Properties

Label 875.2.b.c.624.12
Level $875$
Weight $2$
Character 875.624
Analytic conductor $6.987$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(624,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.624");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 14x^{10} + 71x^{8} + 156x^{6} + 135x^{4} + 27x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 624.12
Root \(-1.72131i\) of defining polynomial
Character \(\chi\) \(=\) 875.624
Dual form 875.2.b.c.624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55803i q^{2} +0.353843i q^{3} -4.54354 q^{4} -0.905143 q^{6} -1.00000i q^{7} -6.50646i q^{8} +2.87480 q^{9} +5.69412 q^{11} -1.60770i q^{12} -6.47971i q^{13} +2.55803 q^{14} +7.55666 q^{16} -2.19206i q^{17} +7.35382i q^{18} +5.09571 q^{19} +0.353843 q^{21} +14.5657i q^{22} -6.78323i q^{23} +2.30226 q^{24} +16.5753 q^{26} +2.07876i q^{27} +4.54354i q^{28} -1.62794 q^{29} -8.51029 q^{31} +6.31728i q^{32} +2.01482i q^{33} +5.60737 q^{34} -13.0617 q^{36} -1.22831i q^{37} +13.0350i q^{38} +2.29280 q^{39} -1.53221 q^{41} +0.905143i q^{42} +6.00854i q^{43} -25.8714 q^{44} +17.3517 q^{46} -2.06257i q^{47} +2.67387i q^{48} -1.00000 q^{49} +0.775646 q^{51} +29.4408i q^{52} +6.26731i q^{53} -5.31753 q^{54} -6.50646 q^{56} +1.80308i q^{57} -4.16432i q^{58} +6.61824 q^{59} -7.69499 q^{61} -21.7696i q^{62} -2.87480i q^{63} -1.04650 q^{64} -5.15399 q^{66} +6.29996i q^{67} +9.95971i q^{68} +2.40020 q^{69} +0.839088 q^{71} -18.7047i q^{72} +4.62741i q^{73} +3.14205 q^{74} -23.1525 q^{76} -5.69412i q^{77} +5.86506i q^{78} +8.90370 q^{79} +7.88883 q^{81} -3.91945i q^{82} -3.59494i q^{83} -1.60770 q^{84} -15.3701 q^{86} -0.576035i q^{87} -37.0485i q^{88} +0.716374 q^{89} -6.47971 q^{91} +30.8199i q^{92} -3.01131i q^{93} +5.27613 q^{94} -2.23533 q^{96} +6.57786i q^{97} -2.55803i q^{98} +16.3694 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{4} - 4 q^{6} - 14 q^{9} + 2 q^{11} + 4 q^{14} + 16 q^{16} + 34 q^{19} - 10 q^{21} - 14 q^{24} + 32 q^{26} - 14 q^{29} - 22 q^{31} + 8 q^{34} + 20 q^{36} - 30 q^{39} + 6 q^{41} - 52 q^{44} - 16 q^{46}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.55803i 1.80880i 0.426682 + 0.904402i \(0.359682\pi\)
−0.426682 + 0.904402i \(0.640318\pi\)
\(3\) 0.353843i 0.204291i 0.994769 + 0.102146i \(0.0325708\pi\)
−0.994769 + 0.102146i \(0.967429\pi\)
\(4\) −4.54354 −2.27177
\(5\) 0 0
\(6\) −0.905143 −0.369523
\(7\) − 1.00000i − 0.377964i
\(8\) − 6.50646i − 2.30038i
\(9\) 2.87480 0.958265
\(10\) 0 0
\(11\) 5.69412 1.71684 0.858420 0.512947i \(-0.171446\pi\)
0.858420 + 0.512947i \(0.171446\pi\)
\(12\) − 1.60770i − 0.464103i
\(13\) − 6.47971i − 1.79715i −0.438822 0.898574i \(-0.644604\pi\)
0.438822 0.898574i \(-0.355396\pi\)
\(14\) 2.55803 0.683663
\(15\) 0 0
\(16\) 7.55666 1.88916
\(17\) − 2.19206i − 0.531653i −0.964021 0.265826i \(-0.914355\pi\)
0.964021 0.265826i \(-0.0856448\pi\)
\(18\) 7.35382i 1.73331i
\(19\) 5.09571 1.16904 0.584518 0.811381i \(-0.301284\pi\)
0.584518 + 0.811381i \(0.301284\pi\)
\(20\) 0 0
\(21\) 0.353843 0.0772149
\(22\) 14.5657i 3.10543i
\(23\) − 6.78323i − 1.41440i −0.707013 0.707201i \(-0.749958\pi\)
0.707013 0.707201i \(-0.250042\pi\)
\(24\) 2.30226 0.469948
\(25\) 0 0
\(26\) 16.5753 3.25069
\(27\) 2.07876i 0.400057i
\(28\) 4.54354i 0.858648i
\(29\) −1.62794 −0.302301 −0.151150 0.988511i \(-0.548298\pi\)
−0.151150 + 0.988511i \(0.548298\pi\)
\(30\) 0 0
\(31\) −8.51029 −1.52849 −0.764246 0.644925i \(-0.776889\pi\)
−0.764246 + 0.644925i \(0.776889\pi\)
\(32\) 6.31728i 1.11675i
\(33\) 2.01482i 0.350736i
\(34\) 5.60737 0.961656
\(35\) 0 0
\(36\) −13.0617 −2.17696
\(37\) − 1.22831i − 0.201932i −0.994890 0.100966i \(-0.967807\pi\)
0.994890 0.100966i \(-0.0321934\pi\)
\(38\) 13.0350i 2.11455i
\(39\) 2.29280 0.367142
\(40\) 0 0
\(41\) −1.53221 −0.239291 −0.119646 0.992817i \(-0.538176\pi\)
−0.119646 + 0.992817i \(0.538176\pi\)
\(42\) 0.905143i 0.139667i
\(43\) 6.00854i 0.916294i 0.888876 + 0.458147i \(0.151487\pi\)
−0.888876 + 0.458147i \(0.848513\pi\)
\(44\) −25.8714 −3.90026
\(45\) 0 0
\(46\) 17.3517 2.55837
\(47\) − 2.06257i − 0.300857i −0.988621 0.150429i \(-0.951935\pi\)
0.988621 0.150429i \(-0.0480653\pi\)
\(48\) 2.67387i 0.385940i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0.775646 0.108612
\(52\) 29.4408i 4.08270i
\(53\) 6.26731i 0.860881i 0.902619 + 0.430440i \(0.141642\pi\)
−0.902619 + 0.430440i \(0.858358\pi\)
\(54\) −5.31753 −0.723624
\(55\) 0 0
\(56\) −6.50646 −0.869462
\(57\) 1.80308i 0.238824i
\(58\) − 4.16432i − 0.546802i
\(59\) 6.61824 0.861621 0.430811 0.902442i \(-0.358228\pi\)
0.430811 + 0.902442i \(0.358228\pi\)
\(60\) 0 0
\(61\) −7.69499 −0.985242 −0.492621 0.870244i \(-0.663961\pi\)
−0.492621 + 0.870244i \(0.663961\pi\)
\(62\) − 21.7696i − 2.76474i
\(63\) − 2.87480i − 0.362190i
\(64\) −1.04650 −0.130812
\(65\) 0 0
\(66\) −5.15399 −0.634412
\(67\) 6.29996i 0.769663i 0.922987 + 0.384832i \(0.125740\pi\)
−0.922987 + 0.384832i \(0.874260\pi\)
\(68\) 9.95971i 1.20779i
\(69\) 2.40020 0.288950
\(70\) 0 0
\(71\) 0.839088 0.0995814 0.0497907 0.998760i \(-0.484145\pi\)
0.0497907 + 0.998760i \(0.484145\pi\)
\(72\) − 18.7047i − 2.20437i
\(73\) 4.62741i 0.541598i 0.962636 + 0.270799i \(0.0872878\pi\)
−0.962636 + 0.270799i \(0.912712\pi\)
\(74\) 3.14205 0.365256
\(75\) 0 0
\(76\) −23.1525 −2.65578
\(77\) − 5.69412i − 0.648905i
\(78\) 5.86506i 0.664087i
\(79\) 8.90370 1.00174 0.500872 0.865521i \(-0.333013\pi\)
0.500872 + 0.865521i \(0.333013\pi\)
\(80\) 0 0
\(81\) 7.88883 0.876537
\(82\) − 3.91945i − 0.432831i
\(83\) − 3.59494i − 0.394596i −0.980344 0.197298i \(-0.936783\pi\)
0.980344 0.197298i \(-0.0632167\pi\)
\(84\) −1.60770 −0.175414
\(85\) 0 0
\(86\) −15.3701 −1.65740
\(87\) − 0.576035i − 0.0617574i
\(88\) − 37.0485i − 3.94938i
\(89\) 0.716374 0.0759355 0.0379677 0.999279i \(-0.487912\pi\)
0.0379677 + 0.999279i \(0.487912\pi\)
\(90\) 0 0
\(91\) −6.47971 −0.679258
\(92\) 30.8199i 3.21319i
\(93\) − 3.01131i − 0.312258i
\(94\) 5.27613 0.544191
\(95\) 0 0
\(96\) −2.23533 −0.228142
\(97\) 6.57786i 0.667880i 0.942594 + 0.333940i \(0.108378\pi\)
−0.942594 + 0.333940i \(0.891622\pi\)
\(98\) − 2.55803i − 0.258400i
\(99\) 16.3694 1.64519
\(100\) 0 0
\(101\) −10.1795 −1.01290 −0.506449 0.862270i \(-0.669042\pi\)
−0.506449 + 0.862270i \(0.669042\pi\)
\(102\) 1.98413i 0.196458i
\(103\) − 12.4409i − 1.22584i −0.790145 0.612920i \(-0.789995\pi\)
0.790145 0.612920i \(-0.210005\pi\)
\(104\) −42.1599 −4.13412
\(105\) 0 0
\(106\) −16.0320 −1.55716
\(107\) 1.70563i 0.164890i 0.996596 + 0.0824450i \(0.0262729\pi\)
−0.996596 + 0.0824450i \(0.973727\pi\)
\(108\) − 9.44491i − 0.908837i
\(109\) 12.1453 1.16331 0.581653 0.813437i \(-0.302406\pi\)
0.581653 + 0.813437i \(0.302406\pi\)
\(110\) 0 0
\(111\) 0.434628 0.0412530
\(112\) − 7.55666i − 0.714037i
\(113\) − 12.7733i − 1.20161i −0.799395 0.600806i \(-0.794846\pi\)
0.799395 0.600806i \(-0.205154\pi\)
\(114\) −4.61234 −0.431985
\(115\) 0 0
\(116\) 7.39660 0.686757
\(117\) − 18.6278i − 1.72214i
\(118\) 16.9297i 1.55850i
\(119\) −2.19206 −0.200946
\(120\) 0 0
\(121\) 21.4229 1.94754
\(122\) − 19.6840i − 1.78211i
\(123\) − 0.542163i − 0.0488851i
\(124\) 38.6668 3.47238
\(125\) 0 0
\(126\) 7.35382 0.655131
\(127\) 3.87656i 0.343989i 0.985098 + 0.171994i \(0.0550211\pi\)
−0.985098 + 0.171994i \(0.944979\pi\)
\(128\) 9.95759i 0.880135i
\(129\) −2.12608 −0.187191
\(130\) 0 0
\(131\) 1.55620 0.135966 0.0679831 0.997686i \(-0.478344\pi\)
0.0679831 + 0.997686i \(0.478344\pi\)
\(132\) − 9.15443i − 0.796791i
\(133\) − 5.09571i − 0.441854i
\(134\) −16.1155 −1.39217
\(135\) 0 0
\(136\) −14.2626 −1.22300
\(137\) 11.6597i 0.996159i 0.867131 + 0.498080i \(0.165961\pi\)
−0.867131 + 0.498080i \(0.834039\pi\)
\(138\) 6.13979i 0.522654i
\(139\) −9.16488 −0.777355 −0.388677 0.921374i \(-0.627068\pi\)
−0.388677 + 0.921374i \(0.627068\pi\)
\(140\) 0 0
\(141\) 0.729827 0.0614625
\(142\) 2.14642i 0.180123i
\(143\) − 36.8962i − 3.08542i
\(144\) 21.7238 1.81032
\(145\) 0 0
\(146\) −11.8371 −0.979644
\(147\) − 0.353843i − 0.0291845i
\(148\) 5.58085i 0.458743i
\(149\) −4.36230 −0.357373 −0.178687 0.983906i \(-0.557185\pi\)
−0.178687 + 0.983906i \(0.557185\pi\)
\(150\) 0 0
\(151\) −10.3209 −0.839902 −0.419951 0.907547i \(-0.637953\pi\)
−0.419951 + 0.907547i \(0.637953\pi\)
\(152\) − 33.1550i − 2.68922i
\(153\) − 6.30173i − 0.509464i
\(154\) 14.5657 1.17374
\(155\) 0 0
\(156\) −10.4174 −0.834061
\(157\) 23.8740i 1.90535i 0.303985 + 0.952677i \(0.401683\pi\)
−0.303985 + 0.952677i \(0.598317\pi\)
\(158\) 22.7760i 1.81196i
\(159\) −2.21764 −0.175871
\(160\) 0 0
\(161\) −6.78323 −0.534593
\(162\) 20.1799i 1.58548i
\(163\) 20.2290i 1.58446i 0.610222 + 0.792231i \(0.291080\pi\)
−0.610222 + 0.792231i \(0.708920\pi\)
\(164\) 6.96166 0.543614
\(165\) 0 0
\(166\) 9.19599 0.713747
\(167\) − 8.90008i − 0.688709i −0.938840 0.344354i \(-0.888098\pi\)
0.938840 0.344354i \(-0.111902\pi\)
\(168\) − 2.30226i − 0.177624i
\(169\) −28.9866 −2.22974
\(170\) 0 0
\(171\) 14.6491 1.12025
\(172\) − 27.3000i − 2.08161i
\(173\) 15.0386i 1.14337i 0.820474 + 0.571683i \(0.193709\pi\)
−0.820474 + 0.571683i \(0.806291\pi\)
\(174\) 1.47352 0.111707
\(175\) 0 0
\(176\) 43.0285 3.24339
\(177\) 2.34182i 0.176022i
\(178\) 1.83251i 0.137352i
\(179\) −1.62454 −0.121424 −0.0607120 0.998155i \(-0.519337\pi\)
−0.0607120 + 0.998155i \(0.519337\pi\)
\(180\) 0 0
\(181\) 7.78605 0.578733 0.289366 0.957218i \(-0.406555\pi\)
0.289366 + 0.957218i \(0.406555\pi\)
\(182\) − 16.5753i − 1.22864i
\(183\) − 2.72282i − 0.201276i
\(184\) −44.1348 −3.25366
\(185\) 0 0
\(186\) 7.70302 0.564813
\(187\) − 12.4819i − 0.912763i
\(188\) 9.37137i 0.683478i
\(189\) 2.07876 0.151207
\(190\) 0 0
\(191\) −16.6452 −1.20440 −0.602201 0.798344i \(-0.705709\pi\)
−0.602201 + 0.798344i \(0.705709\pi\)
\(192\) − 0.370295i − 0.0267238i
\(193\) 3.76432i 0.270962i 0.990780 + 0.135481i \(0.0432579\pi\)
−0.990780 + 0.135481i \(0.956742\pi\)
\(194\) −16.8264 −1.20806
\(195\) 0 0
\(196\) 4.54354 0.324538
\(197\) 4.86416i 0.346557i 0.984873 + 0.173279i \(0.0554361\pi\)
−0.984873 + 0.173279i \(0.944564\pi\)
\(198\) 41.8735i 2.97582i
\(199\) −7.04266 −0.499241 −0.249621 0.968344i \(-0.580306\pi\)
−0.249621 + 0.968344i \(0.580306\pi\)
\(200\) 0 0
\(201\) −2.22920 −0.157236
\(202\) − 26.0395i − 1.83213i
\(203\) 1.62794i 0.114259i
\(204\) −3.52418 −0.246742
\(205\) 0 0
\(206\) 31.8243 2.21730
\(207\) − 19.5004i − 1.35537i
\(208\) − 48.9649i − 3.39511i
\(209\) 29.0155 2.00705
\(210\) 0 0
\(211\) 11.5218 0.793191 0.396595 0.917994i \(-0.370192\pi\)
0.396595 + 0.917994i \(0.370192\pi\)
\(212\) − 28.4757i − 1.95572i
\(213\) 0.296906i 0.0203436i
\(214\) −4.36307 −0.298253
\(215\) 0 0
\(216\) 13.5253 0.920282
\(217\) 8.51029i 0.577716i
\(218\) 31.0680i 2.10419i
\(219\) −1.63738 −0.110644
\(220\) 0 0
\(221\) −14.2039 −0.955459
\(222\) 1.11179i 0.0746186i
\(223\) 0.639877i 0.0428493i 0.999770 + 0.0214247i \(0.00682020\pi\)
−0.999770 + 0.0214247i \(0.993180\pi\)
\(224\) 6.31728 0.422091
\(225\) 0 0
\(226\) 32.6746 2.17348
\(227\) − 10.7993i − 0.716774i −0.933573 0.358387i \(-0.883327\pi\)
0.933573 0.358387i \(-0.116673\pi\)
\(228\) − 8.19237i − 0.542553i
\(229\) 20.2209 1.33623 0.668116 0.744057i \(-0.267101\pi\)
0.668116 + 0.744057i \(0.267101\pi\)
\(230\) 0 0
\(231\) 2.01482 0.132566
\(232\) 10.5921i 0.695406i
\(233\) 7.15167i 0.468521i 0.972174 + 0.234261i \(0.0752669\pi\)
−0.972174 + 0.234261i \(0.924733\pi\)
\(234\) 47.6506 3.11502
\(235\) 0 0
\(236\) −30.0702 −1.95740
\(237\) 3.15051i 0.204648i
\(238\) − 5.60737i − 0.363472i
\(239\) 12.7774 0.826500 0.413250 0.910618i \(-0.364394\pi\)
0.413250 + 0.910618i \(0.364394\pi\)
\(240\) 0 0
\(241\) 26.3455 1.69706 0.848530 0.529147i \(-0.177488\pi\)
0.848530 + 0.529147i \(0.177488\pi\)
\(242\) 54.8006i 3.52272i
\(243\) 9.02768i 0.579126i
\(244\) 34.9625 2.23824
\(245\) 0 0
\(246\) 1.38687 0.0884236
\(247\) − 33.0187i − 2.10093i
\(248\) 55.3718i 3.51611i
\(249\) 1.27205 0.0806126
\(250\) 0 0
\(251\) −7.27060 −0.458916 −0.229458 0.973319i \(-0.573695\pi\)
−0.229458 + 0.973319i \(0.573695\pi\)
\(252\) 13.0617i 0.822812i
\(253\) − 38.6245i − 2.42830i
\(254\) −9.91637 −0.622208
\(255\) 0 0
\(256\) −27.5648 −1.72280
\(257\) 29.7439i 1.85537i 0.373362 + 0.927686i \(0.378205\pi\)
−0.373362 + 0.927686i \(0.621795\pi\)
\(258\) − 5.43859i − 0.338592i
\(259\) −1.22831 −0.0763232
\(260\) 0 0
\(261\) −4.67999 −0.289684
\(262\) 3.98082i 0.245936i
\(263\) 22.4784i 1.38608i 0.720899 + 0.693040i \(0.243729\pi\)
−0.720899 + 0.693040i \(0.756271\pi\)
\(264\) 13.1094 0.806825
\(265\) 0 0
\(266\) 13.0350 0.799227
\(267\) 0.253484i 0.0155130i
\(268\) − 28.6241i − 1.74850i
\(269\) −18.3297 −1.11758 −0.558789 0.829310i \(-0.688734\pi\)
−0.558789 + 0.829310i \(0.688734\pi\)
\(270\) 0 0
\(271\) 16.1329 0.980005 0.490002 0.871721i \(-0.336996\pi\)
0.490002 + 0.871721i \(0.336996\pi\)
\(272\) − 16.5647i − 1.00438i
\(273\) − 2.29280i − 0.138767i
\(274\) −29.8260 −1.80186
\(275\) 0 0
\(276\) −10.9054 −0.656428
\(277\) 3.26856i 0.196389i 0.995167 + 0.0981945i \(0.0313067\pi\)
−0.995167 + 0.0981945i \(0.968693\pi\)
\(278\) − 23.4441i − 1.40608i
\(279\) −24.4653 −1.46470
\(280\) 0 0
\(281\) −3.85635 −0.230050 −0.115025 0.993363i \(-0.536695\pi\)
−0.115025 + 0.993363i \(0.536695\pi\)
\(282\) 1.86692i 0.111174i
\(283\) − 22.0923i − 1.31325i −0.754217 0.656626i \(-0.771983\pi\)
0.754217 0.656626i \(-0.228017\pi\)
\(284\) −3.81243 −0.226226
\(285\) 0 0
\(286\) 94.3817 5.58091
\(287\) 1.53221i 0.0904436i
\(288\) 18.1609i 1.07014i
\(289\) 12.1949 0.717345
\(290\) 0 0
\(291\) −2.32753 −0.136442
\(292\) − 21.0248i − 1.23038i
\(293\) − 19.8463i − 1.15943i −0.814819 0.579715i \(-0.803164\pi\)
0.814819 0.579715i \(-0.196836\pi\)
\(294\) 0.905143 0.0527890
\(295\) 0 0
\(296\) −7.99192 −0.464521
\(297\) 11.8367i 0.686834i
\(298\) − 11.1589i − 0.646418i
\(299\) −43.9533 −2.54189
\(300\) 0 0
\(301\) 6.00854 0.346327
\(302\) − 26.4012i − 1.51922i
\(303\) − 3.60195i − 0.206926i
\(304\) 38.5065 2.20850
\(305\) 0 0
\(306\) 16.1200 0.921521
\(307\) − 28.9241i − 1.65079i −0.564559 0.825393i \(-0.690954\pi\)
0.564559 0.825393i \(-0.309046\pi\)
\(308\) 25.8714i 1.47416i
\(309\) 4.40213 0.250429
\(310\) 0 0
\(311\) 25.8008 1.46303 0.731515 0.681825i \(-0.238813\pi\)
0.731515 + 0.681825i \(0.238813\pi\)
\(312\) − 14.9180i − 0.844566i
\(313\) 4.34404i 0.245540i 0.992435 + 0.122770i \(0.0391777\pi\)
−0.992435 + 0.122770i \(0.960822\pi\)
\(314\) −61.0705 −3.44641
\(315\) 0 0
\(316\) −40.4543 −2.27573
\(317\) 11.9946i 0.673685i 0.941561 + 0.336842i \(0.109359\pi\)
−0.941561 + 0.336842i \(0.890641\pi\)
\(318\) − 5.67281i − 0.318115i
\(319\) −9.26967 −0.519002
\(320\) 0 0
\(321\) −0.603527 −0.0336856
\(322\) − 17.3517i − 0.966974i
\(323\) − 11.1701i − 0.621521i
\(324\) −35.8432 −1.99129
\(325\) 0 0
\(326\) −51.7466 −2.86598
\(327\) 4.29752i 0.237653i
\(328\) 9.96927i 0.550461i
\(329\) −2.06257 −0.113713
\(330\) 0 0
\(331\) −25.4301 −1.39776 −0.698882 0.715237i \(-0.746319\pi\)
−0.698882 + 0.715237i \(0.746319\pi\)
\(332\) 16.3338i 0.896431i
\(333\) − 3.53113i − 0.193505i
\(334\) 22.7667 1.24574
\(335\) 0 0
\(336\) 2.67387 0.145872
\(337\) 6.65856i 0.362715i 0.983417 + 0.181358i \(0.0580491\pi\)
−0.983417 + 0.181358i \(0.941951\pi\)
\(338\) − 74.1487i − 4.03316i
\(339\) 4.51975 0.245479
\(340\) 0 0
\(341\) −48.4585 −2.62418
\(342\) 37.4729i 2.02630i
\(343\) 1.00000i 0.0539949i
\(344\) 39.0943 2.10782
\(345\) 0 0
\(346\) −38.4693 −2.06812
\(347\) − 1.27571i − 0.0684837i −0.999414 0.0342419i \(-0.989098\pi\)
0.999414 0.0342419i \(-0.0109017\pi\)
\(348\) 2.61724i 0.140299i
\(349\) −23.4771 −1.25670 −0.628351 0.777930i \(-0.716270\pi\)
−0.628351 + 0.777930i \(0.716270\pi\)
\(350\) 0 0
\(351\) 13.4697 0.718961
\(352\) 35.9713i 1.91728i
\(353\) 17.6711i 0.940537i 0.882523 + 0.470268i \(0.155843\pi\)
−0.882523 + 0.470268i \(0.844157\pi\)
\(354\) −5.99045 −0.318389
\(355\) 0 0
\(356\) −3.25487 −0.172508
\(357\) − 0.775646i − 0.0410515i
\(358\) − 4.15564i − 0.219632i
\(359\) −32.7103 −1.72638 −0.863191 0.504878i \(-0.831537\pi\)
−0.863191 + 0.504878i \(0.831537\pi\)
\(360\) 0 0
\(361\) 6.96623 0.366644
\(362\) 19.9170i 1.04681i
\(363\) 7.58036i 0.397866i
\(364\) 29.4408 1.54312
\(365\) 0 0
\(366\) 6.96506 0.364070
\(367\) 2.73145i 0.142580i 0.997456 + 0.0712902i \(0.0227116\pi\)
−0.997456 + 0.0712902i \(0.977288\pi\)
\(368\) − 51.2586i − 2.67204i
\(369\) −4.40479 −0.229304
\(370\) 0 0
\(371\) 6.26731 0.325382
\(372\) 13.6820i 0.709378i
\(373\) − 8.37626i − 0.433706i −0.976204 0.216853i \(-0.930421\pi\)
0.976204 0.216853i \(-0.0695793\pi\)
\(374\) 31.9290 1.65101
\(375\) 0 0
\(376\) −13.4200 −0.692085
\(377\) 10.5486i 0.543279i
\(378\) 5.31753i 0.273504i
\(379\) 12.6454 0.649548 0.324774 0.945792i \(-0.394712\pi\)
0.324774 + 0.945792i \(0.394712\pi\)
\(380\) 0 0
\(381\) −1.37169 −0.0702740
\(382\) − 42.5789i − 2.17853i
\(383\) 20.3777i 1.04125i 0.853785 + 0.520625i \(0.174301\pi\)
−0.853785 + 0.520625i \(0.825699\pi\)
\(384\) −3.52342 −0.179804
\(385\) 0 0
\(386\) −9.62926 −0.490116
\(387\) 17.2733i 0.878053i
\(388\) − 29.8867i − 1.51727i
\(389\) −17.4785 −0.886196 −0.443098 0.896473i \(-0.646121\pi\)
−0.443098 + 0.896473i \(0.646121\pi\)
\(390\) 0 0
\(391\) −14.8693 −0.751971
\(392\) 6.50646i 0.328626i
\(393\) 0.550652i 0.0277767i
\(394\) −12.4427 −0.626854
\(395\) 0 0
\(396\) −74.3750 −3.73749
\(397\) 22.0398i 1.10615i 0.833133 + 0.553073i \(0.186545\pi\)
−0.833133 + 0.553073i \(0.813455\pi\)
\(398\) − 18.0154i − 0.903029i
\(399\) 1.80308 0.0902670
\(400\) 0 0
\(401\) −8.04900 −0.401948 −0.200974 0.979597i \(-0.564411\pi\)
−0.200974 + 0.979597i \(0.564411\pi\)
\(402\) − 5.70237i − 0.284408i
\(403\) 55.1442i 2.74693i
\(404\) 46.2510 2.30107
\(405\) 0 0
\(406\) −4.16432 −0.206672
\(407\) − 6.99412i − 0.346685i
\(408\) − 5.04671i − 0.249849i
\(409\) −23.3486 −1.15451 −0.577256 0.816563i \(-0.695877\pi\)
−0.577256 + 0.816563i \(0.695877\pi\)
\(410\) 0 0
\(411\) −4.12572 −0.203507
\(412\) 56.5258i 2.78483i
\(413\) − 6.61824i − 0.325662i
\(414\) 49.8827 2.45160
\(415\) 0 0
\(416\) 40.9341 2.00696
\(417\) − 3.24293i − 0.158807i
\(418\) 74.2227i 3.63035i
\(419\) 13.0497 0.637518 0.318759 0.947836i \(-0.396734\pi\)
0.318759 + 0.947836i \(0.396734\pi\)
\(420\) 0 0
\(421\) 38.2475 1.86407 0.932034 0.362372i \(-0.118033\pi\)
0.932034 + 0.362372i \(0.118033\pi\)
\(422\) 29.4731i 1.43473i
\(423\) − 5.92947i − 0.288301i
\(424\) 40.7779 1.98035
\(425\) 0 0
\(426\) −0.759494 −0.0367976
\(427\) 7.69499i 0.372386i
\(428\) − 7.74961i − 0.374592i
\(429\) 13.0555 0.630324
\(430\) 0 0
\(431\) 7.17527 0.345621 0.172810 0.984955i \(-0.444715\pi\)
0.172810 + 0.984955i \(0.444715\pi\)
\(432\) 15.7085i 0.755773i
\(433\) − 33.9429i − 1.63119i −0.578623 0.815595i \(-0.696410\pi\)
0.578623 0.815595i \(-0.303590\pi\)
\(434\) −21.7696 −1.04497
\(435\) 0 0
\(436\) −55.1825 −2.64276
\(437\) − 34.5654i − 1.65349i
\(438\) − 4.18847i − 0.200133i
\(439\) 1.11980 0.0534451 0.0267226 0.999643i \(-0.491493\pi\)
0.0267226 + 0.999643i \(0.491493\pi\)
\(440\) 0 0
\(441\) −2.87480 −0.136895
\(442\) − 36.3341i − 1.72824i
\(443\) − 21.9887i − 1.04472i −0.852727 0.522358i \(-0.825053\pi\)
0.852727 0.522358i \(-0.174947\pi\)
\(444\) −1.97475 −0.0937173
\(445\) 0 0
\(446\) −1.63683 −0.0775060
\(447\) − 1.54357i − 0.0730083i
\(448\) 1.04650i 0.0494423i
\(449\) −17.5039 −0.826058 −0.413029 0.910718i \(-0.635529\pi\)
−0.413029 + 0.910718i \(0.635529\pi\)
\(450\) 0 0
\(451\) −8.72459 −0.410825
\(452\) 58.0360i 2.72978i
\(453\) − 3.65197i − 0.171585i
\(454\) 27.6249 1.29650
\(455\) 0 0
\(456\) 11.7317 0.549386
\(457\) 5.33726i 0.249667i 0.992178 + 0.124833i \(0.0398396\pi\)
−0.992178 + 0.124833i \(0.960160\pi\)
\(458\) 51.7256i 2.41698i
\(459\) 4.55676 0.212691
\(460\) 0 0
\(461\) 7.13045 0.332098 0.166049 0.986117i \(-0.446899\pi\)
0.166049 + 0.986117i \(0.446899\pi\)
\(462\) 5.15399i 0.239785i
\(463\) 15.6224i 0.726036i 0.931782 + 0.363018i \(0.118254\pi\)
−0.931782 + 0.363018i \(0.881746\pi\)
\(464\) −12.3018 −0.571096
\(465\) 0 0
\(466\) −18.2942 −0.847463
\(467\) − 28.1640i − 1.30328i −0.758530 0.651638i \(-0.774082\pi\)
0.758530 0.651638i \(-0.225918\pi\)
\(468\) 84.6363i 3.91231i
\(469\) 6.29996 0.290905
\(470\) 0 0
\(471\) −8.44766 −0.389247
\(472\) − 43.0613i − 1.98206i
\(473\) 34.2133i 1.57313i
\(474\) −8.05912 −0.370168
\(475\) 0 0
\(476\) 9.95971 0.456503
\(477\) 18.0172i 0.824952i
\(478\) 32.6850i 1.49498i
\(479\) 26.4738 1.20962 0.604809 0.796371i \(-0.293250\pi\)
0.604809 + 0.796371i \(0.293250\pi\)
\(480\) 0 0
\(481\) −7.95906 −0.362902
\(482\) 67.3926i 3.06965i
\(483\) − 2.40020i − 0.109213i
\(484\) −97.3360 −4.42436
\(485\) 0 0
\(486\) −23.0931 −1.04752
\(487\) − 10.4405i − 0.473106i −0.971619 0.236553i \(-0.923982\pi\)
0.971619 0.236553i \(-0.0760177\pi\)
\(488\) 50.0671i 2.26643i
\(489\) −7.15791 −0.323692
\(490\) 0 0
\(491\) −4.53334 −0.204587 −0.102293 0.994754i \(-0.532618\pi\)
−0.102293 + 0.994754i \(0.532618\pi\)
\(492\) 2.46334i 0.111056i
\(493\) 3.56854i 0.160719i
\(494\) 84.4629 3.80017
\(495\) 0 0
\(496\) −64.3093 −2.88757
\(497\) − 0.839088i − 0.0376382i
\(498\) 3.25394i 0.145812i
\(499\) 1.36104 0.0609283 0.0304642 0.999536i \(-0.490301\pi\)
0.0304642 + 0.999536i \(0.490301\pi\)
\(500\) 0 0
\(501\) 3.14923 0.140697
\(502\) − 18.5984i − 0.830089i
\(503\) − 27.9936i − 1.24817i −0.781356 0.624086i \(-0.785472\pi\)
0.781356 0.624086i \(-0.214528\pi\)
\(504\) −18.7047 −0.833175
\(505\) 0 0
\(506\) 98.8028 4.39232
\(507\) − 10.2567i − 0.455517i
\(508\) − 17.6133i − 0.781463i
\(509\) −1.40214 −0.0621488 −0.0310744 0.999517i \(-0.509893\pi\)
−0.0310744 + 0.999517i \(0.509893\pi\)
\(510\) 0 0
\(511\) 4.62741 0.204705
\(512\) − 50.5966i − 2.23608i
\(513\) 10.5927i 0.467681i
\(514\) −76.0858 −3.35600
\(515\) 0 0
\(516\) 9.65993 0.425255
\(517\) − 11.7445i − 0.516524i
\(518\) − 3.14205i − 0.138054i
\(519\) −5.32132 −0.233580
\(520\) 0 0
\(521\) −23.2572 −1.01892 −0.509458 0.860495i \(-0.670154\pi\)
−0.509458 + 0.860495i \(0.670154\pi\)
\(522\) − 11.9716i − 0.523981i
\(523\) 3.80015i 0.166169i 0.996543 + 0.0830845i \(0.0264771\pi\)
−0.996543 + 0.0830845i \(0.973523\pi\)
\(524\) −7.07067 −0.308884
\(525\) 0 0
\(526\) −57.5006 −2.50715
\(527\) 18.6551i 0.812628i
\(528\) 15.2253i 0.662598i
\(529\) −23.0122 −1.00053
\(530\) 0 0
\(531\) 19.0261 0.825662
\(532\) 23.1525i 1.00379i
\(533\) 9.92828i 0.430042i
\(534\) −0.648420 −0.0280599
\(535\) 0 0
\(536\) 40.9904 1.77052
\(537\) − 0.574833i − 0.0248059i
\(538\) − 46.8879i − 2.02148i
\(539\) −5.69412 −0.245263
\(540\) 0 0
\(541\) −16.0165 −0.688602 −0.344301 0.938859i \(-0.611884\pi\)
−0.344301 + 0.938859i \(0.611884\pi\)
\(542\) 41.2685i 1.77264i
\(543\) 2.75504i 0.118230i
\(544\) 13.8479 0.593722
\(545\) 0 0
\(546\) 5.86506 0.251001
\(547\) − 30.2390i − 1.29293i −0.762944 0.646464i \(-0.776247\pi\)
0.762944 0.646464i \(-0.223753\pi\)
\(548\) − 52.9765i − 2.26304i
\(549\) −22.1215 −0.944123
\(550\) 0 0
\(551\) −8.29550 −0.353400
\(552\) − 15.6168i − 0.664695i
\(553\) − 8.90370i − 0.378624i
\(554\) −8.36110 −0.355229
\(555\) 0 0
\(556\) 41.6410 1.76597
\(557\) 24.2216i 1.02630i 0.858298 + 0.513152i \(0.171522\pi\)
−0.858298 + 0.513152i \(0.828478\pi\)
\(558\) − 62.5831i − 2.64936i
\(559\) 38.9336 1.64672
\(560\) 0 0
\(561\) 4.41662 0.186470
\(562\) − 9.86467i − 0.416116i
\(563\) − 11.9124i − 0.502048i −0.967981 0.251024i \(-0.919233\pi\)
0.967981 0.251024i \(-0.0807672\pi\)
\(564\) −3.31600 −0.139629
\(565\) 0 0
\(566\) 56.5129 2.37541
\(567\) − 7.88883i − 0.331300i
\(568\) − 5.45949i − 0.229075i
\(569\) −22.2725 −0.933712 −0.466856 0.884333i \(-0.654613\pi\)
−0.466856 + 0.884333i \(0.654613\pi\)
\(570\) 0 0
\(571\) 19.6713 0.823216 0.411608 0.911361i \(-0.364967\pi\)
0.411608 + 0.911361i \(0.364967\pi\)
\(572\) 167.639i 7.00935i
\(573\) − 5.88978i − 0.246049i
\(574\) −3.91945 −0.163595
\(575\) 0 0
\(576\) −3.00846 −0.125353
\(577\) 22.5166i 0.937378i 0.883363 + 0.468689i \(0.155274\pi\)
−0.883363 + 0.468689i \(0.844726\pi\)
\(578\) 31.1949i 1.29754i
\(579\) −1.33198 −0.0553551
\(580\) 0 0
\(581\) −3.59494 −0.149143
\(582\) − 5.95390i − 0.246797i
\(583\) 35.6868i 1.47799i
\(584\) 30.1081 1.24588
\(585\) 0 0
\(586\) 50.7674 2.09718
\(587\) − 28.2290i − 1.16514i −0.812782 0.582568i \(-0.802048\pi\)
0.812782 0.582568i \(-0.197952\pi\)
\(588\) 1.60770i 0.0663004i
\(589\) −43.3659 −1.78686
\(590\) 0 0
\(591\) −1.72115 −0.0707987
\(592\) − 9.28189i − 0.381483i
\(593\) 27.2560i 1.11927i 0.828739 + 0.559635i \(0.189059\pi\)
−0.828739 + 0.559635i \(0.810941\pi\)
\(594\) −30.2786 −1.24235
\(595\) 0 0
\(596\) 19.8203 0.811870
\(597\) − 2.49200i − 0.101991i
\(598\) − 112.434i − 4.59777i
\(599\) −19.7263 −0.805997 −0.402998 0.915201i \(-0.632032\pi\)
−0.402998 + 0.915201i \(0.632032\pi\)
\(600\) 0 0
\(601\) −39.6721 −1.61826 −0.809130 0.587629i \(-0.800061\pi\)
−0.809130 + 0.587629i \(0.800061\pi\)
\(602\) 15.3701i 0.626437i
\(603\) 18.1111i 0.737541i
\(604\) 46.8933 1.90806
\(605\) 0 0
\(606\) 9.21390 0.374289
\(607\) 23.8572i 0.968336i 0.874975 + 0.484168i \(0.160878\pi\)
−0.874975 + 0.484168i \(0.839122\pi\)
\(608\) 32.1910i 1.30552i
\(609\) −0.576035 −0.0233421
\(610\) 0 0
\(611\) −13.3649 −0.540685
\(612\) 28.6321i 1.15739i
\(613\) 20.6564i 0.834302i 0.908837 + 0.417151i \(0.136971\pi\)
−0.908837 + 0.417151i \(0.863029\pi\)
\(614\) 73.9889 2.98595
\(615\) 0 0
\(616\) −37.0485 −1.49273
\(617\) − 48.1688i − 1.93920i −0.244688 0.969602i \(-0.578686\pi\)
0.244688 0.969602i \(-0.421314\pi\)
\(618\) 11.2608i 0.452976i
\(619\) 19.1752 0.770716 0.385358 0.922767i \(-0.374078\pi\)
0.385358 + 0.922767i \(0.374078\pi\)
\(620\) 0 0
\(621\) 14.1007 0.565841
\(622\) 65.9994i 2.64633i
\(623\) − 0.716374i − 0.0287009i
\(624\) 17.3259 0.693591
\(625\) 0 0
\(626\) −11.1122 −0.444133
\(627\) 10.2670i 0.410023i
\(628\) − 108.472i − 4.32852i
\(629\) −2.69252 −0.107358
\(630\) 0 0
\(631\) 30.8692 1.22889 0.614443 0.788962i \(-0.289381\pi\)
0.614443 + 0.788962i \(0.289381\pi\)
\(632\) − 57.9315i − 2.30439i
\(633\) 4.07690i 0.162042i
\(634\) −30.6826 −1.21856
\(635\) 0 0
\(636\) 10.0759 0.399537
\(637\) 6.47971i 0.256735i
\(638\) − 23.7121i − 0.938772i
\(639\) 2.41221 0.0954254
\(640\) 0 0
\(641\) 12.4835 0.493070 0.246535 0.969134i \(-0.420708\pi\)
0.246535 + 0.969134i \(0.420708\pi\)
\(642\) − 1.54384i − 0.0609306i
\(643\) − 32.0891i − 1.26547i −0.774369 0.632735i \(-0.781932\pi\)
0.774369 0.632735i \(-0.218068\pi\)
\(644\) 30.8199 1.21447
\(645\) 0 0
\(646\) 28.5735 1.12421
\(647\) − 28.7155i − 1.12892i −0.825459 0.564462i \(-0.809084\pi\)
0.825459 0.564462i \(-0.190916\pi\)
\(648\) − 51.3283i − 2.01637i
\(649\) 37.6850 1.47927
\(650\) 0 0
\(651\) −3.01131 −0.118022
\(652\) − 91.9114i − 3.59953i
\(653\) 16.4333i 0.643086i 0.946895 + 0.321543i \(0.104201\pi\)
−0.946895 + 0.321543i \(0.895799\pi\)
\(654\) −10.9932 −0.429868
\(655\) 0 0
\(656\) −11.5784 −0.452061
\(657\) 13.3029i 0.518994i
\(658\) − 5.27613i − 0.205685i
\(659\) 36.3315 1.41528 0.707638 0.706575i \(-0.249761\pi\)
0.707638 + 0.706575i \(0.249761\pi\)
\(660\) 0 0
\(661\) 20.5035 0.797493 0.398746 0.917061i \(-0.369445\pi\)
0.398746 + 0.917061i \(0.369445\pi\)
\(662\) − 65.0510i − 2.52828i
\(663\) − 5.02596i − 0.195192i
\(664\) −23.3903 −0.907721
\(665\) 0 0
\(666\) 9.03274 0.350012
\(667\) 11.0427i 0.427574i
\(668\) 40.4378i 1.56459i
\(669\) −0.226416 −0.00875375
\(670\) 0 0
\(671\) −43.8161 −1.69150
\(672\) 2.23533i 0.0862296i
\(673\) 25.6104i 0.987208i 0.869687 + 0.493604i \(0.164321\pi\)
−0.869687 + 0.493604i \(0.835679\pi\)
\(674\) −17.0328 −0.656080
\(675\) 0 0
\(676\) 131.702 5.06545
\(677\) − 33.7573i − 1.29740i −0.761045 0.648699i \(-0.775313\pi\)
0.761045 0.648699i \(-0.224687\pi\)
\(678\) 11.5617i 0.444023i
\(679\) 6.57786 0.252435
\(680\) 0 0
\(681\) 3.82125 0.146431
\(682\) − 123.959i − 4.74662i
\(683\) 2.25100i 0.0861320i 0.999072 + 0.0430660i \(0.0137126\pi\)
−0.999072 + 0.0430660i \(0.986287\pi\)
\(684\) −66.5588 −2.54494
\(685\) 0 0
\(686\) −2.55803 −0.0976662
\(687\) 7.15501i 0.272981i
\(688\) 45.4045i 1.73103i
\(689\) 40.6103 1.54713
\(690\) 0 0
\(691\) 12.0924 0.460018 0.230009 0.973188i \(-0.426124\pi\)
0.230009 + 0.973188i \(0.426124\pi\)
\(692\) − 68.3286i − 2.59746i
\(693\) − 16.3694i − 0.621823i
\(694\) 3.26331 0.123874
\(695\) 0 0
\(696\) −3.74795 −0.142066
\(697\) 3.35870i 0.127220i
\(698\) − 60.0553i − 2.27313i
\(699\) −2.53057 −0.0957149
\(700\) 0 0
\(701\) 27.7239 1.04712 0.523559 0.851990i \(-0.324604\pi\)
0.523559 + 0.851990i \(0.324604\pi\)
\(702\) 34.4560i 1.30046i
\(703\) − 6.25909i − 0.236066i
\(704\) −5.95887 −0.224583
\(705\) 0 0
\(706\) −45.2032 −1.70125
\(707\) 10.1795i 0.382840i
\(708\) − 10.6401i − 0.399881i
\(709\) 39.7082 1.49127 0.745636 0.666354i \(-0.232146\pi\)
0.745636 + 0.666354i \(0.232146\pi\)
\(710\) 0 0
\(711\) 25.5963 0.959937
\(712\) − 4.66105i − 0.174680i
\(713\) 57.7272i 2.16190i
\(714\) 1.98413 0.0742541
\(715\) 0 0
\(716\) 7.38117 0.275847
\(717\) 4.52119i 0.168847i
\(718\) − 83.6740i − 3.12268i
\(719\) −17.8189 −0.664531 −0.332266 0.943186i \(-0.607813\pi\)
−0.332266 + 0.943186i \(0.607813\pi\)
\(720\) 0 0
\(721\) −12.4409 −0.463324
\(722\) 17.8199i 0.663186i
\(723\) 9.32216i 0.346695i
\(724\) −35.3762 −1.31475
\(725\) 0 0
\(726\) −19.3908 −0.719661
\(727\) 51.8897i 1.92448i 0.272197 + 0.962241i \(0.412250\pi\)
−0.272197 + 0.962241i \(0.587750\pi\)
\(728\) 42.1599i 1.56255i
\(729\) 20.4721 0.758226
\(730\) 0 0
\(731\) 13.1711 0.487151
\(732\) 12.3712i 0.457254i
\(733\) − 20.0529i − 0.740669i −0.928898 0.370334i \(-0.879243\pi\)
0.928898 0.370334i \(-0.120757\pi\)
\(734\) −6.98714 −0.257900
\(735\) 0 0
\(736\) 42.8516 1.57953
\(737\) 35.8727i 1.32139i
\(738\) − 11.2676i − 0.414767i
\(739\) −6.39375 −0.235198 −0.117599 0.993061i \(-0.537520\pi\)
−0.117599 + 0.993061i \(0.537520\pi\)
\(740\) 0 0
\(741\) 11.6834 0.429202
\(742\) 16.0320i 0.588552i
\(743\) 3.15082i 0.115592i 0.998328 + 0.0577962i \(0.0184073\pi\)
−0.998328 + 0.0577962i \(0.981593\pi\)
\(744\) −19.5929 −0.718312
\(745\) 0 0
\(746\) 21.4268 0.784490
\(747\) − 10.3347i − 0.378128i
\(748\) 56.7118i 2.07359i
\(749\) 1.70563 0.0623225
\(750\) 0 0
\(751\) −21.1642 −0.772293 −0.386147 0.922437i \(-0.626194\pi\)
−0.386147 + 0.922437i \(0.626194\pi\)
\(752\) − 15.5862i − 0.568369i
\(753\) − 2.57265i − 0.0937526i
\(754\) −26.9836 −0.982684
\(755\) 0 0
\(756\) −9.44491 −0.343508
\(757\) 45.1346i 1.64044i 0.572045 + 0.820222i \(0.306150\pi\)
−0.572045 + 0.820222i \(0.693850\pi\)
\(758\) 32.3473i 1.17491i
\(759\) 13.6670 0.496081
\(760\) 0 0
\(761\) 25.4211 0.921513 0.460757 0.887526i \(-0.347578\pi\)
0.460757 + 0.887526i \(0.347578\pi\)
\(762\) − 3.50884i − 0.127112i
\(763\) − 12.1453i − 0.439688i
\(764\) 75.6279 2.73612
\(765\) 0 0
\(766\) −52.1268 −1.88342
\(767\) − 42.8843i − 1.54846i
\(768\) − 9.75363i − 0.351954i
\(769\) −8.36177 −0.301533 −0.150767 0.988569i \(-0.548174\pi\)
−0.150767 + 0.988569i \(0.548174\pi\)
\(770\) 0 0
\(771\) −10.5247 −0.379037
\(772\) − 17.1033i − 0.615562i
\(773\) − 22.3094i − 0.802414i −0.915987 0.401207i \(-0.868591\pi\)
0.915987 0.401207i \(-0.131409\pi\)
\(774\) −44.1858 −1.58822
\(775\) 0 0
\(776\) 42.7985 1.53638
\(777\) − 0.434628i − 0.0155922i
\(778\) − 44.7106i − 1.60295i
\(779\) −7.80770 −0.279740
\(780\) 0 0
\(781\) 4.77786 0.170965
\(782\) − 38.0361i − 1.36017i
\(783\) − 3.38409i − 0.120937i
\(784\) −7.55666 −0.269881
\(785\) 0 0
\(786\) −1.40859 −0.0502426
\(787\) 19.4098i 0.691884i 0.938256 + 0.345942i \(0.112441\pi\)
−0.938256 + 0.345942i \(0.887559\pi\)
\(788\) − 22.1005i − 0.787298i
\(789\) −7.95384 −0.283164
\(790\) 0 0
\(791\) −12.7733 −0.454166
\(792\) − 106.507i − 3.78456i
\(793\) 49.8613i 1.77063i
\(794\) −56.3786 −2.00080
\(795\) 0 0
\(796\) 31.9986 1.13416
\(797\) 30.7974i 1.09090i 0.838143 + 0.545450i \(0.183641\pi\)
−0.838143 + 0.545450i \(0.816359\pi\)
\(798\) 4.61234i 0.163275i
\(799\) −4.52129 −0.159952
\(800\) 0 0
\(801\) 2.05943 0.0727663
\(802\) − 20.5896i − 0.727045i
\(803\) 26.3490i 0.929837i
\(804\) 10.1285 0.357203
\(805\) 0 0
\(806\) −141.061 −4.96865
\(807\) − 6.48582i − 0.228312i
\(808\) 66.2325i 2.33005i
\(809\) 48.1014 1.69115 0.845577 0.533854i \(-0.179257\pi\)
0.845577 + 0.533854i \(0.179257\pi\)
\(810\) 0 0
\(811\) −31.3020 −1.09916 −0.549580 0.835441i \(-0.685212\pi\)
−0.549580 + 0.835441i \(0.685212\pi\)
\(812\) − 7.39660i − 0.259570i
\(813\) 5.70852i 0.200207i
\(814\) 17.8912 0.627086
\(815\) 0 0
\(816\) 5.86129 0.205186
\(817\) 30.6178i 1.07118i
\(818\) − 59.7264i − 2.08829i
\(819\) −18.6278 −0.650909
\(820\) 0 0
\(821\) 7.79834 0.272164 0.136082 0.990698i \(-0.456549\pi\)
0.136082 + 0.990698i \(0.456549\pi\)
\(822\) − 10.5537i − 0.368104i
\(823\) 53.0240i 1.84830i 0.382029 + 0.924150i \(0.375226\pi\)
−0.382029 + 0.924150i \(0.624774\pi\)
\(824\) −80.9463 −2.81990
\(825\) 0 0
\(826\) 16.9297 0.589059
\(827\) − 52.0766i − 1.81088i −0.424473 0.905441i \(-0.639541\pi\)
0.424473 0.905441i \(-0.360459\pi\)
\(828\) 88.6008i 3.07909i
\(829\) 8.49580 0.295071 0.147536 0.989057i \(-0.452866\pi\)
0.147536 + 0.989057i \(0.452866\pi\)
\(830\) 0 0
\(831\) −1.15656 −0.0401206
\(832\) 6.78099i 0.235088i
\(833\) 2.19206i 0.0759504i
\(834\) 8.29552 0.287250
\(835\) 0 0
\(836\) −131.833 −4.55955
\(837\) − 17.6908i − 0.611484i
\(838\) 33.3815i 1.15314i
\(839\) 31.4762 1.08668 0.543339 0.839513i \(-0.317160\pi\)
0.543339 + 0.839513i \(0.317160\pi\)
\(840\) 0 0
\(841\) −26.3498 −0.908614
\(842\) 97.8383i 3.37173i
\(843\) − 1.36454i − 0.0469973i
\(844\) −52.3496 −1.80195
\(845\) 0 0
\(846\) 15.1678 0.521479
\(847\) − 21.4229i − 0.736101i
\(848\) 47.3599i 1.62635i
\(849\) 7.81721 0.268286
\(850\) 0 0
\(851\) −8.33188 −0.285613
\(852\) − 1.34900i − 0.0462160i
\(853\) 28.8426i 0.987552i 0.869589 + 0.493776i \(0.164384\pi\)
−0.869589 + 0.493776i \(0.835616\pi\)
\(854\) −19.6840 −0.673574
\(855\) 0 0
\(856\) 11.0976 0.379309
\(857\) − 26.8954i − 0.918730i −0.888248 0.459365i \(-0.848077\pi\)
0.888248 0.459365i \(-0.151923\pi\)
\(858\) 33.3963i 1.14013i
\(859\) −4.29573 −0.146569 −0.0732843 0.997311i \(-0.523348\pi\)
−0.0732843 + 0.997311i \(0.523348\pi\)
\(860\) 0 0
\(861\) −0.542163 −0.0184768
\(862\) 18.3546i 0.625160i
\(863\) − 39.2114i − 1.33477i −0.744712 0.667386i \(-0.767413\pi\)
0.744712 0.667386i \(-0.232587\pi\)
\(864\) −13.1321 −0.446762
\(865\) 0 0
\(866\) 86.8270 2.95050
\(867\) 4.31507i 0.146547i
\(868\) − 38.6668i − 1.31244i
\(869\) 50.6987 1.71984
\(870\) 0 0
\(871\) 40.8219 1.38320
\(872\) − 79.0227i − 2.67604i
\(873\) 18.9100i 0.640006i
\(874\) 88.4193 2.99083
\(875\) 0 0
\(876\) 7.43949 0.251357
\(877\) 11.1744i 0.377331i 0.982041 + 0.188666i \(0.0604162\pi\)
−0.982041 + 0.188666i \(0.939584\pi\)
\(878\) 2.86449i 0.0966717i
\(879\) 7.02246 0.236862
\(880\) 0 0
\(881\) −55.5215 −1.87057 −0.935284 0.353899i \(-0.884856\pi\)
−0.935284 + 0.353899i \(0.884856\pi\)
\(882\) − 7.35382i − 0.247616i
\(883\) − 45.3210i − 1.52517i −0.646886 0.762586i \(-0.723929\pi\)
0.646886 0.762586i \(-0.276071\pi\)
\(884\) 64.5360 2.17058
\(885\) 0 0
\(886\) 56.2479 1.88968
\(887\) 35.9580i 1.20735i 0.797229 + 0.603676i \(0.206298\pi\)
−0.797229 + 0.603676i \(0.793702\pi\)
\(888\) − 2.82789i − 0.0948976i
\(889\) 3.87656 0.130016
\(890\) 0 0
\(891\) 44.9199 1.50487
\(892\) − 2.90730i − 0.0973438i
\(893\) − 10.5103i − 0.351713i
\(894\) 3.94850 0.132058
\(895\) 0 0
\(896\) 9.95759 0.332660
\(897\) − 15.5526i − 0.519286i
\(898\) − 44.7754i − 1.49418i
\(899\) 13.8542 0.462064
\(900\) 0 0
\(901\) 13.7383 0.457690
\(902\) − 22.3178i − 0.743101i
\(903\) 2.12608i 0.0707516i
\(904\) −83.1090 −2.76416
\(905\) 0 0
\(906\) 9.34187 0.310363
\(907\) 30.2781i 1.00537i 0.864470 + 0.502685i \(0.167654\pi\)
−0.864470 + 0.502685i \(0.832346\pi\)
\(908\) 49.0670i 1.62834i
\(909\) −29.2640 −0.970625
\(910\) 0 0
\(911\) −22.6499 −0.750424 −0.375212 0.926939i \(-0.622430\pi\)
−0.375212 + 0.926939i \(0.622430\pi\)
\(912\) 13.6253i 0.451178i
\(913\) − 20.4700i − 0.677459i
\(914\) −13.6529 −0.451598
\(915\) 0 0
\(916\) −91.8742 −3.03561
\(917\) − 1.55620i − 0.0513904i
\(918\) 11.6563i 0.384717i
\(919\) −25.2435 −0.832707 −0.416354 0.909203i \(-0.636692\pi\)
−0.416354 + 0.909203i \(0.636692\pi\)
\(920\) 0 0
\(921\) 10.2346 0.337241
\(922\) 18.2399i 0.600700i
\(923\) − 5.43705i − 0.178963i
\(924\) −9.15443 −0.301159
\(925\) 0 0
\(926\) −39.9627 −1.31326
\(927\) − 35.7651i − 1.17468i
\(928\) − 10.2841i − 0.337593i
\(929\) 3.46732 0.113759 0.0568795 0.998381i \(-0.481885\pi\)
0.0568795 + 0.998381i \(0.481885\pi\)
\(930\) 0 0
\(931\) −5.09571 −0.167005
\(932\) − 32.4939i − 1.06437i
\(933\) 9.12945i 0.298885i
\(934\) 72.0445 2.35737
\(935\) 0 0
\(936\) −121.201 −3.96158
\(937\) 10.9233i 0.356848i 0.983954 + 0.178424i \(0.0570999\pi\)
−0.983954 + 0.178424i \(0.942900\pi\)
\(938\) 16.1155i 0.526190i
\(939\) −1.53711 −0.0501617
\(940\) 0 0
\(941\) −8.97045 −0.292428 −0.146214 0.989253i \(-0.546709\pi\)
−0.146214 + 0.989253i \(0.546709\pi\)
\(942\) − 21.6094i − 0.704072i
\(943\) 10.3933i 0.338454i
\(944\) 50.0118 1.62774
\(945\) 0 0
\(946\) −87.5189 −2.84548
\(947\) − 33.5680i − 1.09081i −0.838172 0.545406i \(-0.816375\pi\)
0.838172 0.545406i \(-0.183625\pi\)
\(948\) − 14.3145i − 0.464913i
\(949\) 29.9843 0.973331
\(950\) 0 0
\(951\) −4.24421 −0.137628
\(952\) 14.2626i 0.462252i
\(953\) − 37.9396i − 1.22898i −0.788923 0.614492i \(-0.789361\pi\)
0.788923 0.614492i \(-0.210639\pi\)
\(954\) −46.0887 −1.49218
\(955\) 0 0
\(956\) −58.0545 −1.87762
\(957\) − 3.28001i − 0.106028i
\(958\) 67.7208i 2.18796i
\(959\) 11.6597 0.376513
\(960\) 0 0
\(961\) 41.4250 1.33629
\(962\) − 20.3596i − 0.656418i
\(963\) 4.90335i 0.158008i
\(964\) −119.702 −3.85533
\(965\) 0 0
\(966\) 6.13979 0.197545
\(967\) 12.4715i 0.401056i 0.979688 + 0.200528i \(0.0642657\pi\)
−0.979688 + 0.200528i \(0.935734\pi\)
\(968\) − 139.387i − 4.48008i
\(969\) 3.95246 0.126971
\(970\) 0 0
\(971\) −48.9493 −1.57086 −0.785429 0.618951i \(-0.787558\pi\)
−0.785429 + 0.618951i \(0.787558\pi\)
\(972\) − 41.0176i − 1.31564i
\(973\) 9.16488i 0.293812i
\(974\) 26.7073 0.855756
\(975\) 0 0
\(976\) −58.1484 −1.86128
\(977\) 12.0315i 0.384921i 0.981305 + 0.192461i \(0.0616467\pi\)
−0.981305 + 0.192461i \(0.938353\pi\)
\(978\) − 18.3102i − 0.585495i
\(979\) 4.07911 0.130369
\(980\) 0 0
\(981\) 34.9152 1.11476
\(982\) − 11.5964i − 0.370057i
\(983\) 23.4581i 0.748199i 0.927389 + 0.374099i \(0.122048\pi\)
−0.927389 + 0.374099i \(0.877952\pi\)
\(984\) −3.52756 −0.112454
\(985\) 0 0
\(986\) −9.12845 −0.290709
\(987\) − 0.729827i − 0.0232307i
\(988\) 150.022i 4.77283i
\(989\) 40.7573 1.29601
\(990\) 0 0
\(991\) 1.92852 0.0612615 0.0306308 0.999531i \(-0.490248\pi\)
0.0306308 + 0.999531i \(0.490248\pi\)
\(992\) − 53.7618i − 1.70694i
\(993\) − 8.99826i − 0.285551i
\(994\) 2.14642 0.0680802
\(995\) 0 0
\(996\) −5.77959 −0.183133
\(997\) 33.7803i 1.06983i 0.844905 + 0.534917i \(0.179657\pi\)
−0.844905 + 0.534917i \(0.820343\pi\)
\(998\) 3.48158i 0.110207i
\(999\) 2.55335 0.0807844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.b.c.624.12 12
5.2 odd 4 875.2.a.e.1.1 6
5.3 odd 4 875.2.a.h.1.6 yes 6
5.4 even 2 inner 875.2.b.c.624.1 12
15.2 even 4 7875.2.a.t.1.6 6
15.8 even 4 7875.2.a.q.1.1 6
35.13 even 4 6125.2.a.t.1.6 6
35.27 even 4 6125.2.a.s.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.e.1.1 6 5.2 odd 4
875.2.a.h.1.6 yes 6 5.3 odd 4
875.2.b.c.624.1 12 5.4 even 2 inner
875.2.b.c.624.12 12 1.1 even 1 trivial
6125.2.a.s.1.1 6 35.27 even 4
6125.2.a.t.1.6 6 35.13 even 4
7875.2.a.q.1.1 6 15.8 even 4
7875.2.a.t.1.6 6 15.2 even 4