Properties

Label 875.2.a.j.1.1
Level $875$
Weight $2$
Character 875.1
Self dual yes
Analytic conductor $6.987$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(1,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 10x^{6} + 30x^{5} + 29x^{4} - 79x^{3} - 43x^{2} + 62x + 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.26874\) of defining polynomial
Character \(\chi\) \(=\) 875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64338 q^{2} -0.833911 q^{3} +4.98745 q^{4} +2.20434 q^{6} -1.00000 q^{7} -7.89697 q^{8} -2.30459 q^{9} -4.54519 q^{11} -4.15909 q^{12} -3.85791 q^{13} +2.64338 q^{14} +10.8998 q^{16} +4.62525 q^{17} +6.09191 q^{18} +6.66244 q^{19} +0.833911 q^{21} +12.0147 q^{22} -4.15079 q^{23} +6.58537 q^{24} +10.1979 q^{26} +4.42356 q^{27} -4.98745 q^{28} -8.32707 q^{29} -0.269795 q^{31} -13.0183 q^{32} +3.79028 q^{33} -12.2263 q^{34} -11.4940 q^{36} +3.02342 q^{37} -17.6114 q^{38} +3.21716 q^{39} -2.70751 q^{41} -2.20434 q^{42} +0.570645 q^{43} -22.6689 q^{44} +10.9721 q^{46} +6.18001 q^{47} -9.08944 q^{48} +1.00000 q^{49} -3.85704 q^{51} -19.2412 q^{52} +12.2587 q^{53} -11.6931 q^{54} +7.89697 q^{56} -5.55588 q^{57} +22.0116 q^{58} -0.419019 q^{59} +11.5307 q^{61} +0.713171 q^{62} +2.30459 q^{63} +12.6127 q^{64} -10.0192 q^{66} +0.289042 q^{67} +23.0682 q^{68} +3.46139 q^{69} -7.27856 q^{71} +18.1993 q^{72} -9.34497 q^{73} -7.99204 q^{74} +33.2286 q^{76} +4.54519 q^{77} -8.50417 q^{78} +4.37430 q^{79} +3.22492 q^{81} +7.15697 q^{82} -11.3312 q^{83} +4.15909 q^{84} -1.50843 q^{86} +6.94404 q^{87} +35.8932 q^{88} +14.6783 q^{89} +3.85791 q^{91} -20.7018 q^{92} +0.224985 q^{93} -16.3361 q^{94} +10.8561 q^{96} +9.86723 q^{97} -2.64338 q^{98} +10.4748 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 8 q^{3} + 13 q^{4} + 2 q^{6} - 8 q^{7} + 12 q^{8} + 18 q^{9} - 5 q^{11} - 20 q^{12} - 6 q^{13} - q^{14} + 35 q^{16} + 13 q^{17} + 3 q^{18} + 13 q^{19} + 8 q^{21} + 22 q^{22} - 5 q^{23} - 3 q^{24}+ \cdots - 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.64338 −1.86915 −0.934576 0.355765i \(-0.884220\pi\)
−0.934576 + 0.355765i \(0.884220\pi\)
\(3\) −0.833911 −0.481459 −0.240729 0.970592i \(-0.577387\pi\)
−0.240729 + 0.970592i \(0.577387\pi\)
\(4\) 4.98745 2.49373
\(5\) 0 0
\(6\) 2.20434 0.899919
\(7\) −1.00000 −0.377964
\(8\) −7.89697 −2.79200
\(9\) −2.30459 −0.768197
\(10\) 0 0
\(11\) −4.54519 −1.37043 −0.685213 0.728343i \(-0.740291\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(12\) −4.15909 −1.20063
\(13\) −3.85791 −1.06999 −0.534996 0.844854i \(-0.679687\pi\)
−0.534996 + 0.844854i \(0.679687\pi\)
\(14\) 2.64338 0.706473
\(15\) 0 0
\(16\) 10.8998 2.72494
\(17\) 4.62525 1.12179 0.560893 0.827888i \(-0.310458\pi\)
0.560893 + 0.827888i \(0.310458\pi\)
\(18\) 6.09191 1.43588
\(19\) 6.66244 1.52847 0.764235 0.644938i \(-0.223117\pi\)
0.764235 + 0.644938i \(0.223117\pi\)
\(20\) 0 0
\(21\) 0.833911 0.181974
\(22\) 12.0147 2.56153
\(23\) −4.15079 −0.865499 −0.432749 0.901514i \(-0.642456\pi\)
−0.432749 + 0.901514i \(0.642456\pi\)
\(24\) 6.58537 1.34423
\(25\) 0 0
\(26\) 10.1979 1.99998
\(27\) 4.42356 0.851314
\(28\) −4.98745 −0.942540
\(29\) −8.32707 −1.54630 −0.773149 0.634224i \(-0.781320\pi\)
−0.773149 + 0.634224i \(0.781320\pi\)
\(30\) 0 0
\(31\) −0.269795 −0.0484567 −0.0242283 0.999706i \(-0.507713\pi\)
−0.0242283 + 0.999706i \(0.507713\pi\)
\(32\) −13.0183 −2.30133
\(33\) 3.79028 0.659803
\(34\) −12.2263 −2.09679
\(35\) 0 0
\(36\) −11.4940 −1.91567
\(37\) 3.02342 0.497047 0.248524 0.968626i \(-0.420055\pi\)
0.248524 + 0.968626i \(0.420055\pi\)
\(38\) −17.6114 −2.85694
\(39\) 3.21716 0.515158
\(40\) 0 0
\(41\) −2.70751 −0.422842 −0.211421 0.977395i \(-0.567809\pi\)
−0.211421 + 0.977395i \(0.567809\pi\)
\(42\) −2.20434 −0.340138
\(43\) 0.570645 0.0870226 0.0435113 0.999053i \(-0.486146\pi\)
0.0435113 + 0.999053i \(0.486146\pi\)
\(44\) −22.6689 −3.41747
\(45\) 0 0
\(46\) 10.9721 1.61775
\(47\) 6.18001 0.901448 0.450724 0.892663i \(-0.351166\pi\)
0.450724 + 0.892663i \(0.351166\pi\)
\(48\) −9.08944 −1.31195
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.85704 −0.540094
\(52\) −19.2412 −2.66827
\(53\) 12.2587 1.68387 0.841934 0.539581i \(-0.181417\pi\)
0.841934 + 0.539581i \(0.181417\pi\)
\(54\) −11.6931 −1.59123
\(55\) 0 0
\(56\) 7.89697 1.05528
\(57\) −5.55588 −0.735895
\(58\) 22.0116 2.89026
\(59\) −0.419019 −0.0545516 −0.0272758 0.999628i \(-0.508683\pi\)
−0.0272758 + 0.999628i \(0.508683\pi\)
\(60\) 0 0
\(61\) 11.5307 1.47636 0.738180 0.674604i \(-0.235686\pi\)
0.738180 + 0.674604i \(0.235686\pi\)
\(62\) 0.713171 0.0905728
\(63\) 2.30459 0.290351
\(64\) 12.6127 1.57659
\(65\) 0 0
\(66\) −10.0192 −1.23327
\(67\) 0.289042 0.0353121 0.0176560 0.999844i \(-0.494380\pi\)
0.0176560 + 0.999844i \(0.494380\pi\)
\(68\) 23.0682 2.79743
\(69\) 3.46139 0.416702
\(70\) 0 0
\(71\) −7.27856 −0.863806 −0.431903 0.901920i \(-0.642158\pi\)
−0.431903 + 0.901920i \(0.642158\pi\)
\(72\) 18.1993 2.14481
\(73\) −9.34497 −1.09375 −0.546873 0.837215i \(-0.684182\pi\)
−0.546873 + 0.837215i \(0.684182\pi\)
\(74\) −7.99204 −0.929056
\(75\) 0 0
\(76\) 33.2286 3.81158
\(77\) 4.54519 0.517972
\(78\) −8.50417 −0.962907
\(79\) 4.37430 0.492148 0.246074 0.969251i \(-0.420859\pi\)
0.246074 + 0.969251i \(0.420859\pi\)
\(80\) 0 0
\(81\) 3.22492 0.358325
\(82\) 7.15697 0.790355
\(83\) −11.3312 −1.24376 −0.621879 0.783114i \(-0.713630\pi\)
−0.621879 + 0.783114i \(0.713630\pi\)
\(84\) 4.15909 0.453794
\(85\) 0 0
\(86\) −1.50843 −0.162658
\(87\) 6.94404 0.744479
\(88\) 35.8932 3.82623
\(89\) 14.6783 1.55589 0.777947 0.628330i \(-0.216261\pi\)
0.777947 + 0.628330i \(0.216261\pi\)
\(90\) 0 0
\(91\) 3.85791 0.404419
\(92\) −20.7018 −2.15832
\(93\) 0.224985 0.0233299
\(94\) −16.3361 −1.68494
\(95\) 0 0
\(96\) 10.8561 1.10800
\(97\) 9.86723 1.00187 0.500933 0.865486i \(-0.332990\pi\)
0.500933 + 0.865486i \(0.332990\pi\)
\(98\) −2.64338 −0.267022
\(99\) 10.4748 1.05276
\(100\) 0 0
\(101\) 6.27767 0.624651 0.312326 0.949975i \(-0.398892\pi\)
0.312326 + 0.949975i \(0.398892\pi\)
\(102\) 10.1956 1.00952
\(103\) −2.61593 −0.257756 −0.128878 0.991660i \(-0.541138\pi\)
−0.128878 + 0.991660i \(0.541138\pi\)
\(104\) 30.4658 2.98742
\(105\) 0 0
\(106\) −32.4045 −3.14740
\(107\) 0.176723 0.0170845 0.00854225 0.999964i \(-0.497281\pi\)
0.00854225 + 0.999964i \(0.497281\pi\)
\(108\) 22.0623 2.12294
\(109\) 10.7849 1.03301 0.516503 0.856285i \(-0.327233\pi\)
0.516503 + 0.856285i \(0.327233\pi\)
\(110\) 0 0
\(111\) −2.52126 −0.239308
\(112\) −10.8998 −1.02993
\(113\) 8.12932 0.764742 0.382371 0.924009i \(-0.375108\pi\)
0.382371 + 0.924009i \(0.375108\pi\)
\(114\) 14.6863 1.37550
\(115\) 0 0
\(116\) −41.5309 −3.85604
\(117\) 8.89092 0.821966
\(118\) 1.10762 0.101965
\(119\) −4.62525 −0.423996
\(120\) 0 0
\(121\) 9.65873 0.878066
\(122\) −30.4801 −2.75954
\(123\) 2.25782 0.203581
\(124\) −1.34559 −0.120838
\(125\) 0 0
\(126\) −6.09191 −0.542710
\(127\) 19.1636 1.70050 0.850249 0.526380i \(-0.176451\pi\)
0.850249 + 0.526380i \(0.176451\pi\)
\(128\) −7.30364 −0.645557
\(129\) −0.475867 −0.0418978
\(130\) 0 0
\(131\) −18.0366 −1.57587 −0.787934 0.615760i \(-0.788849\pi\)
−0.787934 + 0.615760i \(0.788849\pi\)
\(132\) 18.9038 1.64537
\(133\) −6.66244 −0.577707
\(134\) −0.764047 −0.0660036
\(135\) 0 0
\(136\) −36.5254 −3.13203
\(137\) −5.79298 −0.494927 −0.247464 0.968897i \(-0.579597\pi\)
−0.247464 + 0.968897i \(0.579597\pi\)
\(138\) −9.14976 −0.778879
\(139\) 4.68119 0.397053 0.198527 0.980095i \(-0.436384\pi\)
0.198527 + 0.980095i \(0.436384\pi\)
\(140\) 0 0
\(141\) −5.15358 −0.434010
\(142\) 19.2400 1.61458
\(143\) 17.5349 1.46635
\(144\) −25.1195 −2.09329
\(145\) 0 0
\(146\) 24.7023 2.04438
\(147\) −0.833911 −0.0687798
\(148\) 15.0792 1.23950
\(149\) 19.6161 1.60701 0.803506 0.595297i \(-0.202965\pi\)
0.803506 + 0.595297i \(0.202965\pi\)
\(150\) 0 0
\(151\) 16.5712 1.34855 0.674274 0.738481i \(-0.264457\pi\)
0.674274 + 0.738481i \(0.264457\pi\)
\(152\) −52.6131 −4.26748
\(153\) −10.6593 −0.861754
\(154\) −12.0147 −0.968168
\(155\) 0 0
\(156\) 16.0454 1.28466
\(157\) 10.4246 0.831972 0.415986 0.909371i \(-0.363436\pi\)
0.415986 + 0.909371i \(0.363436\pi\)
\(158\) −11.5629 −0.919899
\(159\) −10.2227 −0.810713
\(160\) 0 0
\(161\) 4.15079 0.327128
\(162\) −8.52469 −0.669763
\(163\) 4.02969 0.315630 0.157815 0.987469i \(-0.449555\pi\)
0.157815 + 0.987469i \(0.449555\pi\)
\(164\) −13.5036 −1.05445
\(165\) 0 0
\(166\) 29.9526 2.32477
\(167\) −22.2680 −1.72315 −0.861573 0.507633i \(-0.830521\pi\)
−0.861573 + 0.507633i \(0.830521\pi\)
\(168\) −6.58537 −0.508072
\(169\) 1.88350 0.144885
\(170\) 0 0
\(171\) −15.3542 −1.17417
\(172\) 2.84606 0.217010
\(173\) 17.1363 1.30285 0.651426 0.758712i \(-0.274171\pi\)
0.651426 + 0.758712i \(0.274171\pi\)
\(174\) −18.3557 −1.39154
\(175\) 0 0
\(176\) −49.5415 −3.73433
\(177\) 0.349424 0.0262643
\(178\) −38.8003 −2.90820
\(179\) 15.3534 1.14757 0.573783 0.819007i \(-0.305475\pi\)
0.573783 + 0.819007i \(0.305475\pi\)
\(180\) 0 0
\(181\) −6.20953 −0.461551 −0.230775 0.973007i \(-0.574126\pi\)
−0.230775 + 0.973007i \(0.574126\pi\)
\(182\) −10.1979 −0.755921
\(183\) −9.61561 −0.710806
\(184\) 32.7786 2.41647
\(185\) 0 0
\(186\) −0.594721 −0.0436071
\(187\) −21.0226 −1.53733
\(188\) 30.8225 2.24796
\(189\) −4.42356 −0.321767
\(190\) 0 0
\(191\) 7.32070 0.529707 0.264854 0.964289i \(-0.414676\pi\)
0.264854 + 0.964289i \(0.414676\pi\)
\(192\) −10.5179 −0.759064
\(193\) −23.6227 −1.70040 −0.850200 0.526459i \(-0.823519\pi\)
−0.850200 + 0.526459i \(0.823519\pi\)
\(194\) −26.0828 −1.87264
\(195\) 0 0
\(196\) 4.98745 0.356247
\(197\) 8.09174 0.576513 0.288256 0.957553i \(-0.406924\pi\)
0.288256 + 0.957553i \(0.406924\pi\)
\(198\) −27.6889 −1.96776
\(199\) −24.6744 −1.74912 −0.874561 0.484915i \(-0.838851\pi\)
−0.874561 + 0.484915i \(0.838851\pi\)
\(200\) 0 0
\(201\) −0.241035 −0.0170013
\(202\) −16.5943 −1.16757
\(203\) 8.32707 0.584446
\(204\) −19.2368 −1.34685
\(205\) 0 0
\(206\) 6.91491 0.481784
\(207\) 9.56587 0.664874
\(208\) −42.0504 −2.91567
\(209\) −30.2820 −2.09465
\(210\) 0 0
\(211\) −5.08112 −0.349798 −0.174899 0.984586i \(-0.555960\pi\)
−0.174899 + 0.984586i \(0.555960\pi\)
\(212\) 61.1399 4.19910
\(213\) 6.06967 0.415887
\(214\) −0.467147 −0.0319335
\(215\) 0 0
\(216\) −34.9327 −2.37687
\(217\) 0.269795 0.0183149
\(218\) −28.5086 −1.93085
\(219\) 7.79288 0.526594
\(220\) 0 0
\(221\) −17.8438 −1.20030
\(222\) 6.66465 0.447302
\(223\) 1.25572 0.0840896 0.0420448 0.999116i \(-0.486613\pi\)
0.0420448 + 0.999116i \(0.486613\pi\)
\(224\) 13.0183 0.869821
\(225\) 0 0
\(226\) −21.4889 −1.42942
\(227\) −6.42534 −0.426465 −0.213232 0.977002i \(-0.568399\pi\)
−0.213232 + 0.977002i \(0.568399\pi\)
\(228\) −27.7097 −1.83512
\(229\) −0.848045 −0.0560404 −0.0280202 0.999607i \(-0.508920\pi\)
−0.0280202 + 0.999607i \(0.508920\pi\)
\(230\) 0 0
\(231\) −3.79028 −0.249382
\(232\) 65.7586 4.31726
\(233\) −1.13822 −0.0745672 −0.0372836 0.999305i \(-0.511870\pi\)
−0.0372836 + 0.999305i \(0.511870\pi\)
\(234\) −23.5021 −1.53638
\(235\) 0 0
\(236\) −2.08983 −0.136037
\(237\) −3.64778 −0.236949
\(238\) 12.2263 0.792512
\(239\) 6.74663 0.436403 0.218202 0.975904i \(-0.429981\pi\)
0.218202 + 0.975904i \(0.429981\pi\)
\(240\) 0 0
\(241\) 6.87736 0.443010 0.221505 0.975159i \(-0.428903\pi\)
0.221505 + 0.975159i \(0.428903\pi\)
\(242\) −25.5317 −1.64124
\(243\) −15.9600 −1.02383
\(244\) 57.5090 3.68164
\(245\) 0 0
\(246\) −5.96827 −0.380523
\(247\) −25.7031 −1.63545
\(248\) 2.13056 0.135291
\(249\) 9.44919 0.598818
\(250\) 0 0
\(251\) 27.9049 1.76134 0.880671 0.473728i \(-0.157092\pi\)
0.880671 + 0.473728i \(0.157092\pi\)
\(252\) 11.4940 0.724057
\(253\) 18.8661 1.18610
\(254\) −50.6568 −3.17849
\(255\) 0 0
\(256\) −5.91916 −0.369948
\(257\) 1.48316 0.0925169 0.0462585 0.998930i \(-0.485270\pi\)
0.0462585 + 0.998930i \(0.485270\pi\)
\(258\) 1.25790 0.0783133
\(259\) −3.02342 −0.187866
\(260\) 0 0
\(261\) 19.1905 1.18786
\(262\) 47.6776 2.94553
\(263\) −0.390033 −0.0240504 −0.0120252 0.999928i \(-0.503828\pi\)
−0.0120252 + 0.999928i \(0.503828\pi\)
\(264\) −29.9317 −1.84217
\(265\) 0 0
\(266\) 17.6114 1.07982
\(267\) −12.2404 −0.749099
\(268\) 1.44158 0.0880587
\(269\) 29.5173 1.79970 0.899851 0.436197i \(-0.143675\pi\)
0.899851 + 0.436197i \(0.143675\pi\)
\(270\) 0 0
\(271\) 1.82944 0.111131 0.0555654 0.998455i \(-0.482304\pi\)
0.0555654 + 0.998455i \(0.482304\pi\)
\(272\) 50.4141 3.05680
\(273\) −3.21716 −0.194711
\(274\) 15.3130 0.925094
\(275\) 0 0
\(276\) 17.2635 1.03914
\(277\) 1.49518 0.0898364 0.0449182 0.998991i \(-0.485697\pi\)
0.0449182 + 0.998991i \(0.485697\pi\)
\(278\) −12.3742 −0.742153
\(279\) 0.621768 0.0372243
\(280\) 0 0
\(281\) 16.0659 0.958412 0.479206 0.877703i \(-0.340925\pi\)
0.479206 + 0.877703i \(0.340925\pi\)
\(282\) 13.6229 0.811230
\(283\) 17.1301 1.01828 0.509139 0.860684i \(-0.329964\pi\)
0.509139 + 0.860684i \(0.329964\pi\)
\(284\) −36.3015 −2.15410
\(285\) 0 0
\(286\) −46.3515 −2.74082
\(287\) 2.70751 0.159819
\(288\) 30.0018 1.76788
\(289\) 4.39290 0.258406
\(290\) 0 0
\(291\) −8.22840 −0.482357
\(292\) −46.6076 −2.72750
\(293\) −5.47224 −0.319691 −0.159846 0.987142i \(-0.551100\pi\)
−0.159846 + 0.987142i \(0.551100\pi\)
\(294\) 2.20434 0.128560
\(295\) 0 0
\(296\) −23.8758 −1.38776
\(297\) −20.1059 −1.16666
\(298\) −51.8527 −3.00375
\(299\) 16.0134 0.926077
\(300\) 0 0
\(301\) −0.570645 −0.0328914
\(302\) −43.8041 −2.52064
\(303\) −5.23502 −0.300744
\(304\) 72.6191 4.16499
\(305\) 0 0
\(306\) 28.1766 1.61075
\(307\) 0.329124 0.0187841 0.00939205 0.999956i \(-0.497010\pi\)
0.00939205 + 0.999956i \(0.497010\pi\)
\(308\) 22.6689 1.29168
\(309\) 2.18146 0.124099
\(310\) 0 0
\(311\) −2.26993 −0.128716 −0.0643579 0.997927i \(-0.520500\pi\)
−0.0643579 + 0.997927i \(0.520500\pi\)
\(312\) −25.4058 −1.43832
\(313\) −13.2388 −0.748301 −0.374150 0.927368i \(-0.622066\pi\)
−0.374150 + 0.927368i \(0.622066\pi\)
\(314\) −27.5561 −1.55508
\(315\) 0 0
\(316\) 21.8166 1.22728
\(317\) −1.18652 −0.0666417 −0.0333209 0.999445i \(-0.510608\pi\)
−0.0333209 + 0.999445i \(0.510608\pi\)
\(318\) 27.0225 1.51534
\(319\) 37.8481 2.11909
\(320\) 0 0
\(321\) −0.147372 −0.00822548
\(322\) −10.9721 −0.611451
\(323\) 30.8154 1.71462
\(324\) 16.0841 0.893563
\(325\) 0 0
\(326\) −10.6520 −0.589960
\(327\) −8.99366 −0.497350
\(328\) 21.3811 1.18057
\(329\) −6.18001 −0.340715
\(330\) 0 0
\(331\) −24.5431 −1.34901 −0.674504 0.738271i \(-0.735643\pi\)
−0.674504 + 0.738271i \(0.735643\pi\)
\(332\) −56.5136 −3.10159
\(333\) −6.96775 −0.381830
\(334\) 58.8627 3.22082
\(335\) 0 0
\(336\) 9.08944 0.495870
\(337\) −21.3287 −1.16185 −0.580925 0.813957i \(-0.697309\pi\)
−0.580925 + 0.813957i \(0.697309\pi\)
\(338\) −4.97881 −0.270812
\(339\) −6.77913 −0.368192
\(340\) 0 0
\(341\) 1.22627 0.0664063
\(342\) 40.5870 2.19469
\(343\) −1.00000 −0.0539949
\(344\) −4.50637 −0.242967
\(345\) 0 0
\(346\) −45.2979 −2.43523
\(347\) −9.25146 −0.496644 −0.248322 0.968678i \(-0.579879\pi\)
−0.248322 + 0.968678i \(0.579879\pi\)
\(348\) 34.6330 1.85653
\(349\) −28.6781 −1.53510 −0.767552 0.640987i \(-0.778525\pi\)
−0.767552 + 0.640987i \(0.778525\pi\)
\(350\) 0 0
\(351\) −17.0657 −0.910900
\(352\) 59.1706 3.15380
\(353\) 8.63065 0.459363 0.229682 0.973266i \(-0.426231\pi\)
0.229682 + 0.973266i \(0.426231\pi\)
\(354\) −0.923661 −0.0490920
\(355\) 0 0
\(356\) 73.2072 3.87997
\(357\) 3.85704 0.204136
\(358\) −40.5848 −2.14497
\(359\) −20.5429 −1.08421 −0.542106 0.840310i \(-0.682373\pi\)
−0.542106 + 0.840310i \(0.682373\pi\)
\(360\) 0 0
\(361\) 25.3881 1.33622
\(362\) 16.4141 0.862708
\(363\) −8.05452 −0.422753
\(364\) 19.2412 1.00851
\(365\) 0 0
\(366\) 25.4177 1.32860
\(367\) −2.41855 −0.126247 −0.0631236 0.998006i \(-0.520106\pi\)
−0.0631236 + 0.998006i \(0.520106\pi\)
\(368\) −45.2426 −2.35843
\(369\) 6.23970 0.324826
\(370\) 0 0
\(371\) −12.2587 −0.636442
\(372\) 1.12210 0.0581783
\(373\) −5.97422 −0.309333 −0.154667 0.987967i \(-0.549430\pi\)
−0.154667 + 0.987967i \(0.549430\pi\)
\(374\) 55.5707 2.87349
\(375\) 0 0
\(376\) −48.8034 −2.51684
\(377\) 32.1251 1.65453
\(378\) 11.6931 0.601430
\(379\) −31.8336 −1.63518 −0.817591 0.575799i \(-0.804691\pi\)
−0.817591 + 0.575799i \(0.804691\pi\)
\(380\) 0 0
\(381\) −15.9808 −0.818720
\(382\) −19.3514 −0.990103
\(383\) −21.3560 −1.09124 −0.545619 0.838033i \(-0.683705\pi\)
−0.545619 + 0.838033i \(0.683705\pi\)
\(384\) 6.09059 0.310809
\(385\) 0 0
\(386\) 62.4438 3.17831
\(387\) −1.31510 −0.0668505
\(388\) 49.2124 2.49838
\(389\) 30.6084 1.55191 0.775954 0.630789i \(-0.217269\pi\)
0.775954 + 0.630789i \(0.217269\pi\)
\(390\) 0 0
\(391\) −19.1984 −0.970905
\(392\) −7.89697 −0.398857
\(393\) 15.0409 0.758715
\(394\) −21.3895 −1.07759
\(395\) 0 0
\(396\) 52.2426 2.62529
\(397\) 15.0292 0.754294 0.377147 0.926153i \(-0.376905\pi\)
0.377147 + 0.926153i \(0.376905\pi\)
\(398\) 65.2238 3.26937
\(399\) 5.55588 0.278142
\(400\) 0 0
\(401\) 12.0828 0.603387 0.301693 0.953405i \(-0.402448\pi\)
0.301693 + 0.953405i \(0.402448\pi\)
\(402\) 0.637147 0.0317780
\(403\) 1.04085 0.0518483
\(404\) 31.3096 1.55771
\(405\) 0 0
\(406\) −22.0116 −1.09242
\(407\) −13.7420 −0.681166
\(408\) 30.4589 1.50794
\(409\) −10.8652 −0.537248 −0.268624 0.963245i \(-0.586569\pi\)
−0.268624 + 0.963245i \(0.586569\pi\)
\(410\) 0 0
\(411\) 4.83083 0.238287
\(412\) −13.0468 −0.642772
\(413\) 0.419019 0.0206186
\(414\) −25.2862 −1.24275
\(415\) 0 0
\(416\) 50.2234 2.46241
\(417\) −3.90370 −0.191165
\(418\) 80.0469 3.91522
\(419\) −9.71688 −0.474700 −0.237350 0.971424i \(-0.576279\pi\)
−0.237350 + 0.971424i \(0.576279\pi\)
\(420\) 0 0
\(421\) −6.31066 −0.307563 −0.153781 0.988105i \(-0.549145\pi\)
−0.153781 + 0.988105i \(0.549145\pi\)
\(422\) 13.4313 0.653826
\(423\) −14.2424 −0.692490
\(424\) −96.8069 −4.70136
\(425\) 0 0
\(426\) −16.0444 −0.777356
\(427\) −11.5307 −0.558011
\(428\) 0.881399 0.0426040
\(429\) −14.6226 −0.705985
\(430\) 0 0
\(431\) −4.92653 −0.237303 −0.118651 0.992936i \(-0.537857\pi\)
−0.118651 + 0.992936i \(0.537857\pi\)
\(432\) 48.2158 2.31978
\(433\) 37.1049 1.78315 0.891575 0.452874i \(-0.149601\pi\)
0.891575 + 0.452874i \(0.149601\pi\)
\(434\) −0.713171 −0.0342333
\(435\) 0 0
\(436\) 53.7892 2.57604
\(437\) −27.6544 −1.32289
\(438\) −20.5995 −0.984284
\(439\) −9.50092 −0.453454 −0.226727 0.973958i \(-0.572803\pi\)
−0.226727 + 0.973958i \(0.572803\pi\)
\(440\) 0 0
\(441\) −2.30459 −0.109742
\(442\) 47.1679 2.24355
\(443\) 13.2415 0.629123 0.314561 0.949237i \(-0.398143\pi\)
0.314561 + 0.949237i \(0.398143\pi\)
\(444\) −12.5747 −0.596768
\(445\) 0 0
\(446\) −3.31936 −0.157176
\(447\) −16.3581 −0.773710
\(448\) −12.6127 −0.595895
\(449\) −20.2167 −0.954085 −0.477043 0.878880i \(-0.658291\pi\)
−0.477043 + 0.878880i \(0.658291\pi\)
\(450\) 0 0
\(451\) 12.3061 0.579473
\(452\) 40.5446 1.90706
\(453\) −13.8189 −0.649271
\(454\) 16.9846 0.797127
\(455\) 0 0
\(456\) 43.8746 2.05462
\(457\) −23.1239 −1.08169 −0.540845 0.841122i \(-0.681895\pi\)
−0.540845 + 0.841122i \(0.681895\pi\)
\(458\) 2.24170 0.104748
\(459\) 20.4600 0.954993
\(460\) 0 0
\(461\) 7.94071 0.369836 0.184918 0.982754i \(-0.440798\pi\)
0.184918 + 0.982754i \(0.440798\pi\)
\(462\) 10.0192 0.466133
\(463\) 15.2021 0.706503 0.353252 0.935528i \(-0.385076\pi\)
0.353252 + 0.935528i \(0.385076\pi\)
\(464\) −90.7631 −4.21357
\(465\) 0 0
\(466\) 3.00874 0.139377
\(467\) 3.86560 0.178879 0.0894393 0.995992i \(-0.471493\pi\)
0.0894393 + 0.995992i \(0.471493\pi\)
\(468\) 44.3430 2.04976
\(469\) −0.289042 −0.0133467
\(470\) 0 0
\(471\) −8.69318 −0.400560
\(472\) 3.30898 0.152308
\(473\) −2.59369 −0.119258
\(474\) 9.64247 0.442893
\(475\) 0 0
\(476\) −23.0682 −1.05733
\(477\) −28.2514 −1.29354
\(478\) −17.8339 −0.815703
\(479\) −36.4902 −1.66728 −0.833641 0.552307i \(-0.813748\pi\)
−0.833641 + 0.552307i \(0.813748\pi\)
\(480\) 0 0
\(481\) −11.6641 −0.531837
\(482\) −18.1795 −0.828052
\(483\) −3.46139 −0.157499
\(484\) 48.1724 2.18966
\(485\) 0 0
\(486\) 42.1883 1.91370
\(487\) 28.0516 1.27114 0.635570 0.772044i \(-0.280765\pi\)
0.635570 + 0.772044i \(0.280765\pi\)
\(488\) −91.0578 −4.12199
\(489\) −3.36041 −0.151963
\(490\) 0 0
\(491\) 1.94688 0.0878616 0.0439308 0.999035i \(-0.486012\pi\)
0.0439308 + 0.999035i \(0.486012\pi\)
\(492\) 11.2608 0.507675
\(493\) −38.5147 −1.73462
\(494\) 67.9431 3.05691
\(495\) 0 0
\(496\) −2.94071 −0.132042
\(497\) 7.27856 0.326488
\(498\) −24.9778 −1.11928
\(499\) 9.04201 0.404776 0.202388 0.979305i \(-0.435130\pi\)
0.202388 + 0.979305i \(0.435130\pi\)
\(500\) 0 0
\(501\) 18.5695 0.829624
\(502\) −73.7632 −3.29221
\(503\) −8.34548 −0.372107 −0.186053 0.982540i \(-0.559570\pi\)
−0.186053 + 0.982540i \(0.559570\pi\)
\(504\) −18.1993 −0.810661
\(505\) 0 0
\(506\) −49.8702 −2.21700
\(507\) −1.57067 −0.0697561
\(508\) 95.5778 4.24058
\(509\) 29.1093 1.29025 0.645123 0.764079i \(-0.276806\pi\)
0.645123 + 0.764079i \(0.276806\pi\)
\(510\) 0 0
\(511\) 9.34497 0.413397
\(512\) 30.2539 1.33705
\(513\) 29.4717 1.30121
\(514\) −3.92055 −0.172928
\(515\) 0 0
\(516\) −2.37337 −0.104482
\(517\) −28.0893 −1.23537
\(518\) 7.99204 0.351150
\(519\) −14.2902 −0.627270
\(520\) 0 0
\(521\) 42.4571 1.86008 0.930039 0.367461i \(-0.119773\pi\)
0.930039 + 0.367461i \(0.119773\pi\)
\(522\) −50.7278 −2.22029
\(523\) −2.39751 −0.104836 −0.0524179 0.998625i \(-0.516693\pi\)
−0.0524179 + 0.998625i \(0.516693\pi\)
\(524\) −89.9568 −3.92978
\(525\) 0 0
\(526\) 1.03100 0.0449539
\(527\) −1.24787 −0.0543581
\(528\) 41.3132 1.79793
\(529\) −5.77098 −0.250912
\(530\) 0 0
\(531\) 0.965667 0.0419064
\(532\) −33.2286 −1.44064
\(533\) 10.4453 0.452438
\(534\) 32.3560 1.40018
\(535\) 0 0
\(536\) −2.28255 −0.0985913
\(537\) −12.8034 −0.552506
\(538\) −78.0254 −3.36392
\(539\) −4.54519 −0.195775
\(540\) 0 0
\(541\) −10.2880 −0.442314 −0.221157 0.975238i \(-0.570983\pi\)
−0.221157 + 0.975238i \(0.570983\pi\)
\(542\) −4.83591 −0.207720
\(543\) 5.17819 0.222218
\(544\) −60.2128 −2.58160
\(545\) 0 0
\(546\) 8.50417 0.363945
\(547\) 36.1810 1.54699 0.773494 0.633804i \(-0.218507\pi\)
0.773494 + 0.633804i \(0.218507\pi\)
\(548\) −28.8922 −1.23421
\(549\) −26.5736 −1.13414
\(550\) 0 0
\(551\) −55.4786 −2.36347
\(552\) −27.3345 −1.16343
\(553\) −4.37430 −0.186014
\(554\) −3.95232 −0.167918
\(555\) 0 0
\(556\) 23.3472 0.990142
\(557\) −37.5288 −1.59015 −0.795073 0.606514i \(-0.792568\pi\)
−0.795073 + 0.606514i \(0.792568\pi\)
\(558\) −1.64357 −0.0695778
\(559\) −2.20150 −0.0931135
\(560\) 0 0
\(561\) 17.5310 0.740159
\(562\) −42.4683 −1.79142
\(563\) 5.50239 0.231898 0.115949 0.993255i \(-0.463009\pi\)
0.115949 + 0.993255i \(0.463009\pi\)
\(564\) −25.7032 −1.08230
\(565\) 0 0
\(566\) −45.2814 −1.90332
\(567\) −3.22492 −0.135434
\(568\) 57.4785 2.41175
\(569\) 12.1804 0.510629 0.255314 0.966858i \(-0.417821\pi\)
0.255314 + 0.966858i \(0.417821\pi\)
\(570\) 0 0
\(571\) −10.3473 −0.433019 −0.216510 0.976281i \(-0.569467\pi\)
−0.216510 + 0.976281i \(0.569467\pi\)
\(572\) 87.4547 3.65666
\(573\) −6.10481 −0.255032
\(574\) −7.15697 −0.298726
\(575\) 0 0
\(576\) −29.0672 −1.21113
\(577\) 29.3627 1.22238 0.611192 0.791482i \(-0.290690\pi\)
0.611192 + 0.791482i \(0.290690\pi\)
\(578\) −11.6121 −0.482999
\(579\) 19.6992 0.818673
\(580\) 0 0
\(581\) 11.3312 0.470096
\(582\) 21.7508 0.901598
\(583\) −55.7183 −2.30762
\(584\) 73.7969 3.05374
\(585\) 0 0
\(586\) 14.4652 0.597552
\(587\) −18.1347 −0.748498 −0.374249 0.927328i \(-0.622099\pi\)
−0.374249 + 0.927328i \(0.622099\pi\)
\(588\) −4.15909 −0.171518
\(589\) −1.79750 −0.0740645
\(590\) 0 0
\(591\) −6.74779 −0.277567
\(592\) 32.9546 1.35442
\(593\) −23.7551 −0.975505 −0.487752 0.872982i \(-0.662183\pi\)
−0.487752 + 0.872982i \(0.662183\pi\)
\(594\) 53.1475 2.18067
\(595\) 0 0
\(596\) 97.8343 4.00745
\(597\) 20.5763 0.842131
\(598\) −42.3294 −1.73098
\(599\) 9.08142 0.371057 0.185528 0.982639i \(-0.440600\pi\)
0.185528 + 0.982639i \(0.440600\pi\)
\(600\) 0 0
\(601\) 27.1808 1.10873 0.554364 0.832274i \(-0.312962\pi\)
0.554364 + 0.832274i \(0.312962\pi\)
\(602\) 1.50843 0.0614791
\(603\) −0.666124 −0.0271267
\(604\) 82.6483 3.36291
\(605\) 0 0
\(606\) 13.8381 0.562136
\(607\) 8.67473 0.352096 0.176048 0.984382i \(-0.443669\pi\)
0.176048 + 0.984382i \(0.443669\pi\)
\(608\) −86.7336 −3.51751
\(609\) −6.94404 −0.281387
\(610\) 0 0
\(611\) −23.8420 −0.964543
\(612\) −53.1628 −2.14898
\(613\) 10.2136 0.412522 0.206261 0.978497i \(-0.433870\pi\)
0.206261 + 0.978497i \(0.433870\pi\)
\(614\) −0.869999 −0.0351103
\(615\) 0 0
\(616\) −35.8932 −1.44618
\(617\) 8.10309 0.326218 0.163109 0.986608i \(-0.447848\pi\)
0.163109 + 0.986608i \(0.447848\pi\)
\(618\) −5.76642 −0.231959
\(619\) 9.49309 0.381559 0.190780 0.981633i \(-0.438898\pi\)
0.190780 + 0.981633i \(0.438898\pi\)
\(620\) 0 0
\(621\) −18.3612 −0.736811
\(622\) 6.00028 0.240589
\(623\) −14.6783 −0.588073
\(624\) 35.0663 1.40377
\(625\) 0 0
\(626\) 34.9951 1.39869
\(627\) 25.2525 1.00849
\(628\) 51.9921 2.07471
\(629\) 13.9841 0.557581
\(630\) 0 0
\(631\) −19.0891 −0.759925 −0.379962 0.925002i \(-0.624063\pi\)
−0.379962 + 0.925002i \(0.624063\pi\)
\(632\) −34.5437 −1.37408
\(633\) 4.23720 0.168414
\(634\) 3.13643 0.124563
\(635\) 0 0
\(636\) −50.9852 −2.02170
\(637\) −3.85791 −0.152856
\(638\) −100.047 −3.96089
\(639\) 16.7741 0.663574
\(640\) 0 0
\(641\) −0.0611719 −0.00241614 −0.00120807 0.999999i \(-0.500385\pi\)
−0.00120807 + 0.999999i \(0.500385\pi\)
\(642\) 0.389559 0.0153747
\(643\) −8.28259 −0.326634 −0.163317 0.986574i \(-0.552219\pi\)
−0.163317 + 0.986574i \(0.552219\pi\)
\(644\) 20.7018 0.815767
\(645\) 0 0
\(646\) −81.4569 −3.20488
\(647\) 43.9925 1.72952 0.864762 0.502182i \(-0.167469\pi\)
0.864762 + 0.502182i \(0.167469\pi\)
\(648\) −25.4671 −1.00044
\(649\) 1.90452 0.0747589
\(650\) 0 0
\(651\) −0.224985 −0.00881787
\(652\) 20.0979 0.787095
\(653\) 18.6070 0.728147 0.364073 0.931370i \(-0.381386\pi\)
0.364073 + 0.931370i \(0.381386\pi\)
\(654\) 23.7736 0.929623
\(655\) 0 0
\(656\) −29.5112 −1.15222
\(657\) 21.5364 0.840213
\(658\) 16.3361 0.636848
\(659\) −42.8021 −1.66733 −0.833667 0.552268i \(-0.813763\pi\)
−0.833667 + 0.552268i \(0.813763\pi\)
\(660\) 0 0
\(661\) 17.0003 0.661234 0.330617 0.943765i \(-0.392743\pi\)
0.330617 + 0.943765i \(0.392743\pi\)
\(662\) 64.8766 2.52150
\(663\) 14.8801 0.577897
\(664\) 89.4818 3.47257
\(665\) 0 0
\(666\) 18.4184 0.713698
\(667\) 34.5639 1.33832
\(668\) −111.060 −4.29706
\(669\) −1.04716 −0.0404857
\(670\) 0 0
\(671\) −52.4093 −2.02324
\(672\) −10.8561 −0.418783
\(673\) −5.43715 −0.209587 −0.104793 0.994494i \(-0.533418\pi\)
−0.104793 + 0.994494i \(0.533418\pi\)
\(674\) 56.3799 2.17167
\(675\) 0 0
\(676\) 9.39388 0.361303
\(677\) 5.00554 0.192378 0.0961892 0.995363i \(-0.469335\pi\)
0.0961892 + 0.995363i \(0.469335\pi\)
\(678\) 17.9198 0.688206
\(679\) −9.86723 −0.378670
\(680\) 0 0
\(681\) 5.35816 0.205325
\(682\) −3.24150 −0.124123
\(683\) 39.6432 1.51691 0.758453 0.651728i \(-0.225956\pi\)
0.758453 + 0.651728i \(0.225956\pi\)
\(684\) −76.5784 −2.92805
\(685\) 0 0
\(686\) 2.64338 0.100925
\(687\) 0.707194 0.0269811
\(688\) 6.21990 0.237131
\(689\) −47.2932 −1.80173
\(690\) 0 0
\(691\) 19.5149 0.742383 0.371191 0.928556i \(-0.378949\pi\)
0.371191 + 0.928556i \(0.378949\pi\)
\(692\) 85.4667 3.24896
\(693\) −10.4748 −0.397905
\(694\) 24.4551 0.928303
\(695\) 0 0
\(696\) −54.8368 −2.07858
\(697\) −12.5229 −0.474338
\(698\) 75.8071 2.86934
\(699\) 0.949173 0.0359010
\(700\) 0 0
\(701\) 21.8539 0.825412 0.412706 0.910864i \(-0.364584\pi\)
0.412706 + 0.910864i \(0.364584\pi\)
\(702\) 45.1111 1.70261
\(703\) 20.1434 0.759721
\(704\) −57.3272 −2.16060
\(705\) 0 0
\(706\) −22.8141 −0.858620
\(707\) −6.27767 −0.236096
\(708\) 1.74274 0.0654961
\(709\) 40.7664 1.53101 0.765507 0.643427i \(-0.222488\pi\)
0.765507 + 0.643427i \(0.222488\pi\)
\(710\) 0 0
\(711\) −10.0810 −0.378067
\(712\) −115.914 −4.34406
\(713\) 1.11986 0.0419392
\(714\) −10.1956 −0.381562
\(715\) 0 0
\(716\) 76.5743 2.86172
\(717\) −5.62609 −0.210110
\(718\) 54.3026 2.02656
\(719\) 20.4371 0.762176 0.381088 0.924539i \(-0.375549\pi\)
0.381088 + 0.924539i \(0.375549\pi\)
\(720\) 0 0
\(721\) 2.61593 0.0974225
\(722\) −67.1105 −2.49759
\(723\) −5.73511 −0.213291
\(724\) −30.9697 −1.15098
\(725\) 0 0
\(726\) 21.2911 0.790189
\(727\) −32.0766 −1.18966 −0.594828 0.803853i \(-0.702780\pi\)
−0.594828 + 0.803853i \(0.702780\pi\)
\(728\) −30.4658 −1.12914
\(729\) 3.63443 0.134609
\(730\) 0 0
\(731\) 2.63937 0.0976208
\(732\) −47.9574 −1.77256
\(733\) −44.5082 −1.64395 −0.821974 0.569525i \(-0.807127\pi\)
−0.821974 + 0.569525i \(0.807127\pi\)
\(734\) 6.39314 0.235975
\(735\) 0 0
\(736\) 54.0361 1.99180
\(737\) −1.31375 −0.0483926
\(738\) −16.4939 −0.607149
\(739\) 0.0772344 0.00284111 0.00142056 0.999999i \(-0.499548\pi\)
0.00142056 + 0.999999i \(0.499548\pi\)
\(740\) 0 0
\(741\) 21.4341 0.787402
\(742\) 32.4045 1.18961
\(743\) 14.8925 0.546353 0.273177 0.961964i \(-0.411926\pi\)
0.273177 + 0.961964i \(0.411926\pi\)
\(744\) −1.77670 −0.0651370
\(745\) 0 0
\(746\) 15.7921 0.578191
\(747\) 26.1137 0.955451
\(748\) −104.849 −3.83367
\(749\) −0.176723 −0.00645733
\(750\) 0 0
\(751\) 16.8102 0.613414 0.306707 0.951804i \(-0.400773\pi\)
0.306707 + 0.951804i \(0.400773\pi\)
\(752\) 67.3607 2.45639
\(753\) −23.2702 −0.848014
\(754\) −84.9189 −3.09256
\(755\) 0 0
\(756\) −22.0623 −0.802398
\(757\) 12.0534 0.438090 0.219045 0.975715i \(-0.429706\pi\)
0.219045 + 0.975715i \(0.429706\pi\)
\(758\) 84.1483 3.05640
\(759\) −15.7327 −0.571059
\(760\) 0 0
\(761\) 13.6602 0.495182 0.247591 0.968865i \(-0.420361\pi\)
0.247591 + 0.968865i \(0.420361\pi\)
\(762\) 42.2433 1.53031
\(763\) −10.7849 −0.390440
\(764\) 36.5116 1.32094
\(765\) 0 0
\(766\) 56.4519 2.03969
\(767\) 1.61654 0.0583698
\(768\) 4.93606 0.178115
\(769\) −37.1200 −1.33858 −0.669290 0.743001i \(-0.733402\pi\)
−0.669290 + 0.743001i \(0.733402\pi\)
\(770\) 0 0
\(771\) −1.23682 −0.0445431
\(772\) −117.817 −4.24033
\(773\) 29.4332 1.05864 0.529318 0.848423i \(-0.322448\pi\)
0.529318 + 0.848423i \(0.322448\pi\)
\(774\) 3.47632 0.124954
\(775\) 0 0
\(776\) −77.9212 −2.79721
\(777\) 2.52126 0.0904498
\(778\) −80.9096 −2.90075
\(779\) −18.0386 −0.646300
\(780\) 0 0
\(781\) 33.0824 1.18378
\(782\) 50.7487 1.81477
\(783\) −36.8353 −1.31639
\(784\) 10.8998 0.389278
\(785\) 0 0
\(786\) −39.7589 −1.41815
\(787\) −37.0603 −1.32106 −0.660529 0.750801i \(-0.729668\pi\)
−0.660529 + 0.750801i \(0.729668\pi\)
\(788\) 40.3572 1.43766
\(789\) 0.325253 0.0115793
\(790\) 0 0
\(791\) −8.12932 −0.289045
\(792\) −82.7192 −2.93930
\(793\) −44.4846 −1.57969
\(794\) −39.7279 −1.40989
\(795\) 0 0
\(796\) −123.062 −4.36183
\(797\) −4.72508 −0.167371 −0.0836855 0.996492i \(-0.526669\pi\)
−0.0836855 + 0.996492i \(0.526669\pi\)
\(798\) −14.6863 −0.519890
\(799\) 28.5841 1.01123
\(800\) 0 0
\(801\) −33.8274 −1.19523
\(802\) −31.9394 −1.12782
\(803\) 42.4747 1.49890
\(804\) −1.20215 −0.0423966
\(805\) 0 0
\(806\) −2.75135 −0.0969123
\(807\) −24.6148 −0.866483
\(808\) −49.5745 −1.74403
\(809\) −27.4587 −0.965397 −0.482699 0.875786i \(-0.660343\pi\)
−0.482699 + 0.875786i \(0.660343\pi\)
\(810\) 0 0
\(811\) −22.2780 −0.782286 −0.391143 0.920330i \(-0.627920\pi\)
−0.391143 + 0.920330i \(0.627920\pi\)
\(812\) 41.5309 1.45745
\(813\) −1.52559 −0.0535049
\(814\) 36.3253 1.27320
\(815\) 0 0
\(816\) −42.0409 −1.47173
\(817\) 3.80189 0.133011
\(818\) 28.7208 1.00420
\(819\) −8.89092 −0.310674
\(820\) 0 0
\(821\) 20.7446 0.723991 0.361996 0.932180i \(-0.382096\pi\)
0.361996 + 0.932180i \(0.382096\pi\)
\(822\) −12.7697 −0.445395
\(823\) 35.7195 1.24510 0.622552 0.782578i \(-0.286096\pi\)
0.622552 + 0.782578i \(0.286096\pi\)
\(824\) 20.6579 0.719654
\(825\) 0 0
\(826\) −1.10762 −0.0385392
\(827\) −25.4541 −0.885126 −0.442563 0.896737i \(-0.645931\pi\)
−0.442563 + 0.896737i \(0.645931\pi\)
\(828\) 47.7093 1.65801
\(829\) −13.4046 −0.465561 −0.232780 0.972529i \(-0.574782\pi\)
−0.232780 + 0.972529i \(0.574782\pi\)
\(830\) 0 0
\(831\) −1.24684 −0.0432525
\(832\) −48.6588 −1.68694
\(833\) 4.62525 0.160255
\(834\) 10.3189 0.357316
\(835\) 0 0
\(836\) −151.030 −5.22349
\(837\) −1.19346 −0.0412519
\(838\) 25.6854 0.887287
\(839\) −10.6811 −0.368754 −0.184377 0.982856i \(-0.559027\pi\)
−0.184377 + 0.982856i \(0.559027\pi\)
\(840\) 0 0
\(841\) 40.3401 1.39104
\(842\) 16.6815 0.574881
\(843\) −13.3975 −0.461436
\(844\) −25.3418 −0.872301
\(845\) 0 0
\(846\) 37.6481 1.29437
\(847\) −9.65873 −0.331878
\(848\) 133.617 4.58844
\(849\) −14.2850 −0.490259
\(850\) 0 0
\(851\) −12.5496 −0.430194
\(852\) 30.2722 1.03711
\(853\) −44.8085 −1.53422 −0.767108 0.641518i \(-0.778305\pi\)
−0.767108 + 0.641518i \(0.778305\pi\)
\(854\) 30.4801 1.04301
\(855\) 0 0
\(856\) −1.39558 −0.0476999
\(857\) 36.9801 1.26322 0.631608 0.775288i \(-0.282395\pi\)
0.631608 + 0.775288i \(0.282395\pi\)
\(858\) 38.6530 1.31959
\(859\) −46.8718 −1.59924 −0.799622 0.600504i \(-0.794967\pi\)
−0.799622 + 0.600504i \(0.794967\pi\)
\(860\) 0 0
\(861\) −2.25782 −0.0769463
\(862\) 13.0227 0.443554
\(863\) 15.3188 0.521459 0.260730 0.965412i \(-0.416037\pi\)
0.260730 + 0.965412i \(0.416037\pi\)
\(864\) −57.5872 −1.95916
\(865\) 0 0
\(866\) −98.0824 −3.33298
\(867\) −3.66329 −0.124412
\(868\) 1.34559 0.0456723
\(869\) −19.8820 −0.674452
\(870\) 0 0
\(871\) −1.11510 −0.0377837
\(872\) −85.1681 −2.88415
\(873\) −22.7400 −0.769631
\(874\) 73.1010 2.47268
\(875\) 0 0
\(876\) 38.8666 1.31318
\(877\) 43.4733 1.46799 0.733994 0.679156i \(-0.237654\pi\)
0.733994 + 0.679156i \(0.237654\pi\)
\(878\) 25.1145 0.847575
\(879\) 4.56336 0.153918
\(880\) 0 0
\(881\) −44.7337 −1.50712 −0.753558 0.657381i \(-0.771664\pi\)
−0.753558 + 0.657381i \(0.771664\pi\)
\(882\) 6.09191 0.205125
\(883\) −32.1748 −1.08277 −0.541384 0.840776i \(-0.682099\pi\)
−0.541384 + 0.840776i \(0.682099\pi\)
\(884\) −88.9951 −2.99323
\(885\) 0 0
\(886\) −35.0023 −1.17593
\(887\) 32.3009 1.08456 0.542279 0.840199i \(-0.317562\pi\)
0.542279 + 0.840199i \(0.317562\pi\)
\(888\) 19.9103 0.668147
\(889\) −19.1636 −0.642728
\(890\) 0 0
\(891\) −14.6579 −0.491057
\(892\) 6.26287 0.209696
\(893\) 41.1740 1.37783
\(894\) 43.2406 1.44618
\(895\) 0 0
\(896\) 7.30364 0.243998
\(897\) −13.3537 −0.445868
\(898\) 53.4404 1.78333
\(899\) 2.24660 0.0749284
\(900\) 0 0
\(901\) 56.6997 1.88894
\(902\) −32.5298 −1.08312
\(903\) 0.475867 0.0158359
\(904\) −64.1969 −2.13516
\(905\) 0 0
\(906\) 36.5287 1.21358
\(907\) 32.6364 1.08367 0.541836 0.840484i \(-0.317729\pi\)
0.541836 + 0.840484i \(0.317729\pi\)
\(908\) −32.0461 −1.06349
\(909\) −14.4675 −0.479855
\(910\) 0 0
\(911\) 14.5262 0.481276 0.240638 0.970615i \(-0.422643\pi\)
0.240638 + 0.970615i \(0.422643\pi\)
\(912\) −60.5579 −2.00527
\(913\) 51.5023 1.70448
\(914\) 61.1252 2.02184
\(915\) 0 0
\(916\) −4.22958 −0.139749
\(917\) 18.0366 0.595622
\(918\) −54.0836 −1.78503
\(919\) −28.2136 −0.930681 −0.465341 0.885132i \(-0.654068\pi\)
−0.465341 + 0.885132i \(0.654068\pi\)
\(920\) 0 0
\(921\) −0.274460 −0.00904377
\(922\) −20.9903 −0.691279
\(923\) 28.0801 0.924266
\(924\) −18.9038 −0.621891
\(925\) 0 0
\(926\) −40.1850 −1.32056
\(927\) 6.02866 0.198007
\(928\) 108.404 3.55854
\(929\) −2.45383 −0.0805075 −0.0402537 0.999189i \(-0.512817\pi\)
−0.0402537 + 0.999189i \(0.512817\pi\)
\(930\) 0 0
\(931\) 6.66244 0.218353
\(932\) −5.67681 −0.185950
\(933\) 1.89292 0.0619713
\(934\) −10.2182 −0.334351
\(935\) 0 0
\(936\) −70.2113 −2.29493
\(937\) 36.6194 1.19630 0.598151 0.801383i \(-0.295902\pi\)
0.598151 + 0.801383i \(0.295902\pi\)
\(938\) 0.764047 0.0249470
\(939\) 11.0400 0.360276
\(940\) 0 0
\(941\) 14.7576 0.481085 0.240543 0.970639i \(-0.422675\pi\)
0.240543 + 0.970639i \(0.422675\pi\)
\(942\) 22.9794 0.748708
\(943\) 11.2383 0.365969
\(944\) −4.56721 −0.148650
\(945\) 0 0
\(946\) 6.85610 0.222911
\(947\) 54.3926 1.76752 0.883761 0.467939i \(-0.155003\pi\)
0.883761 + 0.467939i \(0.155003\pi\)
\(948\) −18.1931 −0.590886
\(949\) 36.0521 1.17030
\(950\) 0 0
\(951\) 0.989454 0.0320852
\(952\) 36.5254 1.18380
\(953\) 42.6983 1.38313 0.691566 0.722313i \(-0.256921\pi\)
0.691566 + 0.722313i \(0.256921\pi\)
\(954\) 74.6792 2.41783
\(955\) 0 0
\(956\) 33.6485 1.08827
\(957\) −31.5619 −1.02025
\(958\) 96.4575 3.11640
\(959\) 5.79298 0.187065
\(960\) 0 0
\(961\) −30.9272 −0.997652
\(962\) 30.8326 0.994083
\(963\) −0.407275 −0.0131243
\(964\) 34.3005 1.10475
\(965\) 0 0
\(966\) 9.14976 0.294389
\(967\) 44.4649 1.42989 0.714947 0.699179i \(-0.246451\pi\)
0.714947 + 0.699179i \(0.246451\pi\)
\(968\) −76.2746 −2.45156
\(969\) −25.6973 −0.825517
\(970\) 0 0
\(971\) 26.5710 0.852704 0.426352 0.904557i \(-0.359799\pi\)
0.426352 + 0.904557i \(0.359799\pi\)
\(972\) −79.5996 −2.55316
\(973\) −4.68119 −0.150072
\(974\) −74.1510 −2.37595
\(975\) 0 0
\(976\) 125.682 4.02299
\(977\) 33.1445 1.06038 0.530192 0.847877i \(-0.322120\pi\)
0.530192 + 0.847877i \(0.322120\pi\)
\(978\) 8.88283 0.284042
\(979\) −66.7155 −2.13224
\(980\) 0 0
\(981\) −24.8548 −0.793553
\(982\) −5.14635 −0.164227
\(983\) −15.1403 −0.482900 −0.241450 0.970413i \(-0.577623\pi\)
−0.241450 + 0.970413i \(0.577623\pi\)
\(984\) −17.8299 −0.568397
\(985\) 0 0
\(986\) 101.809 3.24226
\(987\) 5.15358 0.164040
\(988\) −128.193 −4.07837
\(989\) −2.36863 −0.0753179
\(990\) 0 0
\(991\) 3.95460 0.125622 0.0628109 0.998025i \(-0.479993\pi\)
0.0628109 + 0.998025i \(0.479993\pi\)
\(992\) 3.51227 0.111515
\(993\) 20.4667 0.649492
\(994\) −19.2400 −0.610255
\(995\) 0 0
\(996\) 47.1274 1.49329
\(997\) −1.11672 −0.0353668 −0.0176834 0.999844i \(-0.505629\pi\)
−0.0176834 + 0.999844i \(0.505629\pi\)
\(998\) −23.9015 −0.756587
\(999\) 13.3743 0.423143
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.a.j.1.1 yes 8
3.2 odd 2 7875.2.a.w.1.8 8
5.2 odd 4 875.2.b.e.624.3 16
5.3 odd 4 875.2.b.e.624.14 16
5.4 even 2 875.2.a.i.1.8 8
7.6 odd 2 6125.2.a.w.1.1 8
15.14 odd 2 7875.2.a.bb.1.1 8
35.34 odd 2 6125.2.a.v.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.i.1.8 8 5.4 even 2
875.2.a.j.1.1 yes 8 1.1 even 1 trivial
875.2.b.e.624.3 16 5.2 odd 4
875.2.b.e.624.14 16 5.3 odd 4
6125.2.a.v.1.8 8 35.34 odd 2
6125.2.a.w.1.1 8 7.6 odd 2
7875.2.a.w.1.8 8 3.2 odd 2
7875.2.a.bb.1.1 8 15.14 odd 2