pi\)
\(984\) 7.49726 37.5397i 0.239004 1.19672i
\(985\) 11.1044i 0.353815i
\(986\) 0 0
\(987\) −2.80486 1.87728i −0.0892797 0.0597545i
\(988\) −1.45022 3.50115i −0.0461377 0.111386i
\(989\) 26.5443 17.7363i 0.844059 0.563982i
\(990\) 3.49170 8.39302i 0.110973 0.266748i
\(991\) 7.44416 37.4243i 0.236471 1.18882i −0.661902 0.749590i \(-0.730251\pi\)
0.898374 0.439232i \(-0.144749\pi\)
\(992\) 3.18969 + 2.13128i 0.101273 + 0.0676683i
\(993\) −6.71711 2.78840i −0.213161 0.0884871i
\(994\) −0.985113 0.408047i −0.0312459 0.0129425i
\(995\) 3.25239 + 1.34718i 0.103108 + 0.0427086i
\(996\) −5.73299 2.37987i −0.181657 0.0754090i
\(997\) 37.1624 + 24.8311i 1.17695 + 0.786410i 0.980963 0.194197i \(-0.0622101\pi\)
0.195984 + 0.980607i \(0.437210\pi\)
\(998\) −2.49181 + 12.5272i −0.0788769 + 0.396541i
\(999\) 5.65069 + 8.49942i 0.178780 + 0.268910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.d.158.2 32
3.2 odd 2 inner 867.2.i.d.158.3 32
17.2 even 8 867.2.i.f.224.2 32
17.3 odd 16 867.2.i.b.827.2 32
17.4 even 4 867.2.i.h.131.3 32
17.5 odd 16 867.2.i.g.329.3 32
17.6 odd 16 867.2.i.h.503.2 32
17.7 odd 16 inner 867.2.i.d.653.3 32
17.8 even 8 867.2.i.b.65.3 32
17.9 even 8 867.2.i.i.65.3 32
17.10 odd 16 867.2.i.c.653.3 32
17.11 odd 16 51.2.i.a.44.2 yes 32
17.12 odd 16 867.2.i.f.329.3 32
17.13 even 4 51.2.i.a.29.3 yes 32
17.14 odd 16 867.2.i.i.827.2 32
17.15 even 8 867.2.i.g.224.2 32
17.16 even 2 867.2.i.c.158.2 32
51.2 odd 8 867.2.i.f.224.3 32
51.5 even 16 867.2.i.g.329.2 32
51.8 odd 8 867.2.i.b.65.2 32
51.11 even 16 51.2.i.a.44.3 yes 32
51.14 even 16 867.2.i.i.827.3 32
51.20 even 16 867.2.i.b.827.3 32
51.23 even 16 867.2.i.h.503.3 32
51.26 odd 8 867.2.i.i.65.2 32
51.29 even 16 867.2.i.f.329.2 32
51.32 odd 8 867.2.i.g.224.3 32
51.38 odd 4 867.2.i.h.131.2 32
51.41 even 16 inner 867.2.i.d.653.2 32
51.44 even 16 867.2.i.c.653.2 32
51.47 odd 4 51.2.i.a.29.2 32
51.50 odd 2 867.2.i.c.158.3 32
68.11 even 16 816.2.cj.c.401.1 32
68.47 odd 4 816.2.cj.c.641.2 32
204.11 odd 16 816.2.cj.c.401.2 32
204.47 even 4 816.2.cj.c.641.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.2 32 51.47 odd 4
51.2.i.a.29.3 yes 32 17.13 even 4
51.2.i.a.44.2 yes 32 17.11 odd 16
51.2.i.a.44.3 yes 32 51.11 even 16
816.2.cj.c.401.1 32 68.11 even 16
816.2.cj.c.401.2 32 204.11 odd 16
816.2.cj.c.641.1 32 204.47 even 4
816.2.cj.c.641.2 32 68.47 odd 4
867.2.i.b.65.2 32 51.8 odd 8
867.2.i.b.65.3 32 17.8 even 8
867.2.i.b.827.2 32 17.3 odd 16
867.2.i.b.827.3 32 51.20 even 16
867.2.i.c.158.2 32 17.16 even 2
867.2.i.c.158.3 32 51.50 odd 2
867.2.i.c.653.2 32 51.44 even 16
867.2.i.c.653.3 32 17.10 odd 16
867.2.i.d.158.2 32 1.1 even 1 trivial
867.2.i.d.158.3 32 3.2 odd 2 inner
867.2.i.d.653.2 32 51.41 even 16 inner
867.2.i.d.653.3 32 17.7 odd 16 inner
867.2.i.f.224.2 32 17.2 even 8
867.2.i.f.224.3 32 51.2 odd 8
867.2.i.f.329.2 32 51.29 even 16
867.2.i.f.329.3 32 17.12 odd 16
867.2.i.g.224.2 32 17.15 even 8
867.2.i.g.224.3 32 51.32 odd 8
867.2.i.g.329.2 32 51.5 even 16
867.2.i.g.329.3 32 17.5 odd 16
867.2.i.h.131.2 32 51.38 odd 4
867.2.i.h.131.3 32 17.4 even 4
867.2.i.h.503.2 32 17.6 odd 16
867.2.i.h.503.3 32 51.23 even 16
867.2.i.i.65.2 32 51.26 odd 8
867.2.i.i.65.3 32 17.9 even 8
867.2.i.i.827.2 32 17.14 odd 16
867.2.i.i.827.3 32 51.14 even 16