Properties

Label 875.2.b.e.624.14
Level $875$
Weight $2$
Character 875.624
Analytic conductor $6.987$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(624,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.624");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 29x^{14} + 338x^{12} + 2040x^{10} + 6871x^{8} + 13035x^{6} + 13327x^{4} + 6338x^{2} + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 624.14
Root \(1.26874i\) of defining polynomial
Character \(\chi\) \(=\) 875.624
Dual form 875.2.b.e.624.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64338i q^{2} -0.833911i q^{3} -4.98745 q^{4} +2.20434 q^{6} +1.00000i q^{7} -7.89697i q^{8} +2.30459 q^{9} -4.54519 q^{11} +4.15909i q^{12} -3.85791i q^{13} -2.64338 q^{14} +10.8998 q^{16} -4.62525i q^{17} +6.09191i q^{18} -6.66244 q^{19} +0.833911 q^{21} -12.0147i q^{22} -4.15079i q^{23} -6.58537 q^{24} +10.1979 q^{26} -4.42356i q^{27} -4.98745i q^{28} +8.32707 q^{29} -0.269795 q^{31} +13.0183i q^{32} +3.79028i q^{33} +12.2263 q^{34} -11.4940 q^{36} -3.02342i q^{37} -17.6114i q^{38} -3.21716 q^{39} -2.70751 q^{41} +2.20434i q^{42} +0.570645i q^{43} +22.6689 q^{44} +10.9721 q^{46} -6.18001i q^{47} -9.08944i q^{48} -1.00000 q^{49} -3.85704 q^{51} +19.2412i q^{52} +12.2587i q^{53} +11.6931 q^{54} +7.89697 q^{56} +5.55588i q^{57} +22.0116i q^{58} +0.419019 q^{59} +11.5307 q^{61} -0.713171i q^{62} +2.30459i q^{63} -12.6127 q^{64} -10.0192 q^{66} -0.289042i q^{67} +23.0682i q^{68} -3.46139 q^{69} -7.27856 q^{71} -18.1993i q^{72} -9.34497i q^{73} +7.99204 q^{74} +33.2286 q^{76} -4.54519i q^{77} -8.50417i q^{78} -4.37430 q^{79} +3.22492 q^{81} -7.15697i q^{82} -11.3312i q^{83} -4.15909 q^{84} -1.50843 q^{86} -6.94404i q^{87} +35.8932i q^{88} -14.6783 q^{89} +3.85791 q^{91} +20.7018i q^{92} +0.224985i q^{93} +16.3361 q^{94} +10.8561 q^{96} -9.86723i q^{97} -2.64338i q^{98} -10.4748 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 26 q^{4} + 4 q^{6} - 36 q^{9} - 10 q^{11} + 2 q^{14} + 70 q^{16} - 26 q^{19} + 16 q^{21} + 6 q^{24} - 10 q^{26} - 44 q^{29} + 6 q^{31} - 38 q^{34} + 54 q^{36} - 14 q^{39} + 24 q^{41} + 82 q^{44}+ \cdots + 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.64338i 1.86915i 0.355765 + 0.934576i \(0.384220\pi\)
−0.355765 + 0.934576i \(0.615780\pi\)
\(3\) − 0.833911i − 0.481459i −0.970592 0.240729i \(-0.922613\pi\)
0.970592 0.240729i \(-0.0773866\pi\)
\(4\) −4.98745 −2.49373
\(5\) 0 0
\(6\) 2.20434 0.899919
\(7\) 1.00000i 0.377964i
\(8\) − 7.89697i − 2.79200i
\(9\) 2.30459 0.768197
\(10\) 0 0
\(11\) −4.54519 −1.37043 −0.685213 0.728343i \(-0.740291\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(12\) 4.15909i 1.20063i
\(13\) − 3.85791i − 1.06999i −0.844854 0.534996i \(-0.820313\pi\)
0.844854 0.534996i \(-0.179687\pi\)
\(14\) −2.64338 −0.706473
\(15\) 0 0
\(16\) 10.8998 2.72494
\(17\) − 4.62525i − 1.12179i −0.827888 0.560893i \(-0.810458\pi\)
0.827888 0.560893i \(-0.189542\pi\)
\(18\) 6.09191i 1.43588i
\(19\) −6.66244 −1.52847 −0.764235 0.644938i \(-0.776883\pi\)
−0.764235 + 0.644938i \(0.776883\pi\)
\(20\) 0 0
\(21\) 0.833911 0.181974
\(22\) − 12.0147i − 2.56153i
\(23\) − 4.15079i − 0.865499i −0.901514 0.432749i \(-0.857544\pi\)
0.901514 0.432749i \(-0.142456\pi\)
\(24\) −6.58537 −1.34423
\(25\) 0 0
\(26\) 10.1979 1.99998
\(27\) − 4.42356i − 0.851314i
\(28\) − 4.98745i − 0.942540i
\(29\) 8.32707 1.54630 0.773149 0.634224i \(-0.218680\pi\)
0.773149 + 0.634224i \(0.218680\pi\)
\(30\) 0 0
\(31\) −0.269795 −0.0484567 −0.0242283 0.999706i \(-0.507713\pi\)
−0.0242283 + 0.999706i \(0.507713\pi\)
\(32\) 13.0183i 2.30133i
\(33\) 3.79028i 0.659803i
\(34\) 12.2263 2.09679
\(35\) 0 0
\(36\) −11.4940 −1.91567
\(37\) − 3.02342i − 0.497047i −0.968626 0.248524i \(-0.920055\pi\)
0.968626 0.248524i \(-0.0799453\pi\)
\(38\) − 17.6114i − 2.85694i
\(39\) −3.21716 −0.515158
\(40\) 0 0
\(41\) −2.70751 −0.422842 −0.211421 0.977395i \(-0.567809\pi\)
−0.211421 + 0.977395i \(0.567809\pi\)
\(42\) 2.20434i 0.340138i
\(43\) 0.570645i 0.0870226i 0.999053 + 0.0435113i \(0.0138544\pi\)
−0.999053 + 0.0435113i \(0.986146\pi\)
\(44\) 22.6689 3.41747
\(45\) 0 0
\(46\) 10.9721 1.61775
\(47\) − 6.18001i − 0.901448i −0.892663 0.450724i \(-0.851166\pi\)
0.892663 0.450724i \(-0.148834\pi\)
\(48\) − 9.08944i − 1.31195i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −3.85704 −0.540094
\(52\) 19.2412i 2.66827i
\(53\) 12.2587i 1.68387i 0.539581 + 0.841934i \(0.318583\pi\)
−0.539581 + 0.841934i \(0.681417\pi\)
\(54\) 11.6931 1.59123
\(55\) 0 0
\(56\) 7.89697 1.05528
\(57\) 5.55588i 0.735895i
\(58\) 22.0116i 2.89026i
\(59\) 0.419019 0.0545516 0.0272758 0.999628i \(-0.491317\pi\)
0.0272758 + 0.999628i \(0.491317\pi\)
\(60\) 0 0
\(61\) 11.5307 1.47636 0.738180 0.674604i \(-0.235686\pi\)
0.738180 + 0.674604i \(0.235686\pi\)
\(62\) − 0.713171i − 0.0905728i
\(63\) 2.30459i 0.290351i
\(64\) −12.6127 −1.57659
\(65\) 0 0
\(66\) −10.0192 −1.23327
\(67\) − 0.289042i − 0.0353121i −0.999844 0.0176560i \(-0.994380\pi\)
0.999844 0.0176560i \(-0.00562039\pi\)
\(68\) 23.0682i 2.79743i
\(69\) −3.46139 −0.416702
\(70\) 0 0
\(71\) −7.27856 −0.863806 −0.431903 0.901920i \(-0.642158\pi\)
−0.431903 + 0.901920i \(0.642158\pi\)
\(72\) − 18.1993i − 2.14481i
\(73\) − 9.34497i − 1.09375i −0.837215 0.546873i \(-0.815818\pi\)
0.837215 0.546873i \(-0.184182\pi\)
\(74\) 7.99204 0.929056
\(75\) 0 0
\(76\) 33.2286 3.81158
\(77\) − 4.54519i − 0.517972i
\(78\) − 8.50417i − 0.962907i
\(79\) −4.37430 −0.492148 −0.246074 0.969251i \(-0.579141\pi\)
−0.246074 + 0.969251i \(0.579141\pi\)
\(80\) 0 0
\(81\) 3.22492 0.358325
\(82\) − 7.15697i − 0.790355i
\(83\) − 11.3312i − 1.24376i −0.783114 0.621879i \(-0.786370\pi\)
0.783114 0.621879i \(-0.213630\pi\)
\(84\) −4.15909 −0.453794
\(85\) 0 0
\(86\) −1.50843 −0.162658
\(87\) − 6.94404i − 0.744479i
\(88\) 35.8932i 3.82623i
\(89\) −14.6783 −1.55589 −0.777947 0.628330i \(-0.783739\pi\)
−0.777947 + 0.628330i \(0.783739\pi\)
\(90\) 0 0
\(91\) 3.85791 0.404419
\(92\) 20.7018i 2.15832i
\(93\) 0.224985i 0.0233299i
\(94\) 16.3361 1.68494
\(95\) 0 0
\(96\) 10.8561 1.10800
\(97\) − 9.86723i − 1.00187i −0.865486 0.500933i \(-0.832990\pi\)
0.865486 0.500933i \(-0.167010\pi\)
\(98\) − 2.64338i − 0.267022i
\(99\) −10.4748 −1.05276
\(100\) 0 0
\(101\) 6.27767 0.624651 0.312326 0.949975i \(-0.398892\pi\)
0.312326 + 0.949975i \(0.398892\pi\)
\(102\) − 10.1956i − 1.00952i
\(103\) − 2.61593i − 0.257756i −0.991660 0.128878i \(-0.958862\pi\)
0.991660 0.128878i \(-0.0411375\pi\)
\(104\) −30.4658 −2.98742
\(105\) 0 0
\(106\) −32.4045 −3.14740
\(107\) − 0.176723i − 0.0170845i −0.999964 0.00854225i \(-0.997281\pi\)
0.999964 0.00854225i \(-0.00271911\pi\)
\(108\) 22.0623i 2.12294i
\(109\) −10.7849 −1.03301 −0.516503 0.856285i \(-0.672767\pi\)
−0.516503 + 0.856285i \(0.672767\pi\)
\(110\) 0 0
\(111\) −2.52126 −0.239308
\(112\) 10.8998i 1.02993i
\(113\) 8.12932i 0.764742i 0.924009 + 0.382371i \(0.124892\pi\)
−0.924009 + 0.382371i \(0.875108\pi\)
\(114\) −14.6863 −1.37550
\(115\) 0 0
\(116\) −41.5309 −3.85604
\(117\) − 8.89092i − 0.821966i
\(118\) 1.10762i 0.101965i
\(119\) 4.62525 0.423996
\(120\) 0 0
\(121\) 9.65873 0.878066
\(122\) 30.4801i 2.75954i
\(123\) 2.25782i 0.203581i
\(124\) 1.34559 0.120838
\(125\) 0 0
\(126\) −6.09191 −0.542710
\(127\) − 19.1636i − 1.70050i −0.526380 0.850249i \(-0.676451\pi\)
0.526380 0.850249i \(-0.323549\pi\)
\(128\) − 7.30364i − 0.645557i
\(129\) 0.475867 0.0418978
\(130\) 0 0
\(131\) −18.0366 −1.57587 −0.787934 0.615760i \(-0.788849\pi\)
−0.787934 + 0.615760i \(0.788849\pi\)
\(132\) − 18.9038i − 1.64537i
\(133\) − 6.66244i − 0.577707i
\(134\) 0.764047 0.0660036
\(135\) 0 0
\(136\) −36.5254 −3.13203
\(137\) 5.79298i 0.494927i 0.968897 + 0.247464i \(0.0795971\pi\)
−0.968897 + 0.247464i \(0.920403\pi\)
\(138\) − 9.14976i − 0.778879i
\(139\) −4.68119 −0.397053 −0.198527 0.980095i \(-0.563616\pi\)
−0.198527 + 0.980095i \(0.563616\pi\)
\(140\) 0 0
\(141\) −5.15358 −0.434010
\(142\) − 19.2400i − 1.61458i
\(143\) 17.5349i 1.46635i
\(144\) 25.1195 2.09329
\(145\) 0 0
\(146\) 24.7023 2.04438
\(147\) 0.833911i 0.0687798i
\(148\) 15.0792i 1.23950i
\(149\) −19.6161 −1.60701 −0.803506 0.595297i \(-0.797035\pi\)
−0.803506 + 0.595297i \(0.797035\pi\)
\(150\) 0 0
\(151\) 16.5712 1.34855 0.674274 0.738481i \(-0.264457\pi\)
0.674274 + 0.738481i \(0.264457\pi\)
\(152\) 52.6131i 4.26748i
\(153\) − 10.6593i − 0.861754i
\(154\) 12.0147 0.968168
\(155\) 0 0
\(156\) 16.0454 1.28466
\(157\) − 10.4246i − 0.831972i −0.909371 0.415986i \(-0.863436\pi\)
0.909371 0.415986i \(-0.136564\pi\)
\(158\) − 11.5629i − 0.919899i
\(159\) 10.2227 0.810713
\(160\) 0 0
\(161\) 4.15079 0.327128
\(162\) 8.52469i 0.669763i
\(163\) 4.02969i 0.315630i 0.987469 + 0.157815i \(0.0504450\pi\)
−0.987469 + 0.157815i \(0.949555\pi\)
\(164\) 13.5036 1.05445
\(165\) 0 0
\(166\) 29.9526 2.32477
\(167\) 22.2680i 1.72315i 0.507633 + 0.861573i \(0.330521\pi\)
−0.507633 + 0.861573i \(0.669479\pi\)
\(168\) − 6.58537i − 0.508072i
\(169\) −1.88350 −0.144885
\(170\) 0 0
\(171\) −15.3542 −1.17417
\(172\) − 2.84606i − 0.217010i
\(173\) 17.1363i 1.30285i 0.758712 + 0.651426i \(0.225829\pi\)
−0.758712 + 0.651426i \(0.774171\pi\)
\(174\) 18.3557 1.39154
\(175\) 0 0
\(176\) −49.5415 −3.73433
\(177\) − 0.349424i − 0.0262643i
\(178\) − 38.8003i − 2.90820i
\(179\) −15.3534 −1.14757 −0.573783 0.819007i \(-0.694525\pi\)
−0.573783 + 0.819007i \(0.694525\pi\)
\(180\) 0 0
\(181\) −6.20953 −0.461551 −0.230775 0.973007i \(-0.574126\pi\)
−0.230775 + 0.973007i \(0.574126\pi\)
\(182\) 10.1979i 0.755921i
\(183\) − 9.61561i − 0.710806i
\(184\) −32.7786 −2.41647
\(185\) 0 0
\(186\) −0.594721 −0.0436071
\(187\) 21.0226i 1.53733i
\(188\) 30.8225i 2.24796i
\(189\) 4.42356 0.321767
\(190\) 0 0
\(191\) 7.32070 0.529707 0.264854 0.964289i \(-0.414676\pi\)
0.264854 + 0.964289i \(0.414676\pi\)
\(192\) 10.5179i 0.759064i
\(193\) − 23.6227i − 1.70040i −0.526459 0.850200i \(-0.676481\pi\)
0.526459 0.850200i \(-0.323519\pi\)
\(194\) 26.0828 1.87264
\(195\) 0 0
\(196\) 4.98745 0.356247
\(197\) − 8.09174i − 0.576513i −0.957553 0.288256i \(-0.906924\pi\)
0.957553 0.288256i \(-0.0930755\pi\)
\(198\) − 27.6889i − 1.96776i
\(199\) 24.6744 1.74912 0.874561 0.484915i \(-0.161149\pi\)
0.874561 + 0.484915i \(0.161149\pi\)
\(200\) 0 0
\(201\) −0.241035 −0.0170013
\(202\) 16.5943i 1.16757i
\(203\) 8.32707i 0.584446i
\(204\) 19.2368 1.34685
\(205\) 0 0
\(206\) 6.91491 0.481784
\(207\) − 9.56587i − 0.664874i
\(208\) − 42.0504i − 2.91567i
\(209\) 30.2820 2.09465
\(210\) 0 0
\(211\) −5.08112 −0.349798 −0.174899 0.984586i \(-0.555960\pi\)
−0.174899 + 0.984586i \(0.555960\pi\)
\(212\) − 61.1399i − 4.19910i
\(213\) 6.06967i 0.415887i
\(214\) 0.467147 0.0319335
\(215\) 0 0
\(216\) −34.9327 −2.37687
\(217\) − 0.269795i − 0.0183149i
\(218\) − 28.5086i − 1.93085i
\(219\) −7.79288 −0.526594
\(220\) 0 0
\(221\) −17.8438 −1.20030
\(222\) − 6.66465i − 0.447302i
\(223\) 1.25572i 0.0840896i 0.999116 + 0.0420448i \(0.0133872\pi\)
−0.999116 + 0.0420448i \(0.986613\pi\)
\(224\) −13.0183 −0.869821
\(225\) 0 0
\(226\) −21.4889 −1.42942
\(227\) 6.42534i 0.426465i 0.977002 + 0.213232i \(0.0683991\pi\)
−0.977002 + 0.213232i \(0.931601\pi\)
\(228\) − 27.7097i − 1.83512i
\(229\) 0.848045 0.0560404 0.0280202 0.999607i \(-0.491080\pi\)
0.0280202 + 0.999607i \(0.491080\pi\)
\(230\) 0 0
\(231\) −3.79028 −0.249382
\(232\) − 65.7586i − 4.31726i
\(233\) − 1.13822i − 0.0745672i −0.999305 0.0372836i \(-0.988130\pi\)
0.999305 0.0372836i \(-0.0118705\pi\)
\(234\) 23.5021 1.53638
\(235\) 0 0
\(236\) −2.08983 −0.136037
\(237\) 3.64778i 0.236949i
\(238\) 12.2263i 0.792512i
\(239\) −6.74663 −0.436403 −0.218202 0.975904i \(-0.570019\pi\)
−0.218202 + 0.975904i \(0.570019\pi\)
\(240\) 0 0
\(241\) 6.87736 0.443010 0.221505 0.975159i \(-0.428903\pi\)
0.221505 + 0.975159i \(0.428903\pi\)
\(242\) 25.5317i 1.64124i
\(243\) − 15.9600i − 1.02383i
\(244\) −57.5090 −3.68164
\(245\) 0 0
\(246\) −5.96827 −0.380523
\(247\) 25.7031i 1.63545i
\(248\) 2.13056i 0.135291i
\(249\) −9.44919 −0.598818
\(250\) 0 0
\(251\) 27.9049 1.76134 0.880671 0.473728i \(-0.157092\pi\)
0.880671 + 0.473728i \(0.157092\pi\)
\(252\) − 11.4940i − 0.724057i
\(253\) 18.8661i 1.18610i
\(254\) 50.6568 3.17849
\(255\) 0 0
\(256\) −5.91916 −0.369948
\(257\) − 1.48316i − 0.0925169i −0.998930 0.0462585i \(-0.985270\pi\)
0.998930 0.0462585i \(-0.0147298\pi\)
\(258\) 1.25790i 0.0783133i
\(259\) 3.02342 0.187866
\(260\) 0 0
\(261\) 19.1905 1.18786
\(262\) − 47.6776i − 2.94553i
\(263\) − 0.390033i − 0.0240504i −0.999928 0.0120252i \(-0.996172\pi\)
0.999928 0.0120252i \(-0.00382784\pi\)
\(264\) 29.9317 1.84217
\(265\) 0 0
\(266\) 17.6114 1.07982
\(267\) 12.2404i 0.749099i
\(268\) 1.44158i 0.0880587i
\(269\) −29.5173 −1.79970 −0.899851 0.436197i \(-0.856325\pi\)
−0.899851 + 0.436197i \(0.856325\pi\)
\(270\) 0 0
\(271\) 1.82944 0.111131 0.0555654 0.998455i \(-0.482304\pi\)
0.0555654 + 0.998455i \(0.482304\pi\)
\(272\) − 50.4141i − 3.05680i
\(273\) − 3.21716i − 0.194711i
\(274\) −15.3130 −0.925094
\(275\) 0 0
\(276\) 17.2635 1.03914
\(277\) − 1.49518i − 0.0898364i −0.998991 0.0449182i \(-0.985697\pi\)
0.998991 0.0449182i \(-0.0143027\pi\)
\(278\) − 12.3742i − 0.742153i
\(279\) −0.621768 −0.0372243
\(280\) 0 0
\(281\) 16.0659 0.958412 0.479206 0.877703i \(-0.340925\pi\)
0.479206 + 0.877703i \(0.340925\pi\)
\(282\) − 13.6229i − 0.811230i
\(283\) 17.1301i 1.01828i 0.860684 + 0.509139i \(0.170036\pi\)
−0.860684 + 0.509139i \(0.829964\pi\)
\(284\) 36.3015 2.15410
\(285\) 0 0
\(286\) −46.3515 −2.74082
\(287\) − 2.70751i − 0.159819i
\(288\) 30.0018i 1.76788i
\(289\) −4.39290 −0.258406
\(290\) 0 0
\(291\) −8.22840 −0.482357
\(292\) 46.6076i 2.72750i
\(293\) − 5.47224i − 0.319691i −0.987142 0.159846i \(-0.948900\pi\)
0.987142 0.159846i \(-0.0510997\pi\)
\(294\) −2.20434 −0.128560
\(295\) 0 0
\(296\) −23.8758 −1.38776
\(297\) 20.1059i 1.16666i
\(298\) − 51.8527i − 3.00375i
\(299\) −16.0134 −0.926077
\(300\) 0 0
\(301\) −0.570645 −0.0328914
\(302\) 43.8041i 2.52064i
\(303\) − 5.23502i − 0.300744i
\(304\) −72.6191 −4.16499
\(305\) 0 0
\(306\) 28.1766 1.61075
\(307\) − 0.329124i − 0.0187841i −0.999956 0.00939205i \(-0.997010\pi\)
0.999956 0.00939205i \(-0.00298963\pi\)
\(308\) 22.6689i 1.29168i
\(309\) −2.18146 −0.124099
\(310\) 0 0
\(311\) −2.26993 −0.128716 −0.0643579 0.997927i \(-0.520500\pi\)
−0.0643579 + 0.997927i \(0.520500\pi\)
\(312\) 25.4058i 1.43832i
\(313\) − 13.2388i − 0.748301i −0.927368 0.374150i \(-0.877934\pi\)
0.927368 0.374150i \(-0.122066\pi\)
\(314\) 27.5561 1.55508
\(315\) 0 0
\(316\) 21.8166 1.22728
\(317\) 1.18652i 0.0666417i 0.999445 + 0.0333209i \(0.0106083\pi\)
−0.999445 + 0.0333209i \(0.989392\pi\)
\(318\) 27.0225i 1.51534i
\(319\) −37.8481 −2.11909
\(320\) 0 0
\(321\) −0.147372 −0.00822548
\(322\) 10.9721i 0.611451i
\(323\) 30.8154i 1.71462i
\(324\) −16.0841 −0.893563
\(325\) 0 0
\(326\) −10.6520 −0.589960
\(327\) 8.99366i 0.497350i
\(328\) 21.3811i 1.18057i
\(329\) 6.18001 0.340715
\(330\) 0 0
\(331\) −24.5431 −1.34901 −0.674504 0.738271i \(-0.735643\pi\)
−0.674504 + 0.738271i \(0.735643\pi\)
\(332\) 56.5136i 3.10159i
\(333\) − 6.96775i − 0.381830i
\(334\) −58.8627 −3.22082
\(335\) 0 0
\(336\) 9.08944 0.495870
\(337\) 21.3287i 1.16185i 0.813957 + 0.580925i \(0.197309\pi\)
−0.813957 + 0.580925i \(0.802691\pi\)
\(338\) − 4.97881i − 0.270812i
\(339\) 6.77913 0.368192
\(340\) 0 0
\(341\) 1.22627 0.0664063
\(342\) − 40.5870i − 2.19469i
\(343\) − 1.00000i − 0.0539949i
\(344\) 4.50637 0.242967
\(345\) 0 0
\(346\) −45.2979 −2.43523
\(347\) 9.25146i 0.496644i 0.968678 + 0.248322i \(0.0798791\pi\)
−0.968678 + 0.248322i \(0.920121\pi\)
\(348\) 34.6330i 1.85653i
\(349\) 28.6781 1.53510 0.767552 0.640987i \(-0.221475\pi\)
0.767552 + 0.640987i \(0.221475\pi\)
\(350\) 0 0
\(351\) −17.0657 −0.910900
\(352\) − 59.1706i − 3.15380i
\(353\) 8.63065i 0.459363i 0.973266 + 0.229682i \(0.0737685\pi\)
−0.973266 + 0.229682i \(0.926231\pi\)
\(354\) 0.923661 0.0490920
\(355\) 0 0
\(356\) 73.2072 3.87997
\(357\) − 3.85704i − 0.204136i
\(358\) − 40.5848i − 2.14497i
\(359\) 20.5429 1.08421 0.542106 0.840310i \(-0.317627\pi\)
0.542106 + 0.840310i \(0.317627\pi\)
\(360\) 0 0
\(361\) 25.3881 1.33622
\(362\) − 16.4141i − 0.862708i
\(363\) − 8.05452i − 0.422753i
\(364\) −19.2412 −1.00851
\(365\) 0 0
\(366\) 25.4177 1.32860
\(367\) 2.41855i 0.126247i 0.998006 + 0.0631236i \(0.0201062\pi\)
−0.998006 + 0.0631236i \(0.979894\pi\)
\(368\) − 45.2426i − 2.35843i
\(369\) −6.23970 −0.324826
\(370\) 0 0
\(371\) −12.2587 −0.636442
\(372\) − 1.12210i − 0.0581783i
\(373\) − 5.97422i − 0.309333i −0.987967 0.154667i \(-0.950570\pi\)
0.987967 0.154667i \(-0.0494303\pi\)
\(374\) −55.5707 −2.87349
\(375\) 0 0
\(376\) −48.8034 −2.51684
\(377\) − 32.1251i − 1.65453i
\(378\) 11.6931i 0.601430i
\(379\) 31.8336 1.63518 0.817591 0.575799i \(-0.195309\pi\)
0.817591 + 0.575799i \(0.195309\pi\)
\(380\) 0 0
\(381\) −15.9808 −0.818720
\(382\) 19.3514i 0.990103i
\(383\) − 21.3560i − 1.09124i −0.838033 0.545619i \(-0.816295\pi\)
0.838033 0.545619i \(-0.183705\pi\)
\(384\) −6.09059 −0.310809
\(385\) 0 0
\(386\) 62.4438 3.17831
\(387\) 1.31510i 0.0668505i
\(388\) 49.2124i 2.49838i
\(389\) −30.6084 −1.55191 −0.775954 0.630789i \(-0.782731\pi\)
−0.775954 + 0.630789i \(0.782731\pi\)
\(390\) 0 0
\(391\) −19.1984 −0.970905
\(392\) 7.89697i 0.398857i
\(393\) 15.0409i 0.758715i
\(394\) 21.3895 1.07759
\(395\) 0 0
\(396\) 52.2426 2.62529
\(397\) − 15.0292i − 0.754294i −0.926153 0.377147i \(-0.876905\pi\)
0.926153 0.377147i \(-0.123095\pi\)
\(398\) 65.2238i 3.26937i
\(399\) −5.55588 −0.278142
\(400\) 0 0
\(401\) 12.0828 0.603387 0.301693 0.953405i \(-0.402448\pi\)
0.301693 + 0.953405i \(0.402448\pi\)
\(402\) − 0.637147i − 0.0317780i
\(403\) 1.04085i 0.0518483i
\(404\) −31.3096 −1.55771
\(405\) 0 0
\(406\) −22.0116 −1.09242
\(407\) 13.7420i 0.681166i
\(408\) 30.4589i 1.50794i
\(409\) 10.8652 0.537248 0.268624 0.963245i \(-0.413431\pi\)
0.268624 + 0.963245i \(0.413431\pi\)
\(410\) 0 0
\(411\) 4.83083 0.238287
\(412\) 13.0468i 0.642772i
\(413\) 0.419019i 0.0206186i
\(414\) 25.2862 1.24275
\(415\) 0 0
\(416\) 50.2234 2.46241
\(417\) 3.90370i 0.191165i
\(418\) 80.0469i 3.91522i
\(419\) 9.71688 0.474700 0.237350 0.971424i \(-0.423721\pi\)
0.237350 + 0.971424i \(0.423721\pi\)
\(420\) 0 0
\(421\) −6.31066 −0.307563 −0.153781 0.988105i \(-0.549145\pi\)
−0.153781 + 0.988105i \(0.549145\pi\)
\(422\) − 13.4313i − 0.653826i
\(423\) − 14.2424i − 0.692490i
\(424\) 96.8069 4.70136
\(425\) 0 0
\(426\) −16.0444 −0.777356
\(427\) 11.5307i 0.558011i
\(428\) 0.881399i 0.0426040i
\(429\) 14.6226 0.705985
\(430\) 0 0
\(431\) −4.92653 −0.237303 −0.118651 0.992936i \(-0.537857\pi\)
−0.118651 + 0.992936i \(0.537857\pi\)
\(432\) − 48.2158i − 2.31978i
\(433\) 37.1049i 1.78315i 0.452874 + 0.891575i \(0.350399\pi\)
−0.452874 + 0.891575i \(0.649601\pi\)
\(434\) 0.713171 0.0342333
\(435\) 0 0
\(436\) 53.7892 2.57604
\(437\) 27.6544i 1.32289i
\(438\) − 20.5995i − 0.984284i
\(439\) 9.50092 0.453454 0.226727 0.973958i \(-0.427197\pi\)
0.226727 + 0.973958i \(0.427197\pi\)
\(440\) 0 0
\(441\) −2.30459 −0.109742
\(442\) − 47.1679i − 2.24355i
\(443\) 13.2415i 0.629123i 0.949237 + 0.314561i \(0.101857\pi\)
−0.949237 + 0.314561i \(0.898143\pi\)
\(444\) 12.5747 0.596768
\(445\) 0 0
\(446\) −3.31936 −0.157176
\(447\) 16.3581i 0.773710i
\(448\) − 12.6127i − 0.595895i
\(449\) 20.2167 0.954085 0.477043 0.878880i \(-0.341709\pi\)
0.477043 + 0.878880i \(0.341709\pi\)
\(450\) 0 0
\(451\) 12.3061 0.579473
\(452\) − 40.5446i − 1.90706i
\(453\) − 13.8189i − 0.649271i
\(454\) −16.9846 −0.797127
\(455\) 0 0
\(456\) 43.8746 2.05462
\(457\) 23.1239i 1.08169i 0.841122 + 0.540845i \(0.181895\pi\)
−0.841122 + 0.540845i \(0.818105\pi\)
\(458\) 2.24170i 0.104748i
\(459\) −20.4600 −0.954993
\(460\) 0 0
\(461\) 7.94071 0.369836 0.184918 0.982754i \(-0.440798\pi\)
0.184918 + 0.982754i \(0.440798\pi\)
\(462\) − 10.0192i − 0.466133i
\(463\) 15.2021i 0.706503i 0.935528 + 0.353252i \(0.114924\pi\)
−0.935528 + 0.353252i \(0.885076\pi\)
\(464\) 90.7631 4.21357
\(465\) 0 0
\(466\) 3.00874 0.139377
\(467\) − 3.86560i − 0.178879i −0.995992 0.0894393i \(-0.971493\pi\)
0.995992 0.0894393i \(-0.0285075\pi\)
\(468\) 44.3430i 2.04976i
\(469\) 0.289042 0.0133467
\(470\) 0 0
\(471\) −8.69318 −0.400560
\(472\) − 3.30898i − 0.152308i
\(473\) − 2.59369i − 0.119258i
\(474\) −9.64247 −0.442893
\(475\) 0 0
\(476\) −23.0682 −1.05733
\(477\) 28.2514i 1.29354i
\(478\) − 17.8339i − 0.815703i
\(479\) 36.4902 1.66728 0.833641 0.552307i \(-0.186252\pi\)
0.833641 + 0.552307i \(0.186252\pi\)
\(480\) 0 0
\(481\) −11.6641 −0.531837
\(482\) 18.1795i 0.828052i
\(483\) − 3.46139i − 0.157499i
\(484\) −48.1724 −2.18966
\(485\) 0 0
\(486\) 42.1883 1.91370
\(487\) − 28.0516i − 1.27114i −0.772044 0.635570i \(-0.780765\pi\)
0.772044 0.635570i \(-0.219235\pi\)
\(488\) − 91.0578i − 4.12199i
\(489\) 3.36041 0.151963
\(490\) 0 0
\(491\) 1.94688 0.0878616 0.0439308 0.999035i \(-0.486012\pi\)
0.0439308 + 0.999035i \(0.486012\pi\)
\(492\) − 11.2608i − 0.507675i
\(493\) − 38.5147i − 1.73462i
\(494\) −67.9431 −3.05691
\(495\) 0 0
\(496\) −2.94071 −0.132042
\(497\) − 7.27856i − 0.326488i
\(498\) − 24.9778i − 1.11928i
\(499\) −9.04201 −0.404776 −0.202388 0.979305i \(-0.564870\pi\)
−0.202388 + 0.979305i \(0.564870\pi\)
\(500\) 0 0
\(501\) 18.5695 0.829624
\(502\) 73.7632i 3.29221i
\(503\) − 8.34548i − 0.372107i −0.982540 0.186053i \(-0.940430\pi\)
0.982540 0.186053i \(-0.0595697\pi\)
\(504\) 18.1993 0.810661
\(505\) 0 0
\(506\) −49.8702 −2.21700
\(507\) 1.57067i 0.0697561i
\(508\) 95.5778i 4.24058i
\(509\) −29.1093 −1.29025 −0.645123 0.764079i \(-0.723194\pi\)
−0.645123 + 0.764079i \(0.723194\pi\)
\(510\) 0 0
\(511\) 9.34497 0.413397
\(512\) − 30.2539i − 1.33705i
\(513\) 29.4717i 1.30121i
\(514\) 3.92055 0.172928
\(515\) 0 0
\(516\) −2.37337 −0.104482
\(517\) 28.0893i 1.23537i
\(518\) 7.99204i 0.351150i
\(519\) 14.2902 0.627270
\(520\) 0 0
\(521\) 42.4571 1.86008 0.930039 0.367461i \(-0.119773\pi\)
0.930039 + 0.367461i \(0.119773\pi\)
\(522\) 50.7278i 2.22029i
\(523\) − 2.39751i − 0.104836i −0.998625 0.0524179i \(-0.983307\pi\)
0.998625 0.0524179i \(-0.0166928\pi\)
\(524\) 89.9568 3.92978
\(525\) 0 0
\(526\) 1.03100 0.0449539
\(527\) 1.24787i 0.0543581i
\(528\) 41.3132i 1.79793i
\(529\) 5.77098 0.250912
\(530\) 0 0
\(531\) 0.965667 0.0419064
\(532\) 33.2286i 1.44064i
\(533\) 10.4453i 0.452438i
\(534\) −32.3560 −1.40018
\(535\) 0 0
\(536\) −2.28255 −0.0985913
\(537\) 12.8034i 0.552506i
\(538\) − 78.0254i − 3.36392i
\(539\) 4.54519 0.195775
\(540\) 0 0
\(541\) −10.2880 −0.442314 −0.221157 0.975238i \(-0.570983\pi\)
−0.221157 + 0.975238i \(0.570983\pi\)
\(542\) 4.83591i 0.207720i
\(543\) 5.17819i 0.222218i
\(544\) 60.2128 2.58160
\(545\) 0 0
\(546\) 8.50417 0.363945
\(547\) − 36.1810i − 1.54699i −0.633804 0.773494i \(-0.718507\pi\)
0.633804 0.773494i \(-0.281493\pi\)
\(548\) − 28.8922i − 1.23421i
\(549\) 26.5736 1.13414
\(550\) 0 0
\(551\) −55.4786 −2.36347
\(552\) 27.3345i 1.16343i
\(553\) − 4.37430i − 0.186014i
\(554\) 3.95232 0.167918
\(555\) 0 0
\(556\) 23.3472 0.990142
\(557\) 37.5288i 1.59015i 0.606514 + 0.795073i \(0.292568\pi\)
−0.606514 + 0.795073i \(0.707432\pi\)
\(558\) − 1.64357i − 0.0695778i
\(559\) 2.20150 0.0931135
\(560\) 0 0
\(561\) 17.5310 0.740159
\(562\) 42.4683i 1.79142i
\(563\) 5.50239i 0.231898i 0.993255 + 0.115949i \(0.0369909\pi\)
−0.993255 + 0.115949i \(0.963009\pi\)
\(564\) 25.7032 1.08230
\(565\) 0 0
\(566\) −45.2814 −1.90332
\(567\) 3.22492i 0.135434i
\(568\) 57.4785i 2.41175i
\(569\) −12.1804 −0.510629 −0.255314 0.966858i \(-0.582179\pi\)
−0.255314 + 0.966858i \(0.582179\pi\)
\(570\) 0 0
\(571\) −10.3473 −0.433019 −0.216510 0.976281i \(-0.569467\pi\)
−0.216510 + 0.976281i \(0.569467\pi\)
\(572\) − 87.4547i − 3.65666i
\(573\) − 6.10481i − 0.255032i
\(574\) 7.15697 0.298726
\(575\) 0 0
\(576\) −29.0672 −1.21113
\(577\) − 29.3627i − 1.22238i −0.791482 0.611192i \(-0.790690\pi\)
0.791482 0.611192i \(-0.209310\pi\)
\(578\) − 11.6121i − 0.482999i
\(579\) −19.6992 −0.818673
\(580\) 0 0
\(581\) 11.3312 0.470096
\(582\) − 21.7508i − 0.901598i
\(583\) − 55.7183i − 2.30762i
\(584\) −73.7969 −3.05374
\(585\) 0 0
\(586\) 14.4652 0.597552
\(587\) 18.1347i 0.748498i 0.927328 + 0.374249i \(0.122099\pi\)
−0.927328 + 0.374249i \(0.877901\pi\)
\(588\) − 4.15909i − 0.171518i
\(589\) 1.79750 0.0740645
\(590\) 0 0
\(591\) −6.74779 −0.277567
\(592\) − 32.9546i − 1.35442i
\(593\) − 23.7551i − 0.975505i −0.872982 0.487752i \(-0.837817\pi\)
0.872982 0.487752i \(-0.162183\pi\)
\(594\) −53.1475 −2.18067
\(595\) 0 0
\(596\) 97.8343 4.00745
\(597\) − 20.5763i − 0.842131i
\(598\) − 42.3294i − 1.73098i
\(599\) −9.08142 −0.371057 −0.185528 0.982639i \(-0.559400\pi\)
−0.185528 + 0.982639i \(0.559400\pi\)
\(600\) 0 0
\(601\) 27.1808 1.10873 0.554364 0.832274i \(-0.312962\pi\)
0.554364 + 0.832274i \(0.312962\pi\)
\(602\) − 1.50843i − 0.0614791i
\(603\) − 0.666124i − 0.0271267i
\(604\) −82.6483 −3.36291
\(605\) 0 0
\(606\) 13.8381 0.562136
\(607\) − 8.67473i − 0.352096i −0.984382 0.176048i \(-0.943669\pi\)
0.984382 0.176048i \(-0.0563314\pi\)
\(608\) − 86.7336i − 3.51751i
\(609\) 6.94404 0.281387
\(610\) 0 0
\(611\) −23.8420 −0.964543
\(612\) 53.1628i 2.14898i
\(613\) 10.2136i 0.412522i 0.978497 + 0.206261i \(0.0661297\pi\)
−0.978497 + 0.206261i \(0.933870\pi\)
\(614\) 0.869999 0.0351103
\(615\) 0 0
\(616\) −35.8932 −1.44618
\(617\) − 8.10309i − 0.326218i −0.986608 0.163109i \(-0.947848\pi\)
0.986608 0.163109i \(-0.0521522\pi\)
\(618\) − 5.76642i − 0.231959i
\(619\) −9.49309 −0.381559 −0.190780 0.981633i \(-0.561102\pi\)
−0.190780 + 0.981633i \(0.561102\pi\)
\(620\) 0 0
\(621\) −18.3612 −0.736811
\(622\) − 6.00028i − 0.240589i
\(623\) − 14.6783i − 0.588073i
\(624\) −35.0663 −1.40377
\(625\) 0 0
\(626\) 34.9951 1.39869
\(627\) − 25.2525i − 1.00849i
\(628\) 51.9921i 2.07471i
\(629\) −13.9841 −0.557581
\(630\) 0 0
\(631\) −19.0891 −0.759925 −0.379962 0.925002i \(-0.624063\pi\)
−0.379962 + 0.925002i \(0.624063\pi\)
\(632\) 34.5437i 1.37408i
\(633\) 4.23720i 0.168414i
\(634\) −3.13643 −0.124563
\(635\) 0 0
\(636\) −50.9852 −2.02170
\(637\) 3.85791i 0.152856i
\(638\) − 100.047i − 3.96089i
\(639\) −16.7741 −0.663574
\(640\) 0 0
\(641\) −0.0611719 −0.00241614 −0.00120807 0.999999i \(-0.500385\pi\)
−0.00120807 + 0.999999i \(0.500385\pi\)
\(642\) − 0.389559i − 0.0153747i
\(643\) − 8.28259i − 0.326634i −0.986574 0.163317i \(-0.947781\pi\)
0.986574 0.163317i \(-0.0522193\pi\)
\(644\) −20.7018 −0.815767
\(645\) 0 0
\(646\) −81.4569 −3.20488
\(647\) − 43.9925i − 1.72952i −0.502182 0.864762i \(-0.667469\pi\)
0.502182 0.864762i \(-0.332531\pi\)
\(648\) − 25.4671i − 1.00044i
\(649\) −1.90452 −0.0747589
\(650\) 0 0
\(651\) −0.224985 −0.00881787
\(652\) − 20.0979i − 0.787095i
\(653\) 18.6070i 0.728147i 0.931370 + 0.364073i \(0.118614\pi\)
−0.931370 + 0.364073i \(0.881386\pi\)
\(654\) −23.7736 −0.929623
\(655\) 0 0
\(656\) −29.5112 −1.15222
\(657\) − 21.5364i − 0.840213i
\(658\) 16.3361i 0.636848i
\(659\) 42.8021 1.66733 0.833667 0.552268i \(-0.186237\pi\)
0.833667 + 0.552268i \(0.186237\pi\)
\(660\) 0 0
\(661\) 17.0003 0.661234 0.330617 0.943765i \(-0.392743\pi\)
0.330617 + 0.943765i \(0.392743\pi\)
\(662\) − 64.8766i − 2.52150i
\(663\) 14.8801i 0.577897i
\(664\) −89.4818 −3.47257
\(665\) 0 0
\(666\) 18.4184 0.713698
\(667\) − 34.5639i − 1.33832i
\(668\) − 111.060i − 4.29706i
\(669\) 1.04716 0.0404857
\(670\) 0 0
\(671\) −52.4093 −2.02324
\(672\) 10.8561i 0.418783i
\(673\) − 5.43715i − 0.209587i −0.994494 0.104793i \(-0.966582\pi\)
0.994494 0.104793i \(-0.0334181\pi\)
\(674\) −56.3799 −2.17167
\(675\) 0 0
\(676\) 9.39388 0.361303
\(677\) − 5.00554i − 0.192378i −0.995363 0.0961892i \(-0.969335\pi\)
0.995363 0.0961892i \(-0.0306654\pi\)
\(678\) 17.9198i 0.688206i
\(679\) 9.86723 0.378670
\(680\) 0 0
\(681\) 5.35816 0.205325
\(682\) 3.24150i 0.124123i
\(683\) 39.6432i 1.51691i 0.651728 + 0.758453i \(0.274044\pi\)
−0.651728 + 0.758453i \(0.725956\pi\)
\(684\) 76.5784 2.92805
\(685\) 0 0
\(686\) 2.64338 0.100925
\(687\) − 0.707194i − 0.0269811i
\(688\) 6.21990i 0.237131i
\(689\) 47.2932 1.80173
\(690\) 0 0
\(691\) 19.5149 0.742383 0.371191 0.928556i \(-0.378949\pi\)
0.371191 + 0.928556i \(0.378949\pi\)
\(692\) − 85.4667i − 3.24896i
\(693\) − 10.4748i − 0.397905i
\(694\) −24.4551 −0.928303
\(695\) 0 0
\(696\) −54.8368 −2.07858
\(697\) 12.5229i 0.474338i
\(698\) 75.8071i 2.86934i
\(699\) −0.949173 −0.0359010
\(700\) 0 0
\(701\) 21.8539 0.825412 0.412706 0.910864i \(-0.364584\pi\)
0.412706 + 0.910864i \(0.364584\pi\)
\(702\) − 45.1111i − 1.70261i
\(703\) 20.1434i 0.759721i
\(704\) 57.3272 2.16060
\(705\) 0 0
\(706\) −22.8141 −0.858620
\(707\) 6.27767i 0.236096i
\(708\) 1.74274i 0.0654961i
\(709\) −40.7664 −1.53101 −0.765507 0.643427i \(-0.777512\pi\)
−0.765507 + 0.643427i \(0.777512\pi\)
\(710\) 0 0
\(711\) −10.0810 −0.378067
\(712\) 115.914i 4.34406i
\(713\) 1.11986i 0.0419392i
\(714\) 10.1956 0.381562
\(715\) 0 0
\(716\) 76.5743 2.86172
\(717\) 5.62609i 0.210110i
\(718\) 54.3026i 2.02656i
\(719\) −20.4371 −0.762176 −0.381088 0.924539i \(-0.624451\pi\)
−0.381088 + 0.924539i \(0.624451\pi\)
\(720\) 0 0
\(721\) 2.61593 0.0974225
\(722\) 67.1105i 2.49759i
\(723\) − 5.73511i − 0.213291i
\(724\) 30.9697 1.15098
\(725\) 0 0
\(726\) 21.2911 0.790189
\(727\) 32.0766i 1.18966i 0.803853 + 0.594828i \(0.202780\pi\)
−0.803853 + 0.594828i \(0.797220\pi\)
\(728\) − 30.4658i − 1.12914i
\(729\) −3.63443 −0.134609
\(730\) 0 0
\(731\) 2.63937 0.0976208
\(732\) 47.9574i 1.77256i
\(733\) − 44.5082i − 1.64395i −0.569525 0.821974i \(-0.692873\pi\)
0.569525 0.821974i \(-0.307127\pi\)
\(734\) −6.39314 −0.235975
\(735\) 0 0
\(736\) 54.0361 1.99180
\(737\) 1.31375i 0.0483926i
\(738\) − 16.4939i − 0.607149i
\(739\) −0.0772344 −0.00284111 −0.00142056 0.999999i \(-0.500452\pi\)
−0.00142056 + 0.999999i \(0.500452\pi\)
\(740\) 0 0
\(741\) 21.4341 0.787402
\(742\) − 32.4045i − 1.18961i
\(743\) 14.8925i 0.546353i 0.961964 + 0.273177i \(0.0880743\pi\)
−0.961964 + 0.273177i \(0.911926\pi\)
\(744\) 1.77670 0.0651370
\(745\) 0 0
\(746\) 15.7921 0.578191
\(747\) − 26.1137i − 0.955451i
\(748\) − 104.849i − 3.83367i
\(749\) 0.176723 0.00645733
\(750\) 0 0
\(751\) 16.8102 0.613414 0.306707 0.951804i \(-0.400773\pi\)
0.306707 + 0.951804i \(0.400773\pi\)
\(752\) − 67.3607i − 2.45639i
\(753\) − 23.2702i − 0.848014i
\(754\) 84.9189 3.09256
\(755\) 0 0
\(756\) −22.0623 −0.802398
\(757\) − 12.0534i − 0.438090i −0.975715 0.219045i \(-0.929706\pi\)
0.975715 0.219045i \(-0.0702941\pi\)
\(758\) 84.1483i 3.05640i
\(759\) 15.7327 0.571059
\(760\) 0 0
\(761\) 13.6602 0.495182 0.247591 0.968865i \(-0.420361\pi\)
0.247591 + 0.968865i \(0.420361\pi\)
\(762\) − 42.2433i − 1.53031i
\(763\) − 10.7849i − 0.390440i
\(764\) −36.5116 −1.32094
\(765\) 0 0
\(766\) 56.4519 2.03969
\(767\) − 1.61654i − 0.0583698i
\(768\) 4.93606i 0.178115i
\(769\) 37.1200 1.33858 0.669290 0.743001i \(-0.266598\pi\)
0.669290 + 0.743001i \(0.266598\pi\)
\(770\) 0 0
\(771\) −1.23682 −0.0445431
\(772\) 117.817i 4.24033i
\(773\) 29.4332i 1.05864i 0.848423 + 0.529318i \(0.177552\pi\)
−0.848423 + 0.529318i \(0.822448\pi\)
\(774\) −3.47632 −0.124954
\(775\) 0 0
\(776\) −77.9212 −2.79721
\(777\) − 2.52126i − 0.0904498i
\(778\) − 80.9096i − 2.90075i
\(779\) 18.0386 0.646300
\(780\) 0 0
\(781\) 33.0824 1.18378
\(782\) − 50.7487i − 1.81477i
\(783\) − 36.8353i − 1.31639i
\(784\) −10.8998 −0.389278
\(785\) 0 0
\(786\) −39.7589 −1.41815
\(787\) 37.0603i 1.32106i 0.750801 + 0.660529i \(0.229668\pi\)
−0.750801 + 0.660529i \(0.770332\pi\)
\(788\) 40.3572i 1.43766i
\(789\) −0.325253 −0.0115793
\(790\) 0 0
\(791\) −8.12932 −0.289045
\(792\) 82.7192i 2.93930i
\(793\) − 44.4846i − 1.57969i
\(794\) 39.7279 1.40989
\(795\) 0 0
\(796\) −123.062 −4.36183
\(797\) 4.72508i 0.167371i 0.996492 + 0.0836855i \(0.0266691\pi\)
−0.996492 + 0.0836855i \(0.973331\pi\)
\(798\) − 14.6863i − 0.519890i
\(799\) −28.5841 −1.01123
\(800\) 0 0
\(801\) −33.8274 −1.19523
\(802\) 31.9394i 1.12782i
\(803\) 42.4747i 1.49890i
\(804\) 1.20215 0.0423966
\(805\) 0 0
\(806\) −2.75135 −0.0969123
\(807\) 24.6148i 0.866483i
\(808\) − 49.5745i − 1.74403i
\(809\) 27.4587 0.965397 0.482699 0.875786i \(-0.339657\pi\)
0.482699 + 0.875786i \(0.339657\pi\)
\(810\) 0 0
\(811\) −22.2780 −0.782286 −0.391143 0.920330i \(-0.627920\pi\)
−0.391143 + 0.920330i \(0.627920\pi\)
\(812\) − 41.5309i − 1.45745i
\(813\) − 1.52559i − 0.0535049i
\(814\) −36.3253 −1.27320
\(815\) 0 0
\(816\) −42.0409 −1.47173
\(817\) − 3.80189i − 0.133011i
\(818\) 28.7208i 1.00420i
\(819\) 8.89092 0.310674
\(820\) 0 0
\(821\) 20.7446 0.723991 0.361996 0.932180i \(-0.382096\pi\)
0.361996 + 0.932180i \(0.382096\pi\)
\(822\) 12.7697i 0.445395i
\(823\) 35.7195i 1.24510i 0.782578 + 0.622552i \(0.213904\pi\)
−0.782578 + 0.622552i \(0.786096\pi\)
\(824\) −20.6579 −0.719654
\(825\) 0 0
\(826\) −1.10762 −0.0385392
\(827\) 25.4541i 0.885126i 0.896737 + 0.442563i \(0.145931\pi\)
−0.896737 + 0.442563i \(0.854069\pi\)
\(828\) 47.7093i 1.65801i
\(829\) 13.4046 0.465561 0.232780 0.972529i \(-0.425218\pi\)
0.232780 + 0.972529i \(0.425218\pi\)
\(830\) 0 0
\(831\) −1.24684 −0.0432525
\(832\) 48.6588i 1.68694i
\(833\) 4.62525i 0.160255i
\(834\) −10.3189 −0.357316
\(835\) 0 0
\(836\) −151.030 −5.22349
\(837\) 1.19346i 0.0412519i
\(838\) 25.6854i 0.887287i
\(839\) 10.6811 0.368754 0.184377 0.982856i \(-0.440973\pi\)
0.184377 + 0.982856i \(0.440973\pi\)
\(840\) 0 0
\(841\) 40.3401 1.39104
\(842\) − 16.6815i − 0.574881i
\(843\) − 13.3975i − 0.461436i
\(844\) 25.3418 0.872301
\(845\) 0 0
\(846\) 37.6481 1.29437
\(847\) 9.65873i 0.331878i
\(848\) 133.617i 4.58844i
\(849\) 14.2850 0.490259
\(850\) 0 0
\(851\) −12.5496 −0.430194
\(852\) − 30.2722i − 1.03711i
\(853\) − 44.8085i − 1.53422i −0.641518 0.767108i \(-0.721695\pi\)
0.641518 0.767108i \(-0.278305\pi\)
\(854\) −30.4801 −1.04301
\(855\) 0 0
\(856\) −1.39558 −0.0476999
\(857\) − 36.9801i − 1.26322i −0.775288 0.631608i \(-0.782395\pi\)
0.775288 0.631608i \(-0.217605\pi\)
\(858\) 38.6530i 1.31959i
\(859\) 46.8718 1.59924 0.799622 0.600504i \(-0.205033\pi\)
0.799622 + 0.600504i \(0.205033\pi\)
\(860\) 0 0
\(861\) −2.25782 −0.0769463
\(862\) − 13.0227i − 0.443554i
\(863\) 15.3188i 0.521459i 0.965412 + 0.260730i \(0.0839631\pi\)
−0.965412 + 0.260730i \(0.916037\pi\)
\(864\) 57.5872 1.95916
\(865\) 0 0
\(866\) −98.0824 −3.33298
\(867\) 3.66329i 0.124412i
\(868\) 1.34559i 0.0456723i
\(869\) 19.8820 0.674452
\(870\) 0 0
\(871\) −1.11510 −0.0377837
\(872\) 85.1681i 2.88415i
\(873\) − 22.7400i − 0.769631i
\(874\) −73.1010 −2.47268
\(875\) 0 0
\(876\) 38.8666 1.31318
\(877\) − 43.4733i − 1.46799i −0.679156 0.733994i \(-0.737654\pi\)
0.679156 0.733994i \(-0.262346\pi\)
\(878\) 25.1145i 0.847575i
\(879\) −4.56336 −0.153918
\(880\) 0 0
\(881\) −44.7337 −1.50712 −0.753558 0.657381i \(-0.771664\pi\)
−0.753558 + 0.657381i \(0.771664\pi\)
\(882\) − 6.09191i − 0.205125i
\(883\) − 32.1748i − 1.08277i −0.840776 0.541384i \(-0.817901\pi\)
0.840776 0.541384i \(-0.182099\pi\)
\(884\) 88.9951 2.99323
\(885\) 0 0
\(886\) −35.0023 −1.17593
\(887\) − 32.3009i − 1.08456i −0.840199 0.542279i \(-0.817562\pi\)
0.840199 0.542279i \(-0.182438\pi\)
\(888\) 19.9103i 0.668147i
\(889\) 19.1636 0.642728
\(890\) 0 0
\(891\) −14.6579 −0.491057
\(892\) − 6.26287i − 0.209696i
\(893\) 41.1740i 1.37783i
\(894\) −43.2406 −1.44618
\(895\) 0 0
\(896\) 7.30364 0.243998
\(897\) 13.3537i 0.445868i
\(898\) 53.4404i 1.78333i
\(899\) −2.24660 −0.0749284
\(900\) 0 0
\(901\) 56.6997 1.88894
\(902\) 32.5298i 1.08312i
\(903\) 0.475867i 0.0158359i
\(904\) 64.1969 2.13516
\(905\) 0 0
\(906\) 36.5287 1.21358
\(907\) − 32.6364i − 1.08367i −0.840484 0.541836i \(-0.817729\pi\)
0.840484 0.541836i \(-0.182271\pi\)
\(908\) − 32.0461i − 1.06349i
\(909\) 14.4675 0.479855
\(910\) 0 0
\(911\) 14.5262 0.481276 0.240638 0.970615i \(-0.422643\pi\)
0.240638 + 0.970615i \(0.422643\pi\)
\(912\) 60.5579i 2.00527i
\(913\) 51.5023i 1.70448i
\(914\) −61.1252 −2.02184
\(915\) 0 0
\(916\) −4.22958 −0.139749
\(917\) − 18.0366i − 0.595622i
\(918\) − 54.0836i − 1.78503i
\(919\) 28.2136 0.930681 0.465341 0.885132i \(-0.345932\pi\)
0.465341 + 0.885132i \(0.345932\pi\)
\(920\) 0 0
\(921\) −0.274460 −0.00904377
\(922\) 20.9903i 0.691279i
\(923\) 28.0801i 0.924266i
\(924\) 18.9038 0.621891
\(925\) 0 0
\(926\) −40.1850 −1.32056
\(927\) − 6.02866i − 0.198007i
\(928\) 108.404i 3.55854i
\(929\) 2.45383 0.0805075 0.0402537 0.999189i \(-0.487183\pi\)
0.0402537 + 0.999189i \(0.487183\pi\)
\(930\) 0 0
\(931\) 6.66244 0.218353
\(932\) 5.67681i 0.185950i
\(933\) 1.89292i 0.0619713i
\(934\) 10.2182 0.334351
\(935\) 0 0
\(936\) −70.2113 −2.29493
\(937\) − 36.6194i − 1.19630i −0.801383 0.598151i \(-0.795902\pi\)
0.801383 0.598151i \(-0.204098\pi\)
\(938\) 0.764047i 0.0249470i
\(939\) −11.0400 −0.360276
\(940\) 0 0
\(941\) 14.7576 0.481085 0.240543 0.970639i \(-0.422675\pi\)
0.240543 + 0.970639i \(0.422675\pi\)
\(942\) − 22.9794i − 0.748708i
\(943\) 11.2383i 0.365969i
\(944\) 4.56721 0.148650
\(945\) 0 0
\(946\) 6.85610 0.222911
\(947\) − 54.3926i − 1.76752i −0.467939 0.883761i \(-0.655003\pi\)
0.467939 0.883761i \(-0.344997\pi\)
\(948\) − 18.1931i − 0.590886i
\(949\) −36.0521 −1.17030
\(950\) 0 0
\(951\) 0.989454 0.0320852
\(952\) − 36.5254i − 1.18380i
\(953\) 42.6983i 1.38313i 0.722313 + 0.691566i \(0.243079\pi\)
−0.722313 + 0.691566i \(0.756921\pi\)
\(954\) −74.6792 −2.41783
\(955\) 0 0
\(956\) 33.6485 1.08827
\(957\) 31.5619i 1.02025i
\(958\) 96.4575i 3.11640i
\(959\) −5.79298 −0.187065
\(960\) 0 0
\(961\) −30.9272 −0.997652
\(962\) − 30.8326i − 0.994083i
\(963\) − 0.407275i − 0.0131243i
\(964\) −34.3005 −1.10475
\(965\) 0 0
\(966\) 9.14976 0.294389
\(967\) − 44.4649i − 1.42989i −0.699179 0.714947i \(-0.746451\pi\)
0.699179 0.714947i \(-0.253549\pi\)
\(968\) − 76.2746i − 2.45156i
\(969\) 25.6973 0.825517
\(970\) 0 0
\(971\) 26.5710 0.852704 0.426352 0.904557i \(-0.359799\pi\)
0.426352 + 0.904557i \(0.359799\pi\)
\(972\) 79.5996i 2.55316i
\(973\) − 4.68119i − 0.150072i
\(974\) 74.1510 2.37595
\(975\) 0 0
\(976\) 125.682 4.02299
\(977\) − 33.1445i − 1.06038i −0.847877 0.530192i \(-0.822120\pi\)
0.847877 0.530192i \(-0.177880\pi\)
\(978\) 8.88283i 0.284042i
\(979\) 66.7155 2.13224
\(980\) 0 0
\(981\) −24.8548 −0.793553
\(982\) 5.14635i 0.164227i
\(983\) − 15.1403i − 0.482900i −0.970413 0.241450i \(-0.922377\pi\)
0.970413 0.241450i \(-0.0776230\pi\)
\(984\) 17.8299 0.568397
\(985\) 0 0
\(986\) 101.809 3.24226
\(987\) − 5.15358i − 0.164040i
\(988\) − 128.193i − 4.07837i
\(989\) 2.36863 0.0753179
\(990\) 0 0
\(991\) 3.95460 0.125622 0.0628109 0.998025i \(-0.479993\pi\)
0.0628109 + 0.998025i \(0.479993\pi\)
\(992\) − 3.51227i − 0.111515i
\(993\) 20.4667i 0.649492i
\(994\) 19.2400 0.610255
\(995\) 0 0
\(996\) 47.1274 1.49329
\(997\) 1.11672i 0.0353668i 0.999844 + 0.0176834i \(0.00562909\pi\)
−0.999844 + 0.0176834i \(0.994371\pi\)
\(998\) − 23.9015i − 0.756587i
\(999\) −13.3743 −0.423143
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.b.e.624.14 16
5.2 odd 4 875.2.a.j.1.1 yes 8
5.3 odd 4 875.2.a.i.1.8 8
5.4 even 2 inner 875.2.b.e.624.3 16
15.2 even 4 7875.2.a.w.1.8 8
15.8 even 4 7875.2.a.bb.1.1 8
35.13 even 4 6125.2.a.v.1.8 8
35.27 even 4 6125.2.a.w.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.i.1.8 8 5.3 odd 4
875.2.a.j.1.1 yes 8 5.2 odd 4
875.2.b.e.624.3 16 5.4 even 2 inner
875.2.b.e.624.14 16 1.1 even 1 trivial
6125.2.a.v.1.8 8 35.13 even 4
6125.2.a.w.1.1 8 35.27 even 4
7875.2.a.w.1.8 8 15.2 even 4
7875.2.a.bb.1.1 8 15.8 even 4