Properties

Label 875.2.a.h.1.6
Level $875$
Weight $2$
Character 875.1
Self dual yes
Analytic conductor $6.987$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(1,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1241125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} - 2x^{3} + 11x^{2} + 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.72131\) of defining polynomial
Character \(\chi\) \(=\) 875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55803 q^{2} -0.353843 q^{3} +4.54354 q^{4} -0.905143 q^{6} -1.00000 q^{7} +6.50646 q^{8} -2.87480 q^{9} +5.69412 q^{11} -1.60770 q^{12} +6.47971 q^{13} -2.55803 q^{14} +7.55666 q^{16} -2.19206 q^{17} -7.35382 q^{18} -5.09571 q^{19} +0.353843 q^{21} +14.5657 q^{22} +6.78323 q^{23} -2.30226 q^{24} +16.5753 q^{26} +2.07876 q^{27} -4.54354 q^{28} +1.62794 q^{29} -8.51029 q^{31} +6.31728 q^{32} -2.01482 q^{33} -5.60737 q^{34} -13.0617 q^{36} -1.22831 q^{37} -13.0350 q^{38} -2.29280 q^{39} -1.53221 q^{41} +0.905143 q^{42} -6.00854 q^{43} +25.8714 q^{44} +17.3517 q^{46} -2.06257 q^{47} -2.67387 q^{48} +1.00000 q^{49} +0.775646 q^{51} +29.4408 q^{52} -6.26731 q^{53} +5.31753 q^{54} -6.50646 q^{56} +1.80308 q^{57} +4.16432 q^{58} -6.61824 q^{59} -7.69499 q^{61} -21.7696 q^{62} +2.87480 q^{63} +1.04650 q^{64} -5.15399 q^{66} +6.29996 q^{67} -9.95971 q^{68} -2.40020 q^{69} +0.839088 q^{71} -18.7047 q^{72} -4.62741 q^{73} -3.14205 q^{74} -23.1525 q^{76} -5.69412 q^{77} -5.86506 q^{78} -8.90370 q^{79} +7.88883 q^{81} -3.91945 q^{82} +3.59494 q^{83} +1.60770 q^{84} -15.3701 q^{86} -0.576035 q^{87} +37.0485 q^{88} -0.716374 q^{89} -6.47971 q^{91} +30.8199 q^{92} +3.01131 q^{93} -5.27613 q^{94} -2.23533 q^{96} +6.57786 q^{97} +2.55803 q^{98} -16.3694 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 5 q^{3} + 4 q^{4} - 2 q^{6} - 6 q^{7} + 12 q^{8} + 7 q^{9} + q^{11} + 11 q^{12} + 22 q^{13} - 2 q^{14} + 8 q^{16} + 4 q^{17} - 14 q^{18} - 17 q^{19} - 5 q^{21} + 9 q^{22} + 3 q^{23} + 7 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.55803 1.80880 0.904402 0.426682i \(-0.140318\pi\)
0.904402 + 0.426682i \(0.140318\pi\)
\(3\) −0.353843 −0.204291 −0.102146 0.994769i \(-0.532571\pi\)
−0.102146 + 0.994769i \(0.532571\pi\)
\(4\) 4.54354 2.27177
\(5\) 0 0
\(6\) −0.905143 −0.369523
\(7\) −1.00000 −0.377964
\(8\) 6.50646 2.30038
\(9\) −2.87480 −0.958265
\(10\) 0 0
\(11\) 5.69412 1.71684 0.858420 0.512947i \(-0.171446\pi\)
0.858420 + 0.512947i \(0.171446\pi\)
\(12\) −1.60770 −0.464103
\(13\) 6.47971 1.79715 0.898574 0.438822i \(-0.144604\pi\)
0.898574 + 0.438822i \(0.144604\pi\)
\(14\) −2.55803 −0.683663
\(15\) 0 0
\(16\) 7.55666 1.88916
\(17\) −2.19206 −0.531653 −0.265826 0.964021i \(-0.585645\pi\)
−0.265826 + 0.964021i \(0.585645\pi\)
\(18\) −7.35382 −1.73331
\(19\) −5.09571 −1.16904 −0.584518 0.811381i \(-0.698716\pi\)
−0.584518 + 0.811381i \(0.698716\pi\)
\(20\) 0 0
\(21\) 0.353843 0.0772149
\(22\) 14.5657 3.10543
\(23\) 6.78323 1.41440 0.707201 0.707013i \(-0.249958\pi\)
0.707201 + 0.707013i \(0.249958\pi\)
\(24\) −2.30226 −0.469948
\(25\) 0 0
\(26\) 16.5753 3.25069
\(27\) 2.07876 0.400057
\(28\) −4.54354 −0.858648
\(29\) 1.62794 0.302301 0.151150 0.988511i \(-0.451702\pi\)
0.151150 + 0.988511i \(0.451702\pi\)
\(30\) 0 0
\(31\) −8.51029 −1.52849 −0.764246 0.644925i \(-0.776889\pi\)
−0.764246 + 0.644925i \(0.776889\pi\)
\(32\) 6.31728 1.11675
\(33\) −2.01482 −0.350736
\(34\) −5.60737 −0.961656
\(35\) 0 0
\(36\) −13.0617 −2.17696
\(37\) −1.22831 −0.201932 −0.100966 0.994890i \(-0.532193\pi\)
−0.100966 + 0.994890i \(0.532193\pi\)
\(38\) −13.0350 −2.11455
\(39\) −2.29280 −0.367142
\(40\) 0 0
\(41\) −1.53221 −0.239291 −0.119646 0.992817i \(-0.538176\pi\)
−0.119646 + 0.992817i \(0.538176\pi\)
\(42\) 0.905143 0.139667
\(43\) −6.00854 −0.916294 −0.458147 0.888876i \(-0.651487\pi\)
−0.458147 + 0.888876i \(0.651487\pi\)
\(44\) 25.8714 3.90026
\(45\) 0 0
\(46\) 17.3517 2.55837
\(47\) −2.06257 −0.300857 −0.150429 0.988621i \(-0.548065\pi\)
−0.150429 + 0.988621i \(0.548065\pi\)
\(48\) −2.67387 −0.385940
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.775646 0.108612
\(52\) 29.4408 4.08270
\(53\) −6.26731 −0.860881 −0.430440 0.902619i \(-0.641642\pi\)
−0.430440 + 0.902619i \(0.641642\pi\)
\(54\) 5.31753 0.723624
\(55\) 0 0
\(56\) −6.50646 −0.869462
\(57\) 1.80308 0.238824
\(58\) 4.16432 0.546802
\(59\) −6.61824 −0.861621 −0.430811 0.902442i \(-0.641772\pi\)
−0.430811 + 0.902442i \(0.641772\pi\)
\(60\) 0 0
\(61\) −7.69499 −0.985242 −0.492621 0.870244i \(-0.663961\pi\)
−0.492621 + 0.870244i \(0.663961\pi\)
\(62\) −21.7696 −2.76474
\(63\) 2.87480 0.362190
\(64\) 1.04650 0.130812
\(65\) 0 0
\(66\) −5.15399 −0.634412
\(67\) 6.29996 0.769663 0.384832 0.922987i \(-0.374260\pi\)
0.384832 + 0.922987i \(0.374260\pi\)
\(68\) −9.95971 −1.20779
\(69\) −2.40020 −0.288950
\(70\) 0 0
\(71\) 0.839088 0.0995814 0.0497907 0.998760i \(-0.484145\pi\)
0.0497907 + 0.998760i \(0.484145\pi\)
\(72\) −18.7047 −2.20437
\(73\) −4.62741 −0.541598 −0.270799 0.962636i \(-0.587288\pi\)
−0.270799 + 0.962636i \(0.587288\pi\)
\(74\) −3.14205 −0.365256
\(75\) 0 0
\(76\) −23.1525 −2.65578
\(77\) −5.69412 −0.648905
\(78\) −5.86506 −0.664087
\(79\) −8.90370 −1.00174 −0.500872 0.865521i \(-0.666987\pi\)
−0.500872 + 0.865521i \(0.666987\pi\)
\(80\) 0 0
\(81\) 7.88883 0.876537
\(82\) −3.91945 −0.432831
\(83\) 3.59494 0.394596 0.197298 0.980344i \(-0.436783\pi\)
0.197298 + 0.980344i \(0.436783\pi\)
\(84\) 1.60770 0.175414
\(85\) 0 0
\(86\) −15.3701 −1.65740
\(87\) −0.576035 −0.0617574
\(88\) 37.0485 3.94938
\(89\) −0.716374 −0.0759355 −0.0379677 0.999279i \(-0.512088\pi\)
−0.0379677 + 0.999279i \(0.512088\pi\)
\(90\) 0 0
\(91\) −6.47971 −0.679258
\(92\) 30.8199 3.21319
\(93\) 3.01131 0.312258
\(94\) −5.27613 −0.544191
\(95\) 0 0
\(96\) −2.23533 −0.228142
\(97\) 6.57786 0.667880 0.333940 0.942594i \(-0.391622\pi\)
0.333940 + 0.942594i \(0.391622\pi\)
\(98\) 2.55803 0.258400
\(99\) −16.3694 −1.64519
\(100\) 0 0
\(101\) −10.1795 −1.01290 −0.506449 0.862270i \(-0.669042\pi\)
−0.506449 + 0.862270i \(0.669042\pi\)
\(102\) 1.98413 0.196458
\(103\) 12.4409 1.22584 0.612920 0.790145i \(-0.289995\pi\)
0.612920 + 0.790145i \(0.289995\pi\)
\(104\) 42.1599 4.13412
\(105\) 0 0
\(106\) −16.0320 −1.55716
\(107\) 1.70563 0.164890 0.0824450 0.996596i \(-0.473727\pi\)
0.0824450 + 0.996596i \(0.473727\pi\)
\(108\) 9.44491 0.908837
\(109\) −12.1453 −1.16331 −0.581653 0.813437i \(-0.697594\pi\)
−0.581653 + 0.813437i \(0.697594\pi\)
\(110\) 0 0
\(111\) 0.434628 0.0412530
\(112\) −7.55666 −0.714037
\(113\) 12.7733 1.20161 0.600806 0.799395i \(-0.294846\pi\)
0.600806 + 0.799395i \(0.294846\pi\)
\(114\) 4.61234 0.431985
\(115\) 0 0
\(116\) 7.39660 0.686757
\(117\) −18.6278 −1.72214
\(118\) −16.9297 −1.55850
\(119\) 2.19206 0.200946
\(120\) 0 0
\(121\) 21.4229 1.94754
\(122\) −19.6840 −1.78211
\(123\) 0.542163 0.0488851
\(124\) −38.6668 −3.47238
\(125\) 0 0
\(126\) 7.35382 0.655131
\(127\) 3.87656 0.343989 0.171994 0.985098i \(-0.444979\pi\)
0.171994 + 0.985098i \(0.444979\pi\)
\(128\) −9.95759 −0.880135
\(129\) 2.12608 0.187191
\(130\) 0 0
\(131\) 1.55620 0.135966 0.0679831 0.997686i \(-0.478344\pi\)
0.0679831 + 0.997686i \(0.478344\pi\)
\(132\) −9.15443 −0.796791
\(133\) 5.09571 0.441854
\(134\) 16.1155 1.39217
\(135\) 0 0
\(136\) −14.2626 −1.22300
\(137\) 11.6597 0.996159 0.498080 0.867131i \(-0.334039\pi\)
0.498080 + 0.867131i \(0.334039\pi\)
\(138\) −6.13979 −0.522654
\(139\) 9.16488 0.777355 0.388677 0.921374i \(-0.372932\pi\)
0.388677 + 0.921374i \(0.372932\pi\)
\(140\) 0 0
\(141\) 0.729827 0.0614625
\(142\) 2.14642 0.180123
\(143\) 36.8962 3.08542
\(144\) −21.7238 −1.81032
\(145\) 0 0
\(146\) −11.8371 −0.979644
\(147\) −0.353843 −0.0291845
\(148\) −5.58085 −0.458743
\(149\) 4.36230 0.357373 0.178687 0.983906i \(-0.442815\pi\)
0.178687 + 0.983906i \(0.442815\pi\)
\(150\) 0 0
\(151\) −10.3209 −0.839902 −0.419951 0.907547i \(-0.637953\pi\)
−0.419951 + 0.907547i \(0.637953\pi\)
\(152\) −33.1550 −2.68922
\(153\) 6.30173 0.509464
\(154\) −14.5657 −1.17374
\(155\) 0 0
\(156\) −10.4174 −0.834061
\(157\) 23.8740 1.90535 0.952677 0.303985i \(-0.0983173\pi\)
0.952677 + 0.303985i \(0.0983173\pi\)
\(158\) −22.7760 −1.81196
\(159\) 2.21764 0.175871
\(160\) 0 0
\(161\) −6.78323 −0.534593
\(162\) 20.1799 1.58548
\(163\) −20.2290 −1.58446 −0.792231 0.610222i \(-0.791080\pi\)
−0.792231 + 0.610222i \(0.791080\pi\)
\(164\) −6.96166 −0.543614
\(165\) 0 0
\(166\) 9.19599 0.713747
\(167\) −8.90008 −0.688709 −0.344354 0.938840i \(-0.611902\pi\)
−0.344354 + 0.938840i \(0.611902\pi\)
\(168\) 2.30226 0.177624
\(169\) 28.9866 2.22974
\(170\) 0 0
\(171\) 14.6491 1.12025
\(172\) −27.3000 −2.08161
\(173\) −15.0386 −1.14337 −0.571683 0.820474i \(-0.693709\pi\)
−0.571683 + 0.820474i \(0.693709\pi\)
\(174\) −1.47352 −0.111707
\(175\) 0 0
\(176\) 43.0285 3.24339
\(177\) 2.34182 0.176022
\(178\) −1.83251 −0.137352
\(179\) 1.62454 0.121424 0.0607120 0.998155i \(-0.480663\pi\)
0.0607120 + 0.998155i \(0.480663\pi\)
\(180\) 0 0
\(181\) 7.78605 0.578733 0.289366 0.957218i \(-0.406555\pi\)
0.289366 + 0.957218i \(0.406555\pi\)
\(182\) −16.5753 −1.22864
\(183\) 2.72282 0.201276
\(184\) 44.1348 3.25366
\(185\) 0 0
\(186\) 7.70302 0.564813
\(187\) −12.4819 −0.912763
\(188\) −9.37137 −0.683478
\(189\) −2.07876 −0.151207
\(190\) 0 0
\(191\) −16.6452 −1.20440 −0.602201 0.798344i \(-0.705709\pi\)
−0.602201 + 0.798344i \(0.705709\pi\)
\(192\) −0.370295 −0.0267238
\(193\) −3.76432 −0.270962 −0.135481 0.990780i \(-0.543258\pi\)
−0.135481 + 0.990780i \(0.543258\pi\)
\(194\) 16.8264 1.20806
\(195\) 0 0
\(196\) 4.54354 0.324538
\(197\) 4.86416 0.346557 0.173279 0.984873i \(-0.444564\pi\)
0.173279 + 0.984873i \(0.444564\pi\)
\(198\) −41.8735 −2.97582
\(199\) 7.04266 0.499241 0.249621 0.968344i \(-0.419694\pi\)
0.249621 + 0.968344i \(0.419694\pi\)
\(200\) 0 0
\(201\) −2.22920 −0.157236
\(202\) −26.0395 −1.83213
\(203\) −1.62794 −0.114259
\(204\) 3.52418 0.246742
\(205\) 0 0
\(206\) 31.8243 2.21730
\(207\) −19.5004 −1.35537
\(208\) 48.9649 3.39511
\(209\) −29.0155 −2.00705
\(210\) 0 0
\(211\) 11.5218 0.793191 0.396595 0.917994i \(-0.370192\pi\)
0.396595 + 0.917994i \(0.370192\pi\)
\(212\) −28.4757 −1.95572
\(213\) −0.296906 −0.0203436
\(214\) 4.36307 0.298253
\(215\) 0 0
\(216\) 13.5253 0.920282
\(217\) 8.51029 0.577716
\(218\) −31.0680 −2.10419
\(219\) 1.63738 0.110644
\(220\) 0 0
\(221\) −14.2039 −0.955459
\(222\) 1.11179 0.0746186
\(223\) −0.639877 −0.0428493 −0.0214247 0.999770i \(-0.506820\pi\)
−0.0214247 + 0.999770i \(0.506820\pi\)
\(224\) −6.31728 −0.422091
\(225\) 0 0
\(226\) 32.6746 2.17348
\(227\) −10.7993 −0.716774 −0.358387 0.933573i \(-0.616673\pi\)
−0.358387 + 0.933573i \(0.616673\pi\)
\(228\) 8.19237 0.542553
\(229\) −20.2209 −1.33623 −0.668116 0.744057i \(-0.732899\pi\)
−0.668116 + 0.744057i \(0.732899\pi\)
\(230\) 0 0
\(231\) 2.01482 0.132566
\(232\) 10.5921 0.695406
\(233\) −7.15167 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(234\) −47.6506 −3.11502
\(235\) 0 0
\(236\) −30.0702 −1.95740
\(237\) 3.15051 0.204648
\(238\) 5.60737 0.363472
\(239\) −12.7774 −0.826500 −0.413250 0.910618i \(-0.635606\pi\)
−0.413250 + 0.910618i \(0.635606\pi\)
\(240\) 0 0
\(241\) 26.3455 1.69706 0.848530 0.529147i \(-0.177488\pi\)
0.848530 + 0.529147i \(0.177488\pi\)
\(242\) 54.8006 3.52272
\(243\) −9.02768 −0.579126
\(244\) −34.9625 −2.23824
\(245\) 0 0
\(246\) 1.38687 0.0884236
\(247\) −33.0187 −2.10093
\(248\) −55.3718 −3.51611
\(249\) −1.27205 −0.0806126
\(250\) 0 0
\(251\) −7.27060 −0.458916 −0.229458 0.973319i \(-0.573695\pi\)
−0.229458 + 0.973319i \(0.573695\pi\)
\(252\) 13.0617 0.822812
\(253\) 38.6245 2.42830
\(254\) 9.91637 0.622208
\(255\) 0 0
\(256\) −27.5648 −1.72280
\(257\) 29.7439 1.85537 0.927686 0.373362i \(-0.121795\pi\)
0.927686 + 0.373362i \(0.121795\pi\)
\(258\) 5.43859 0.338592
\(259\) 1.22831 0.0763232
\(260\) 0 0
\(261\) −4.67999 −0.289684
\(262\) 3.98082 0.245936
\(263\) −22.4784 −1.38608 −0.693040 0.720899i \(-0.743729\pi\)
−0.693040 + 0.720899i \(0.743729\pi\)
\(264\) −13.1094 −0.806825
\(265\) 0 0
\(266\) 13.0350 0.799227
\(267\) 0.253484 0.0155130
\(268\) 28.6241 1.74850
\(269\) 18.3297 1.11758 0.558789 0.829310i \(-0.311266\pi\)
0.558789 + 0.829310i \(0.311266\pi\)
\(270\) 0 0
\(271\) 16.1329 0.980005 0.490002 0.871721i \(-0.336996\pi\)
0.490002 + 0.871721i \(0.336996\pi\)
\(272\) −16.5647 −1.00438
\(273\) 2.29280 0.138767
\(274\) 29.8260 1.80186
\(275\) 0 0
\(276\) −10.9054 −0.656428
\(277\) 3.26856 0.196389 0.0981945 0.995167i \(-0.468693\pi\)
0.0981945 + 0.995167i \(0.468693\pi\)
\(278\) 23.4441 1.40608
\(279\) 24.4653 1.46470
\(280\) 0 0
\(281\) −3.85635 −0.230050 −0.115025 0.993363i \(-0.536695\pi\)
−0.115025 + 0.993363i \(0.536695\pi\)
\(282\) 1.86692 0.111174
\(283\) 22.0923 1.31325 0.656626 0.754217i \(-0.271983\pi\)
0.656626 + 0.754217i \(0.271983\pi\)
\(284\) 3.81243 0.226226
\(285\) 0 0
\(286\) 94.3817 5.58091
\(287\) 1.53221 0.0904436
\(288\) −18.1609 −1.07014
\(289\) −12.1949 −0.717345
\(290\) 0 0
\(291\) −2.32753 −0.136442
\(292\) −21.0248 −1.23038
\(293\) 19.8463 1.15943 0.579715 0.814819i \(-0.303164\pi\)
0.579715 + 0.814819i \(0.303164\pi\)
\(294\) −0.905143 −0.0527890
\(295\) 0 0
\(296\) −7.99192 −0.464521
\(297\) 11.8367 0.686834
\(298\) 11.1589 0.646418
\(299\) 43.9533 2.54189
\(300\) 0 0
\(301\) 6.00854 0.346327
\(302\) −26.4012 −1.51922
\(303\) 3.60195 0.206926
\(304\) −38.5065 −2.20850
\(305\) 0 0
\(306\) 16.1200 0.921521
\(307\) −28.9241 −1.65079 −0.825393 0.564559i \(-0.809046\pi\)
−0.825393 + 0.564559i \(0.809046\pi\)
\(308\) −25.8714 −1.47416
\(309\) −4.40213 −0.250429
\(310\) 0 0
\(311\) 25.8008 1.46303 0.731515 0.681825i \(-0.238813\pi\)
0.731515 + 0.681825i \(0.238813\pi\)
\(312\) −14.9180 −0.844566
\(313\) −4.34404 −0.245540 −0.122770 0.992435i \(-0.539178\pi\)
−0.122770 + 0.992435i \(0.539178\pi\)
\(314\) 61.0705 3.44641
\(315\) 0 0
\(316\) −40.4543 −2.27573
\(317\) 11.9946 0.673685 0.336842 0.941561i \(-0.390641\pi\)
0.336842 + 0.941561i \(0.390641\pi\)
\(318\) 5.67281 0.318115
\(319\) 9.26967 0.519002
\(320\) 0 0
\(321\) −0.603527 −0.0336856
\(322\) −17.3517 −0.966974
\(323\) 11.1701 0.621521
\(324\) 35.8432 1.99129
\(325\) 0 0
\(326\) −51.7466 −2.86598
\(327\) 4.29752 0.237653
\(328\) −9.96927 −0.550461
\(329\) 2.06257 0.113713
\(330\) 0 0
\(331\) −25.4301 −1.39776 −0.698882 0.715237i \(-0.746319\pi\)
−0.698882 + 0.715237i \(0.746319\pi\)
\(332\) 16.3338 0.896431
\(333\) 3.53113 0.193505
\(334\) −22.7667 −1.24574
\(335\) 0 0
\(336\) 2.67387 0.145872
\(337\) 6.65856 0.362715 0.181358 0.983417i \(-0.441951\pi\)
0.181358 + 0.983417i \(0.441951\pi\)
\(338\) 74.1487 4.03316
\(339\) −4.51975 −0.245479
\(340\) 0 0
\(341\) −48.4585 −2.62418
\(342\) 37.4729 2.02630
\(343\) −1.00000 −0.0539949
\(344\) −39.0943 −2.10782
\(345\) 0 0
\(346\) −38.4693 −2.06812
\(347\) −1.27571 −0.0684837 −0.0342419 0.999414i \(-0.510902\pi\)
−0.0342419 + 0.999414i \(0.510902\pi\)
\(348\) −2.61724 −0.140299
\(349\) 23.4771 1.25670 0.628351 0.777930i \(-0.283730\pi\)
0.628351 + 0.777930i \(0.283730\pi\)
\(350\) 0 0
\(351\) 13.4697 0.718961
\(352\) 35.9713 1.91728
\(353\) −17.6711 −0.940537 −0.470268 0.882523i \(-0.655843\pi\)
−0.470268 + 0.882523i \(0.655843\pi\)
\(354\) 5.99045 0.318389
\(355\) 0 0
\(356\) −3.25487 −0.172508
\(357\) −0.775646 −0.0410515
\(358\) 4.15564 0.219632
\(359\) 32.7103 1.72638 0.863191 0.504878i \(-0.168463\pi\)
0.863191 + 0.504878i \(0.168463\pi\)
\(360\) 0 0
\(361\) 6.96623 0.366644
\(362\) 19.9170 1.04681
\(363\) −7.58036 −0.397866
\(364\) −29.4408 −1.54312
\(365\) 0 0
\(366\) 6.96506 0.364070
\(367\) 2.73145 0.142580 0.0712902 0.997456i \(-0.477288\pi\)
0.0712902 + 0.997456i \(0.477288\pi\)
\(368\) 51.2586 2.67204
\(369\) 4.40479 0.229304
\(370\) 0 0
\(371\) 6.26731 0.325382
\(372\) 13.6820 0.709378
\(373\) 8.37626 0.433706 0.216853 0.976204i \(-0.430421\pi\)
0.216853 + 0.976204i \(0.430421\pi\)
\(374\) −31.9290 −1.65101
\(375\) 0 0
\(376\) −13.4200 −0.692085
\(377\) 10.5486 0.543279
\(378\) −5.31753 −0.273504
\(379\) −12.6454 −0.649548 −0.324774 0.945792i \(-0.605288\pi\)
−0.324774 + 0.945792i \(0.605288\pi\)
\(380\) 0 0
\(381\) −1.37169 −0.0702740
\(382\) −42.5789 −2.17853
\(383\) −20.3777 −1.04125 −0.520625 0.853785i \(-0.674301\pi\)
−0.520625 + 0.853785i \(0.674301\pi\)
\(384\) 3.52342 0.179804
\(385\) 0 0
\(386\) −9.62926 −0.490116
\(387\) 17.2733 0.878053
\(388\) 29.8867 1.51727
\(389\) 17.4785 0.886196 0.443098 0.896473i \(-0.353879\pi\)
0.443098 + 0.896473i \(0.353879\pi\)
\(390\) 0 0
\(391\) −14.8693 −0.751971
\(392\) 6.50646 0.328626
\(393\) −0.550652 −0.0277767
\(394\) 12.4427 0.626854
\(395\) 0 0
\(396\) −74.3750 −3.73749
\(397\) 22.0398 1.10615 0.553073 0.833133i \(-0.313455\pi\)
0.553073 + 0.833133i \(0.313455\pi\)
\(398\) 18.0154 0.903029
\(399\) −1.80308 −0.0902670
\(400\) 0 0
\(401\) −8.04900 −0.401948 −0.200974 0.979597i \(-0.564411\pi\)
−0.200974 + 0.979597i \(0.564411\pi\)
\(402\) −5.70237 −0.284408
\(403\) −55.1442 −2.74693
\(404\) −46.2510 −2.30107
\(405\) 0 0
\(406\) −4.16432 −0.206672
\(407\) −6.99412 −0.346685
\(408\) 5.04671 0.249849
\(409\) 23.3486 1.15451 0.577256 0.816563i \(-0.304123\pi\)
0.577256 + 0.816563i \(0.304123\pi\)
\(410\) 0 0
\(411\) −4.12572 −0.203507
\(412\) 56.5258 2.78483
\(413\) 6.61824 0.325662
\(414\) −49.8827 −2.45160
\(415\) 0 0
\(416\) 40.9341 2.00696
\(417\) −3.24293 −0.158807
\(418\) −74.2227 −3.63035
\(419\) −13.0497 −0.637518 −0.318759 0.947836i \(-0.603266\pi\)
−0.318759 + 0.947836i \(0.603266\pi\)
\(420\) 0 0
\(421\) 38.2475 1.86407 0.932034 0.362372i \(-0.118033\pi\)
0.932034 + 0.362372i \(0.118033\pi\)
\(422\) 29.4731 1.43473
\(423\) 5.92947 0.288301
\(424\) −40.7779 −1.98035
\(425\) 0 0
\(426\) −0.759494 −0.0367976
\(427\) 7.69499 0.372386
\(428\) 7.74961 0.374592
\(429\) −13.0555 −0.630324
\(430\) 0 0
\(431\) 7.17527 0.345621 0.172810 0.984955i \(-0.444715\pi\)
0.172810 + 0.984955i \(0.444715\pi\)
\(432\) 15.7085 0.755773
\(433\) 33.9429 1.63119 0.815595 0.578623i \(-0.196410\pi\)
0.815595 + 0.578623i \(0.196410\pi\)
\(434\) 21.7696 1.04497
\(435\) 0 0
\(436\) −55.1825 −2.64276
\(437\) −34.5654 −1.65349
\(438\) 4.18847 0.200133
\(439\) −1.11980 −0.0534451 −0.0267226 0.999643i \(-0.508507\pi\)
−0.0267226 + 0.999643i \(0.508507\pi\)
\(440\) 0 0
\(441\) −2.87480 −0.136895
\(442\) −36.3341 −1.72824
\(443\) 21.9887 1.04472 0.522358 0.852727i \(-0.325053\pi\)
0.522358 + 0.852727i \(0.325053\pi\)
\(444\) 1.97475 0.0937173
\(445\) 0 0
\(446\) −1.63683 −0.0775060
\(447\) −1.54357 −0.0730083
\(448\) −1.04650 −0.0494423
\(449\) 17.5039 0.826058 0.413029 0.910718i \(-0.364471\pi\)
0.413029 + 0.910718i \(0.364471\pi\)
\(450\) 0 0
\(451\) −8.72459 −0.410825
\(452\) 58.0360 2.72978
\(453\) 3.65197 0.171585
\(454\) −27.6249 −1.29650
\(455\) 0 0
\(456\) 11.7317 0.549386
\(457\) 5.33726 0.249667 0.124833 0.992178i \(-0.460160\pi\)
0.124833 + 0.992178i \(0.460160\pi\)
\(458\) −51.7256 −2.41698
\(459\) −4.55676 −0.212691
\(460\) 0 0
\(461\) 7.13045 0.332098 0.166049 0.986117i \(-0.446899\pi\)
0.166049 + 0.986117i \(0.446899\pi\)
\(462\) 5.15399 0.239785
\(463\) −15.6224 −0.726036 −0.363018 0.931782i \(-0.618254\pi\)
−0.363018 + 0.931782i \(0.618254\pi\)
\(464\) 12.3018 0.571096
\(465\) 0 0
\(466\) −18.2942 −0.847463
\(467\) −28.1640 −1.30328 −0.651638 0.758530i \(-0.725918\pi\)
−0.651638 + 0.758530i \(0.725918\pi\)
\(468\) −84.6363 −3.91231
\(469\) −6.29996 −0.290905
\(470\) 0 0
\(471\) −8.44766 −0.389247
\(472\) −43.0613 −1.98206
\(473\) −34.2133 −1.57313
\(474\) 8.05912 0.370168
\(475\) 0 0
\(476\) 9.95971 0.456503
\(477\) 18.0172 0.824952
\(478\) −32.6850 −1.49498
\(479\) −26.4738 −1.20962 −0.604809 0.796371i \(-0.706750\pi\)
−0.604809 + 0.796371i \(0.706750\pi\)
\(480\) 0 0
\(481\) −7.95906 −0.362902
\(482\) 67.3926 3.06965
\(483\) 2.40020 0.109213
\(484\) 97.3360 4.42436
\(485\) 0 0
\(486\) −23.0931 −1.04752
\(487\) −10.4405 −0.473106 −0.236553 0.971619i \(-0.576018\pi\)
−0.236553 + 0.971619i \(0.576018\pi\)
\(488\) −50.0671 −2.26643
\(489\) 7.15791 0.323692
\(490\) 0 0
\(491\) −4.53334 −0.204587 −0.102293 0.994754i \(-0.532618\pi\)
−0.102293 + 0.994754i \(0.532618\pi\)
\(492\) 2.46334 0.111056
\(493\) −3.56854 −0.160719
\(494\) −84.4629 −3.80017
\(495\) 0 0
\(496\) −64.3093 −2.88757
\(497\) −0.839088 −0.0376382
\(498\) −3.25394 −0.145812
\(499\) −1.36104 −0.0609283 −0.0304642 0.999536i \(-0.509699\pi\)
−0.0304642 + 0.999536i \(0.509699\pi\)
\(500\) 0 0
\(501\) 3.14923 0.140697
\(502\) −18.5984 −0.830089
\(503\) 27.9936 1.24817 0.624086 0.781356i \(-0.285472\pi\)
0.624086 + 0.781356i \(0.285472\pi\)
\(504\) 18.7047 0.833175
\(505\) 0 0
\(506\) 98.8028 4.39232
\(507\) −10.2567 −0.455517
\(508\) 17.6133 0.781463
\(509\) 1.40214 0.0621488 0.0310744 0.999517i \(-0.490107\pi\)
0.0310744 + 0.999517i \(0.490107\pi\)
\(510\) 0 0
\(511\) 4.62741 0.204705
\(512\) −50.5966 −2.23608
\(513\) −10.5927 −0.467681
\(514\) 76.0858 3.35600
\(515\) 0 0
\(516\) 9.65993 0.425255
\(517\) −11.7445 −0.516524
\(518\) 3.14205 0.138054
\(519\) 5.32132 0.233580
\(520\) 0 0
\(521\) −23.2572 −1.01892 −0.509458 0.860495i \(-0.670154\pi\)
−0.509458 + 0.860495i \(0.670154\pi\)
\(522\) −11.9716 −0.523981
\(523\) −3.80015 −0.166169 −0.0830845 0.996543i \(-0.526477\pi\)
−0.0830845 + 0.996543i \(0.526477\pi\)
\(524\) 7.07067 0.308884
\(525\) 0 0
\(526\) −57.5006 −2.50715
\(527\) 18.6551 0.812628
\(528\) −15.2253 −0.662598
\(529\) 23.0122 1.00053
\(530\) 0 0
\(531\) 19.0261 0.825662
\(532\) 23.1525 1.00379
\(533\) −9.92828 −0.430042
\(534\) 0.648420 0.0280599
\(535\) 0 0
\(536\) 40.9904 1.77052
\(537\) −0.574833 −0.0248059
\(538\) 46.8879 2.02148
\(539\) 5.69412 0.245263
\(540\) 0 0
\(541\) −16.0165 −0.688602 −0.344301 0.938859i \(-0.611884\pi\)
−0.344301 + 0.938859i \(0.611884\pi\)
\(542\) 41.2685 1.77264
\(543\) −2.75504 −0.118230
\(544\) −13.8479 −0.593722
\(545\) 0 0
\(546\) 5.86506 0.251001
\(547\) −30.2390 −1.29293 −0.646464 0.762944i \(-0.723753\pi\)
−0.646464 + 0.762944i \(0.723753\pi\)
\(548\) 52.9765 2.26304
\(549\) 22.1215 0.944123
\(550\) 0 0
\(551\) −8.29550 −0.353400
\(552\) −15.6168 −0.664695
\(553\) 8.90370 0.378624
\(554\) 8.36110 0.355229
\(555\) 0 0
\(556\) 41.6410 1.76597
\(557\) 24.2216 1.02630 0.513152 0.858298i \(-0.328478\pi\)
0.513152 + 0.858298i \(0.328478\pi\)
\(558\) 62.5831 2.64936
\(559\) −38.9336 −1.64672
\(560\) 0 0
\(561\) 4.41662 0.186470
\(562\) −9.86467 −0.416116
\(563\) 11.9124 0.502048 0.251024 0.967981i \(-0.419233\pi\)
0.251024 + 0.967981i \(0.419233\pi\)
\(564\) 3.31600 0.139629
\(565\) 0 0
\(566\) 56.5129 2.37541
\(567\) −7.88883 −0.331300
\(568\) 5.45949 0.229075
\(569\) 22.2725 0.933712 0.466856 0.884333i \(-0.345387\pi\)
0.466856 + 0.884333i \(0.345387\pi\)
\(570\) 0 0
\(571\) 19.6713 0.823216 0.411608 0.911361i \(-0.364967\pi\)
0.411608 + 0.911361i \(0.364967\pi\)
\(572\) 167.639 7.00935
\(573\) 5.88978 0.246049
\(574\) 3.91945 0.163595
\(575\) 0 0
\(576\) −3.00846 −0.125353
\(577\) 22.5166 0.937378 0.468689 0.883363i \(-0.344726\pi\)
0.468689 + 0.883363i \(0.344726\pi\)
\(578\) −31.1949 −1.29754
\(579\) 1.33198 0.0553551
\(580\) 0 0
\(581\) −3.59494 −0.149143
\(582\) −5.95390 −0.246797
\(583\) −35.6868 −1.47799
\(584\) −30.1081 −1.24588
\(585\) 0 0
\(586\) 50.7674 2.09718
\(587\) −28.2290 −1.16514 −0.582568 0.812782i \(-0.697952\pi\)
−0.582568 + 0.812782i \(0.697952\pi\)
\(588\) −1.60770 −0.0663004
\(589\) 43.3659 1.78686
\(590\) 0 0
\(591\) −1.72115 −0.0707987
\(592\) −9.28189 −0.381483
\(593\) −27.2560 −1.11927 −0.559635 0.828739i \(-0.689059\pi\)
−0.559635 + 0.828739i \(0.689059\pi\)
\(594\) 30.2786 1.24235
\(595\) 0 0
\(596\) 19.8203 0.811870
\(597\) −2.49200 −0.101991
\(598\) 112.434 4.59777
\(599\) 19.7263 0.805997 0.402998 0.915201i \(-0.367968\pi\)
0.402998 + 0.915201i \(0.367968\pi\)
\(600\) 0 0
\(601\) −39.6721 −1.61826 −0.809130 0.587629i \(-0.800061\pi\)
−0.809130 + 0.587629i \(0.800061\pi\)
\(602\) 15.3701 0.626437
\(603\) −18.1111 −0.737541
\(604\) −46.8933 −1.90806
\(605\) 0 0
\(606\) 9.21390 0.374289
\(607\) 23.8572 0.968336 0.484168 0.874975i \(-0.339122\pi\)
0.484168 + 0.874975i \(0.339122\pi\)
\(608\) −32.1910 −1.30552
\(609\) 0.576035 0.0233421
\(610\) 0 0
\(611\) −13.3649 −0.540685
\(612\) 28.6321 1.15739
\(613\) −20.6564 −0.834302 −0.417151 0.908837i \(-0.636971\pi\)
−0.417151 + 0.908837i \(0.636971\pi\)
\(614\) −73.9889 −2.98595
\(615\) 0 0
\(616\) −37.0485 −1.49273
\(617\) −48.1688 −1.93920 −0.969602 0.244688i \(-0.921314\pi\)
−0.969602 + 0.244688i \(0.921314\pi\)
\(618\) −11.2608 −0.452976
\(619\) −19.1752 −0.770716 −0.385358 0.922767i \(-0.625922\pi\)
−0.385358 + 0.922767i \(0.625922\pi\)
\(620\) 0 0
\(621\) 14.1007 0.565841
\(622\) 65.9994 2.64633
\(623\) 0.716374 0.0287009
\(624\) −17.3259 −0.693591
\(625\) 0 0
\(626\) −11.1122 −0.444133
\(627\) 10.2670 0.410023
\(628\) 108.472 4.32852
\(629\) 2.69252 0.107358
\(630\) 0 0
\(631\) 30.8692 1.22889 0.614443 0.788962i \(-0.289381\pi\)
0.614443 + 0.788962i \(0.289381\pi\)
\(632\) −57.9315 −2.30439
\(633\) −4.07690 −0.162042
\(634\) 30.6826 1.21856
\(635\) 0 0
\(636\) 10.0759 0.399537
\(637\) 6.47971 0.256735
\(638\) 23.7121 0.938772
\(639\) −2.41221 −0.0954254
\(640\) 0 0
\(641\) 12.4835 0.493070 0.246535 0.969134i \(-0.420708\pi\)
0.246535 + 0.969134i \(0.420708\pi\)
\(642\) −1.54384 −0.0609306
\(643\) 32.0891 1.26547 0.632735 0.774369i \(-0.281932\pi\)
0.632735 + 0.774369i \(0.281932\pi\)
\(644\) −30.8199 −1.21447
\(645\) 0 0
\(646\) 28.5735 1.12421
\(647\) −28.7155 −1.12892 −0.564462 0.825459i \(-0.690916\pi\)
−0.564462 + 0.825459i \(0.690916\pi\)
\(648\) 51.3283 2.01637
\(649\) −37.6850 −1.47927
\(650\) 0 0
\(651\) −3.01131 −0.118022
\(652\) −91.9114 −3.59953
\(653\) −16.4333 −0.643086 −0.321543 0.946895i \(-0.604201\pi\)
−0.321543 + 0.946895i \(0.604201\pi\)
\(654\) 10.9932 0.429868
\(655\) 0 0
\(656\) −11.5784 −0.452061
\(657\) 13.3029 0.518994
\(658\) 5.27613 0.205685
\(659\) −36.3315 −1.41528 −0.707638 0.706575i \(-0.750239\pi\)
−0.707638 + 0.706575i \(0.750239\pi\)
\(660\) 0 0
\(661\) 20.5035 0.797493 0.398746 0.917061i \(-0.369445\pi\)
0.398746 + 0.917061i \(0.369445\pi\)
\(662\) −65.0510 −2.52828
\(663\) 5.02596 0.195192
\(664\) 23.3903 0.907721
\(665\) 0 0
\(666\) 9.03274 0.350012
\(667\) 11.0427 0.427574
\(668\) −40.4378 −1.56459
\(669\) 0.226416 0.00875375
\(670\) 0 0
\(671\) −43.8161 −1.69150
\(672\) 2.23533 0.0862296
\(673\) −25.6104 −0.987208 −0.493604 0.869687i \(-0.664321\pi\)
−0.493604 + 0.869687i \(0.664321\pi\)
\(674\) 17.0328 0.656080
\(675\) 0 0
\(676\) 131.702 5.06545
\(677\) −33.7573 −1.29740 −0.648699 0.761045i \(-0.724687\pi\)
−0.648699 + 0.761045i \(0.724687\pi\)
\(678\) −11.5617 −0.444023
\(679\) −6.57786 −0.252435
\(680\) 0 0
\(681\) 3.82125 0.146431
\(682\) −123.959 −4.74662
\(683\) −2.25100 −0.0861320 −0.0430660 0.999072i \(-0.513713\pi\)
−0.0430660 + 0.999072i \(0.513713\pi\)
\(684\) 66.5588 2.54494
\(685\) 0 0
\(686\) −2.55803 −0.0976662
\(687\) 7.15501 0.272981
\(688\) −45.4045 −1.73103
\(689\) −40.6103 −1.54713
\(690\) 0 0
\(691\) 12.0924 0.460018 0.230009 0.973188i \(-0.426124\pi\)
0.230009 + 0.973188i \(0.426124\pi\)
\(692\) −68.3286 −2.59746
\(693\) 16.3694 0.621823
\(694\) −3.26331 −0.123874
\(695\) 0 0
\(696\) −3.74795 −0.142066
\(697\) 3.35870 0.127220
\(698\) 60.0553 2.27313
\(699\) 2.53057 0.0957149
\(700\) 0 0
\(701\) 27.7239 1.04712 0.523559 0.851990i \(-0.324604\pi\)
0.523559 + 0.851990i \(0.324604\pi\)
\(702\) 34.4560 1.30046
\(703\) 6.25909 0.236066
\(704\) 5.95887 0.224583
\(705\) 0 0
\(706\) −45.2032 −1.70125
\(707\) 10.1795 0.382840
\(708\) 10.6401 0.399881
\(709\) −39.7082 −1.49127 −0.745636 0.666354i \(-0.767854\pi\)
−0.745636 + 0.666354i \(0.767854\pi\)
\(710\) 0 0
\(711\) 25.5963 0.959937
\(712\) −4.66105 −0.174680
\(713\) −57.7272 −2.16190
\(714\) −1.98413 −0.0742541
\(715\) 0 0
\(716\) 7.38117 0.275847
\(717\) 4.52119 0.168847
\(718\) 83.6740 3.12268
\(719\) 17.8189 0.664531 0.332266 0.943186i \(-0.392187\pi\)
0.332266 + 0.943186i \(0.392187\pi\)
\(720\) 0 0
\(721\) −12.4409 −0.463324
\(722\) 17.8199 0.663186
\(723\) −9.32216 −0.346695
\(724\) 35.3762 1.31475
\(725\) 0 0
\(726\) −19.3908 −0.719661
\(727\) 51.8897 1.92448 0.962241 0.272197i \(-0.0877504\pi\)
0.962241 + 0.272197i \(0.0877504\pi\)
\(728\) −42.1599 −1.56255
\(729\) −20.4721 −0.758226
\(730\) 0 0
\(731\) 13.1711 0.487151
\(732\) 12.3712 0.457254
\(733\) 20.0529 0.740669 0.370334 0.928898i \(-0.379243\pi\)
0.370334 + 0.928898i \(0.379243\pi\)
\(734\) 6.98714 0.257900
\(735\) 0 0
\(736\) 42.8516 1.57953
\(737\) 35.8727 1.32139
\(738\) 11.2676 0.414767
\(739\) 6.39375 0.235198 0.117599 0.993061i \(-0.462480\pi\)
0.117599 + 0.993061i \(0.462480\pi\)
\(740\) 0 0
\(741\) 11.6834 0.429202
\(742\) 16.0320 0.588552
\(743\) −3.15082 −0.115592 −0.0577962 0.998328i \(-0.518407\pi\)
−0.0577962 + 0.998328i \(0.518407\pi\)
\(744\) 19.5929 0.718312
\(745\) 0 0
\(746\) 21.4268 0.784490
\(747\) −10.3347 −0.378128
\(748\) −56.7118 −2.07359
\(749\) −1.70563 −0.0623225
\(750\) 0 0
\(751\) −21.1642 −0.772293 −0.386147 0.922437i \(-0.626194\pi\)
−0.386147 + 0.922437i \(0.626194\pi\)
\(752\) −15.5862 −0.568369
\(753\) 2.57265 0.0937526
\(754\) 26.9836 0.982684
\(755\) 0 0
\(756\) −9.44491 −0.343508
\(757\) 45.1346 1.64044 0.820222 0.572045i \(-0.193850\pi\)
0.820222 + 0.572045i \(0.193850\pi\)
\(758\) −32.3473 −1.17491
\(759\) −13.6670 −0.496081
\(760\) 0 0
\(761\) 25.4211 0.921513 0.460757 0.887526i \(-0.347578\pi\)
0.460757 + 0.887526i \(0.347578\pi\)
\(762\) −3.50884 −0.127112
\(763\) 12.1453 0.439688
\(764\) −75.6279 −2.73612
\(765\) 0 0
\(766\) −52.1268 −1.88342
\(767\) −42.8843 −1.54846
\(768\) 9.75363 0.351954
\(769\) 8.36177 0.301533 0.150767 0.988569i \(-0.451826\pi\)
0.150767 + 0.988569i \(0.451826\pi\)
\(770\) 0 0
\(771\) −10.5247 −0.379037
\(772\) −17.1033 −0.615562
\(773\) 22.3094 0.802414 0.401207 0.915987i \(-0.368591\pi\)
0.401207 + 0.915987i \(0.368591\pi\)
\(774\) 44.1858 1.58822
\(775\) 0 0
\(776\) 42.7985 1.53638
\(777\) −0.434628 −0.0155922
\(778\) 44.7106 1.60295
\(779\) 7.80770 0.279740
\(780\) 0 0
\(781\) 4.77786 0.170965
\(782\) −38.0361 −1.36017
\(783\) 3.38409 0.120937
\(784\) 7.55666 0.269881
\(785\) 0 0
\(786\) −1.40859 −0.0502426
\(787\) 19.4098 0.691884 0.345942 0.938256i \(-0.387559\pi\)
0.345942 + 0.938256i \(0.387559\pi\)
\(788\) 22.1005 0.787298
\(789\) 7.95384 0.283164
\(790\) 0 0
\(791\) −12.7733 −0.454166
\(792\) −106.507 −3.78456
\(793\) −49.8613 −1.77063
\(794\) 56.3786 2.00080
\(795\) 0 0
\(796\) 31.9986 1.13416
\(797\) 30.7974 1.09090 0.545450 0.838143i \(-0.316359\pi\)
0.545450 + 0.838143i \(0.316359\pi\)
\(798\) −4.61234 −0.163275
\(799\) 4.52129 0.159952
\(800\) 0 0
\(801\) 2.05943 0.0727663
\(802\) −20.5896 −0.727045
\(803\) −26.3490 −0.929837
\(804\) −10.1285 −0.357203
\(805\) 0 0
\(806\) −141.061 −4.96865
\(807\) −6.48582 −0.228312
\(808\) −66.2325 −2.33005
\(809\) −48.1014 −1.69115 −0.845577 0.533854i \(-0.820743\pi\)
−0.845577 + 0.533854i \(0.820743\pi\)
\(810\) 0 0
\(811\) −31.3020 −1.09916 −0.549580 0.835441i \(-0.685212\pi\)
−0.549580 + 0.835441i \(0.685212\pi\)
\(812\) −7.39660 −0.259570
\(813\) −5.70852 −0.200207
\(814\) −17.8912 −0.627086
\(815\) 0 0
\(816\) 5.86129 0.205186
\(817\) 30.6178 1.07118
\(818\) 59.7264 2.08829
\(819\) 18.6278 0.650909
\(820\) 0 0
\(821\) 7.79834 0.272164 0.136082 0.990698i \(-0.456549\pi\)
0.136082 + 0.990698i \(0.456549\pi\)
\(822\) −10.5537 −0.368104
\(823\) −53.0240 −1.84830 −0.924150 0.382029i \(-0.875226\pi\)
−0.924150 + 0.382029i \(0.875226\pi\)
\(824\) 80.9463 2.81990
\(825\) 0 0
\(826\) 16.9297 0.589059
\(827\) −52.0766 −1.81088 −0.905441 0.424473i \(-0.860459\pi\)
−0.905441 + 0.424473i \(0.860459\pi\)
\(828\) −88.6008 −3.07909
\(829\) −8.49580 −0.295071 −0.147536 0.989057i \(-0.547134\pi\)
−0.147536 + 0.989057i \(0.547134\pi\)
\(830\) 0 0
\(831\) −1.15656 −0.0401206
\(832\) 6.78099 0.235088
\(833\) −2.19206 −0.0759504
\(834\) −8.29552 −0.287250
\(835\) 0 0
\(836\) −131.833 −4.55955
\(837\) −17.6908 −0.611484
\(838\) −33.3815 −1.15314
\(839\) −31.4762 −1.08668 −0.543339 0.839513i \(-0.682840\pi\)
−0.543339 + 0.839513i \(0.682840\pi\)
\(840\) 0 0
\(841\) −26.3498 −0.908614
\(842\) 97.8383 3.37173
\(843\) 1.36454 0.0469973
\(844\) 52.3496 1.80195
\(845\) 0 0
\(846\) 15.1678 0.521479
\(847\) −21.4229 −0.736101
\(848\) −47.3599 −1.62635
\(849\) −7.81721 −0.268286
\(850\) 0 0
\(851\) −8.33188 −0.285613
\(852\) −1.34900 −0.0462160
\(853\) −28.8426 −0.987552 −0.493776 0.869589i \(-0.664384\pi\)
−0.493776 + 0.869589i \(0.664384\pi\)
\(854\) 19.6840 0.673574
\(855\) 0 0
\(856\) 11.0976 0.379309
\(857\) −26.8954 −0.918730 −0.459365 0.888248i \(-0.651923\pi\)
−0.459365 + 0.888248i \(0.651923\pi\)
\(858\) −33.3963 −1.14013
\(859\) 4.29573 0.146569 0.0732843 0.997311i \(-0.476652\pi\)
0.0732843 + 0.997311i \(0.476652\pi\)
\(860\) 0 0
\(861\) −0.542163 −0.0184768
\(862\) 18.3546 0.625160
\(863\) 39.2114 1.33477 0.667386 0.744712i \(-0.267413\pi\)
0.667386 + 0.744712i \(0.267413\pi\)
\(864\) 13.1321 0.446762
\(865\) 0 0
\(866\) 86.8270 2.95050
\(867\) 4.31507 0.146547
\(868\) 38.6668 1.31244
\(869\) −50.6987 −1.71984
\(870\) 0 0
\(871\) 40.8219 1.38320
\(872\) −79.0227 −2.67604
\(873\) −18.9100 −0.640006
\(874\) −88.4193 −2.99083
\(875\) 0 0
\(876\) 7.43949 0.251357
\(877\) 11.1744 0.377331 0.188666 0.982041i \(-0.439584\pi\)
0.188666 + 0.982041i \(0.439584\pi\)
\(878\) −2.86449 −0.0966717
\(879\) −7.02246 −0.236862
\(880\) 0 0
\(881\) −55.5215 −1.87057 −0.935284 0.353899i \(-0.884856\pi\)
−0.935284 + 0.353899i \(0.884856\pi\)
\(882\) −7.35382 −0.247616
\(883\) 45.3210 1.52517 0.762586 0.646886i \(-0.223929\pi\)
0.762586 + 0.646886i \(0.223929\pi\)
\(884\) −64.5360 −2.17058
\(885\) 0 0
\(886\) 56.2479 1.88968
\(887\) 35.9580 1.20735 0.603676 0.797229i \(-0.293702\pi\)
0.603676 + 0.797229i \(0.293702\pi\)
\(888\) 2.82789 0.0948976
\(889\) −3.87656 −0.130016
\(890\) 0 0
\(891\) 44.9199 1.50487
\(892\) −2.90730 −0.0973438
\(893\) 10.5103 0.351713
\(894\) −3.94850 −0.132058
\(895\) 0 0
\(896\) 9.95759 0.332660
\(897\) −15.5526 −0.519286
\(898\) 44.7754 1.49418
\(899\) −13.8542 −0.462064
\(900\) 0 0
\(901\) 13.7383 0.457690
\(902\) −22.3178 −0.743101
\(903\) −2.12608 −0.0707516
\(904\) 83.1090 2.76416
\(905\) 0 0
\(906\) 9.34187 0.310363
\(907\) 30.2781 1.00537 0.502685 0.864470i \(-0.332346\pi\)
0.502685 + 0.864470i \(0.332346\pi\)
\(908\) −49.0670 −1.62834
\(909\) 29.2640 0.970625
\(910\) 0 0
\(911\) −22.6499 −0.750424 −0.375212 0.926939i \(-0.622430\pi\)
−0.375212 + 0.926939i \(0.622430\pi\)
\(912\) 13.6253 0.451178
\(913\) 20.4700 0.677459
\(914\) 13.6529 0.451598
\(915\) 0 0
\(916\) −91.8742 −3.03561
\(917\) −1.55620 −0.0513904
\(918\) −11.6563 −0.384717
\(919\) 25.2435 0.832707 0.416354 0.909203i \(-0.363308\pi\)
0.416354 + 0.909203i \(0.363308\pi\)
\(920\) 0 0
\(921\) 10.2346 0.337241
\(922\) 18.2399 0.600700
\(923\) 5.43705 0.178963
\(924\) 9.15443 0.301159
\(925\) 0 0
\(926\) −39.9627 −1.31326
\(927\) −35.7651 −1.17468
\(928\) 10.2841 0.337593
\(929\) −3.46732 −0.113759 −0.0568795 0.998381i \(-0.518115\pi\)
−0.0568795 + 0.998381i \(0.518115\pi\)
\(930\) 0 0
\(931\) −5.09571 −0.167005
\(932\) −32.4939 −1.06437
\(933\) −9.12945 −0.298885
\(934\) −72.0445 −2.35737
\(935\) 0 0
\(936\) −121.201 −3.96158
\(937\) 10.9233 0.356848 0.178424 0.983954i \(-0.442900\pi\)
0.178424 + 0.983954i \(0.442900\pi\)
\(938\) −16.1155 −0.526190
\(939\) 1.53711 0.0501617
\(940\) 0 0
\(941\) −8.97045 −0.292428 −0.146214 0.989253i \(-0.546709\pi\)
−0.146214 + 0.989253i \(0.546709\pi\)
\(942\) −21.6094 −0.704072
\(943\) −10.3933 −0.338454
\(944\) −50.0118 −1.62774
\(945\) 0 0
\(946\) −87.5189 −2.84548
\(947\) −33.5680 −1.09081 −0.545406 0.838172i \(-0.683625\pi\)
−0.545406 + 0.838172i \(0.683625\pi\)
\(948\) 14.3145 0.464913
\(949\) −29.9843 −0.973331
\(950\) 0 0
\(951\) −4.24421 −0.137628
\(952\) 14.2626 0.462252
\(953\) 37.9396 1.22898 0.614492 0.788923i \(-0.289361\pi\)
0.614492 + 0.788923i \(0.289361\pi\)
\(954\) 46.0887 1.49218
\(955\) 0 0
\(956\) −58.0545 −1.87762
\(957\) −3.28001 −0.106028
\(958\) −67.7208 −2.18796
\(959\) −11.6597 −0.376513
\(960\) 0 0
\(961\) 41.4250 1.33629
\(962\) −20.3596 −0.656418
\(963\) −4.90335 −0.158008
\(964\) 119.702 3.85533
\(965\) 0 0
\(966\) 6.13979 0.197545
\(967\) 12.4715 0.401056 0.200528 0.979688i \(-0.435734\pi\)
0.200528 + 0.979688i \(0.435734\pi\)
\(968\) 139.387 4.48008
\(969\) −3.95246 −0.126971
\(970\) 0 0
\(971\) −48.9493 −1.57086 −0.785429 0.618951i \(-0.787558\pi\)
−0.785429 + 0.618951i \(0.787558\pi\)
\(972\) −41.0176 −1.31564
\(973\) −9.16488 −0.293812
\(974\) −26.7073 −0.855756
\(975\) 0 0
\(976\) −58.1484 −1.86128
\(977\) 12.0315 0.384921 0.192461 0.981305i \(-0.438353\pi\)
0.192461 + 0.981305i \(0.438353\pi\)
\(978\) 18.3102 0.585495
\(979\) −4.07911 −0.130369
\(980\) 0 0
\(981\) 34.9152 1.11476
\(982\) −11.5964 −0.370057
\(983\) −23.4581 −0.748199 −0.374099 0.927389i \(-0.622048\pi\)
−0.374099 + 0.927389i \(0.622048\pi\)
\(984\) 3.52756 0.112454
\(985\) 0 0
\(986\) −9.12845 −0.290709
\(987\) −0.729827 −0.0232307
\(988\) −150.022 −4.77283
\(989\) −40.7573 −1.29601
\(990\) 0 0
\(991\) 1.92852 0.0612615 0.0306308 0.999531i \(-0.490248\pi\)
0.0306308 + 0.999531i \(0.490248\pi\)
\(992\) −53.7618 −1.70694
\(993\) 8.99826 0.285551
\(994\) −2.14642 −0.0680802
\(995\) 0 0
\(996\) −5.77959 −0.183133
\(997\) 33.7803 1.06983 0.534917 0.844905i \(-0.320343\pi\)
0.534917 + 0.844905i \(0.320343\pi\)
\(998\) −3.48158 −0.110207
\(999\) −2.55335 −0.0807844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.a.h.1.6 yes 6
3.2 odd 2 7875.2.a.q.1.1 6
5.2 odd 4 875.2.b.c.624.12 12
5.3 odd 4 875.2.b.c.624.1 12
5.4 even 2 875.2.a.e.1.1 6
7.6 odd 2 6125.2.a.t.1.6 6
15.14 odd 2 7875.2.a.t.1.6 6
35.34 odd 2 6125.2.a.s.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.e.1.1 6 5.4 even 2
875.2.a.h.1.6 yes 6 1.1 even 1 trivial
875.2.b.c.624.1 12 5.3 odd 4
875.2.b.c.624.12 12 5.2 odd 4
6125.2.a.s.1.1 6 35.34 odd 2
6125.2.a.t.1.6 6 7.6 odd 2
7875.2.a.q.1.1 6 3.2 odd 2
7875.2.a.t.1.6 6 15.14 odd 2